Information Zefiro ZA2

9. Juli 1997

Inhaltsverzeichnis

1 ZA2 Programming Information
2 ZA2 Modes

3 The DSP Operating System!

1 ZA2 Programming Information

Ok, now for some programming information. ... first, the program needs to know the
base address of the ZA1/2 which can be 16bit I/O port 0x210, 0x250, 0x310 or 0x350. ..

On both the ZA1 and ZA2 the base address is used as a 16bit audio data port...read
from it to grab the last sample, write to it to send out a sample. .. Of course if DMA is
running, you don’t need to do this.

Base+2 is the command or status register depending on if you read or write to it. Here’s
what the status register looks like if you inport(base+2):

bit | function description

0 | DATPCRDY | ZA1/2 goes low when a new sample is waiting at base.

1 | PCDATRDY | ZA1/2 goes low when the last sample has gone out and the
output buffer is ready for a new sample Note: when using DMA |
these bits act as the DRQ lines to request a transaction.

2 | VALID ZA1/2 SPDIF valid sample bit read from 8412 chip.

3 | FSYNC ZA1/2 delayed 1/2 cycle, this tells if the last sample read was
from the Left or Right channel

4 | FREQO ZA1/2 frequency reporting info from 8412

5 | FREQ1 ZA1/2 frequency reporting info from 8412

6| C ZA1/2 Channel status bit from 8412, updated each sample

7| U ZA1/2 User bit from 8412, updated each sample

8 | CBL ZA1/2 Cbit block start, 1 during first 32 Cbits,

0 during last 160 Chbits.

9 | REQ ZA2 only. REQuest line from DSP telling the PC that
the DSP wants to send data to the PC...

10 | PCHOSTRDY | ZA2 only. low when new data can be written to host
port on DSP... better to use FSYNC to sync then this..
11 | FREQ2 ZA2 only. yet one last bit for frequency reporting.

Ok! now the command port. .. when you write to base+2...outport(base+2,cmd)

bit | function description
0 | TOS/COAX | 0 sets toslink input
1 sets coaxial input
1 | AES/EBU 1 sets AES/EBU input
0 sets either coax or toslink.

NOTE! bits 2-7 are

2
3

TRQSELO
IRQSEL1

00
01
10
11

sets interrupts disabled
sets IRQ 10
sets IRQ 11
sets IRQ 12

IDMASELO
IDMASEL1

00
01
10
11

sets input DMA disabled
sets input DMA 5
sets input DMA 6
sets input DMA 7

ODMASELO
ODMASEL1

00
01
10
11

sets output DMA disabled
sets output DMA 5
sets output DMA 6
sets output DMA 7

MODEO

MODE1

00

01

10

11

mode 0: uses the 48khz clock for everything.. this is used
during initial upload

mode 1: sets the ZA2 for standalone output with possible
feedback to the PC.. this is used by PLAYDAT or anything
needing a stand alone clock source for output. PC—DSP (
—PC)

mode 2: sets the ZA2 for input only or externally
clocked input and output.. this is basically the ZA1 mode.
INPUT—PC (—DSP)

mode 3: This is the pass thru mode.. it allows the input
signal to go directly to the DSP, then the DSP sends 16 bit
data to the data register (base) rather then the 8412 input
chip doing so... INPUT—DSP (—PC)

Here’s how some of the signals are routed during these modes...

MODE | internal clock from. | clock to DSP. | Passthru? | data input source.
0 6.144mhz clock 6.144mhz no DSP (disabled)

1 clkout DSP PLL 6.144mhz no DSP

2 8412 input chip 8412 MCK no 8412 input chip

3 clkout DSP PLL 8412 MCK YES DSP

anyway, back to the command register

bit 10 | WCSEL | Word clock select (for future use)
bit 11 | PIO sets PIO on DSP and external connector (future use)
bit 12 | RESET | tied directly to the reset pin on the DSP
bit 13 | CS tied directly to the CS pin on the DSP
bit 14 | BOOT | tied directly to the BOOT pin on the DSP.
thats all...

base+4 is the host output port.. lower 8 bits are sent to the DSP when in DSP read
mode... when the DSP host port is in write mode, the data is assembled in 16bit chunks
and sent to the data register (base).

base+6 is used to program the xilinx chip in upbit.exe don’t mess with this because you
could fry the chip.. that would be bad.

