

Data Sheet

VT1617 Vinyl Eight-TRAC AC'97 Codec

Revision 1.2 March 3, 2005

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2003-2005 VIA Technologies, Incorporated. Printed in the United States. ALL RIGHTS RESERVED.

No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated.

VT1617 may only be used to identify a product of VIA Technologies, Incorporated.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies. VIA Technologies makes no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies assumes no responsibility for any errors in this document. Furthermore, VIA Technologies assumes no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

USA Office: 940 Mission Court Fremont, CA 94539 USA Tel: (510) 683-3300 Fax: (510) 683-3301 or (510) 687-4654 Home Page: http://www.viatech.com Taipei Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452 Fax: (886-2) 2218-5453 Home Page: <u>http://www.via.com.tw</u>

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	1/14/03	First external release	EY
1.1	5/20/04	Updated recommended operating conditions table and DC characteristics table	EY
1.2	3/2/05	Updated cover page	JM
		Updated product features	
		Updated overview	
		Updated table 2 pin description for XTL_IN signal	
		Removed PLL setting register (index 74h)	
		Added lead free mechanical specifications	

TABLE OF CONTENTS

REVISION HISTORYI
TABLE OF CONTENTS II
LIST OF FIGURESIII
LIST OF TABLESIV
PRODUCT FEATURES
OVERVIEW
PINOUTS
PIN DIAGRAM
PIN LIST
PIN DESCRIPTIONS
REGISTERS
REGISTER OVERVIEW
REGISTER DESCRIPTIONS
ELECTRICAL SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
RECOMMENDED OPERATING CONDITIONS
DC SPECIFICATIONS
PACKAGE MECHANICAL SPECIFICATIONS

LIST OF FIGURES

FIGURE 1. FUNCTIONAL BLOCK DIAGRAM	3
FIGURE 2. VT1617 PIN DIAGRAM (TOP VIEW)	4
FIGURE 3. MECHANICAL SPECIFICATION – 48-PIN LQFP	41
FIGURE 4. MECHANICAL SPECIFICATION FOR LEAD FREE – 48-PIN LOFP	

LIST OF TABLES

TABLE 1. PIN LIST (ALPHABETICAL ORDER)	5
TABLE 2. PIN DESCRIPTIONS	
TABLE 3. REGISTER MAP	9
TABLE 4. STEREO AND MONO OUTPUT ATTENUATION	
TABLE 5. PROGRAMMABLE MIXER INPUT GAIN LEVELS	17
TABLE 6. MIXER TABLE	20
TABLE 7. 3D DEPTH CONTROL.	21
TABLE 8. MULTIPLE CODE MODE STATUS BITS	

VT1617

Vinyl Eight-TRAC AC'97 Codec

AC'97 2.3 Compliant, with 96KHz S/PDIF output

PRODUCT FEATURES

- AC'97 V2.3 Audio Codec
 - Fully compliant with AC97 Revision 2.3

• High Audio Quality

- Supports sampling rates up to 96KHz
- Independent 20-bit ADC and 20-bit DAC
- Top Audio Fidelity ~95dB
- Built-in Hi-Quality Headphone Amplifier
- Built-in 1HZ resolution VSR converter

• Various Output Format

- Supports 8ch outputs
- 96KHz analog output
- DualMAXTM Hardware Downmix
- Center and LFE channel swapping
- Alternative Line-Level outputs at surround outputs
- 96KHz I2S Digital Output and S/PDIF Digital Output
- Features Analog input to S/PDIF output

• Added-on Functions

- Dual microphones supporting Karaoke with mixing
- Microphone sensitivity Enhancement
- SCMS Mode Supported
- Integrate Power ON/OFF De-pop circuit

• Extension Control

- 4-bit 3D depth control
- Supports EAPD control
- Supports GPIO pins control
- Selectable clock sources

• Software features

- Built-in Smart 5.1™
- Immerzio[™] 3D Supports EAX1.0, EAX2.0, A3D[™]1.X, I3DL2, etc...
- Fancy and Friendly Audio Deck

• Power

- Low power consumption mode
- 3.3V or 5V analog, 3.3V digital power supply

• Package

- 48-Pin LQFP Package

OVERVIEW

The VT1617 is a high-performance audio codec that complies with the AC '97 revision 2.3. It integrates Sample Rate Converters on all channels and can be adjusted in 1Hz increments. This chip supports 96KHz sampling rates, high-quality 96KHz S/PDIF output, and stereo digital audio playback.

The 20bit, VT1617 implements stereo recording and white noise removal to ensure the best quality of recording. It features 8channel hardware-expansion for flexible 7.1-channel applications. It also contains a hardware down-mixing feature that allows the end users enjoy 6-channel audio with 2-channel or 4-channel speakers. The analog mixer circuitry integrates a stereo enhancement to provide a pleasing 3D surround sound effect for stereo media. The VT1617 has a built-in high-quality headphone amplifier for cost saving. This codec is designed with aggressive power management to achieve low power consumption; when used with a 3.3V analog supply, the power consumption is further reduced.

The primary applications for this part are desktop and portable personal computers multimedia subsystems. However, this audio codec is also suitable for any PC based home theater systems at competitive prices.

Figure 1. Functional Block Diagram

PINOUTS

<u>Pin Diagram</u>

Figure 2. VT1617 Pin Diagram (Top View)

<u>Pin List</u>

Pin Name	Pin#	Туре	Pin Name	Pin	Туре
AFLT1	29	0	LINE_IN_R	24	Ι
AFLT2	30	0	LINE_OUT_L	35	0
AGND1	26	Р	LINE_OUT_R	36	0
AGND2	42	Р	LNL / SR_OUT_L	39	0
AUX_L	14	Ι	LNL / SR_OUT_R	41	0
AUX_R	15	Ι	MIC1	21	Ι
AVCC1	25	Р	MIC2	22	Ι
AVCC2	38	Р	MONO_OUT	37	0
BIT_CLK	6	IO	NC	31	-
CAP2	32	-	NC	33	-
CD_GND	19	Ι	PC_BEEP	12	Ι
CD_L	18	Ι	PHONE	13	Ι
CD_R	20	Ι	RESET#	11	Ι
CENTER_OUT	43	0	SDATA_IN	8	IO
DGND1	4	Р	SDATA OUT	5	IO
DGND2	7	Р	SPDIF_OUT / SP DOUT	48	IO
DVCC1	1	Р	SYNC	10	IO
DVCC2	9	Р	VIDEO_L	16	Ι
EAPD	47	IO	VIDEO R	17	Ι
FRONTMIC	34	Ι	VREF	27	Ι
GPI2	40	Ι	VREF_OUT	28	0
GPIO0 / SP_SYNC	45	IO	XTL_IN	2	Ι
LFE OUT	44	0	XTL OUT	3	0
LINE_IN_L	23	Ι	XTL_SEL/GPIO1/ SP_SCLK	46	Ю

Table 1. Pin List (Alphabetical Order)

