
XORP Router Manager Process (rtrmgr)

Version 1.1

XORP Project
International Computer Science Institute

Berkeley, CA 94704, USA
http://www.xorp.org/
feedback@xorp.org

April 13, 2005

1 Introduction

This document provides a high-level technical overview of the Router Manager (rtrmgr) code structure,
intended to aid anyone needing to understand or modify the software. It is not a user manual.

The XORP software base consists of a number of routing protocols (BGP, OSPF, PIM-SM, etc), a
Routing Information Base (RIB) process, a Forwarding Engine Abstraction (FEA) process, and a forwarding
path. Other management, monitoring or application processes may also supplement this set. Figure 1
illustrates these processes and their principle communication channels.

For research purposes, these processes may be started manually or from scripts, so long as the depen-
dencies between then are satisfied. But when using XORP in a more operational environment, the network
manager typically does not wish to see the software structure, but rather would like to interact with the router
as a whole. Minimally, this consists of a configuration file for router startup, and a command line interface
to interact with the router during operation. The rtrmgr process provides this unified view of the router.

The rtrmgr is normally the only process explicitly started at router startup. The rtrmgr process includes
a built-in XRL finder, so no external finder process is required. The following sequence of actions then
occurs:

1. The rtrmgr reads all the template files in the router’s template directory. Typically there is one tem-
plate file per XORP process that might be needed. A template file describes the functionality that is
provided by the corresponding process in terms of all of the configuration parameters that may be set.
It also describes the dependencies that need to be satisfied before the process can be started. After
reading the template files, the rtrmgr knows all the configuration parameters currently supportable on
this router, and it stores this information in itstemplate tree. After all template files are read, the
template tree is checked for errors (e.g.,invalid variable names, etc). The rtrmgr will exit if there is
an error.

2. The rtrmgr next reads the contents of the XRL directory to discover all the XRLs that are supported
by the processes on this router. These XRLs are then checked against the XRLs in the template tree.
As it is normal for the XRLs in the XRL directory to be used to generate stub code in the XORP

1

PIM−SM

RIP

FEA

Forwarding Engine

IGMP/MLD

CLI SNMPIPC
finder

OSPF

IS−IS

router
manager

BGP4+

RIB

Management Processes

Unicast Routing

Multicast Routing

RIB = routing information base
FEA = forwarding engine abstraction

Click Elements

Figure 1: Overview of XORP processes

processes, this forms the definitive version of a particularXRL. Checking against this version detects
if a template file has somehow become out of sync with the router’s codebase. Doing this check at
startup prevents subtle run time errors later. The rtrmgr will exit if a mismatch is discovered.

3. The rtrmgr then reads the router configuration file. All theconfiguration options in the config file must
correspond to configurable functionality as described by the template files. As it reads the config file,
the rtrmgr stores the intended configuration in itsconfiguration tree. At this point, the nodes in the
configuration tree are annotated asnot existing- that is this part of the configuration has not yet been
communicated to the process that will implement the functionality.

4. The rtrmgr next traverses the configuration tree to discover the list of processes that need to be started
to provide the required functionality. Typically not all the available software on the router will be
needed for a specific configuration.

5. The rtrmgr traverses the template tree again to discover an order for starting the required processes
that satisfies all their dependencies.

6. The rtrmgr starts the first process in the list of processesto be started.

7. If no error occurs, the rtrmgr traverses the configurationtree to build the list of XRLs that need to
be called to configure the process just started. These XRLs are then called, one after another, with
the successful completion of one XRL triggering the callingof the next. The XRLs are ordered
according to the semantics of the commands used to specify the XRLs (e.g.,see below the description
of commands %create, %activate, etc). If the semantics of the commands do not specify the ordering,
then the XRLs follow the order they are defined in the rtrmgr template files. Some processes may

2

require calling a transaction start XRL before configuration, and a transaction complete XRL after
configuration - the rtrmgr can do this if required.

8. If no error occurred during configuration, the next process is started, and configured, and so forth,
until all the required processes are started and configured.

9. At this point, the router is up and running. The rtrmgr willnow allow connections from the xorpsh
process to allow interactive operation.

