Free Component Library (FCL):
Reference guide.

Reference guide for FCL units.
Document version 2.1
March 2010

Michaél Van Canneyt

Contents

0.1 OVerviewo e e e e 53
1 Reference for unit ’ascii85’ 54
1.1 Usedunits oot o e e e e e e e e 54
L2 Overview e 54
1.3 Constants, types and variables oo 54
1.3.1 Types . . o o o o e 54

1.4 TASCII85DecoderStream o v v i ittt e e e 54
141 Description o e e e 54

1.42 Methodoverview e 55

1.4.3 Property OVerview ittt e e 55

1.4.4 TASCIS85DecoderStream.Create 55

1.4.5 TASCII85DecoderStream.Decode 55

1.4.6 TASCII85DecoderStream.Close 56

1.4.7 TASCII85DecoderStream.ClosedP 56

1.4.8 TASCII85DecoderStream.Destroy 56

1.4.9 TASCII85DecoderStream.Read 56
1.4.10 TASCII85DecoderStream.Seek 57
1.4.11 TASCII85DecoderStream.BExpectBoundary 57

1.5 TASCI8SEncoderStream o . v ittt e 57
1.5.1 Methodoverview L 57

1.5.2 Property OVEIrView v v vt e e e e e e e e 57

1.5.3 TASCII85EncoderStream.Create 57
1.54 TASCII85EncoderStream.Destroy 58

1.5.5 TASCII85EncoderStream.Write 58

1.5.6 TASCII85EncoderStream.Width 58

1.5.7 TASCII85EncoderStream.Boundary 58

1.6 TASCI85RingBuffer 58
1.6.1 Description e e e 58

1.6.2 Methodoverview L 58

1.6.3 Property OVerview oo e e 58

CONTENTS

1.6.4 TASCII85RingBufferWrite 58
1.6.5 TASCII85RingBufferRead 59
1.6.6 TASCII85RingBuffer.FillCount 59
1.6.7 TASCII85RingBuffer.Size 59

2 Reference for unit ’AVL_Tree’ 60
2.1 Usedunits L 60
22 OVEIVIEW . . . o oo e e e 60
23 TAVLITee o vttt e 60
2.3.1 Descriptiono e e 60
232 Methodoverview 61
2.3.3 Property OVErviewo e e e 61
234 TAVLTreeFind 61
2.3.5 TAVLTreeFindKey 62
2.3.6 TAVLTree.FindSuccessor. 62
2.3.7 TAVLTree.FindPrecessor 62
2.3.8 TAVLTree.FindLowest 62
2.3.9 TAVLTree.FindHighest 63
2.3.10 TAVLTree.FindNearest 63
2.3.11 TAVLTree.FindPointer 63
2.3.12 TAVLTree.FindLeftMost 63
2.3.13 TAVLTree.FindRightMost 64
2.3.14 TAVLTree.FindLeftMostKey 64
2.3.15 TAVLTree.FindRightMostKey 64
2.3.16 TAVLTree.FindLeftMostSameKey 64
2.3.17 TAVLTree.FindRightMostSameKey 65
2.3.18 TAVLTree.Add e 65
2.3.19 TAVLTree.Delete i 65
2.3.20 TAVLTree.Remove e 65
2.3.21 TAVLTree.RemovePointer 66
2.3.22 TAVLTree.MoveDataleftMost 66
2.3.23 TAVLTree.MoveDataRightMost 66
2.3.24 TAVLTree.Clear it 66
2.3.25 TAVLTree.FreeAndClear 67
2.3.26 TAVLTree.FreeAndDelete 67
2.3.27 TAVLTree.ConsistencyCheck 67
2.3.28 TAVLTree.WriteReportToStream 67
2.3.29 TAVLTree.ReportAsString 68
2.3.30 TAVLTree.SetNodeManager 68
2.3.31 TAVLTree.Create v v v v i ittt et e e e e 68

CONTENTS

2.3.32 TAVLTree.Destroy v i i v i ittt e 68
2.3.33 TAVLTree.OnCompare v v v v v it et e e et e 68
2334 TAVLTree.Count ittt 69
24 TAVLTreeNode i e e e e 69
241 Description e e e e e e e 69
242 Methodoverview oL 69
243 TAVLTreeNode.Clear. 69
244 TAVLTreeNode.TreeDepth 69
2.5 TAVLTreeNodeMemManager o v v i i v i v v 69
2.5.1 Description e e e e e e e 69
252 Methodoverviewo 70
2.5.3 Property OVerviewo e e 70
2.54 TAVLTreeNodeMemManager.DisposeNode 70
2.5.5 TAVLTreeNodeMemManager.NewNode 70
2.5.6 TAVLTreeNodeMemManager.Clear 70
2.5.7 TAVLTreeNodeMemManager.Create 71
2.5.8 TAVLTreeNodeMemManager.Destroy 71
2.5.9 TAVLTreeNodeMemManager.MinimumFreeNode 71
2.5.10 TAVLTreeNodeMemManager.MaximumFreeNodeRatio 71
2.5.11 TAVLTreeNodeMemManager.Count 72
2.6 TBaseAVLTreeNodeManager o v i i v i i e 72
2.6.1 Methodoverview L 72
2.6.2 TBaseAVLTreeNodeManager.DisposeNode 72
2.6.3 TBaseAVLTreeNodeManagerNewNode 72
Reference for unit ’base64’ 73
3.1 Usedunitso L 73
32 OVerVIewo e e 73
3.3 Constants, types and variables L L e 73
330 TYPES .« o 73
3.4 EBase64DecodingException 74
341 Description e e e e 74
3.5 TBase64DecodingStream e e e e 74
35.1 Descriptiono e 74
352 Methodoverview 74
3.5.3 Property overviewo e 74
3.5.4 TBase64DecodingStream.Create 74
3.5.5 TBase64DecodingStream.Reset 75
3.5.6 TBase64DecodingStream.Read 75
3.5.7 TBase64DecodingStream.Seek 75