Note: I = Input, O = Output, OD = Open Drain, P = Power / Ground, A = Analog

<u>Pin Descriptions</u>

Table 2. Pin Descriptions

Pin #	Signal Name	Туре	Description
1	DVCC1	Р	Digital Supply Voltage, 3.3V only
2	XTL_IN	Ι	24.576 MHz Crystal
3	XTL_OUT	0	24.576 MHz Crystal
4	DGND1	Р	Digital Ground
5	SDATA_OUT	IO	AC'97 Serial Data Input Stream
6	BIT_CLK	IO	12.288 MHz Serial Data Clock (Internal pull-low)
7	DGND2	Р	Digital Ground
8	SDATA_IN	IO	AC'97 Serial Data Output Stream (Internal pull-low)
9	DVCC2	Р	Digital Supply Voltage, 3.3V only
10	SYNC	ΙΟ	48 KHz Fixed Rate Sync Pulse
11	RESET#	Ι	AC'97 Master Reset
12	PC_BEEP	Ι	PC Speaker Beep Pass Through
13	PHONE	Ι	Telephony Subsystem Speakerphone
14	AUX_L	Ι	Auxiliary Audio Left Channel
15	AUX_R	Ι	Auxiliary Audio Right Channel
16	VIDEO_L	Ι	Video Audio Left Channel
17	VIDEO_R	Ι	Video Audio Right Channel
18	CD_L	Ι	CD Audio Left Channel
19	CD_GND	Ι	CD Audio Analog Ground
20	CD_R	Ι	CD Audio Right Channel
21	MIC1	Ι	Desktop Microphone
22	MIC2	Ι	Second Microphone
23	LINE_IN_L	Ι	Line In Left Channel
24	LINE_IN_R	Ι	Line In Right Channel
25	AVCC1	Р	Analog Supply Voltage, 5V or 3.3V
26	AGND1	Р	Analog Ground
27	VREF	Ι	Reference Voltage
28	VREF_OUT	0	Reference Voltage Output
29	AFLT1	0	Left Channel Anti-Aliasing Filter Capacitor
30	AFLT2	0	Right Channel Anti-Aliasing Filter Capacitor
31	NC	-	No Connect
32	CAP2	-	ADC Reference Voltage Capacitor
33	NC	-	No Connect
34	FRONTMIC	Ι	Front MIC or 3 rd Microphone Input
35	LINE_OUT_L	0	Line Out Left Channel
36	LINE_OUT_R	0	Line Out Right Channel
37	MONO_OUT	0	Mono Output
38	AVCC2	Р	Analog Supply Voltage, 5V or 3.3V
39	LNL / SR_OUT_L	0	Alternate Left Line Level out or Rear Channel Left

Pin #	Signal Name	Туре	Description
40	GPI2	Ι	General Purpose Input Pin-2
41	LNL / SR_OUT_R	0	Alternate Right Line Level out or Rear Channel Right
42	AGND2	Р	Analog Ground
43	CENTER_OUT	0	Center Channel Output
44	LFE_OUT	0	Low Frequency Effects Output
45	GPIO0 / SP_SYNC	IO	GPIO0 or I2S Left/Right clock (Internal pull-high)
46	XTL_SEL / GPIO1 / SP_SCLK	Ю	Crystal Selection or General Purpose I/O Pin-1 or I ² S serial bit clock (Internal pull-high)
47	EAPD	IO	External Power Amplifier Power Down
48	SPDIF_OUT / SP_DOUT	ΙΟ	PCM / Non-Audio Sony / Philips Digital I/F Output (Internal pull-high). If left floating, S/PDIF not implemented reported on 28h, bit 2 = "0"

Table 2. Pin Descriptions (continued)

Note: I = Input, O = Output, OD = Open Drain, P = Power / Ground, A = Analog

The VT1617 supports +5V or +3.3V analog power supply. For best analog performance use a 5V analog supply. For maximum power savings use 3.3V for both analog and digital sections. You must use 3.3V as the digital supply. The digital I/Os are **NOT** 5V tolerant.

REGISTERS

Register Overview

The following tables summarize all on-chip registers. These tables also document the power-on default value ("Default") and access type ("Acc") for each register. Access type definitions used are RW (Read/Write), RO (Read/Only), "—" for reserved / used (essentially the same as RO), and RWC (or just WC) (Read / Write 1's to Clear individual bits). Registers indicated as RW may have some read/only bits that always read back a fixed value (usually 0 if unused); registers designated as RWC or WC may have some read-only or read write bits (see individual register descriptions for details).

Detailed register descriptions are provided in the following section of this document. All offset and default values are shown in hexadecimal unless otherwise indicated.

Table 3. Register Map

Index	Register Name	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
00h	Reset	_	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
02h	Stereo Output Volume	Mute	-	-	ML4	ML3	ML2	ML1	ML0	-	_	_	MR4	MR3	MR2	MR1	MR0
04h	Alt. Line Output Vol.	Mute	-	-	ML4	ML3	ML2	ML1	ML0	-	_	_	MR4	MR3	MR2	MR1	MR0
06h	Mono Output Volume	Mute	-	-	-	-	-	-	-	-	_	_	MM4	MM3	MM2	MM1	MM0
0Ah	PC Beep Volume	Mute	-		_	_	_	_	_	-	_	_	PV3	PV2	PV1	PV0	_
0Ch	Phone Volume	Mute	-		_	_	_	_	_	-	_	_	GN4	GN3	GN2	GN1	GN0
0Eh	Mic In Volume	Mute	-		_	_	_	_	_	-	20dB	_	GN4	GN3	GN2	GN1	GN0
10h	Line In Volume	Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	_	_	GR4	GR3	GR2	GR1	GR0
12h	CD In Volume	Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	_	_	GR4	GR3	GR2	GR1	GR0
14h	Video In Volume	Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	_	_	GR4	GR3	GR2	GR1	GR0
16h	Aux In Volume	Mute	-		GL4	GL3	GL2	GL1	GL0	-	_	_	GR4	GR3	GR2	GR1	GR0
18h	PCM Out volume	Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	_	_	GR4	GR3	GR2	GR1	GR0
1Ah	Record Select	-	-	-	-	-	SL2	SL1	SL0	-	_	_	-	-	SR2	SR1	SR0
1Ch	Record Gain	Mute	-	-	-	GL3	GL2	GL1	GL0	-	_	_	-	GR3	GR2	GR1	GR0
20h	General Purpose	_	I	3D	_	DRSS	DRSS	MIX	MS	LPBK	_	_	_				_
		_	-	3D	_	1	0	IVIIA	WI S	LFDK	_	_	_	_	_	_	_
22h	3D Control	-	-	-	-	-	-	-	-	-	-	-	-	DP3	DP2	DP1	DP0
24h	Audio Int. & Paging	I4	13	I2	I1	IO	-	-	-	-	-	-	-	PG3	PG2	PG1	PG0
26h	Power Down & Status	EAPD	PR6	PR5	PR4	PR3	PR2	PR1	PR0	-	-	-	-	REF	ANL	DAC	ADC
28h	Extended Audio ID	ID1	ID0	-	-	REV1	REV0	-	LDAC	SDAC	CDAC	DSA1	DSA0	-	SPDIF	DRA	VRA
2Ah	Ext. Audio Stat/Control	VCFG		PRK	PRJ	PRI	SPCV	-	LDAC	SDAC	CDAC	SSA1	SSA0	-	SPDIF	DRA	VRA
2Ch	PCM Front DAC Rate	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
2Eh	Surround DAC Rate	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
30h	PCM LFE DAC Rate	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
32h	PCM LR ADC Rate	SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
36h	LFE/Center Volume	Mute	-	-	LFE4	LFE3	LFE2	LFE1	LFE0	Mute	-	-	CNT4	CNT3	CNT2	CNT1	CNT0
38h	Surround Volume	Mute	-	-	LSR4	LSR3	LSR2	LSR1	LSR0	Mute	-	-	RSR4	RSR3	RSR2	RSR1	RSR0
3Ah	S/PDIF Control	V	DRS	SSR1	SSR0	L	CC6	CC5	CC4	CC3	CC2	CC1	CC0	PRE	COPY	/PCM	PRO
5Ah	Vendor Reserved Register	LVL	-	-	LCTF	STF	BPDC	DC	CLE	-	-	_	-	IB1	IB0	_	-
5Ch	Vendor Reserved Register.	VRPD	-	-		LFBO	CBO	SRBO	MBO	DMIX	HPT	HPE	-	-	-	_	-
60h	Codec Class/Rev	-	-	-	CL4	CL3	CL2	CL1	CL0	RV7	RV6	RV5	RV4	RV3	RV2	RV1	RV0
6Ch	DAC Slot Mapping	FD3	FD2	FD1	FD0	SD3	SD2	SD1	SD0	CLD3	CLD2	CLD1	CLD0	-	-	_	_
6Eh	ADC Slot Mapping	-	I	I	-	-	-	_	-	I	-	-	-	_	-	-	MV
76h	Miscellaneous	_	I	I	_	_	_	SDRS	_	DRA_	CD2S	_	-	SP96	6CH_	EN_D	I2SE
78h	GPIO Control	GSI	GOS	-	_	_	GW2	S GW1	GW0	OFF –	P GP2	GP1	GP0	_	DRA	RA GC1	GC0
7Ah	GPIO Status	SM51	SM51				0,172										
, , , , , , , , , , , , , , , , , , , ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	SW	EN	-	-	-	-	GOC1	GOC0	-	GIS2	GIS1	GIS0	-	GI2	GI1	GI0
7Ch	Vendor ID1	F7	F6	F5	F4	F3	F2	F1	F0	S7	S6	S5	S4	S3	S2	S1	S0
7Eh	Vendor ID2	T7	T6	T5	T4	Т3	T2	T1	Т0	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0