3

2 Template Files

The router manager reads a directory of template files to discover the configuration options that the router
supports. A fragment of such a configuration file might look like:

protocols {
ospf {

router-id: ipv4;
mospf: toggle = false;
flood_rate: i32;
area @: ipv4 {

stub: toggle = false;
interface @: txt {

disable: toggle = false;
hello-interval: u32 = 30;
dead-interval: u32 = 95;

}
}

}
}

This defines a subset of the configuration options for OSPF. The configuration options form a tree, with
three types of nodes:

• Structural nodes such asprotocol andospf that exist merely to provide scope.

• Named interior nodes such as “area @” and “interface @ ”, where there can be multiple in-
stances of the node. Symbol@indicates that a name is required; in the case of “area @” the fragment
above specifies that the name must be an IPv4 address.

• Leaf nodes such asflood rate andhello-interval . These nodes are also typed, and may op-
tionally specify a default value. In the example above,hello-interval is of typeu32 (unsigned
32 bit integer), and takes the default value of 30.

Thus the template tree created from this template file would look like:

ROOT protocols ospf router−id

mospf

flood_rate

area @ stub

interface @ disable

hello−interval

dead−interval

The same node may occur multiple times in the template file. This might happen because the node can
take more than one type (for example, it might have an IPv4 or an IPv6 address), or it might happen because
the second definition adds information to the existing definition.

4

In addition to specifying the configurable options, the template file should also specify what the rtrmgr
should do when an option is modified. These commands annotating the template file begin with a “%”. Thus
the template file above might also contain the following annotated version of the template tree:

protocols ospf {
%modinfo: provides ospf;
%modinfo: depends rib;
%modinfo: path "ospfd/xorp/ospfd";
%modinfo: default_targetname "ospf";
%mandatory: targetname router-id;
targetname {

%set:;
}
router-id {

%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_router_id- >id:u32";

}
area @ {

%create: xrl "$(ospf.targetname)/ospf/0.1/add_or_conf igure_area?area_id:u32=$(a
%delete: xrl "$(ospf.targetname)/ospf/0.1/delete_area ?area_id:u32=$(area.@)";

}
mospf {

%set: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?enab led:bool=$(@)";
%delete: xrl "$(ospf.targetname)/ospf/0.1/set_mospf?e nabled:bool=$(DEFAULT)";
%get: xrl "$(ospf.targetname)/ospf/0.1/get_mospf->ena bled:bool=$(@)";

}
}

The first four annotations apply to the “protocols ospf” node, and specify the “%modinfo” command,
which provides information about the module providing thisfunctionality. In this case they specify the
following:

• This functionality is provided by the module calledospf .

• This module depends on the module calledrib .

• The program inospfd/xorp/ospfd should be run run to provide this module.

• XRL target nameospf should be used by default when validating an XRL specification that uses a
variable inside theospf module (e.g.,$(ospf.targetname)) to specify the XRL target.

The “%mandatory” annotation contains the list of child nodes or variables that must be configured in
the user configuration file or that must have a default value. In the above example, this applies to variables
“ targetname ” and “router-id ”.

The “protocols ospf targetname ” node carries an annotation to specify the existence of vari-
able name “targetname ” that can be used to specify the XRL target name of an OSPF instance. The
specific value of “targetname ” can be configured elsewhere.

The “protocols ospf router-id ” node carries annotations to set the value of the router ID in
the ospf process, and to get the value back. The set command is:

5

%set: xrl "$(ospf.targetname)/ospf/0.1/set_router_id? id:u32=$(@)";

This specifies that to set this value, the rtrmgr must call thespecified XRL. In this case it specifies a variable
expansion of variables$(ospf.targetname) and$(@) . All variables take the form$(...) .

The variable$(ospf.targetname) means the value of node “protocols ospf targetname ”.
The variable$(@) means the value of the current node. Hence, if the targetnameis set in the configuration
tree to (or had a default value in the template tree of)"ospf" , and the router ID node in the configuration
tree had the value 1.2.3.4, then the XRL to call would be:

ospf/ospf/0.1/set_router_id?id:u32=1.2.3.4

The%set command only applies to leaf nodes.
Internal nodes would typically use the%create command to create a new instance of the node, as

shown with the “protocols ospf area @ ” node. In the example above, the%create command
involves two variable expansions:$(area.@) and $(@.stub) . The form$(area.@) means “this
area”, and so in this case it is directly equivalent to$(@) meaning “this node”. The variable$(@.stub)
means the value of the leaf node calledstub that is a child node of “this node”.