CONTENTS

3.5.8 TBase64DecodingStream.EOF 76

3.5.9 TBase64DecodingStream.Mode 76

3.6 TBase64EncodingStream 76
3.6.1 Description 76

3.6.2 Methodoverview L e 76

3.6.3 TBase64EncodingStream.Create 76

3.6.4 TBase64EncodingStream.Destroy 77

3.6.5 TBase64EncodingStream.Write 77

3.6.6 TBase64EncodingStream.Seek 77

4 Reference for unit 'BlowFish’ 78
4.1 Usedunits e 78
42 OVEIVIEW . . o ottt i e e e 78
4.3 Constants, types and variables L oo 78
431 Constants e e e e e e e e 78

432 TYPES . o o e e e e 78

44 EBlowFishError e 79
441 DesCription v v vt i e e e e 79

4.5 TBlowFish e 79
451 Descriptiono e e e e e e e 79

452 Methodoverview L 79

453 TBlowFish.Create 79
454 TBlowFish.Encrypt 79

455 TBlowFish.Decrypt. 80

4.6 TBlowFishDeCryptStream 80
4.6.1 DesCription v vt e e e e e 80

4.6.2 Methodoverview 80

4.6.3 TBlowFishDeCryptStream.Read 80
4.6.4 TBlowFishDeCryptStream.Seek 81

4.7 TBlowFishEncryptStream 81
471 DesCription v vt e e e e 81

4772 Methodoverview 81

4.7.3 TBlowFishEncryptStream.Destroy 81

4.7.4 TBlowFishEncryptStream.Write 81

4.7.5 TBlowFishEncryptStream.Seek 82

4.7.6 TBlowFishEncryptStream.Flush 82

4.8 TBlowFishStream 82
4.8.1 DesCription v vt e e e e e 82
482 Methodoverview 83

4.83 Property overviewo 83

CONTENTS

4.8.4 TBlowFishStream.Create 83
4.8.5 TBlowFishStream.Destroy 83
4.8.6 TBlowFishStream.BlowFish 83

5 Reference for unit *bufstream’ 85
5.0 Usedunits o o e e e e e e e 85
5.2 OVEIVIEW . . . o o v it i e e e e e e e e e e e e e e e e e e 85
5.3 Constants, types and variables L o 85
5.3.1 Constantso e e 85

54 TBufStream 85
541 Description e e 85

542 Methodoverview L 86

5.4.3 Property OVEIrVieW i it e e e e e e e e e e 86

544 TBufStream.Create e 86

5.4.5 TBufStream.Destroy 86

54.6 TBufStream.Buffer L oL 86

5.4.7 TBufStream.Capacity o o i e 87

54.8 TBufStream.BufferPos o . 87

5.4.9 TBufStream.BufferSize 87

5.5 TReadBufStream 88
5.5.1 Description e e e e e e e 88

5.52 Methodoverview 88

5.5.3 TReadBufStream.Seek 88
5.54 TReadBufStream.Read 88

5.6 TWriteBufStream 88
5.6.1 Description e 88

5.6.2 Methodoverview 89

5.6.3 TWriteBufStream.Destroy 89
5.64 TWriteBufStream.Seek o oo 89

5.6.5 TWriteBufStream.Write 89

6 Reference for unit ’CacheCls’ 90
6.1 Usedunits e 90
6.2 OVEIVIEW it e e e e e 90
6.3 Constants, types and variables 0 oL oL 90
6.3.1 Resource strings e e e e e 90
6.3.2 TYPES . . . oo 90

6.4 ECacheError e 91
6.4.1 Description e e e 91

6.5 TCache e 91
6.5.1 Description e 91

CONTENTS

6.5.2 Methodoverview L 92

6.5.3 Property OVerview e e e e e e 92

6.54 TCache.Create i, 92
6.5.5 TCache.Destroy 92
6.5.6 TCache. Add 92
6.5.77 TCache. AddNew 93
6.5.8 TCache.FindSlot 93
6.5.9 TCachendexOf 93
6.5.10 TCache.Remove 94
6.5.11 TCache.Data e 94
6.5.12 TCache MRUSIot 94
6.5.13 TCache.LRUSIot i 95
6.5.14 TCache.SlotCount 95
6.5.15 TCache.Slots e 95
6.5.16 TCache.OnlsDataEqual 95
6.5.17 TCache.OnFreeSlot. 96

7 Reference for unit ’contnrs’ 97
7.1 Usedunits o oot oo e e e e e 97
T2 OVeIVIEW . . . o ot s e 97
7.3 Constants, types and variables L L e 97
7.3.1 Constants e e e 97