Register Descriptions

Reset Register (Index 00h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
-	SE4	SE3	SE2	SE1	SE0	ID9	ID8	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	6D50h

The Reset register is used to configure the hardware to a known state or to read the ID code of the part. A code was assigned to VIA Technologies (27 = 11011h) for 3D Stereo Enhancement reflected in SE[4:0]. ID8 and ID6 are set to 1b to report that the ADC and DAC are 20-bit resolution respectively. The VT1617 supports an alternate line level out with independent volume control as reflected by ID4=1b. However, since pins 39 and 41 are shared with the Surround DAC outputs, register 5Ah, bit 15, LVL has to be set to "1". Writing data to this register will set all the mixer registers to their default values. For description of the bits set to 0b, refer to AC'97 Rev. 2.3 spec.

Stereo Output Control Register (Index 02h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	_	ML4	ML3	ML2	ML1	ML0	-	-	_	MR4	MR3	MR2	MR1	MR0	8000h

Mute Stereo Output Mute Control

"1": Mute enabled

"0": Mute disabled

ML[4:0] Master Output (Left Channel) Volume Control

These five bits select the level of attenuation applied to the Left channel of the Stereo Output signal. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to **Table 4** on page 11 for details.

MR[4:0]Master Output (Right Channel) Volume ControlThese five bits select the level of attenuation applied to the Right channel of the Stereo Output
signal. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments,
providing a total of 32 programmable levels. Please refer to Table 4 on page 11 for details.

Alternate Line Output Control Register (Index 04h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	Ι	ML4	ML3	ML2	ML1	ML0	_	Ι	I	MR4	MR3	MR2	MR1	MR0	8000h

Note: Pins 39 and 41 are shared with the Surround DAC outputs. LVL, register 5Ah, bit 15, has to be set to "1"

Mute Stereo Output Mute Control "1": Mute enabled

"0": Mute disabled

ML[4:0] Alternate Line Output (Left Channel) Volume Control

These six bits select the level of attenuation applied to the Left channel of the Stereo Output signal. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to **Table 4** on page 11 for details.

MR[4:0] Alternate Line Output (Right Channel) Volume Control

These five bits select the level of attenuation applied to the Right channel of the Stereo Output signal. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to **Table 4** on page 11 for details.

Mono Output Control Register (Index 06h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	_	I	_	-	Ι	Ι	-	Ι	_	MM4	MM3	MM2	MM1	MM0	8000h

Mute Mor	10 Output Mute Control
----------	------------------------

"1": Mute enabled

"0": Mute disabled

MM[4:0] Mono Output Volume Control

These five bits select the level of attenuation applied to the Mono Output signal. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to **Table 4** on page 11 for details.

	M4	M3	M2	M1	M0	Level (dB)
0	0	0	0	0	0	0.0
1	0	0	0	0	1	-1.5
2	0	0	0	1	0	-3.0
3	0	0	0	1	1	-4.5
4	0	0	1	0	0	-6.0
5	0	0	1	0	1	-7.5
28	1	1	1	0	0	-42.0
29	1	1	1	0	1	-43.5
30	1	1	1	1	0	-45.0
31	1	1	1	1	1	-46.5

Table 4. Stereo and Mono Output Attenuation

PC Beep Input Volume Control Register (Index 0Ah)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	-	-	-	-	-	_	-	-	_	PV3	PV2	PV1	PV0	Ι	8000h

Mute PC Beep Input Mute Control

- "1": Mute enabled
- "0": Mute disabled

PV[3:0] PC Beep Input Volume Control

These four bits select the level of attenuation applied to the PC beep input signal. The level of attenuation is programmable from 0dB to -45dB in 3dB increments, providing a total of 16 programmable levels. The beep gain is set at 0dB when PV[3:0] = 0h. Even though the default of the input volume control is mute, as long as RESET# is active, PC Beep will be passively routed to the line outputs.

Phone Input Volume Control Register (Index 0Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	I	Ι	Ι	-	Ι	-	-	-	Ι	GN4	GN3	GN2	GN1	GN0	8008h

Mute	Phone Input Mute Control
	"1": Mute enabled
	"0": Mute disabled

GN[4:0]Phone Input Volume ControlThese five bits select the gain applied to the Phone Input signal. The gain is programmable from -
34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to
Table 5 on page 16 for details.

Mic Input Volume Control Register (Index 0Eh)

					8			/								
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
Mute	-	_	_	_	_	-	_	_	20dB	-	GN4	GN3	GN2	GN1	GN0	8008h

Mute	Mic Input Mute Control"1":Mute enabled"0":Mute disabled
20dB	Mic Boost Control"1": Fixed 20dB gain enabled"0": Fixed 20dB gain disabled
GN[4:0]	Mic Input Volume Control These five bits select the gain applied to the Mic Input signal. The gain is programmable from - 34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.

Line Input Control Register (Index 10h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	_	GL4	GL3	GL2	GL1	GL0	Ι	Ι	-	GR4	GR3	GR2	GR1	GR0	8808h

Mute	Line Input Mute Control"1":Mute enabled"0":Mute disabled
GL[4:0]	Left Channel Gain Control These five bits select the gain applied to the LEFT channel of the Line Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.
GR[4:0]	Right Channel Gain Control These five bits select the gain applied to the RIGHT channel of the Line Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.

CD Input Control Register (Index 12h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	-	-	GR4	GR3	GR2	GR1	GR0	8808h

Mute	CD Input Mute Control
	"1": Mute enabled
	"0": Mute disabled
GL[4:0]	Left Channel Gain Control
	These five bits select the gain applied to the Left channel of the CD Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable
	levels. Please refer to Table 5 on page 16 for details.
GR[4:0]	Right Channel Gain Control
	These five hits select the gain applied to the Right channel of the CD Input signal. The gain is

These five bits select the gain applied to the Right channel of the CD Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.

Video Input Control Register (Index 14h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	-	GL4	GL3	GL2	GL1	GL0	Ι	Ι	-	GR4	GR3	GR2	GR1	GR0	8808h

Mute	Video Input Mute Control"1": Mute enabled"0": Mute disabled
GL[4:0]	Left Channel Gain Control These five bits select the gain applied to the Left channel of the Video Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.
GR[4:0]	Right Channel Gain Control These five bits select the gain applied to the Right channel of the Video Input signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.

