
XORP Tutorial

Mark Handley
Professor of Networked Systems

Department of Computer Science
UCL

18th December 2005.

Motivation
 Why is XORP the way it is?

 Three perspectives:
 Network Researcher.
 Network Operator.
 Network Equipment Vendor

Motivation: Networking research

Research divorced from reality?

 Gap between research and practice in routing and forwarding.

 Most of the important Internet protocols originated in research,
often at universities.
 It used to be that researchers designed systems, built

implementations, tried them out, and standardized the ones
that survived and proved useful.

 What happened?

Motivation: Networking research

Why the divorce?

The commercial Internet:
 Network stability is critical, so experimentation is difficult.
 Cisco and Juniper not motivated to support

experimentation.

Network simulators:
 High-quality simulators make a lingua franca for research.

Motivation: Networking research
Simulation is not a substitute for experimentation

 Many questions require real-world traffic and/or routing
information.

 Most grad students:
 Give up, implement their protocol in ns
 Set ns parameters based on guesses, existing scripts
 Write a paper that may or may not bear any relationship to

reality
 Researchers need to be able to run experiments when

required!

Motivation: Networking research

The state of the art

 Open APIs facilitate end-system protocol development:
 WWW, RTP, SIP, RTSP, ...

 Open-source OSes do the same for kernel changes.
 TCP SACK, IGMPv3, ...
 Also a history of experimentation in commercial OSes

(affiliated labs)

 Overlay networks may help with end-system/network
interactions.
 Field is in its infancy.

Motivation: Networking research

What about protocols that affect the routers?

 Option 1:
1. Persuade Cisco to implement your protocol;
2. Persuade ISPs that your protocol won't destabilize their networks;
3. Conduct experiment.

Option 2:
1. Implement routing protocol part in MRTd, GateD, or Quagga;
2. Implement forwarding part in FreeBSD, Linux, Click, Scout, ...
3. Persuade network operators to replace their Ciscos with your PC;
4. Conduct experiment.

Likelihood of success?

Motivation: Networking research

Possible solution

Someone builds a complete open-source router
software stack explicit designed for extensibility and
robustness.

Adventurous network operators deploy this router on their
networks; it develops a reputation for stability and
configurability.

Result: a fully extensible platform suitable for research and
deployment.

Motivation
Network Operators

 No two networks are alike.
 Operators need to tailor their networks to their own

technical constraints and business drivers.

Motivation: Network Operators

Problem 1: Provider Lock-in

 If you’re a large ISP, Cisco may listen to you.
 You need a feature.
 They write it, ship you a custom IOS image.
 You test and debug it.

 If you’re not AT&T, MCI, NTT, Sprint, etc:
 You need a feature.
 If it’s not already shipping, forget it.
 Hack your way around the problem using the existing

feature set.
 Result: network is more complex and less stable.

Motivation: Network Operators

Problem 2: Unstable experimental code

 Most router stacks are a disaster for deployment of
experimental code.
 Routing code is really hard to debug.
 If the codebase is less than 5 years old, expect bugs.
 A bug in experimental code will likely crash your router.

 How can an ISP experiment with next year’s services without
destabilizing current money-making services?
 Usually need to use a parallel set of routers.
 Eg, IPv6, multicast deployments.
 Expensive.

Motivation: Network Operators

Problem 3: Special Purpose Networks

 Suppose you’re a large investment bank.
 Your network is not a general-purpose network.
 Tailored carefully to your specific applications.
 Eg. multicast in financial services industry.
 Eg. PGM to support Tibco.

 Router vendors have very limited interest in customizing their
software for your applications.
 Lots of in-house developed or bespoke software in the

financial services industry.
 Routers are the one place they can’t run custom or third-

part software.

Motivation
 Network Equipment Vendors

 There are only two trusted routing stacks:
 Cisco, Juniper.

 Many ISPs don’t trust anyone else.

 Time to market for hardware is ~18-24 months.
 Smart hardware designers can build hardware that is better,

or fills a niche.
 Still can’t break into the ISP market because no-one trusts

their software.

Motivation: Network Equipment Vendors

Disrupting the Market

Separate router hardware from core routing software.

 New hardware vendors concentrate on providing best
price/performance for hardware.