732 Types . . . o o 98

7.4 Procedures and functions 101
74.1 RSHash o 101

7.5 EDuplicate 101
7.5.1 Description e e 101

7.6 EKeyNotFound e 101
7.6.1 Description e e e e e e e 101

7.7 TBucketList e 101
7.7.1 Description e 101
7.7.2 Methodoverviewo 102

7.7.3 TBucketList.Create 102

7.8 TClassList o 102
7.8.1 Description e 102

7.8.2 Methodoverview 102

7.8.3 Property OVerviewo e e e e e 102

7.84 TClassListAdd 102
7.8.5 TClassList.Extract 103
7.8.6 TClassListRemove 103

CONTENTS

7.8.7 TClassList.IndexOf 103
7.8.8 TClassList.First 104
7.8.9 TClassList.Last 104
7.8.10 TClassList.Insert 104
7.8.11 TClassList.Items 104
7.9 TComponentList e e 105
7.9.1 Descriptiono e e 105
7.9.2 Methodoverview Lo 105
7.9.3 Property OVErview oo e e e e e e e e 105
7.9.4 TComponentList.Destroy e 105
7.9.5 TComponentList Add 105
7.9.6 TComponentList.Extract 106
7.9.7 TComponentListRemove 106
7.9.8 TComponentList.IndexOf 106
7.9.9 TComponentList.First 107
7.9.10 TComponentList.Last, 107
7.9.11 TComponentList.Insert 107
7.9.12 TComponentListItems 107
7.10 TCustomBucketList e 108
7.10.1 Description e 108
7.10.2 Methodoverview L 108
7.10.3 Property OVEIrVIEW v i i e e e e e e e e e e 108
7.10.4 TCustomBucketList.Destroy 108
7.10.5 TCustomBucketList.Clear 108
7.10.6 TCustomBucketListAdd, 109
7.10.7 TCustomBucketList.Assign 109
7.10.8 TCustomBucketList.Exists, 109
7.10.9 TCustomBucketList.Find 109
7.10.10 TCustomBucketList.ForEach 110
7.10.11 TCustomBucketList.Remove 110
7.10.12 TCustomBucketList.Data. 110
7.11 TFPCustomHashTable 110
7011 Description e e e 110
7.11.2 Methodoverview L 111
7.11.3 Property OVeIrVIiew v v it i e eee ee 111
7.11.4 TFPCustomHashTable.Create 111
7.11.5 TFPCustomHashTable.CreateWith 111
7.11.6 TFPCustomHashTable.Destroy 112
7.11.7 TFPCustomHashTable.ChangeTableSize 112
7.11.8 TFPCustomHashTable.Clear 112

CONTENTS

7.11.9 TFPCustomHashTable.Delete 113
7.11.10 TFPCustomHashTable.Find 113
7.11.11 TFPCustomHashTable IsEmpty 113
7.11.12 TFPCustomHashTable.HashFunction 113
7.11.13 TFPCustomHashTable.Count 114
7.11.14 TFPCustomHashTable.HashTableSize 114
7.11.15 TFPCustomHashTable.HashTable 114
7.11.16 TFPCustomHashTable.VoidSlots 115
7.11.17 TFPCustomHashTable.LoadFactor 115
7.11.18 TFPCustomHashTable. AVGChainLen 115
7.11.19 TFPCustomHashTable. MaxChainLength 115
7.11.20 TFPCustomHashTable. NumberOfCollisions 116
7.11.21 TFPCustomHashTable.Density 116
7.12 TFPDataHashTable 116
7.02.1 Description o i i e e e e e e 116
7.12.2 Methodoverview 116
7.12.3 Property OVEIrVIEW o v i i e e e e e e e e e 117
7.12.4 TFPDataHashTable.Add 117
7.12.5 TFPDataHashTableItems 117
7.13 TFPHashList e 117
7.13.1 Description e e e e e 117
7.13.2 Methodoverview L 118
7.13.3 Property OVerviewo e e 118
7.13.4 TFPHashList.Create 118
7.13.5 TFPHashList.Destroy ittt 118
7.13.6 TFPHashList.Add 119
7.13.7 TFPHashList.Clear 119
7.13.8 TFPHashList.NameOfIndex 119
7.13.9 TFPHashList.HashOflndex 119
7.13.10 TFPHashList.GetNextCollision 120
7.13.11 TFPHashList.Delete 120
7.13.12 TFPHashList.Error 120
7.13.13 TFPHashList.Expand 120
7.13.14 TFPHashList.Extract 121
7.13.15 TFPHashList.IndexOf 121
7.13.16 TFPHashList.Find 121
7.13.17 TFPHashList.FindIndexOf 121
7.13.18 TFPHashList.FindWithHash 122
7.13.19 TFPHashList.Rename 122
7.13.20 TFPHashList.Remove 122