Default template value of a variable can be specified by the keywordDEFAULT. For example,$(DEFAULT)
or$(@.DEFAULT) would refer to the default template value of “this” node, while$(foo.bar.DEFAULT)
would refer to the default template value of node"foo.bar" .

Thus, the template tree specifies the following information:

• The nodes of the tree specify all the configuration options possible on the router.

• Some of the nodes are annotated with information to indicatewhich software to run to provide the
functionality rooted at that node, to indicate which other modules this software depends on being
running, and to provide additional information about this module.

• Most of the nodes are annotated with commands to be run when the value of the node changes in the
configuration tree, when a new instance of the node is createdor an instance of the node is deleted in
the configuration tree, or to get the current value of a node from the running processes providing the
functionality.

Note that for verification purpuse all variable names must refer to valid nodes in the template tree.
Hence, the template tree may contain dummy nodes that shoudn’t be used for configuration purpose. For
example, the internal variableTID that can be used to store the transient transaction ID shouldbe specified
as:

interfaces {
%modinfo: ...
...

TID {
%create:;

}
...

}

6

2.1 Template Tree Node Types

The following types are currently supported for template tree nodes:

u32
Unsigned 32 bit integer

i32
Signed 32 bit integer

bool
Boolean - valid values aretrue andfalse .

toggle
Similar to boolean, but requires a default value. Display ofthe config tree node is suppressed if the
value is the default.

ipv4
An IPv4 address in dotted decimal format.

ipv4net
An IPv4 address and prefix length in the conventional format.E.g.:1.2.3.4/24 .

ipv6
An IPv6 address in the canonical colon-separated human-readable format.

ipv6net
An IPv6 address and prefix in the conventional format. E.g.:fe80::1/64

macaddr
An MAC address in the conventional colon-separated hex format. E.g.:00:c0:4f:68:8c:58

It is likely that additional types will be added in the future, as they are found to be needed.

7

2.2 Template Tree Commands

This section provides a complete listing of all the templatetree commands that the rtrmgr supports.

2.2.1 The%modinfo Command.

The sub-commands to the%modinfo command are:

%modinfo: provides ModuleName
The provides subcommand takes one additional parameter, which gives thename of the module
providing the functionality rooted at this node.

%modinfo: depends list of modules
Thedepends subcommand takes at least one additional parameter, givinga list of the other modules
that must be running and configured before this module may be started.

%modinfo: path ProgramPath
The path subcommand takes one additional parameter giving the pathname of the software to be
run to provide this functionality. The pathname may be absolute or relative to the root of the XORP
tree. The ordering in computing the root of the tree is: (a) the shell environment XORPROOT
(if exists); (b) the parent directory the rtrmgr is run from (only if it contains the etc/templates and
the xrl/targets directories); (c) the XORPROOT value as defined in config.h (currently this is the
installation directory, and defaults to “/usr/local/xorp”).

%modinfo: default targetname TargetName
The default targetname subcommand takes one additional parameter giving the valueof the
XRL target name that should be used by default when validating an XRL specification (e.g., if the
specification uses a variable inside that module to specify the XRL target name).

%modinfo: start commit method argument
Thestart commit subcommand takes two or more additional parameters, that are used to specify
the mechanism to be call before performing any change to the configuration of the module. The only
method currently supported isxrl which takes an XRL specification as an argument.

%modinfo: end commit method argument
Theend commit subcommand takes two or more additional parameters, that are used to specify the
mechanism to be called to complete any change to the configuration of the module. The only method
currently supported isxrl which takes an XRL specification as an argument. Bothstart commit
andend commit are optional. They provide a way to make batch changes to a module configuration
as an atomic operation.

%modinfo: status method method argument
Thestatus method subcommand takes two or more additional parameters, that are used to specify
the mechanism to be used to discover the status of the module.The only method current supported is
xrl which takes an XRL specification as an argument.