 Use same core software, plus their own customizations.
 Widespread usage ensures the core codebase is stable

and widely trusted.
 Open software APIs and extensible design allows a market

to develop for router applications
 More like desktop software for Windows.
 Wide availability of useful software makes hardware

platforms more attractive that closed platforms.

Motivation: Network Equipment Vendors

Disrupting the Market

 Open software APIs not sufficient if the software platform is
proprietary to a single hardware vendor.
 Software vendors will fear lock-in to one hardware vendor.
 Less leverage on investment => less third-party router

software developed.

 Need a vendor-neutral core router software platform.
 Open source allows the codebase to gain functionality

fastest, and allows bugs to be fixed more easily.

Motivation
 Enabling Internet Evolution

Stalled Evolution in the Internet Core

Stability matters above all else.

 ISPs can’t afford routing problems.
 Won’t run anything experimental on production routers for

fear of affecting production traffic.

Building stable routing protocol implementations is really hard.

 Big router vendors don’t have a lot to gain from
innovation, because ISPs can’t afford to run experimental
code.

 Startups can’t help because of the closed nature of the
software market for IP routers.

Important routing problems remain unaddressed.

Extensible Router Control Plane Software

Extensibility could solve this problem:
 Allow experimental deployment of new routing protocols
 Enable router application market

Extensible forwarding planes exist:
 Network Processors, FPGAs, software (Click, Scout, ...)
 But not control planes: why?

The demands of router software make extensibility hard:
 Stability requirement
 Massive scale distributed computation
 Tight coupling between functions
 Routing protocols themselves not designed for extensibility

Four Challenges

Features
Real-world routers must support a long feature list.

Extensibility
Every aspect of the router should be extensible.
Extensions must be able to co-exist gracefully.

Performance
Scalability in routing table size, low routing latency.

Robustness
Must not crash or misroute packets.

Fast Convergence

Routing protocol implementations have often been scanner-based.
 Periodically a scanner runs to accumulate changes, update

the forwarding table, notify neighbors, etc.
 Easy to implement.
 Low CPU utilization.
 Poor route convergence properties.

Fast convergence is now a priority.
 Event-driven router implementations are needed to respond

to change as quickly as possible.
 Events processed to completion.
 Explicit dependency tracking.
 Harder to implement, especially in an extensible way.

XORP
eXtensible Open Router Platform

Open source router software suite, designed from the outset with
extensibility in mind.

 Main core unicast and multicast routing protocols.
 Event-driven multi-process architecture.
 BSD-style license
 560,000 lines of C++

XORP Contributions

 Staged design for BGP, RIB.
 Scriptable inter-process communication mechanism.
 Dynamically extensible command-line interface and router

management software.
 Extensible policy framework.

First fully extensible, event-driven, open-source routing
protocol suite: www.xorp.org.

XORP Status: IGP Standards

RIP and RIPng:

 RFC 2453 (RIP version 2)

 RFC 2082 (RIP-2 MD5 Authentication)

 RFC 2080 (RIPng for IPv6)

OSPFv2:

 RFC 2328 (OSPF Version 2)

 RFC 3101 (The OSPF Not-So-Stubby Area (NSSA) Option)

XORP Status: BGP Standards

 draft-ietf-idr-bgp4-26 (A Border Gateway Protocol 4 (BGP-4))

 RFC 3392 (Capabilities Advertisement with BGP-4)

 draft-ietf-idr-rfc2858bis-03 (Multiprotocol Extensions for BGP-4)

 RFC 2545 (Multiprotocol Extensions for IPv6 Inter-Domain Routing)

 RFC 3392 (Capabilities Advertisement with BGP-4)

 RFC 1997 (BGP Communities Attribute)

 RFC 2796 (BGP Route Reflection - An Alternative to Full Mesh IBGP)

 RFC 3065 (Autonomous System Confederations for BGP)

 RFC 2439 (BGP Route Flap Damping)

XORP Status: Multicast Standards

PIM-SM:
 draft-ietf-pim-sm-v2-new-11 (without SSM).
 draft-ietf-pim-sm-bsr-03

IGMP v1 and v2:
 RFC 2236

MLD v1:
 RFC 2710

XORP
Processes

Multi-process
architecture,
providing isolation
boundaries
between separate
functional
elements.