CONTENTS

7.13.21 TFPHashList.Pack 122
7.13.22 TFPHashList.ShowStatistics 123
7.13.23 TFPHashList.ForEachCall 123
7.13.24 TFPHashList.Capacity et 123
7.13.25 TFPHashList.Count 123
7.13.26 TFPHashList.Items 124
7.13.27TFPHashList.List 124
71328 TFPHashList.Strs o o 124
7.14 TFPHashObject e 124
7141 Description v . e e e e e e e e e e e 124
7.14.2 Methodoverview e 125
7.14.3 Property OVervView it i e e e e 125
7.14.4 TFPHashObject.CreateNotOwned 125
7.14.5 TFPHashObject.Create o vt it e e 125
7.14.6 TFPHashObject.ChangeOwner 125
7.14.7 TFPHashObject.ChangeOwnerAndName 126
7.14.8 TFPHashObject.Rename 126
7.14.9 TFPHashObject.Name 126
7.14.10 TFPHashObject.Hash 126
7.15 TFPHashObjectList ittt et 127
7.15.1 Methodoverview L 127
7.15.2 Property OVEIVIEW v v it e e e e e e e e e e e e 127
7.15.3 TFPHashObjectList.Create 127
7.15.4 TFPHashObjectList.Destroy 127
7.15.5 TFPHashObjectList.Clear 128
7.15.6 TFPHashObjectListAdd 128
7.15.7 TFPHashObjectList.NameOfIndex 128
7.15.8 TFPHashObjectList.HashOfIndex 129
7.15.9 TFPHashObjectList.GetNextCollision 129
7.15.10 TFPHashObjectList.Delete 129
7.15.11 TFPHashObjectList.Expand 129
7.15.12 TFPHashObjectList.Extract 130
7.15.13 TFPHashObjectList.Remove 130
7.15.14 TFPHashObjectList.IndexOf 130
7.15.15 TFPHashObjectList.Find 130
7.15.16 TFPHashObjectList.FindIndexOf 131
7.15.17 TFPHashObjectList. FindWithHash 131
7.15.18 TFPHashObjectListRename 131
7.15.19 TFPHashObjectList.FindInstanceOf 131
7.15.20 TFPHashObjectList.Pack 132

CONTENTS

7.15.21 TFPHashObjectList.ShowStatistics 132
7.15.22 TFPHashObjectList.ForEachCall 132
7.15.23 TFPHashObjectList.Capacityo .. 132
7.15.24 TFPHashObjectList.Count 133
7.15.25 TFPHashObjectList.OwnsObjects 133
7.15.26 TFPHashObjectListItems 133
7.15.27 TFPHashObjectList.List 133
7.16 TFPObjectHashTable 134
7.16.1 Description e e e 134
7.16.2 Methodoverview L 134
7.16.3 Property OVerviewo e e e 134
7.16.4 TFPObjectHashTable.Create 134
7.16.5 TFPObjectHashTable.CreateWith 134
7.16.6 TFPObjectHashTable. Add 135
7.16.7 TFPObjectHashTableItems 135
7.16.8 TFPObjectHashTable.OwnsObjects 135
7.17 TFPODbjectList. o e e e 136
TA7.1 Description o i e e e e e e e e e e e 136
7.17.2 Method overview e 136
7.17.3 Property OVerview it e e e e 136
7.17.4 TFPObjectList.Create 136
7.17.5 TFPObjectList.Destroy o it 137
7.17.6 TFPObjectList.Clear 137
7.17.7 TFPObjectList Add 137
7.17.8 TFPObjectListDelete 137
7.17.9 TFPObjectList.Exchange 138
7.17.10 TFPObjectList.Expand, 138
7.17.11 TFPObjectList.Extract 138
7.17.12 TFPObjectListRemove 139
7.17.13 TFPObjectListIndexOf 139
7.17.14 TFPObjectList.FindInstanceOf 139
7.17.15 TFPObjectListInsert 139
7.17.16 TFPObjectList.First 140
7.17.17 TFPObjectList.Last e 140
7.17.18 TFPObjectListMove i 140
7.17.19 TFPObjectList. Assign i 141
7.17.20 TFPObjectList.Pack 141
7.17.21 TFPObjectList.Sort 141
7.17.22 TFPObjectList.ForEachCall 141
7.17.23 TFPObjectList.Capacity o it 142

10

CONTENTS

7.17.24 TFPObjectList.Count it tee 142
7.17.25 TFPObjectList.OwnsObjects v o v i i e .. 142
7.17.26 TFPObjectListItems 143
7.17.27 TFPObjectList.List 143
7.18 TFPStringHashTable 143
78,1 Description e e e e e e 143
7.182 Methodoverviewo 143
7.18.3 Property OVerviewo e 143
7.18.4 TFPStringHashTable. Add 143
7.18.5 TFPStringHashTable.Items 144
7.19 THTCustomNode et 144
7.19.1 Descriptiono e 144
7.19.2 Methodoverview L 144
7.19.3 Property OVEIVIEW v v it e e e e e e e e e e e 144
7.19.4 THTCustomNode.CreateWith 144
7.19.5 THTCustomNode.HasKey 145
7.19.6 THTCustomNode.Key 145
7.20 THTDataNode e 145
7.20.1 Descriptiono e e e 145
7.20.2 Property OVerviewo e e e 145
7.20.3 THTDataNode.Data 145
7.21 THTODbjectNode e e e e e e e e e e 146
7211 Description o o v i e e e 146
7.21.2 Property OVervView vttt e e e e e 146
7.21.3 THTObjectNode.Data 146
7.22 THTOwnedObjectNode o o it e e e e e e 146
7.22.1 Description i e e e e 146
7.222 Methodoverview 146
7.22.3 THTOwnedObjectNode.Destroy 146
7.23 THTStringNode o e e e e e e 147
7.23.1 Descriptiono e e e e 147
7.23.2 Property OVerviewot e e 147
7.23.3 THTStringNode.Data 147
7.24 TObjectBucketList e 147
7.24.1 Descriptiono i e e e e 147
7.242 Methodoverview 147
7.24.3 Property OVEIrVIieW it e e e e e e e 147
7.24.4 TObjectBucketListAdd 147
7.24.5 TObjectBucketList.Remove 148
7.24.6 TObjectBucketList.Data 148