%modinfo: startup method method argument
Thestartup method subcommand takes two or more additional parameters, that are used to spec-
ify the mechanism to be used to gracefully startup the module. The only method current supported is

8

xrl which takes an XRL specification as an argument. Before thestartup method subcommand
is called, it is expected that the process is inPROCSTARTUPstate; after the subcommand is called
the process should transition to thePROCREADYstate. Note that this subcommand is optional and if
it is not specified, then it is expected that the process will transition on its own to thePROCREADY
state.

%modinfo: shutdown method method argument
The shutdown method subcommand takes two or more additional parameters, that are used to
specify the mechanism to be used to gracefully shutdown the module. The only method current
supported isxrl which takes an XRL specification as an argument. If the process does not then
transition toPROCSHUTDOWNstate, the rtrmgr will then kill the process.

2.2.2 The%mandatory Command.

%mandatory is used to specify the list of child nodes or variables that must be configured in the user
configuration file or that must have a default value. This command can appear multiple times anywhere in
the template tree. If it appears multiple times within the same template node, then all listed child nodes are
mandatory.

2.2.3 The%create Command.

%create is used to create a new instance of an interior node in the configuration tree.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to create thenew configuration
tree instance of this template tree node.

Note that if a node has no%create command, then the%set command (if exists) for that node is
used instead (see below).

2.2.4 The%activate Command.

%activate is used to activate a new instance of an interior node in the configuration tree. It is typi-
cally paired with%create - the%create command is executed before the relevant configuration of the
node’s children has been performed, whereas%activate is executed after the node’s children have been
configured. A particular interior node might have either%create , %activate or both.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to activate the new configuration
tree instance of this template tree node.

For example, if the template tree held the following:

9

address @: ipv4 {
%create: xrl XRL1;
%activate: xrl XRL2;
netmask: ipv4 {

%set: xrl XRL3;
}

}

Then when an instance of address and netmask are created and configured, the execution order of the
XRLs will be: XRL1, XRL3, XRL2.

2.2.5 The%update Command.

%update is used to update an existing instance of a node in the configuration tree. It is typically paired
with %activate - the%activate command is executed after the node’s children have been configured
for very first time (e.g.,on startup), whereas%update is executed if some of the node’s children have been
modified (e.g.,via xorpsh).

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to update theconfiguration tree
instance of this template tree node.

Note that if the value of a node is modified, only the closest%update command up in the hierarchy is
executed. For example, if the template tree held the following:

address @: ipv4 {
%create: xrl XRL1;
%activate: xrl XRL2;
%update: xrl XRL3;
netmask: ipv4 {

%update: xrl XRL4;
disable: bool {

%set:;
}

}
broadcast: ipv4 {

%set:;
}

}

Then when the value ofdisable is modified, onlyXRL4will be called. If the value ofbroadcast
is modified, thenXRL3will be called.

10

2.2.6 The%list Command.

%list is called to obtain a list of all the configuration tree instances of a particular template tree node. For
example, a particular template tree node might represent the interfaces on a router. The configuration tree
would then contain an instance of this node for each interface currently configured. The%list command
on this node would then return the list of interfaces.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to return thelist.

2.2.7 The%delete Command.

%delete is called to delete a configuration tree node and all its children. A node that has a%create or
%activate command should also have a%delete command.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to delete theconfiguration tree
instance of this template tree node.

2.2.8 The%set Command.

%set is called to set the value of a leaf node in the configuration tree.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to set the value of configuration
tree instance of this template tree node.

Note that when a new instance of a node in the configuration tree is created, if that node has no%create
command, then the%set command (if exists) for that node is used instead.

2.2.9 The%unset Command.

%unset is called to unset the value of a leaf node in the configurationtree. The value will return to its
default value if a default value is specified.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to unset the value of configuration
tree instance of this template tree node.

11

2.2.10 The%get Command.

%get is called to get the value of a leaf node in the configuration tree. Normally the rtrmgr will know the
value if there is no external means to change the value, but the%get command provides a way for the rtrmgr
to re-sync if the value has changed.

• The first parameter indicates the form of action to take to perform this action - typically it isxrl
which indicates an XRL should be called.