2 ZA2 Modes

The ZA2 modes are 0 thru 3...and are set by bits 8 and 9 in the command register
(base+2)...so for example mode 3 would be — 0x300. Here’s a rundown on the hardware
config for the 4 modes:

‘internal clock’ is the master clock that the glue logic runs at...This is a 128xF's
clock...from this "Master’ the serial bit clock (SCK or SCLK) and the Frame sync
(FSYNC) are generated (64x and 1x). this is the speed at which data is transfered to
or from the computer. The ZA2 cannot input and output at different speeds, input and
output are locked together.... if we record from the outside world, our clock must be
derived from the SPDIF signal (as the ZA1 does).. . if we're playing stand alone 44.1Khz
(for example) then the internal clock must be 128x44.1khz.

"MCK to 4920’ is the clock signal sent TO the DSP chip as the master. If we want to
do simultaneous record/play, we must be synced to the outside world...if we want to
do live sample rate conversion we must be locked to the outside world, if we do stand
alone playback, we derive our clocks from the 6.144Mhz oscillator on the board. ... note
the DSP can synthesize any frequency from this 6.144Mhz master and then SEND IT
BACK TO THE XILINX! for example, if we want 44.1khz stand alone playback (mode
1) we set the DSP to use 6.144 as the master, SYNTHESIZE 44.1 (5.6448Mhz) inside
the DSP then send this 5.6448Mhz signal to the Xilinx chip for it’s “internal clock”

'pass-thru’ normally the 16bit digital audio input to the DSP comes from the Xilinx (ie:
from the PC) but in a few cases we want to bypass the PC and have the spdif input go
direct to the DSP...this is the pass thru mode. Note that for 48—44.1 conversion, the
7ZA2 is in pass thru mode, but is deriving the DSP clock from the input rather then the
6.144Mhz crystal. .. this is needed since we must be synced to the input (otherwise our
48khz and the outside 48khz might not match). . . the audio is sent at 48khz directly from
the 8412 spdif input chip directly to the DSP...the DSP then synthesizes 44.1khz from
this. . .it reclocks to 44.1 and does all the math so that the samples come out correct
(when running 48244. . .if you just put it in 44.1 mode with 48 input then some samples
will be repeated without the 48244 program). note also, in this mode the Xilinx is clocked
at 44.1...a 5.6448Mhz signal derived from the input rather then from the 6.144mhz
crystal. . .if you run 48244 and your input is 32khz, you’ll get a nicely resampled 29.4Khz
signal. Note also that unlike modes 0, 1 and 2 where FSYNC and SCK are internally
generated, in mode 3 there are 2 FSYNCS and 2 SCKS...one from the 8412 acting as

master to send data to the DSP, and the other derived from the DSP to get data from
the DSP to the PC.... this is how we move 48khz data to the DSP and read 44.1 from
it at the same time.

'Source’. .. this is what is feeding the input to the PC/Xilinx...we can either get our
16 bit audio from the CS8412 (normal input mode...just like a ZA1) or we can try to
squeeze 16bit audio out of the HOST port on the DSP. .. this is how 48244 works. . . the
signal goes INPUT—DSP—PC.

ok, here’s the rundown:

e MODE 0: config mode. ... made for initial upload to the DSP.
Internal clock: 6.144Mhz
MCK to 4920: 6.144Mhz
Pass-thru: NO
Source: N/A.

e MODE 1: Playback mode. .. used for stand alone play or play with DSP feedback.
Internal clock: Clkout (from DSP)
MCK to 4920: 6.144Mhz
Pass-thru: NO
Source: DSP (host port)

e MODE 2: ZA1 mode. .. used for recording or simultaneous record/play.
Internal clock: from CS8412
MCK to 4920: from CS8412
Pass-thru: NO
Source: CS8412

e MODE 3: Pass thru mode. . . sets the ZA2 to INPUT—DSP—PC mode rather then
the default INPUT—PC—DSP mode. Internal clock: Clkout (from DSP)
MCK to 4920: from CS8412
Pass-thru: YES. ..
Source: DSP (host port)

That’s about it. .. if you have questions on this, let me know and T’ll clarify.