11

CONTENTS

7.25 TObjectList e 148
7.25.1 Description e e e e e e e e 148
7.252 Methodoverviewo 148
7.25.3 Property OVerviewo 149
7.25.4 TObjectlList.create it e e e 149
7.25.5 TObjectList. Add 149
7.25.6 TObjectList.Extract. 149
7.25.7 TObjectListRemove, 150
7.25.8 TObjectListIndexOf 150
7.25.9 TObjectList.FindInstanceOf 150
7.25.10 TObjectList.Insert 151
7.25.11 TObjectList.First 151
7.25.12 TObjectList.Last e 151
7.25.13 TObjectList.OwnsObjects o vt it 151
7.25.14 TObjectList.Items 152

7.26 TObjectQUEUE o i e e e e e e 152
7.26.1 Methodoverview 152
7.26.2 TObjectQueue.Push 152
7.26.3 TObjectQueue.Pop 152
7.26.4 TObjectQueue.Peck 153

7.27 TObjectStack e 153
7.27.1 Description e e e e e e e e e e e e e 153
7.272 Methodoverview oL 153
7.27.3 TObjectStack.Push L 153
7.27.4 TObjectStack.Pop 153
7.27.5 TObjectStack.Peek 154

7.28 TOrderedList o e 154
7.28.1 Description e 154
7.28.2 Methodoverview Lo e 154
7.28.3 TOrderedList.Create 154
7.28.4 TOrderedList.Destroy 154
7.28.5 TOrderedList.Count 155
7.28.6 TOrderedList.AtLeast 155
7.287 TOrderedList.Push, 155
7.28.8 TOrderedList.Pop. 156
7.28.9 TOrderedList.Peek 156

729 TQuEUE e e e e e 156
7.29.1 Description e e e e e e e e 156

7.30 TStack oL 156
7.30.1 Description e 156

12

CONTENTS

8 Reference for unit ’CustApp’ 157
8.1 Usedunits o o oo e e 157
82 OVEIVIEW o i e 157
8.3 Constants, types and variables L L o 157

8.3.1 Types . . . o e e e 157
8.4 TCustomApplication e e e 158
8.4.1 Description 158
8.4.2 Methodoverview oL 158
8.4.3 Property overviewo e e 158
8.4.4 TCustomApplication.Create 158
8.4.5 TCustomApplication.Destroy 159
8.4.6 TCustomApplication.HandleException 159
8.4.7 TCustomApplication.Initialize 159
8.4.8 TCustomApplication.Run 160
8.4.9 TCustomApplication.ShowException 160
8.4.10 TCustomApplication.Terminate 160
8.4.11 TCustomApplication.FindOptionlndex 160
8.4.12 TCustomApplication.GetOptionValue 161
8.4.13 TCustomApplication.HasOption 161
8.4.14 TCustomApplication.CheckOptions 162
8.4.15 TCustomApplication.GetEnvironmentList 163
8.4.16 TCustomApplication.ExeName 163
8.4.17 TCustomApplication.HelpFile 163
8.4.18 TCustomApplication.Terminated 163
8.4.19 TCustomApplication.Title 164
8.4.20 TCustomApplication.OnException. 164
8.4.21 TCustomApplication.ConsoleApplication 164
8.4.22 TCustomApplication.Location 164
8.4.23 TCustomApplication.Params 165
8.4.24 TCustomApplication.ParamCount 165
8.4.25 TCustomApplication.EnvironmentVariable 165
8.4.26 TCustomApplication.OptionChar 166
8.4.27 TCustomApplication.CaseSensitiveOptions 166
8.4.28 TCustomApplication.StopOnException 166

9 Reference for unit ’daemonapp’ 167
9.1 Daemon application architecture e 167
0.2 Usedunits oL 167
0.3 OVEIVIEW o oo i e 167
9.4 Constants, types and variables o oL 0oL 168

13

CONTENTS

9.4.1 Resource stringso e e e e 168
942 TYPES . o o i e e e e e e 169
9.4.3 Variables 171
9.5 Procedures and functions 172
9.5.1 Application 172
9.52 DaemonError 172
9.5.3 RegisterDaemonApplicationClass 172
9.54 RegisterDaemonClass L o ... 173
9.5.5 RegisterDaemonMapper 173
9.6 EDaemon e 173
9.6.1 Description e 173
9.7 TCustomDaemon e e e 173
9.7.1 Description e e e e e 173
9.72 Methodoverview L e 173
9.7.3 Property OVerview oo i e e e e 174
9.74 TCustomDaemon.LogMessage 174
9.7.5 TCustomDaemon.ReportStatus 174
9.7.6 TCustomDaemon.Definition 174
9.7.7 TCustomDaemon.DaemonThread 175
9.7.8 TCustomDaemon.Controller 175
9.7.9 TCustomDaemon.Status 175
9.7.10 TCustomDaemon.Logger., 176
9.8 TCustomDaemonApplication 176
9.8.1 Description e 176
9.8.2 Methodoverview L 176
9.8.3 Property OVErviewo e e e e e e 176
9.8.4 TCustomDaemonApplication.ShowException 176
9.8.5 TCustomDaemonApplication.CreateDaemon 177
9.8.6 TCustomDaemonApplication.StopDaemons 177
9.8.7 TCustomDaemonApplication.InstallDaemons 177
9.8.8 TCustomDaemonApplication.RunDaemons 177
9.8.9 TCustomDaemonApplication.UnlnstallDaemons 178
9.8.10 TCustomDaemonApplication.CreateForm 178
9.8.11 TCustomDaemonApplication.Logger 178
9.8.12 TCustomDaemonApplication.GUIMainLoop 179
9.8.13 TCustomDaemonApplication.GuiHandle 179
9.8.14 TCustomDaemonApplication.RunMode 179
9.9 TCustomDaemonMapper o v v it e e e e e e e e e 179
9.9.1 Description e 179
9.9.2 Methodoverview 180