• If the action isxrl , then the second parameter gives the XRL to call to get the value of configuration
tree instance of this template tree node.

2.2.11 The%allow Command.

The%allow command provides a way to restrict the value of certain nodesto specific values.

• The first parameter gives the name of the variable to be restricted.

• The remaining parameters are a list of possible allowed values for this variable.

For example, a node might specify an address family, which isintended to be one of “inet” or “inet6”.
The type of the node istxt , which would allow any value, so the allow command might allow the rtrmgr
to restrict the legal values without having to communicate with the process providing this functionality.

A more subtle use might be to allow certain nodes to exist onlyif a parent node was of a certain value.
For example:

family @: txt {
%allow: $(@) "inet" "inet6";
address @: ipv4 {

%allow: $(family.@) "inet";
broadcast: ipv4;

}
address @: ipv6 {

%allow: $(family.@) "inet6";
}

}

In this case, there are two different typed versions of the “address @ ” node, once for IPv4 and one
for IPv6. Only one of them has a leaf node calledbroadcast . The allow command permits the rtrmgr to
do type-checking to ensure that only the permitted combinations are allowed.

2.2.12 The%allow-range Command.

The%allow-range command restricts the range of values an integer configuration item may take. The
syntax is:

%allow-range: varName lowValue highValue;
where the first parameter,varName, gives the name of the variable to be restricted. This is typically ¨$(@)¨ .
The lowValueandhighValparameters specify the lower and upper bound of the allowed range of values.

12

2.2.13 The%help Command.

The%help command specifies the CLI configuration-mode help string. The syntax is:
%help: {short | long} "Help string" ;

where the first parameter,shortor long, specifies whether this is the short-version or the long-version of the
help, and the second parameter is the help string itself.

2.2.14 The%deprecated Command.

The%deprecated command can be used to deprecate a template tree node and the subtree below it. The
syntax is:

%deprecated: "String with reason" ;
If the XORP startup configuration contains a statement that uses a deprecated node in the template, the

rtrmgr prints an error with the string with the reason, and exits. If, however, somehow the xorpsh sends to
the rtrmgr configuration that contains a deprecated statement, the rtrmgr returns an error to xorpsh, and the
error message will contain the string with the reason.

13

An example of use appears in the interface address prefix specification:

address @: ipv4 {
prefix-length: u32;

}
...
address @: ipv4 {

prefix-length {
%allow-range: $(@) "1" "32";
%set: xrl "...";
%get: xrl "...";

}
}

14

3 The Configuration File

Whereas the template files inform the rtrmgr as thepossibleconfiguration of the router, the configuration file
provides the specific startup configuration to be used by thisspecific router. The syntax is similar to, but not
the same as, that of template files - the differences are intentional - template files are intended to be written
by software developers, whereas configuration files are intended to be written by network managers. Hence
the syntax of configuration files is simpler and more intuitive, but less powerful. However, both specify
the same sort of tree structure, and the nodes in the configuration tree must correspond to the nodes in the
template tree.

An example fragment of a configuration file might be:

protocols {
ospf {

router-id: 1.2.3.4
mospf
area 1.2.3.27 {

stub
interface fxp1 {

hello-interval: 10
}
interface fxp2

}
}

}

Note that unlike in the template tree, semicolons are not needed in the configuration tree, and that line-
breaks are significant.

The example fragment of a configuration file above will construct the following configuration tree from
the template tree example given earlier:

router−id=1.2.3.4

area 1.2.3.27

ROOT protocols ospf

stub=true

interface fxp1

interface fxp2

hello−interval=10

dead−inteval=90

hello−interval=30

dead−interval=90

mospf=true

Note that configuration tree nodes have been created fordead-interval and (in the case of fxp1)
for hello-interval even though this was not mentioned in the configuration file. This is because the
template tree contains a default value for this leaf node. Also, in case of configuring a boolean variable (e.g.,
of type bool or toggle) such asmospf , typing the variable name itself (e.g.,mospf) is equivalent to
assigning it value oftrue (e.g.,mospf: true).