Auxiliary Input Control Register (Index 16h)

D15 D2	14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
Mute -	-	_	GL4	GL3	GL2	GL1	GL0	-	I	_	GR4	GR3	GR2	GR1	GR0	8808h

Mute	Auxiliary Input Mute Control"1": Mute enabled"0": Mute disabled
GL[4:0]	Left Channel Gain Control These five bits select the gain applied to the Left channel of the Auxiliary Input signal. The gai is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 3
	programmable levels. Please refer to Table 5 on page 16 for details.
GR[4:0]	Right Channel Gain Control
	These five bits select the gain applied to the Right channel of the Auxiliary Input signal. The gai is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 3 programmable levels. Please refer to Table 5 on page 16 for details.

PCM Output Control Register (Index 18h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	-	GL4	GL3	GL2	GL1	GL0	-	-	-	GR4	GR3	GR2	GR1	GR0	8808h

Mute	PCM Output Mute Control"1":Mute enabled"0":Mute disabled
GL[4:0]	Left Channel Gain Control These five bits select the gain applied to the LEFT channel of the PCM Output signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.
GR[4:0]	Right Channel Gain Control These five bits select the gain applied to the RIGHT channel of the PCM Output signal. The gain is programmable from -34.5dB to 12dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 5 on page 16 for details.

	G4	G3	G2	G1	GO	Level (dB)								
0	0	0	0	0	0	12.0								
1	0	0	0	0	1	10.5								
2	0	0	0	1	0	9.0								
3	0	0	0	1	1	7.5								
4	0	0	1	0	0	6.0								
5	0	0	1	0	1	4.5								
6	0	0	1	1	0	3.0								
7	0	0	1	1	1	1.5								
8	0	1	0	0	0	0.0								
9	0	1	0	0	1	-1.5								
10	0	1	0	1	0	-3.0								
11	0	1	0	1	1	-4.5								
12	0	1	1	0	0	-6.0								
13	0	1	1	0	1	-7.5								
14	0	1	1	1	0	-9.0								
15	0	1	1	1	1	-10.5								
16	1	0	0	0	0	-12.0								
17	1	0	0	0	1	-13.5								
18	1	0	0	1	0	-15.0								
19	1	0	0	1	1	-16.5								
20	1	0	1	0	0	-18.0								
21	1	0	1	0	1	-19.5								
22	1	0	1	1	0	-21.0								
23	1	0	1	1	1	-22.5								
24	1	1	0	0	0	-24.0								
25	1	1	0	0	1	-25.5								
26	1	1	0	1	0	-27.0								
27	1	1	0	1	1	-28.5								
28	1	1	1	0	0	-30.0								
29	1	1	1	0	1	-31.5								
30	1	1	1	1	0	-33.0								
31	1	1	1	1	1	-34.5								

Table 5. Programmable Mixer Input Gain Levels

Record Select Register (Index 1Ah)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
-	-	١	-	_	SL2	SL1	SL0	-	_	-	-	-	SR2	SR1	SR0	0000h

SL[2:0]

Record Source Select (Left Channel)

These bits determine the record source for the left channel.

SL2	SL1	SL0	Left Record Source
0	0	0	Mic
0	0	1	CD (L)
0	1	0	Video In (L)
0	1	1	Aux In (L)
1	0	0	Line In (L)
1	0	1	Stereo Mix (L)
1	1	0	Mono Mix
1	1	1	Phone

SR[2:0]

Record Source Select (Right Channel)

These bits determine the record source for the right channel.

SR2	SR1	SR0	Right Record Source
0	0	0	Mic
0	0	1	CD (R)
0	1	0	Video In (R)
0	1	1	Aux In (R)
1	0	0	Line In (R)
1	0	1	Stereo Mix (R)
1	1	0	Mono Mix
1	1	1	Phone

Record Gain Control Register (Index 1Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	Ι	-	GL3	GL2	GL1	GL0	-	-	-	-	GR3	GR2	GR1	GR0	8000h

Mute	Record Mute Control
	"1": Mute enabled
	"0": Mute disabled
GL[3:0]	Record Gain Control (Left Channel)
	These four bits select the gain applied to the LEFT channel recording source. The gain is programmable from 0dB to 22.5dB in 1.5dB increments, providing a total of 16 programmable levels. The gain is set at 0dB when $GL[3:0] = 0h$.
GR[3:0]	Record Gain Control (Right Channel)
	These four bits select the gain applied to the RIGHT channel recording source. The gain is programmable from 0dB to 22.5dB in 1.5dB increments, providing a total of 16 programmable levels. The gain is set at 0dB when $GR[3:0] = 0h$.

General Purpose Register (Index 20h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
-	-	3D	-	DRSS1	DRSS0	MIX	MS	LPBK	_	_	-	Ι	_	-	-	0000h

3D	3D Stereo Enhancement
	"1": Enable 3D
	"0": Disable 3D
DRSS[1:0]	Double Rate Slot Select
	"00": PCM L, R, C n+1 data is on Slots 10-12 (default)
	"01": PCM L, R n+1 data is on slots 7, 8
	Others: Reserved
MIX	Mono Output Mode
	"1": Mic Output
	"0": Mono mix output
MS	Microphone Select (See Table below)

(Controller Bi	t	MI	CIN			I/O)	
SM51	SM51SW	SMIC	20XL	20XR	MIC1	MIC2	MIC3	LL	LR
0	0	0	MIC1	MIC1	MIC1	-	-	LL	LR
0	0	1	MIC1	MIC3	MIC1	-	MIC3	LL	LR
0	1	0	MIC2	MIC2	-	MIC2	-	LL	LR
0	1	1	MIC1	MIC2	MIC1	MIC2	-	LL	LR
1	0	0	MIC3	MIC3	CEN	LFE	MIC3	SURL	SURR
1	0	1	MIC3	MIC3	CENT	LFE	MIC3	LL	LR
1	1	0	MIC1	MIC1	Mic1		LFE	SURL	SURR
1	1	1	MIC1	MIC2	MIC1	MIC2-	LFE	SURL	SURR

Table 6. Mixer Table

LPBK

Loopback Mode

"1": DAC/ADC Loopback enabled

"0": DAC/ADC Loopback disabled

3D Control Register (Index 22h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
-	-	I	١	١	-	_	١	١	_	١	١	DP3	DP2	DP1	DP0	0000h

DP[3:0] 3D Depth Control

These four bits control the linear depth control of the 3D stereo enhancement built into the codec. The gain is programmable from 0% to 100% in 6.67% increments, providing a total of 16 programmable levels. The default value corresponds to no stereo enhancement.