14

CONTENTS

9.9.3 Property OVErviewo it e e e e e e e e 180
9.9.4 TCustomDaemonMapper.Create 180
9.9.5 TCustomDaemonMapper.Destroy 180
9.9.6 TCustomDaemonMapper.DaemonDefs 180
9.9.7 TCustomDaemonMapper.OnCreate 181
9.9.8 TCustomDaemonMapper.OnDestroy 181
9.9.9 TCustomDaemonMapper.OnRun 181
9.9.10 TCustomDaemonMapper.Onlnstall 182
9.9.11 TCustomDaemonMapper.OnUnlnstall 182
0.10 TDaemon v it e e 182
9.10.1 Description oo i e e e e 182
9.10.2 Property OVerview i e e e 183
9.10.3 TDaemon.Definition 183
9.10.4 TDaemon.Status ot i i e 183
9.10.5 TDaemon.OnStart it 183
9.10.6 TDaemon.OnStop ittt 184
9.10.7 TDaemon.OnPause 184
9.10.8 TDaemon.OnContinue 184
9.10.9 TDaemon.OnShutDown 185
9.10.10 TDaemon.OnExecute 185
9.10.11 TDaemon.Beforelnstall 185
9.10.12 TDaemon.AfterInstall 186
9.10.13 TDaemon.BeforeUnlInstall 186
9.10.14 TDaemon.AfterUnlnstall 186
9.10.15 TDaemon.OnControlCode 186
9.11 TDaemonApplication o i e 187
O.11.1 Description o v v vt e e e e 187
9.12 TDaemonController e 187
9.12.1 Description e e e 187
9.122 Methodoverview L 187
9.12.3 Property OVeIrview oo i e e e e 187
9.12.4 TDaemonController.Create 187
9.12.5 TDaemonControllerDestroy 188
9.12.6 TDaemonController.StartService 188
9.12.7 TDaemonControllerMain 188
9.12.8 TDaemonController.Controller 188
9.12.9 TDaemonController.ReportStatus 189
9.12.10 TDaemonControllerDaemon 189
9.12.11 TDaemonController.Params 189
9.12.12 TDaemonController.LastStatus 189

15

CONTENTS

9.12.13 TDaemonController.CheckPoint 190
9.13 TDaemonDef e 190
9.13.1 Descriptiono e 190
9.13.2 Method overview 190
9.13.3 Property OVErview ot e e e e e e e 190
9.13.4 TDaemonDef.Create 190
9.13.5 TDaemonDef.Destroy 191
9.13.6 TDaemonDef.DaemonClass 191
9.13.7 TDaemonDeflnstance 191
9.13.8 TDaemonDef.DaemonClassName 191
9.13.9 TDaemonDefName 192
9.13.10 TDaemonDef.Description 192
9.13.11 TDaemonDef.DisplayName 192
9.13.12 TDaemonDef.RunArguments 192
9.13.13 TDaemonDef.Options o it 193
9.13.14 TDaemonDef.Enabled 193
9.13.15 TDaemonDef.WinBindings 193
9.13.16 TDaemonDef.OnCreatelnstance 193
9.13.17 TDaemonDef.LogStatusReport 194
9.14 TDaemonDefs 194
9.14.1 Description e e e e e 194
9.142 Methodoverview L 194
9.14.3 Property OVeIrView i it e e e 194
9.14.4 TDaemonDefs.Create 194
9.14.5 TDaemonDefs.IndexOfDaemonDef 195
9.14.6 TDaemonDefs.FindDaemonDef 195
9.147 TDaemonDefs.DaemonDefByName 195
9.14.8 TDaemonDefs.Daemons 195
9.15 TDaemonMapper ot v it e e 196
9.15.1 Description i e e e e e e 196
9.152 Methodoverview L 196
9.15.3 TDaemonMapper.Create 196
9.15.4 TDaemonMapper.CreateNew 196
9.16 TDaemonThread e 196
9.16.1 Descriptiono e 196
9.16.2 Methodoverview 197
9.16.3 Property OVErviewo 197
9.16.4 TDaemonThread.Create 197
9.16.5 TDaemonThread.Execute 197
9.16.6 TDaemonThread.CheckControlMessage 197

16

CONTENTS

9.16.7 TDaemonThread.StopDaemon 198
9.16.8 TDaemonThread.PauseDaemon 198
9.16.9 TDaemonThread.ContinueDaemon 198
9.16.10 TDaemonThread.ShutDownDaemon 198
9.16.11 TDaemonThread.InterrogateDaemon 199
9.16.12 TDaemonThread.Daemon 199

9.17 TDependencieso i i it i 199
9.17.1 Description oot e 199
9.17.2 Methodoverview 199
9.17.3 Property OVEIrVieW o v v v v it e e e e e e e 199
9.17.4 TDependencies.Create 199
9.17.5 TDependencies.Items, 200