Flexible IPC
interface between
modules

Outline of
this talk

1. Routing
process design

Outline of
this talk

1. Routing
process design

2. Extensible
management
framework

Outline of
this talk

1. Routing
process design

2. Extensible
management
framework

3. Extensible
policy routing
framework

Outline of
this talk

1. Routing
process design

2. Extensible
management
framework

4. Performance
results

3. Extensible
policy routing
framework

Routing Process Design

 How do you implement routing protocols in such a way that
they can easily be extended in the future?

Conventional router implementation

Implementing for Extensibility

 Tightly coupled architectures perform well, but are extremely
hard to change without understanding how all the features
interact.

 Need an architecture that permits future extension, while
minimizing the need to understand all the other possible
extensions that might have been added.
 We chose a data-flow architecture.
 Routing tables are composed of dynamic processes through

which routes flow.
 Each stage implements a common simple interface.

BGP

BGP

BGP Staged Architecture

Messages

Peer
In

Filter
Bank

add_route

delete_route

lookup_route
tree
of

routes

Unmodified routes stored at ingress
Changes in downstream modules (filters, nexthop state, etc)
handled by PeerIn pushing the routes again.

BGP Staged Architecture

Decomposing BGP Decision

Dynamic Stages

Peering
Went

Down!

Problem 1: deleting 150,000 routes
takes a long time.

Problem 2: peering may come up
again while we’re still deleting the
routes

Dynamic Stages

Take Entire Route
Table from PeerIn

Deletion Stage
does background

deletion

PeerIn is ready
for peering to
come back up

More features, more stages…

 Aggregation stage
 Implements route aggregation.

 Policy filter stages.
 Flexible high-performance programmable filters

 Route dump stage.
 Dynamic stage that handles dumping existing routes to a

peer that comes up.

BGP

RIB
Routing Information Base

RIB Structure

Routing protocols can register interest in tracking changes
to specific routes.

Registering Interest in Routes

128.16.0.0/18

128.16.128.0/18

128.16.192.0/18

128.16.0.0/16
128.16.128.0/17

Routes in RIB:

BGP

128.16.0.0/18 128.16.128.0/17

interested in
128.16.32.1

128.16.0.0/18

interested in
128.16.160.1

BGP

Libxorp
Common Code for all of XORP

Libxorp

 Libxorp contains basic data structures that can be used by
XORP processes.
 Main eventloop.
 Timer classes.
 Selectors.
 Route Trees.
 Refptrs.
 Address classes.
 Debugging code.
 Logging code.

Libxorp and C++

 Libxorp gathers together a large number of useful classes for
use by any new XORP process.
 Result is that programming is “higher level” than it would

be in C.

 Use of C++ templates encourages efficient code reuse.
 Extensive use of C++ Standard Template Library.
 C++ strings avoid security problems.
 C++ maps give O(log(n)) lookup for many data-structures.
 New routing-specific templates in libxorp, such as a route

trie for longest-prefix match.

Libxorp and C++ Templates

Example: Dual IPv4/IPv6 support in BGP.

 Libxorp contains IPv4 and IPv6 address classes (and
derived classes such as IPv4Net).

 All of the BGP core is templatized by address class.
 One code tree for both so they stay in sync.
 Compiler generates specialized code for IPv4 and IPv6, so

it’s efficient and safe.
 Only message encoding and decoding needs different code

for IPv4 and IPv6 branches.

Libxorp Detail

 One detail: safe route iterators
 Problem:

 Background task like a deletion stage needs to keep track
of where it was in walking the route tree.

 New events can cause routes to be deleted.
 It’s very hard to program and debug such code - too much

potential for race conditions.

 Solution:
 Safe route iterators, combined with reference counted data

structures, ensure that the iterator will never be left invalid.

BGP

XRLs
Interprocess communication

IPC Framework

 Want to enable integration of future protocols from third party
vendors, without having to change existing core XORP code.

 Want to be able to build distributed routers
 More than one control engine.
 Robustness, performance.

 Want to aid testing and debugging.
 Every API should be a hook for extensions.
 Minimize a-priori knowledge of who performs which function.