3 The DSP Operating System!

6/3/95

Ok.. here’s some info on the DSP OS.... When the ZA2 comes alive using the UPBIT
program, the DSP is still somewhat dead...actually it’s being held in reset because the
default of bit 12 (reset) in the command register is zero. The UPSIMZ program will
upload a .SIM (DSP executable in HEX) file to the DSP and start it up. ..the DSP has
a small bootstrap program built in. This bootstrap handles the upload process and after
checking that xfer went ok, performs a software reset and begins executing the program.
One of the first things the DSP program must do is set up the PLL circuits on the chip
to the desired frequency (when the chip first comes up, it’s running in a slow mode).
The result of this PLL divide/multiply ratio feeds all parts of the system including the
DAC, SPDIF output, DSP clock and in modes 1 and 3, the ISA bus interface.

What program should we load into the DSP? Well most of the time you’ll probably use
the ’operating system’ program...currently TZ1.ASM. Another program will be the 48
to 44.1 conversion program, and eventually an MPEG audio decoder and whatever other
goodies we can come up with. For now though, all the DOS software (and future windows
software) will expect the DSP to react to a particular protocol set up by the OS program
TZ1.ASM. The OS program runs entirely on the DSP’s interrupts, the main loop does
nothing. There are 7 interrupt routines in the OS: left channel input, right channel input,
left channel output, right channel output, host port input, host port output, and the
long interrupt (ISR8) which handles the channel status bit block update and takes over
if the PLL breaks lock. There’s a lot more going on in these 7 subroutines then you
might expect. Since the Left in, Right in, Left out and Right out all get called at the
current sample rate (48000, 44100, 32000 or whatever times per second) ...any one of
these would be a good place to put periodic routines like updating the user bits (for
Start_IDs etc), forcing the ZA2 interrupt, syncing the input L/R or syncing the output
L/R...The volume is adjusted on the output side (Right out and Left out). There is also
a 'Resync’ routine nestled into the Left input routine. .. this relocks the channel status
block and a few other oddities when needed.

Ok, now the tricky part.. the HOST interface. The DSP has a built in serial 8 bit host
port that can only move data in one direction at a time. A special pin on the chip and a
special sequence of bits must be sent to the DSP in order to select input mode or output
mode. When the DSP first comes up, it is in 'input’ mode so that the user can upload

the program to the DSP (by writing to base+4 with 8 bit information). I've designed the
ZA2 so that when this host port is in ’output’ mode, the data can be shuffled directly
into the audio register of the ISA interface.. this way 16bit audio can be read FROM
the DSP to the computer. The DSP is set up to be interrupted each time 8 bits of
information are sent out, so we load half of the 16bit word into the SCPOUT register
then set a flag so the system knows that the next byte sent will be the second half of
the 16bit audio sample.. on the ISA side all 16bits are shuffled in transparently...the
problem is getting this whole thing synchronized.. At first I was thinking of syncing to
FSYNC so that FSYNC (bit 3 in the status register) would indicate left or right. But
this has always been a hassle (on the ZA1 this required special timing to make sure
DMAs were started on the correct sample.. even needed a VxD on the windows drivers
to handle this). Soooo...now we sync up by sending a special command to the DSP,
then waiting for a signal mixed in with the audio that identifies the left channel.. there’s
also a similar sync procedure for sending audio to the DSP. The problem with this host
port is that it’s difficult to tell if it’s in 'input’ or ’output’ mode.. The bit clock used
on the host port is the same clock that’s used to move normal 16bit audio thru the
system. Unlike SCK for the normal audio, the bit clock for the host port must only be
clocked 8 times per byte. If the DSP is in ’input’ mode then 8 bits get shuffled in and
an internal interrupt goes off to let the DSP know a byte has arrived. If the DSP is in
output mode, the last byte written (zero if none) gets clocked out and an interrupt tells
the DSP that the output buffer is clear. Note that if the DSP writes a byte to be sent
out and the computer DOES NOT clock the port 8 times to read it, then the REQ line
goes low indicating to the host (the PC) that the DSP has something to send it. .. If we
are sending audio from the DSP to the PC (Coutput’ mode) then the REQ line is always
low because there is always a byte pending.