		DDA	D.D.4	DDA	
	DP3	DP2	DP1	DP0	Level (%)
0	0	0	0	0	0.0
1	0	0	0	1	6.67
2	0	0	1	0	13.33
3	0	0	1	1	20
4	0	1	0	0	26.67
5	0	1	0	1	33.33
12	1	1	0	0	80
13	1	1	0	1	86.67
14	1	1	1	0	93.33
15	1	1	1	1	100

Table 7. 3D Depth Control

Audio Interrupt and Paging Mechanism Register (Index 24h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
EAPD	PR6	PR5	PR4	PR3	PR2	PR1	PR0	-	Ι	Ι	-	REF	ANL	DAC	ADC	0000h

Bit	Default	Function
14	0	Interrupt Status (R/W)
		0 - Interrupt is clear 1 - Interrupt was generated
		Interrupt event is cleared by writing a 1 to this bit. The interrupt bit will change regardless of condition of interrupt enable (I0) status. An interrupt in the GPI in slot 12 in the AC link will follow this bit change when interrupt enable (I0) is un-masked. If this bit is set, one or both of I3 or I2 must be set to indicate the interrupt cause.
I[3:2]	00	Interrupt Cause (RO)
		I [2]= 0 - Reserved
		I [3]= 0 - GPIO status change did not cause interrupt (default) 1 - GPIO status change caused interrupt.
		These bits will indicate the cause(s) of an interrupt. This information should be used to service the correct interrupting event(s). If the Interrupt Status (bit I4) is set, one or both of these bits must be set to indicate the interrupt cause. Hardware must reset these bits back to zero when the Interrupt Status bit is cleared.
11	0	Reserved
10	0	Interrupt Enable (RW)
		0 - Interrupt generation is masked1 - Interrupt generation is un-masked
		S/W should Not un-mask the interrupt unless ensured by the AC '97 controller that no conflict is possible with modem slot 12- GPI functionality. AC '97 2.2 compliant controllers will not likely support audio codec interrupt infrastructure.
PG[3:0]	0h	Page Selector (RW):
		0h - Vendor Specific 1h – Page ID 01(see correspondent definition register 60h-6Fh) 2h-Fh – Reserved Pages
		This register is used to select a descriptor of 16 word pages between registers 60h to 6Fh. A value of 0h is used to select vendor specific space to maintain compatibility With AC '97 2.2 vendor specific registers. System software can determine implemented pages by writing the page number and reading the value back. If the value read back does not match the value written, the page is not implemented. All implemented pages must be in consecutive. (i.e., page 2h cannot be implemented without page 1h)

Power Down and Status Register (Index 26h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
EAPD	PR6	PR5	PR4	PR3	PR2	PR1	PR0	-	Ι	Ι	-	REF	ANL	DAC	ADC	0000h

EAPD Enable Amplifier Power Down

"1": Powerdown External Power Amplifier

"0": External Power Amplifier active

The signal polarity at pin 47, EAPD is identical to bit description.

PR[6:0] Power Down Mode Bits

These read/write bits are used to control the power down states of the VT1617. Each power down function bit is enabled by setting the respective bit high. Particularly, PR5 has no effect unless PR0, PR1 and PR4 are all set to "1". This implies that the codec can be woken up by a warm reset, because warm reset clears PR4, which in turn disables the function of PR5. The register bit, however will not be cleared by a warm reset. The power down modes controlled by each bit is described in the table below:

Bit	Function
PR0	ADC and Mux Powerdown
PR1	DAC Powerdown
PR2	Mixer Powerdown (VREF on)
PR3	Mixer Powerdown (VREF off)
PR4	AC Link Powerdown (BIT_CLK off)
PR5	Internal Clock Disabled
PR6	Alternate Line Out Powerdown

REF,ANL,ADC,DAC Status (READ Only) bits

These bits are used to monitor the readiness of some sections of the VT1617. Reading a "1" from any of these bits would be an indication of a "ready" state.

Bit	Status Bit
REF	VREF at nominal level
ANL	Mixer, Mux and Volume Controls ready
DAC	DAC ready to accept data
ADC	ADC ready to transmit data

Extended Audio ID Register (Index 28h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
ID1	ID0	-	Ι	REV1	REV0	-	LDAC	SDAC	CDAC	DSA1	DSA0	_	SPDIF	DRA	VRA	09Cxh

The Extended Audio ID is a read only register that indicates the capabilities of the VT1617.

ID[1:0] (See Table below)

One primary and an additional codec may be supported as an option. Since the VT1617 codec has all six outputs implemented, the ID pin setting affects only the BIT_CLK direction and the register decoding. BIT_CLK output the power-up default. Setting the codec besides default changes BIT_CLK to input mode. As indicated by D9, AMAP=0, there is no need to change slot mappings.

Table 8. Multiple Code Mode Status Bits

ID1	ID0	Codec Mode
0	0	Primary Codec (default)
0	1	Secondary Codec
1	0	Invalid
1	1	Invalid

Note: The state of the ID pins is reported in reverse polarity on register 28h, bits D15 and D14. If you use this table to configure the codec via pins 45 and 46, use the inverse values. BIT_CLK is an output for the primary codec and an input pin for the controller and secondary codecs. ID[1:0] pins with internal pull-up resistors defaults codec as primary codec.

REV[1:0]AC'97 Revision ID
REV[1:0]=10 indicates Codec is AC '97 revision 2.3 compliant.xDACMulti-channel Output Capabilities

"1": LDAC, SDAC, CDAC report to the querying host that the codec has all six outputs implemented.

DSA[1:0] DAC Slot Assignment(See Table below)

DSA[1:0] are read/write bits that control optional DAC Slot Assignment.

DSA1, DSA0	DACs 1,2	DACs 3,4	DACs 5,6
00	slots 3&4	slots 7&8	slots 6&9
01	7&8	6&9	10&11
10	6&9	10&11	3&4
11	10&11	3&4	7&8

SPDIF

Sony/Philips Digital Audio Interface

"1": Feature implemented in compliance to "S/PDIF Output for AC '97, Rev 1.0"

"0": Indicates that SPDIF_OUT pin 48 is left floating or pulled-high. It reflects the lack of external S/PDIF application circuitry.

DRA Double Rate PCM Audio

"1": optional Double-Rate PCM Audio output is supported

VRA Variable Sampling Rate PCM Audio

"1": Feature implemented in compliance to AC '97 2.2 Appendix A

Extended Audio Status/Control Register (Index 2Ah)