 Allow refactoring.
 Allow tuning of function-to-process binding under different

deployment scenarios.

typed parameters to method

Inter-process Communication

method name: set_bgp_as, delete_route, etc

interface name: eg bgp, vif manager

module name: eg bgp, rip, ospf, fea

transport: eg x-tcp, x-udp, kill, finder

XORP Resource Locators (XRLs):
 URL-like unified structure for inter-process communication:
 Example:

finder://bgp/bgp/1.0/set_bgp_as?as:u32=1777

Inter-process Communication

XORP Resource Locators (XRLs):
 URL-like unified structure for inter-process communication:
 Example:

finder://bgp/bgp/1.0/set_bgp_as?as:u32=1777

 Finder resolves to a concrete method instance, instantiates
transport, and performs access control.

xtcp://192.1.2.3:8765/bgp/1.0/set_bgp_as?as:u32=1777

Inter-process Communication

 XRLs support extensibility by allowing “non-native”
mechanisms to be accessed by unmodified XORP processes.
 Add new XRL protocol families: eg kill, SNMP

 ASCII canonical representation means XRL can be scripted
from python, perl, bash, etc.
 XORP test harnesses built this way.

 ASCII representation enables design of an extensible router
management framework via configuration template files.

 Efficient binary representation normally used internally.
 Stub compiler eases programmer’s job.

Calling an XRL (1)

Step 1: Each process registers its XRL interfaces and methods with the finder.
 Generic names used.
 Random key added to method names.

Step 2: When a process wants to call an XRL, it uses the generic name of an
interface/method.
 XRL library in process requests resolution of XRL by finder.
 Finder checks if this process is allowed to access this method.
 Finder resolves the method to the current specific instance name,

including the random key.
 Finder chooses the appropriate transport protocol depending on

instance location registered capabilities of target.

Calling an XRL (2)

Step 3: Process sends the request to the target.
 Target checks random key.
 Processes request.
 Sends response.

Step 4: Process’s IPC library caches resolved XRL.
 Future calls go direct, bypassing the finder.

 Transport reliability is provided by XRL library.
 If a call fails, the cache is cleared, the application is notified, and processes

should follow the XORP Error Handling conventions.

XRL Security and Process Sandboxing

 Random key in method name ensures a process cannot call a
method on another process unless the finder has authorized it.

 Finder is central location for configuring security for
experimental (untrusted processes).
 XRL sandbox capability under development.
 Experimenting with using XEN virtualization to run

untrusted code.
 Fine-grain per-domain ACLs to control precisely what

XRLs may be called and what parameters may be supplied
to them.

 Sending/receiving from net also via XRLs.

Process Birth and Death Events

 A process can register with the finder to discover when other
processes start or terminate.

 The finder continuously monitors liveness of all registered
processes.
 Keepalivcs every few seconds.
 Keepalive failure indicates process failure (either death or

lockup).
 Processes that have registered interest are notified of failure.

 The action to take depends on what failed.
 Rtrmgr should kill and restarted failed processes.
 Other processes cleanup orphaned state, or restart

themselves, as appropriate.

BGP

rtrmgr
Router Manager Process

Extensible Router Manager Framework

 How do you implement a single unified router management
framework and command line interface, when you don’t know
what protocols are going to be managed?

XORP Router Manager Process

 The XORP router manager is dynamically extensible using
declarative ASCII template files linking configuration state to
the XRLs needed to instantiate that configuration.

Router Manager template files
Map Juniper-style configuration state to XRLs

protocols ospf {
 router-id: 128.16.64.1
 area 128.16.0.1 {
 interface xl0 {
 hello-interval: 30
} } }

protocols.ospf {
 area @: ipv4 {
 interface @: txt {
 hello-interval: u32 {
 %set: xrl "ospfd/set_interface_param ? area_id:ipv4=$(area.@)
 & interface:txt=$(interface.@)
 & ospf_if_hello_interval:u32=$(@)";
} } } }

Configuration File

Template File

Template Files

Template files provide a configuration template:
 What can be configured?
 Which process to start to provide the functionality?

 What the process depends on.
 BGP depends on RIB depends on FEA.
 This determines startup ordering.