Now the hardware on the ZA2 has no idea if the DSP is in ’input’ mode or ’output’
mode.. so here’s how it works: If you write a word to base+4, then the port is clocked 8
times and the lower 8 bits are sent to the DSP...hopefully the DSP is in 'input’ mode,
otherwise you’ve clocked 8 bits out of the DSP and into the bit bucket. If the ZA2 is in
mode 1 or 3 and the REQ signal is low, then at the next FSYNC transition, 16 clocks
are sent to the DSP to bring in the next audio sample (which on the DSP side is actually
2 transactions). If REQ is low and the ZA2 is in modes 1 or 3 and the host port is in
'input mode’ then the ZA2 clocks 16 bits (2 bytes) out of a bit bucket somewhere and
into the DSP host input register (SCPIN).

The DSP 'OS’ was written so that a special protocol is used to send commands to
the DSP and set up the DSP to be read from. When the ’OS’ first comes alive out
of reset (after UPSIMZ) the REQ line is high indicating no pending transaction.. it
stays like this until the DSP writes something to the SCPOUT register. The OS waits
a few cycles before sending anything to the host output so REQ should stay high for a
few clock cycles. The bootstrap program expects a 24bit checksum after uploading (in
the UPSIMZ program) and if this checksum is bad, then REQ goes low right after the
download. UPSIMZ looks for this signal right after the checksum is sent to make sure

all went well. When the DSP finally does pull REQ low ligitimately it starts by sending
Ox7a6l ’za’ about 38 times, after that true audio should follow starting with the left
sample. Most of the time you are not concerned about this so you can just ignore it.
But if you are setting up to receive info from the DSP, then you should watch some of
these 0x7a61’s to make sure the host output was synchronized correctly. This seems to
happen about 80% or 90% of the time.. if it doesn’t work you’ll need to either reset the
DSP or send a command to it (switching directions on the host port 2x) in order to
re-synchronize.

There are 3 subroutines in the “setzaenv.c” file used to set up the direction on the host
port for input or output and to send commands to the DSP. We always assume that
after the DSP OS has come online, that the REQ line is low no matter what mode
you’re in.. even if you haven’t put the DSP in ’output’ mode, the OS will try to send
the 0x7a61 sync about 20 cycles after coming alive, thus setting REQ low. . .it will stay
low because new data gets put into the port even if the ZA2 is reading it as fast as
possible. The OpenDSP() routine is used to set the DSP host port to ’input’ mode. The
SendDSPCMD () routine is used to send a command to the DSP.. the command consists of
an 8 bit command and 24 bits of data.. the OS expects all commands to be in this form
(1+3). To send a command to the DSP you must first use OpenDSP (), then send as many
commands as you want with SendDSPCMD (). ... keep in mind that during this time, the
ZA2 is held in either mode 0 or mode 2 so that the ZA2 doesn’t try to read 16bits from
the DSP while it is in ’input’ mode. When you are done, you should use CloseDSP()
to put the host port back in ’output’ mode. CloseDSP also checks to see that the REQ
line goes high, then eventually goes low again as it should after a transaction with the
OS. CloseDSP() also checks for the 0x7a61 'za’ sync words and will return a zero if the
sync works.. if not it will return either a 1 or 2. The sync is only important if you're
intending to read from the DSP.

The commands sent to the DSP are all in the form 8 bit command + 24 bit data.
Sending a zero to the DSP will be ignored. Sending a 0xff to the DSP will cause it to try
and resync...this is done in CloseDSP() right before switching to 'output’ mode. All
commands (at present) have bit 7 set, if the DSP gets a byte with bit 7 set (that is not
0xff) then it waits for the next 3 bytes and assembles them into a 24bit word. The lower
7 bits (0 thru 6) of the command byte are used as an offset into the data ram of the DSP
(all system variables are stored here)...the data is then written to that location. For
example command=0x80 and data=0x000000 would write a zero into the first location
of data ram. . . command=0x81 would write into the second location in ram. .. Here are
some of the addresses used at the moment (in decimal):

129 Volume: the number at this location is multiplied against the output samples
before going to the DAC and SPDIF out. 0x400000 is full volume and
should be used at most times.