			· · ·										
D15 D14 D13		DI DI		D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
/CFG – PRK	PRJ P	RI SPC	V –	LDAC	SDAC	CDAC	SSAI	SSA0	-	SPDIF	DRA	VRA	3860h
CFG		nes S/P	DIF trai de-asser	nsmitte						•			/hen ass ansmitte
Rx	Multi-cl All thre turned o	e bits, I	PRK, PI	RJ, PR								.	ve DAC(el.
PCV	S/PDIF "0" : S/ "1" : S/	0	onfigura	tion (S	SA, SS	SR, DA							
DAC	Multi-cl These respecti	read on	ly bits,	LDA	C, SD.	AC, C				ilarly.	Whe	n the	y repor
SA[1·0]	S/PDIF	Slot Ass	ionment										
SA[1:0]	S/PDIF These b		•		DIF da	ta sour	ce fro	om AC-	link s	lot sele	ection	when	SPDIF
SSA[1:0]	These b	its dete	rmine th	ne S/PI									SPDIF_ /PDIF_a
SSA[1:0]	These b 48 is lo	oits deter ow durin	rmine th	ne S/PI t (pulle	ed low	by ex	ternal	applic	ation	circuit). If	the S	/PDIF a
SSA[1:0]	These b 48 is lo circuit	oits deter ow durin is not in	rmine th ng reset	ne S/PI t (pulle nted, th	ed low lese bit	by ex ts will	ternal return	applic only	ation). Th	circuit e defai	i). If ult sta	the S te refl	
SSA[1:0]	These b 48 is lo circuit design expected	bits deter ow durin is not in feature d to be	rmine the ng reset nplemer of comr used in	ne S/PI t (pulle nted, th non A(the fu	ed low lese bit C'97 d ture to	by ex ts will ligital	ternal return contro	applic only ollers su	ation). Th 1pport	circuit e defai ing slo). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the
SA[1:0]	These b 48 is lo circuit i design	bits deter ow durin is not in feature d to be	rmine the ng reset nplemer of comr used in	ne S/PI t (pulle nted, th non A(the fu	ed low lese bit C'97 d ture to	by ex ts will ligital	ternal return contro	applic only ollers su	ation). Th 1pport	circuit e defai ing slo). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SA[1:0]	These b 48 is lo circuit design expected	bits deter by durin is not in feature d to be	rmine the ng reset nplemer of comr used in	ne S/PI t (pulle nted, th non A(the fu	ed low lese bit C'97 d ture to	by ex ts will ligital	ternal return contro ort con	applic only only ollers su neurren	ation). Th 1pport	circuit e defai ing slo). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SA[1:0]	These b 48 is lo circuit i design expecte audio (o	bits deter ow durin is not in feature d to be compres	rmine th ng reset nplemer of comr used in sed or I	ne S/PI t (pulle nted, th non A(the fu LPCM)	ed low lese bit C'97 d ture to S	by ex ts will ligital suppo	ternal return contro ort con	applic only only ollers su neurren	ation D. Th upport t 6 ch	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SA[1:0]	These b 48 is lo circuit i design audio (o SSA1	bits deter ow durin is not in feature d to be compres SSA0	rmine th ng reset nplemer of comr used in sed or I	ne S/PI t (pulle nted, th non A(the fu LPCM) C-link sl	ed low hese bit C'97 d ture to S lots 3 &	by ex ts will ligital b suppo /PDIF \$ 4 (front	ternal return contro ort con Source stereo	applic only ollers su neurren	eation D. Th apport t 6 ch	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SA[1:0]	These b 48 is lo circuit i design expecte audio (o SSA1 0	bits deter ow durin is not in feature of d to be compres SSA0 0	rmine th ng reset nplemer of comr used in sed or I	ne S/PI t (pulle nted, th non A0 the fu LPCM) C-link st	ed low lese bir C'97 d ture to S lots 3 & AC-link	by ex ts will ligital b suppo /PDIF \$ 4 (front k slots 7	ternal return contro ort con Source stereo & 8 (su	applic only ollers su neurren Data pair, pov	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SA[1:0]	These b 48 is lo circuit i design expecte audio (c SSA1 0 0	bits deter ow durin is not in feature of d to be compres SSA0 0 1	rmine th ng reset nplemer of comr used in sed or I	ne S/PI t (pulle nted, th non A0 the fu LPCM) C-link st	ed low hese bir C'97 d ture to S lots 3 & AC-link C-link sl	by ex ts will ligital b suppo /PDIF \$ 4 (front k slots 7	ternal return contro ort con Source stereo & 8 (su 9 (LFE	applic on only of llers su neurren Data pair, pov urround j & Cente	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
	These b 48 is lo circuit i design audio (d SSA1 0 0 1 1	bits deter by during is not in feature of d to be compress SSA0 0 1 0 1 1	rmine th ng reset nplemer of comr used in sed or I A	ne S/PI t (pulle nted, th non A(. the fu .PCM) C-link sl	ed low hese bin C'97 d ture to S lots 3 & AC-link C-link sl	by ex ts will ligital b suppo /PDIF s 4 (front k slots 7 lots 6 & AC-link	ternal return contro ort con Source stereo (& 8 (su 9 (LFE slots 10	applic n only (illers su neurren 9 Data pair, pov urround <u>1</u> & Cento) &11	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
	These b 48 is lo circuit i design audio (d SSA1 0 0 1 1 Sony/Ph	bits deter by during is not in feature of d to be compress SSA0 0 1 0 1 1 nilips Dig	rmine th ng reset nplemer of comr used in sed or I A	ne S/PI t (pulle nted, th non A(. the fu . the fu . PCM) C-link st A(ed low lesse bin C'97 d ture to S lots 3 & AC-link C-link sl 2 frface H	by ex ts will ligital o suppo /PDIF \$ 4 (front k slots 7 lots 6 & AC-link Enable/	ternal return contro ort con stereo & 8 (su 9 (LFE slots 10 Disabl	applic n only (illers su ncurren Data pair, pov urround) & Cente) &11	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
	These b 48 is lo circuit i design : expecte audio (o SSA1 0 0 1 1 Sony/Ph "1":	bits deter by during is not in feature of d to be compress SSA0 0 1 0 1 bilips Dig Set this	rmine th ng reset nplemer of comr used in sed or I A gital Aud bit to th	t (pullented, the non A0 the fu LPCM) C-link sl A0 dio Inte	ed low hese bin C'97 d ture to S lots 3 & AC-link S AC-link sl AC-link sl AC-link sl AC-link sl	by ex ts will ligital b suppo 5/PDIF \$ 4 (front k slots 7 lots 6 & AC-link Enable/ PDIF tr	ternal return contro ort con Source stereo 9 (LFE slots 10 Disabl ransmi	applic n only o llers su neurren 2 Data pair, pov urround j & Cento) &11 le	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
	These b 48 is lo circuit i design audio (d SSA1 0 0 1 1 Sony/Ph	bits deter by during is not in feature of d to be compress SSA0 0 1 0 1 1 nilips Dig	rmine th ng reset nplemer of comr used in sed or I A gital Aud bit to th	t (pullented, the non A0 the fu LPCM) C-link sl A0 dio Inte	ed low hese bin C'97 d ture to S lots 3 & AC-link S AC-link sl AC-link sl AC-link sl AC-link sl	by ex ts will ligital b suppo 5/PDIF \$ 4 (front k slots 7 lots 6 & AC-link Enable/ PDIF tr	ternal return contro ort con Source stereo 9 (LFE slots 10 Disabl ransmi	applic n only o llers su neurren 2 Data pair, pov urround j & Cento) &11 le	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SPDIF	These b 48 is lo circuit i design : expecte audio (o SSA1 0 0 1 1 Sony/Ph "1" : "0" :	bits deter ow during is not in feature of d to be compress SSA0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	rmine th ng reset nplemer of comr used in sed or I A A gital Aud bit to th PDIF tra	ne S/PI t (pullented, the non A(the fu LPCM) C-link sl A(dio Inte urn on unsmitte	ed low hese bin C'97 d ture to S lots 3 & AC-link S AC-link sl AC-link sl AC-link sl AC-link sl	by ex ts will ligital b suppo 5/PDIF \$ 4 (front k slots 7 lots 6 & AC-link Enable/ PDIF tr	ternal return contro ort con Source stereo 9 (LFE slots 10 Disabl ransmi	applic n only o llers su neurren 2 Data pair, pov urround j & Cento) &11 le	eation D. Th upport t 6 ch ver-up o pair)	circuit e defai ing slo annels). If ult states ots 3 &	the S te refl & 4.	/PDIF a lects the Slots 10
SSA[1:0] SPDIF DRA	These b 48 is lo circuit i design : expecte audio (o SSA1 0 0 1 1 1 Sony/PH "1":	bits deter ow during is not in feature of d to be compress SSA0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	cital Aud bit to tr pole cont	ne S/PI t (pullented, the non A(the fu LPCM) C-link st C-link st A(dio Inte urn on unsmitter	ed low hese bin C'97 d ture to S lots 3 & AC-link C-link sl AC-link sl AC	by ex ts will ligital of suppo (PDIF s 4 (front k slots 7 lots 6 & AC-link Enable/ PDIF tr ff by de	ternal return contro ort con Source stereo <u>& 8 (su</u> <u>9 (LFE</u> slots 10 Disabl cansmi efault.	applic n only (illers su neurren 9 Data pair, pov urround <u>1</u> & Cento) &11 le	eation D. Th apport t 6 ch ver-up (pair) er pair)	circuit e defau ing slo annels default)). If ult stat its 3 & analo	the S te refl 2 4. 1 og and	/PDIF a lects the Slots 10

VRA

Variable Sampling Rate Mode control

"1": Enable VSR

"0" : Fixed 48 KHz sampling rate

PCM Front and Center DAC Sample Rate Register (Index 2Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h

SR[15:0] Main stereo + Center or all DAC Sample Rate (in Hz)

16-bit unsigned value representing the sample rate in 1Hz resolution. The default value is 48 KHz (48000 = BB80h). This register controls all six DAC output rate providing a sample accurate synchronization among the channels. Registers 2Eh and 30h are read/writable but have no control over the Surround and LFE channels. They reflect 2Ch when read back.