9.18 TDependency o i i i i it e e e e 200
9.18.1 Description e e e e e e 200
9.182 Methodoverview L 200
9.18.3 Property OVerview e e e 200
9.18.4 TDependency. Assign oot e 200
9.18.5 TDependency.Name, 200
9.18.6 TDependency.IsGroup 201

9.19 TWinBindings 201
9.19.1 Description e e e e e 201
9.19.2 Methodoverview L 201
9.19.3 Property OVeIrviewo e e 201
9.19.4 TWinBindings.Create 201
9.19.5 TWinBindings.Destroy 202
9.19.6 TWinBindings.AsSign e 202
9.19.7 TWinBindings.ErrCode 202
9.19.8 TWinBindings.Win32ErrCode 202
9.19.9 TWinBindings.Dependencies 203
9.19.10 TWinBindings.GroupName 203
9.19.11 TWinBindings.Password 203
9.19.12 TWinBindings.UserName 203
9.19.13 TWinBindings.StartType 204
9.19.14 TWinBindings.WaitHint 204
9.19.15TWinBindings.IDTag 204
9.19.16 TWinBindings.ServiceType 205
9.19.17 TWinBindings.ErrorSeverity 205

10 Reference for unit ’db’ 206
10.1 Usedunits o e 206

17

CONTENTS

10.2 OVerview oo o e e e 206
10.3 Constants, types and variables 206
103.1 Constants oo e e e e 206
1032 Types . . . o v o e e 207
10.4 Procedures and functions Lo oL 216
10.4.1 BuffersEqual 216
10.4.2 DatabaseError 216
10.4.3 DatabaseErrorFmt o o 217
10.4.4 DateTimeRecToDateTime 217
10.4.5 DateTimeToDateTimeRec 217
10.4.6 DisposeMem e e 217
10.4.7 ExtractFieldName 218
10.4.8 SkipComments it e e 218
10.5 EDatabaseError 218
10.5.1 Description o o v it e e e 218
10.6 EUpdateError e e 218
10.6.1 Description i e e e 218
10.6.2 Methodoverview L 219
10.6.3 Property OVerview oo e e e e 219
10.6.4 EUpdateError.Createt 219
10.6.5 EUpdateError.Destroy 219
10.6.6 EUpdateError.Context vttt 219
10.6.7 EUpdateError.ErrorCode 220
10.6.8 EUpdateError.OriginalExcaption 220
10.6.9 EUpdateError.PreviousError 0oL, 220
10.7 TAutoIncField e 220
10.7.1 Description o v v vt e e 220
10.7.2 Method overview 221
10.7.3 TAutoIncField.Create 221
10.8 TBCDField e 221
10.8.1 Description o v vt e e e e 221
10.8.2 Methodoverview L 221
10.8.3 Property OVerview e e e 221
10.8.4 TBCDField.Create it 221
10.8.5 TBCDField.CheckRange 222
10.8.6 TBCDField.Value 222
10.8.7 TBCDField.Precision 222
10.8.8 TBCDField.Currency o v v vt it i e e e 223
10.8.9 TBCDFieldMaxValue 223
10.8.10 TBCDFieldMinValue 223

18

CONTENTS

10.8.11 TBCDField.Size 224
10.9 TBinaryField e 224
10.9.1 Description o oot e e 224
10.9.2 Method overview e 224
10.9.3 Property OVErview oot e e e e e 224
10.9.4 TBinaryField.Create 224
10.9.5 TBinaryField.Size 224
10.10TBlobField e 225
10.10.1 Description o 0o e e e e 225
10.10.2Method overview oL e 225
10.10.3 Property OVeIrview v vt i eee 225
10.10.4 TBlobField.Create i 225
10.10.5TBlobField.Clear 226
10.10.6 TBlobField.IsBlob 226
10.10.7 TBlobField.LoadFromFile 226
10.10.8 TBlobField.LoadFromStream 226
10.10.9 TBlobField.SaveToFile 227
10.10.100BlobField.SaveToStream 227
10.10.11TBlobField.SetFieldType 227
10.10.1ABlobField.BlobSize 227
10.10.13[BlobField.Modified 228
10.10.14BlobField.Value 228
10.10.15BlobField.Transliterate 228
10.10.16BlobField.BlobType 228
10.10.17TBlobField.Size 229
10.11TBooleanField e 229
10111 Description v v v vt e e e e e 229
10.11.2Method overview e 229
10.11.3 Property OVerview i e e 229
10.11.4 TBooleanField.Create 229
10.11.5 TBooleanField.Value 230
10.11.6 TBooleanField.DisplayValues 230
10.12TBytesField e 230
10.12. 1 Description v v s e e e e e e e e 230
10.122Method overview oo 230
10.12.3 TBytesField.Create i 231
10.13TCheckConstraint ottt e e e e e 231
10.13. 1 Description v v i e e e e e e 231
10.13.2Method overviewo 231
10.13.3 Property OVerview v vttt e e 231