15

4 Command Line Interface: xorpsh

The rtrmgr process is the core of a XORP router - it starts and stops processes and keeps track of the
configuration. To do its task, it must run as root, whereas most other XORP processes don’t need privileged
operation and so can be sandboxed. This makes the rtrmgr process the single most critical point from a
security point of view. Thus we would like the rtrmgr to be as simple as possible1, and to isolate it from
possibly hostile input as far as is reasonable.

For these reasons we do not build a command line interface directly into the rtrmgr, but instead use an
external process calledxorpsh to interact with the user, while limiting the rtrmgr’s interaction with xorpsh
to simple authentication mechanisms, and exchanges of configuration tree data. Thus the command line
interface architecture looks like:

rtrmgr
process

xorpsh

xorpsh

xorpsh

RIB BGP OSPF PIM−SM FEA

Constrained
XRL interface

xorpsh processes
running from unprivileged
user accounts

CLI
interaction
with
users

XRLs for
configuration

The interface between the rtrmgr and a xorpsh instance consists of XRLs that the xorpsh may call to
query or configure rtrmgr, and a few XRLs that the rtrmgr may asynchronously call to alert the xorpsh
process to certain events.

The rtrmgr exports the following XRLs that may be called by xorpsh:

register client
This XRL is used by a xorpsh instance to register with the rtrmgr. In response, the rtrmgr provides the
name of a file containing a nonce - the xorpsh must read this fileand return the contents to the rtrmgr
to authenticate the user.

authenticate client
Xorpsh uses this to complete the authentication process.

get running config
Xorpsh uses this to request the current running configuration from the rtrmgr. The response is text in
the same syntax as the rtrmgr configuration file that providesthe rtrmgr’s view of the configuration.

enter config mode
A xorpsh process must be in configuration mode to submit configuration changes to the rtrmgr. This
XRL requests that the rtrmgr allows the xorpsh to enter configuration mode. Not all users have
permission to enter configuration mode, and it is also possible that a request may be refused because
the configuration is locked.

1Unfortunately the router manager is not simple as we would like.

16

get config users
Xorpsh uses this to request the list of users who are currently in configuration mode.

apply config change
Xorpsh uses this to submit a request to change the running configuration of the router to the rtrmgr.
The change consists of a set of differences from the current running configuration.

lock config
Xorpsh uses this to request an exclusive lock on configuration changes. Typically this is done just
prior to submitting a set of changes.

unlock config
Unlocks the rtrmgr configuration that was locked by a previous call tolock config .

lock node
Xorpsh uses this to request a lock on configuration changes toa specific config tree node. Usually this
will be called because the user has made local changes to the config but not yet committed them, and
wishes to prevent another user making changes that conflict.Locking is no substitute for human-to-
human configuration, but it can alert users to potential problems.

Note: node locking is not yet implemented.

unlock node
Xorpsh uses this to request a lock on a config tree node be removed.

save config
Xorpsh uses this to request the configuration be saved to a file. The actual save is performed by the
rtrmgr rather than by xorpsh, but the resulting file will be owned by the user running this instance of
xorpsh, and the file cannot overwrite files that this user would not otherwise be able to overwrite.

load config
Xorpsh uses this to request the rtrmgr reloads the router configuration from the named file. The file
must be readable by the user running this instance of xorpsh,and the user must be in configuration
mode when the request is made.

leave config mode
Xorpsh uses this to inform rtrmgr that it is no longer in configuration mode.

Each xorpsh process exports the following XRLs that the rtrmgr can use to asynchronously communicate
with the xorpsh instance:

new config user
Rtrmgr uses this XRL to inform all xorpsh instances that are in config mode than another user has
entered config mode.

config change done
When a xorpsh instance submits a request to the rtrmgr to change the running config or to load a con-
fig from a file, the rtrmgr may have to perform a large number or XRL calls to implement the config

17

change. Due to the single-threaded nature of XORP processes, the rtrmgr cannot do this while re-
maining in theapply config change XRL, so it only performs local checks on the sanity of the
request before returning success or failure - the configuration will not have actually been changed at
that point. When the rtrmgr finishes making the change, or when failure occurs part way through mak-
ing the change, the rtrmgr will callconfig change done on the xorpsh instance that requested
the change to inform it of the success or failure.

config changed
When multiple xorpsh processes are connected to the rtrmgr,and one of them submits a successful
change to the configuration, the differences in the configuration will then be communicated to the
other xorpsh instances to keep their version of the configuration in sync with the rtrmgr’s version.