PCM Surround DAC Sample Rate Register (Index 2Eh)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h

SR[15:0] Surround DAC Sample Rate (in Hz)

16-bit unsigned alias value of 2Ch representing the sample rate in 1Hz resolution. The default value is 48 KHz (48000 = BB80h). This register has no physical control over the Surround pair DACs sampling rate.

PCM LFE DAC Sample Rate Register (Index 30h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h

SR[15:0] LFE DAC Sample Rate (in Hz)

16-bit unsigned alias value of 2Ch representing the sample rate in 1Hz resolution. The default value is 48 KHz (48000 = BB80h). This register has no physical control over the LFE DAC's sampling rate.

PCM ADC Sample Rate Register (Index 32h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
SR15	SR14	SR13	SR12	SR11	SR10	SR9	SR8	SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0	BB80h

SR[15:0] ADC Sample Rate (in Hz)

16-bit unsigned value representing the sample rate in 1Hz resolution. The default value is 48 KHz (48000 = BB80h).

LFE and Center Channels Output Volume Control Register (Index 36h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	_	_	LFE4	LFE3	LFE2	LFE1	LFE0	Mute	Ι	Ι	CNT4	CNT3	CNT2	CNT1	CNT0	8080h

Mute	Individual Output Mute Control"1":Mute enabled"0":Mute disabled
LFE[4:0]	LFE Output Volume Control These five bits select the level of attenuation applied to the Low Frequency Effect channel. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 4 on page 11 for details.
CNT[4:0]	Center Channel Output Volume Control These five bits select the level of attenuation applied to the Center channel. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 4 on page 11 for details.

Surround Channels Output Volume Control Register (Index 38h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
Mute	-	Ι	LSR4	LSR3	LSR2	LSR1	LSR0	Mute	_	-	RSR4	RSR3	RSR2	RSR1	RSR0	8080h

Note: Pins 39 and 41 are shared with the Alternate Line Level Out, main stereo DAC outputs. LVL, register 5Ah, bit 15, has to be set to "0" for this register to be effective on the same volume control block.

Mute	Individual Output Mute Control"1":Mute enabled"0":Mute disabled
LSR[4:0]	Left Surround (Rear) Channel Output Volume Control These five bits select the level of attenuation applied to the Left Surround channel. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 4 on page 11 for details.
RSR[4:0]	Right Surround (Rear) Channel Output Volume Control These five bits select the level of attenuation applied to the Right Surround channel. The level of attenuation is programmable from 0dB to -46.5dB in 1.5dB increments, providing a total of 32 programmable levels. Please refer to Table 4 on page 11 for details.

S/PDIF Control Register (Index 3Ah)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
V	DRS	SSR1	SSR0	L	CC6	CC5	CC4	CC3	CC2	CC1	CC0	PRE	COPY	/PCM	PRO	x000h

This read/write register controls the S/PDIF functionality when SPDIF bit at 28h_2 reports S/PDIF is implemented. It will return 0000h when SPDIF_OUT, pin 48 left floating or pulled high. If S/PDIF is implemented for the final product, it will read 2000h at power-up. The register manages the bit fields propagated as channel status (or subframe in the V case). With the exception of V, this register should only be written when the S/PDIF transmitter is disabled (SPDIF bit at 2Ah_2 is "0"). This ensures that control and status information start up correctly at the beginning of S/PDIF transmission.

V	transmit transmit Status a	ter to mai ter with round Contro	e "Validity flag", bit<28> transmitted in each subframe ntain connection during error or mute conditions. The espect to this bit depends on the value of the VCFG bol register. The behavior of the transmitter is defined status and Control Register (Index 2Ah)	e behavior of the S/PDIF bit in the Extended Audio
DRS	Double l	Rate S/PD	IF	
			bled "1" and SPSA is configured {"01", "10", or "11" $3\&3\&4 + \{7\&8, 6\&9, or 10\&11\}$ to supply data at Fs = 6	2
	uses AC	-111K 51013	5 Set $+$ {/æ8, 6æ9, 61 10æ11} to supply data at $15 - 0$	94, 00.2 01 90 KHZ.
SSR[1:0]		Sample Ra its declare	te the available S/PDIF transmitter clock rate (64*fs).	
	SSR1	SSR0	S/PDIF Sample Rate	1
	0	0	Not Available	
	0	1	Reserved	
	1	0	48 KHz (default)	
	1	1	Not Available	
L		ion Level	rding to IEC standards.	
CC[6:0]	Categor	y Code		

- Programmed according to IEC standards.
- PREPreemphasis"1" : Indicates filter preemphasis is 50/15μs."0" : Default is no Preemphasis.

COPY Copyright "1" : Indicates copyright is asserted.

"0" : Copyright is not asserted (default).

/PCM	Non-Audio Samples
	"1": Set this bit for transmitting non-PCM audio samples such as AC-3.
	"0" : Indicates samples are linear PCM suitable for direct conversion to audio playback.

PRO Professional

- "1": Set Professional mode. Set this bit in conjunction with /PCM bit (above) for AC-3.
- "0" : Indicates Consumer mode (default).

Vendor Reserved Register (Index 5Ah)

D1	5 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
LV	Res.	Res.	LCTF	STF	BPDC	DC	CLE	Res.	Res.	Res.	Res.	IB1	IB0	Res.	Res.	8200h

Res.	Test Mode Bits These read/write bits are used for testing the digital modes of the audio codec. Do not access them during Normal operation.
LVL	Alternate Line Level Out to Surround Out The VT1617 powers up with pins 39 and 41 assigned to the Front channel DACs as described in the AC97 Revision 2.2 specification. When this bit is to "0", the output pins get assigned to the Rear stereo DAC pair with an independent volume control.
LCTF	Downmix LFE and Center DAC outputs to the Front channels The VT1617 is capable of downmixing the LFE and the Center channel outputs to the Line_Out pins using internal hardware. Without processing overhead, it is possible to listen to all the channels without loss of audio cues. The relative SPL (Sound Pressure Level) for these channels are retained as meant by the digital audio content mastering engineer. This is ideal for 4-channel applications.
STF	Downmix Surround DAC outputs to the Front channels The VT1617 is capable of downmixing the Rear channel outputs to the Line_Out pins using internal hardware besides the LFE and the Center. This is useful when multichannel material needs to be played back on a stereo end point like headphones. Without processing overhead, it is possible to listen to all the channels without loss of audio cues. The relative SPL (Sound Pressure

Level) for these channels are retained as meant by the digital audio content mastering engineer. This is ideal for 2-channel applications when LCTF and STF are both activated at the same time.

BPDC ADC DC-offset Removal Control

The default setting of "0" ensures that the circuit is disabled at power up. When set to "1", the DC- offset cancellation circuit will be enabled. This helps to maximize recording quality by removing white noise.

DC DC-offset Removal Capability

This read only bit indicates that the codec incorporates DC-offset removal hardware.