 Configuration constraints:
 Which attributes are mandatory?
 What ranges of values are permitted?
 What syntax is permitted for each value?

 How to configure each attribute.
 Which XRL to call, or process to run.

Template Files

 Each XORP process has its own template file.
 The entire router template tree is formed at runtime from

the union of the templates for each available process.
 Rtrmgr needs no inbuilt knowledge about the processes being

configured.
 Add a new option to BGP: just add it to the template file

and rtrmgr can configure it.
 Add a new routing process binary to the system: add an

additional template file and rtrmgr can configure it.
 Currently, templates are read at rtrmgr startup time.

 Plan is to allow templates to be re-read at runtime, to allow
on-the-fly upgrading of running processes.

xorpsh
(xorp command line interface)

 Multiple human operators can be interacting with a router at
the same time.
 Some can be privileged, some not.

 An instance of xorpsh is run for each login.
 Authenticates with rtrmgr.
 Downloads the current router config.

 Receives dynamic updates as the config changes.
 Provides the CLI to the user, allowing him to configure all

the functionality from the template files.
 Full command line completion.
 No changes made until “commit”.

xorpsh
(xorp command line interface)

 To commit changes, xorpsh sends config changes to the
rtrmgr.
 rtrmgr must run as root to start processes.
 xorpsh does not run as root.
 rtrmgr enforces any restrictions for that user.

 To perform operational mode commands, xorpsh reads a
second set of template files.
 Eg “show route table bgp”
 Xorpsh runs the relevant monitoring tool, which

communicates directly with the target process.
 Minimizes the amount of code that must run as root, and

avoids loading the rtrmgr with monitoring tasks.

BGP

FEA
Forwarding Engine Abstraction

FEA
Forwarding Engine Abstraction

 Main purpose of FEA is to provide a stable API to the
forwarding engine.

Same XRL interface on
All forwarding engines

Different OS calls.
Different kernel functionality.
Different hardware capabilities.
Multiple forwarding engines

FEA Functionality:

Interfaces

 Discover and configure network interfaces.
 Physical vs virtual.

 Provides a way for processes to register interest in interface
state changes and config changes.
 Eg. interface goes down, OSPF needs to know

immediately to trigger an LSA update.

 Soon: provide a standard way to create virtual interfaces on a
physical interface.
 Eg: VLANs, ATM VCs.

FEA Functionality:

Routes

Unicast Routing:
 Sends routes to the forwarding engine.
 Reporting of errors.

Multicast Routing:
 Sets/removes multicast forwarding state.
 Relays notifications:

 IGMP join/leave messages.
 PIM messages.
 Notifications of packet received on OIF (needed for

PIM asserts and related data-drived functionality)

FEA Functionality:

Routing Traffic Relay

Different systems have different conventions for sending raw packets, etc.
XORP relays routing messages through the FEA so that routing processes

can be FE-agnostic.

 Relaying has security advantages.
 Routing protocols don’t run as root.
 XRL sandboxing will limit what a bad process can send and receive.

 Relaying enables distributed routers.
 Routing process does not care what box it runs on.
 May be able to migrate a routing process, or fail over to a standby route

processor.

 Relaying enables process restart.
 Socket can be kept open.
 On-the-fly software upgrade?

BGP

Routing Policy

Routing Policy

 How do you implement a routing policy framework in an
extensible unified manner, when you don’t know what future
routing protocols will look like?

Routing

1999 Internet Map
Coloured by ISP

Source: Bill Cheswick, Lumeta

AS-level Topology 2003
Source: CAIDA

Inter-domain Routing

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Inter-domain Routing

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Net 128.16.0.0/16
ASPath: 5,2,1,3,6

Inter-domain Routing

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Route would
Loop

Inter-domain Routing

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Prefer shortest
AS path

1,3,6
2,1,3,6

Inter-domain Routing Policy

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Only accept
customer routes

Inter-domain Routing Policy

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Don’t export provider
routes to a provider

Inter-domain Routing Policy

Tier-1
ISPs

Tier-2
ISPs

Tier-3 ISPs and Big Customers

AS 1 AS 2

AS 3 AS 4 AS 5

AS 6
AS 7

AS 8
AS 9

AS 10

Net: 128.16.0.0/16

Prefer customer routes

Examples of Policy Filters

Import filters:
 Drop incoming BGP routes whose AS Path contains AS

1234.
 Set a LOCALPREF of 3 on incoming BGP routes that have

a nexthop of 128.16.64.1

 Export filters:
 Don’t export routes with BGP community xyz to BGP peer

128.16.64.1
 Redistribute OSPF routes from OSPF area 10.0.0.1 to BGP

and set a BGP MED of 1 on these routes.