137 CM1: This is the value sent to the CM1 register for the PLL divide/multiply
ratio. . .in other words, the sample rate. If you change this, you’ll need
to reset (ResetDSP()) for the change to take effect.

138 Lucnt: Left user bit count.. this is the clock pulse sent out from a DAT deck
on a SPDIF stream every time the head makes a revolution (2000rpm)
This is used to make Start_IDs. The value should be 1440 for 48khz,
1323 for 44.1 and 1920 for 321Ip.

139 Rucnt: Right user bit count.. this is actually a start ID counter and should
be set to 300 whenever you want to send out a Start_ID.. Start_ID is
the right bit on after the left clock pulse for 300 drum rotations (at
2000rpm that’s about 9 seconds).

142 Irqent: This is the number of samples between IRQ pulses.. haven’t done much
with this yet, but normally you’d set this to half your DMA buffer
size.. so if the DMA buffer was 4k, this would be set to 2048...note
you also need bits 2 and 3 set up in the command register to enable
the appropriate IRQ line.

146 Psync: This is used to swap the channels in order to sync the output if needed..
this is used in place of FSYNC to synchronize the output.. 0 leaves the
output muted until the 0x7a61 signal is found by the DSP in the audio
stream. . . then it sets this to either 1 or 2 depending on if R—R L—L
or R—L L—R. Also if you set Psync to 3, it sends out the difference
of the Right and Left channel on both.

224-247 These make up the Channel Status bit block. . . each 24 bit address holds
8 bits of channel status for a grand total of 192. The most significant
16 bits hold the 8 Cbits.. 1 for the Right channel and one for the
left...normally these are set the same.. So bit 0 in the 192 bit Cbit
block would be set by bits 8 and 9, bit 1 would be 10 and 11 (with
command 224). By writing to memory between 96 and 119 (commands
224-247) you can set the 192 bit Channel status block to look like
whatever you want.. in SPDIF, bit 2 is SCMS and bit 3 is Emphasis
for example. You can look at all these bits on the ZA1/2 input by
typing verf x x.

The SendDSPCMD() takes an integer as the first parameter (the 7 bit command with
the 8th bit set) and a long integer for the second (the 24bit data to be sent to the
DSP). Remember to CloseDSP () when you're done to set the direction on the host port
back to ’output’ mode. Sometimes the sync in CloseDSP fails. .. this is not a big deal
unless you’re intending to receive data from the DSP (like for recording if you choose to
route through the DSP).. in which case it can be very annoying.. Hopefully OpenDSP ()
and CloseDSP() should be enough to set it straight, but this doesn’t always work and
sometimes you actually need to reset the DSP. Resetting the DSP is less desirable because

you get a nasty click from the DAC.

The DSP resets itself in many ways whenever the PLL breaks lock...there are many
ways to break lock...If you are deriving your source from one of the inputs, and the
source dies (ie, you turn off the DAT deck or CD player) this will cause the DSP to
break lock. Note, the DAC tries to mute when you break lock, but often there is a nasty
click. When the ZA2 is in mode 0 or 1 it’s sending a 6.144mhz signal to the DSP to
clock from. When the ZA2 is in mode 2 or 3, it’s deriving its clock from the currently
selected input.. obviously switching between modes 0 or 1 and 2 or 3 will probably break
lock. . .If you wrote a DSP program that tried to change sample rates on the fly, this
would also cause a temporary break in the clock. I'm still looking for ways to avoid the
clicking on the DAC, but so far haven’t found any.. at least the mute works (after the
click). .. the way it was before, if your source died, the DACs made a terrible screeching
noise (not good!).

Hmm.. that’s about it for now.. as always if you think of something that needs to be
clarified, let me know and I'll fix the document.. I can be reached at hanssen@netcom.com
or by voice at (714)-551-5833 or (714)-551-8880.