CLE Center/LFE DAC Data Exchange

"1" : Exchange PCM data in Center DAC and LFE DAC

IB[1:0] Analog Current Setting Bits

Normally these bits should be left at default when analog operating at 5V supply. The four possible settings adjust the power consumption of the analog section. The power-up default 00b sets the codec for the best overall analog performance at 5V. At 3.3V analog supply, 10b should be set for the lowest power instead of default 00b. This mode is desirable for system designs with limited power budget such as battery operated portable devices. Setting to 11b puts the codec to its best A- A mixer performance overall.

IB1	IB0	Analog Current Setting
0	0	Normal (1X)
0	1	Reduced (4/5X)
1	0	Power Miser (2/3X)
1	1	Enhanced (4/3X)

Vendor Reserved Register (Index 5Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
VRPD	Res.	Res.	Res.	LFBO		SRBO	_	DMIX		HPE	Res.	Res.	Res.	Res.	Res.	0000h
VRPD			Vref "1"	out pov :		wn out pov	wer do	wn								
xBO			Outr "1"	out Cha :				•		JFE, C	enter a	and Su	rround	has 1.	5dB b	oosting
DMIX			Fron "1"	tMic a			//	elect channe	1							
			"0"	' .	Front	Mic in	n Left	channe	el, Mic	2 in R	ight ch	annel				
НРТ			This has		nly bi xceed	t gets ed. It	autom t will	atically be res	y set t set to	o '1' aı '0' wh	nd repo en the				-	otection thature cond
HPE			This amp		hen so Defau	et to ' ilt pow	1' disa ver-up	ables t state '(he bu)', ther	ilt-in t	herma					of the hea iling is ex
Res.			Thes	Mode I se read/ ng Norr	write			for tes	sting tl	ne digi	tal mo	des of	the au	dio co	dec. D	o not acce

Codec Class/Rev Register (Index 60h)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
-	-	-	CL4	CL3	CL2	CL1	CL0	RV7	RV6	RV5	RV4	RV3	RV2	RV1	RV0	0000h

CL[4:0] Codec Compatibility Class (RO) 00h – Field not implemented

01h-1Fh – Vendor specific compatibility class code

RV[7:0] Revision ID(RO)

DAC Slot Mapping Register (Index 6Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
FD3	FD2	FD1	FD0	SD3	SD2	SD1	SD0	CLD3	CLD2	CLD1	CLD0	-	١	I	—	3760h

FD[3:0]	Front Channel DAC Slot Mapping Control
	Control the mapping of the 1st DAC pair (generally the front speakers and headphone), which defaults to slots 3 and 4.
SD[3:0]	Surround Channel DAC Slot Mapping Control
	Control the mapping of the 2nd DAC pair (generally the surround speakers), which defaults to slots 7 and 8
CLD[3:0]	Center/LFE Channel DAC Slot Mapping Control
	Control the mapping of the 3rd DAC pair (generally the center and LFE speakers), which defaults to slots 6 and 9.

ADC Slot Mapping Register (Index 6Eh)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
-	-	-	Ι	-	_	-	-	-	-	-	-	-	-	-	MV	0000h

MV

Mapping Valid

Indicates that the values programmed into page offsets 6Ch and 6Eh are valid.

Miscellaneous Register (Index 76h)

00 Default SE 0000h
SE 0000h
f
1
will carry
e slave pin
s the lack
, the lack
5

I2S Enable

"1":

Pin 45, Pin 46 and Pin 48 will output SP_SYNC, SP_SCLK and SP_DOUT.

I2SE

GPIO Control Register (Index 78h)

D15 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Default
GSI GOS	-	-	_	GW2	GW1	GW0	-	GP2	GP1	GP0	-	-	GC1	GC0	0070h
			_												
GSI				-				SDATA	_						
		"0":		The s	tatus o	of GPI	O and	its val	id tag a	are not	indic	ated in	SDA	ΓA_IN	
		"1":		The s	tatus o	of GPI	O and	its val	id tag a	are ind	icated	in SD	ATA_	IN.	
GOS			-	ut selec	et										
		"0":		GPIC) outpi	it is co	ntroll	ed by H	Reg7A	[5:4].					
		"1":		GPIC) outpi	ıt is co	ntroll	ed by S	SDATA	A_OU	Γ Slot	12 bit5	5 & bit	4.	
GW[2:0]		GPIC "0" :		nterru j Disał		ole whe	en GPI	O is us	ed as i	nput					
		"1":		Enab	le										
GP[2:0]		GPI	O Inte	rrupt	Polar	ity									
		"0":		Low	to Hig	h trans	sition								
		"1":		High	to Lov	w trans	sition								
GC[1:0]		GPIC) Pin (Configu	iration	L									
. ,		" 0 " :				sused	as inp	ut							
		"1":		GPIC) pin is	sused	as out	put							

GPIO Status Register (Index 7Ah)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
SM51S	SM51E	-			-	GOC1	GOC0		GIS2	GIS1	GIS0	-	GI2	GI1	GI0	0000h
W	Ν															

SM51SW	Smart 5.1 feature. (See Mixer Table)
SM51EN	Smart 5.1 feature. (See Mixer Table)
GOC[1:0]	GPIO Output Control

- "0": Drive GPIO low
 - "1": Drive GPIO high

GIS[2:0] GPIO Input Status (When GPIO is used as input)

- "0" : GPIO[n] is driven low
- "1": GPIO[n] is driven high

GI[2:0] GPIO Interrupt Status (When GPIO is used as input)

- "0" : No GPIO interrupt
- "1": GPIO interrupt

Write 1 to clear this status bit.

Vendor Identification Register (Index 7Ch)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
F7	F6	F5	F4	F3	F2	F1	F0	S 7	S6	S5	S4	S3	S2	S1	S0	5649h

The upper and lower byte of this register (index 7Ch), in conjunction with the upper byte of index register 7Eh, make up the vendor identification code for the VT1617. The Vendor ID Code (in ASCII format) is equal to "VIA", where:

F[7:0] Upper Byte (Index 7Ch) D[15:8] = V

S[7:0] Lower Byte (Index 7Ch) D[7:0] = I

T[15:8] Upper Byte (Index 7Eh) D[15:8] = A

Revision Identification Register (Index 7Eh)

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	DO	Default
T7	T6	T5	T4	Т3	T2	T1	Т0	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0	4170h

The upper byte of this register is used in conjunction with index register 7Ch to make up the Vendor ID code for the VT1617. The lower byte identifies VT1617 and its revision code.

T[15:8] See description in Vendor Identification Register.

REV[7:0] Revision ID

"70" : VT1617 identification and revision number

ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Unit
T _{STG}	Storage Temperature	-55		125	°C
T _C	Case Operating Temperature	0		85	°C
V _{IN}	Input Voltage (All Digital Pins)	GND – 0.5		VCC + 0.5	V
V _{ESD}	Electrostatic Discharge (Human Body)			2	KV
T _{VPS}	Vapor Phase Soldering (One Minute)			220	°C

Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Unit
VCC33	Digital Power Supplies (DVCC)	3.135	3.3	3.465	V
VCC5	Analog Power Supplies (AVCC), preferred	4.75	5	5.25	V
VCC5	Analog Power Supplies (AVCC), for low-power apps	3.135	3.3	3.465	V

DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit
V _{IN}	Input Voltage Range	-0.3		$V_{CC} + 0.3$	V
V _{IL}	Input Low Voltage	_		0.3 V _{CC}	V
V _{IH}	Input High Voltage	0.7 V _{CC}		_	V
V _{OL}	Output Low Voltage	-		0.4	V
V _{OH}	Output High Voltage	2.4		_	V

PACKAGE MECHANICAL SPECIFICATIONS

Figure 4. Mechanical Specification for Lead Free – 48-Pin LQFP