Where to apply filters?

decision
Pre Post

Routing Protocol

decision
Pre Post

Routing Protocol

decision
Pre Post

RIB

winner

Flow of incoming routes:

Originated Accepted Winner

Where to apply filters?

ready

Routing Protocol

ready

Routing Protocol

decision
Post

RIB

winner

Flow of outgoing routes:

redistributed
routes

winner ready

Where to apply filters?

Vector:
 BGP, RIP

Link State:
 OSPF, IS-IS

1

Filter Banks

RIB

routing
protocol

routing
protocol

routing
protocol

routing
protocol same protocol

import:
match,
action

Set a LOCALPREF of 3 on incoming BGP routes
that have a nexthop of 128.16.64.1

2

export:
source match

3

export:
redistribute
selected

4

export:
dest match,
action

Filter Banks

RIB

routing
protocol

routing
protocol

routing
protocol

routing
protocol same protocol

1

Redistribute OSPF routes from OSPF area
10.0.0.1 to BGP and set a BGP MED of 1 on
these routes.

2

match OSPF routes
from area 10.0.0.1
 add tag 12345

3

match tag 12345
 redist to BGP

match tag 12345
 set MED = 1

4

Filter Banks

RIB

BGP
(outbound)

OSPF
(outbound)

BGP
(inbound)

OSPF
(inbound) same protocol

1

Redistribute OSPF routes from OSPF area
10.0.0.1 to BGP and set a BGP MED of 1 on
these routes. policy engine

Policy Manager Engine

 Takes a complete routing policy for the router:
1. Parses it into parts (1), (2), (3), and (4) for each protocol.
2. Checks the route attribute types against a dynamically

loaded set of route attributes for each protocol.
bgp aspath str rw

bgp origin u32 r

bgp med u32 rw

rip network4 ipv4net r

rip nexthop4 ipv4 rw

rip metric u32 rw

3. Writes a simple stack machine program for each filter,
and configures the filter banks in each protocol.

Policy Filter Bank

Generic Stack
Machine Filter

Route Filter

Writer
routes routes

Policy
Manager

Stack Machine
Program

All filters use the
same stack
machine. Stack
machine requests
attributes by name
from routing filter

Protocol
implementer only
needs to write the
protocol-specific
reader and writer

Reader

route
attributes

Filter Bank in
Routing Protocol

Stack Machine

Policy Statement

from {
 metric > 4
}
then {
 metric = metric * 2
 accept
}

Stack Machine Program

PUSH u32 4
LOAD metric
>
ON_FALSE_EXIT
PUSH u32 2
LOAD metric
*
STORE metric
ACCEPT

Outline of
this talk

1. Routing
process design

2. Extensible
management
framework

4. Performance
results

3. Extensible
policy routing
framework

Summary: Design Contributions

 Staged design for BGP, RIB.
 Scriptable XRL inter-process communication mechanism.
 Dynamically extensible command-line interface and router

management software.
 Re-usable data structures such as safe iterators.
 FEA that isolates routing processes from all details of the box

the process is being run on.
 Extensible policy framework.

Evaluation
 Was performance compromised for extensibility?

Performance:
Time from received by BGP to installed in kernel

Performance:
Where is the time spent?

Performance:
Time from received by BGP until new route chosen and sent to BGP peer

Current Status

Functionality:
Stable: BGP, OSPFv2, RIPv2, RIPng, PIM-SM, IGMPv2,

MLDv1, RIB, XRLs, router manager, xorp command shell,
policy framework.

In progress: OSPFv3, IS-IS.
Next: IGMPv3, MLDv2, Bidir-PIM, Security framework.

Supported Platforms:
Stable: FreeBSD, OpenBSD, NetBSD, MacOS, Linux.
In progress: Windows 2003 Server.