4.1 Operational Commands and xorpsh

Up to this point, we have been dealing with changes to the router configuration. Indeed this is the role
of the rtrmgr process. However a router’s command line interface is not only used to change or query the
router configuration, but also to learn about the dynamic state of the router, such as link utilization or routes
learned by a routing protocol. To keep it as simple and robustas possible, the rtrmgr is not involved in these
operational modecommands. Instead these commands are executed directly by axorpsh process itself.

To avoid the xorpsh implementation needing in-built knowledge of router commands, the information
about operational mode commands is loaded from another set of template files. A simple example might be:

show interfaces $(interfaces.interface.*) {
%command: "path/to/show_interfaces -i $3" %help: HELP;
%module: fea;
%opt_parameter: "brief" %help: BRIEF;
%opt_parameter: "detail" %help: DETAIL;
%opt_parameter: "extensive" %help: EXTENSIVE;
%tag: HELP "Show network interface information";
%tag: BRIEF "Show brief network interface information";
%tag: DETAIL "Show detailed network interface information ";
%tag: EXTENSIVE "Show extensive network interface informa tion";

}
show vif $(interfaces.interface.*.vif.*) {

%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";
%module: fea;
%opt_parameter: "brief" %help: "Show brief vif informatio n";
%opt_parameter: "detail" %help: DETAIL;
%opt_parameter: "extensive" %help: EXTENSIVE;
%tag: DETAIL "Show detailed vif information";
%tag: EXTENSIVE "Show extensive vif information";

}

This template file defines two operational mode commands: “show interfaces ” and “show vif ”.
The “show interfaces” command takes one mandatory parameter, whose value must be the name of one

of the configuration tree nodes taken from the variable name wildcard expansion$(interfaces.interface.*) .

18

Thus if the router had config tree nodes called “interfaces interface xl0 ”, and “interfaces
interface xl1 ”, then the value of the mandatory parameter must be eitherxl0 or xl1 .

Additional optional parameters might bebrief , detail , orextensive - the set of allowed optional
parameters is specified by the%opt parameter commands.

The %commandcommand indicates the program or script (and its arguments)to be executed to im-
plement this operational command - the script should returnhuman-readable output preceded by a MIME
content type indicating whether the text is structured or not2. If the command specification contains any
positional arguments (e.g.,$0 , $1 , $2) they are resolved by substituting them with the particularsubstring
from the typed command line command:$0 is substituted with the complete string from the command
line, $1 is substituted with the first token from the command line,$2 is substituted with the second token
from the command line, The resolved positional arguments along with the remaining arguments (if any) are
passed to the executable command. For example, if the user types “show interfaces xl0”, the xorpsh might
invoke theshow interface command using the Unix command line:

path/to/show_interfaces -i xl0

The pathname to a command must be relative to the root of the XORP tree. The ordering in computing
the root of the tree is: (a) the shell environment XORPROOT (if exists); (b) the parent directory the xorpsh
is run from (only if it contains the etc/templates and the xrl/targets directories); (c) the XORPROOT value
as defined in config.h (currently this is the installation directory, and defaults to “/usr/local/xorp”).

The command%module indicates that this operational command should only be available through the
CLI when the router configuration has required that the namedmodule has been started. If the%module
command is missing, then this operational command is alwaysenabled.

The command%help is used to specify the CLI help for each CLI command or the optional parameters.
It must be on the same line as the%commandor the%opt parameter commands. If the argument after
the%help command is in quotes, then it contains the help string itself. Otherwise, the argument is the name
of the tag that contains the help string.

The command%tag is used to specify the help string associated with each tag. For example, statement:

%command: "path/to/show_vif -i $3" %help: HELP;
%tag: HELP "Show vif information";

is equvalent with:

%command: "path/to/show_vif -i $3" %help: "Show vif inform ation";

Note: currently there is no security mechanism restrictingaccess to operational mode commands beyond
the restrictions imposed by Unix file permissions. This is not intended to be the long-term situation.

2Only text/plain is currently supported.

19