Summary

 Designing for extensibility is difficult
 Needs to be a priority from day one.
 Anecdotal evidence shows XORP to be easy to extend

(once you’ve learned the basics)

 Performance always at odds with modularity and extensibility.
 For routing software, scalability matters most.
 Modern CPUs change the landscape, and make better

solutions possible.

 Only time will tell if XORP is adopted widely enough to
change the way Internet protocols are developed, tested, and
deployed.

The Future
 Some more far out plans…

 Security Ideas
 On-the-fly software upgrades
 Hot standby processes
 Network simulation framework

Security

 Use virtualization to isolate processes.
 Can only interact with the rest of the world through XRLs.

 Use XRL firewalling to restrict XRLs and their parameters
needed for the task at hand.
 Can use a processes template file to specify its permissions.

 Result:
 An experimental process can do very little harm if it

malfunctions or gets compromized.
 Small performance cost due to XRL firewall enforcement

and virtualization.

Router Worms

 If I can compromise one BGP, I can compromise them all and
shut down your network.
 Don’t need to break out of the sandbox to do damage.

 Can we prevent router worms?

Router Worm Prevention

BGP
Engine

Message
construction

Message
parsing

FEA

Incoming
BGP

Messages

Outgoing
BGP

Messages

TCP Connection to Peer

Parsed
Route

Messages

Outgoing
Route

Messages

XRLs

Router Worm Prevention

 Most exploitable security problems are in code handling input
data.

 BGP Process separation:
 Separate packet parsing into a separate process.
 Parser has no access to data structures and cannot do

anything other than send routes via XRLs to BGP Engine.
 BGP Engine cannot craft BGP messages directly, but relies

on separate message construction process.

FEA

BGP
Engine

Message
construction

Message
parsing

TCP

Router Worm Prevention

Advantages of BGP Process separation:

 Very difficult to compromise BGP Engine via parser.
 Even more difficult to compromise Message Construction

process
 Would need to do this to craft bad BGP messages.

 Can use safe language for parser (speed less critical)
 Can upgrade parser to fix vulnerability without even dropping

the peering.

FEA

BGP
Engine

Message
construction

Message
parsing

TCP

On-the-fly upgrades

 High uptime is becoming very important.
 Don’t want to cause routing instability while performing

scheduled upgrades of routers.
 BGP is separate from TCP socket code, which is held in the

FEA.
 Can we restart BGP with upgraded software without

dropping peerings?

On-the-fly upgrades

At convenient (low churn) moment, can pause BGP.
1. Allow internal queues to drain.
2. Only generate keepalives.
3. Save peerings state and RibIn routes.
4. Restore config from rtrmgr and policies from policy manager.
5. Restart BGP process with upgraded software.
6. Reload RibIn routes and peerings state.
7. Unpause BGP.

Constraints:
 The decision algorithm must not change.
 The filter behaviour must not change.
 Policy language must be compatible.

Hot standby process

Can run two different versions of a routing process in parallel.
 Hook XRLs so they both receive the same config and

incoming routing messages.
 Only one set of routing messages actually sent to

neighbours.
 Can switch between primary and secondary process as

needed.

Constraints:
 Difficult for hard-state protocols such as BGP, as the two

versions may have sent inconsistent messages.
 Good for soft update processes (OSPF, RIP, PIM-SM)

Network Simulation Framework

 Debugging routing code is difficult, time-consuming, and
expensive.

 XORP isolates routing code from the OS via the FEA.
 Already have a Dummy FEA for testing.

 Can craft a Sim-FEA that communicates with other Sim-FEA
instances to mimic specific network topologies and
configurations.
 Either on a single machine or a large local cluster.

 Uses might include protocol testing, debugging, and research
into new protocols or changes to existing protocols.
 Close the loop between research and the real world.

Thanks

Main XORP developers:
 Adam Barr, Fred Bauer, Andrea Bittau, Javier Cardona,

Atanu Ghosh, Adam Greenhalgh, Tim Griffin, Mark
Handley, Orion Hodson, Eddie Kohler, Luigi Rizzo, Bruce
M. Simpson, Pavlin Radoslavov, Marko Zec