CONTENTS

10.13.4 TCheckConstraint. Assign o vt v it 231
10.13.5 TCheckConstraint.CustomConstraint 232
10.13.6 TCheckConstraint. ErrorMessage 232
10.13.7 TCheckConstraint. FromDictionary 232
10.13.8 TCheckConstraint.ImportedConstraint 232
10.14TCheckConstraints o v v ittt e e e 233
10.14.1Description v v v vt e e e 233
10.14.2Method overview oL e e 233
10.14.3 Property OVErvView v v v vt e e e e e e e e 233
10.14.4 TCheckConstraints.Create oo v v v .. 233
10.14.5 TCheckConstraints. Add L 233
10.14.6 TCheckConstraints.Items 233
10.15TCurrencyField e 234
10.15. 1 Description v v v s e e e e e e e 234
10.152Method overview oL 234
10.15.3 Property OVerview o vt i e e e 234
10.15.4 TCurrencyField.Create 234
10.15.5 TCurrencyField.Currency 234
10.16TCustomConnection o v vttt e e e 235
10.16.1 Description oo i e e 235
10.16.2Method overview L 235
10.16.3 Property OVEIrVIEW o v v vt i e e e e e e e e e e e e 235
10.16.4 TCustomConnection.Close 235
10.16.5 TCustomConnection.Destroy 235
10.16.6 TCustomConnection.Open o v v e 236
10.16.7 TCustomConnection.DataSetCount 236
10.16.8 TCustomConnection.DataSets 236
10.16.9 TCustomConnection.Connected 237
10.16.1ICustomConnection.LoginPrompt 237
10.16.1 TCustomConnection.AfterConnect 237
10.16.1TCustomConnection.AfterDisconnect 237
10.16.13[CustomConnection.BeforeConnect 238
10.16.14'CustomConnection.BeforeDisconnect 238
10.16.15'CustomConnection.OnLogin 238
10.17TDatabase i e e e e e 239
10.17.1Description oo oo e 239
10.17.2Method overview e e 239
10.17.3 Property OVEIrVIEW v v v vt e e e e e e e e e e e 239
10.17.4 TDatabase.Create o o v v i v i it 239
10.17.5 TDatabase.Destroy o i e 240

20

CONTENTS

10.17.6 TDatabase.CloseDataSets 240
10.17.7 TDatabase.CloseTransactions 240
10.17.8 TDatabase.StartTransaction 240
10.17.9 TDatabase.EndTransaction 241
10.17.10fDatabase. TransactionCount 241
10.17.1TDatabase. Transactions v v v v v i i vt e et e 241
10.17.1ADatabase.Directory 241
10.17.13Database.IsSQLBased, 242
10.17.14Database.Connected 242
10.17.15Database.DatabaseName 242
10.17.16Database.KeepConnection 242
10.17.1TDatabase.Params 243
10.18TDatalink e e 243
10.18. 1 Description v v v i e e e e e e e e e e 243
10.182Method overview oL 243
10.18.3 Property OVerview ottt e 244
10.18.4 TDataLink.Create 244
10.18.5 TDataLink.Destroy i 244
10.18.6 TDataLink.Edit 244
10.18.7 TDataLink.UpdateRecord 245
10.18.8 TDataLink.ExecuteAction 245
10.18.9 TDataLink.UpdateAction 245
10.18.100Datallink. Active L 245
10.18.1TDataLink.ActiveRecord 246
10.18.1ADataLink.BOF 246
10.18.13DataLink.BufferCount 246
10.18.14Datallink.DataSet 247
10.18.15DataLink.DataSource Lo 247
10.18.16'DataLink.DataSourceFixed 247
10.18.1TTDataLink.Editing 247
10.18.1&DataLink.Eof 248
10.18.19DataLlink.ReadOnlyo 0oL, 248
10.18.2('DataLink.RecordCount 248
10.19TDataSet e 248
10.19.1Description v v v i e e e 248
10.19.2Method overviewo 251
10.19.3 Property OVerview e 252
10.19.4 TDataSet.Create o v v ittt 253
10.19.5 TDataSet.Destroy o e 253
10.19.6 TDataSet.ActiveBuffer 253

21

CONTENTS

10.19.7 TDataSet.GetFieldData 253
10.19.8 TDataSet.SetFieldData 254
10.19.9 TDataSet. Append e 254
10.19.10fDataSet.AppendRecord L. 254
10.19.1TDataSet.BookmarkValid 255
10.19.1ADataSet.Cancel 255
10.19.13DataSet.CheckBrowseMode 255
10.19.14[DataSet.ClearFields 255
10.19.18DataSet.Close e 256
10.19.1@DataSet.ControlsDisabled 256
10.19.17TDataSet.CompareBookmarks 256
10.19.18DataSet.CreateBlobStream 257
10.19.19DataSet.CursorPosChanged 257
10.19.20/DataSet.DataConvert 257
10.19.2MDataSet.Delete 257
10.19.2XDataSet.DisableControls 258
10.19.23[DataSet.Edit 258
10.19.24DataSet.EnableControls 259
10.19.25DataSet.FieldByName 259
10.19.2@DataSet.FindField 259
10.19.27DataSet.FindFirst 260
10.19.2&DataSet.FindLast 260
10.19.29DataSet.FindNext 260
10.19.30DataSet.FindPrior 260
10.19.3MDataSet.First 261
10.19.3ADataSet.FreeBookmark L. 261
10.19.33DataSet.GetBookmark oL 261
10.19.34'DataSet.GetCurrentRecord 262
10.19.35DataSet.GetFieldList 262
10.19.3@DataSet.GetFieldNames 262
10.19.3TTDataSet.GotoBookmark 262
10.19.38DataSet.Insert L 263
10.19.39DataSet.InsertRecord oo 263
10.19.40DataSet.IsEmpty e 263
10.19.4MDataSet.IsLinkedTo 263
10.19.4XDataSet.IsSequenced oL 264
10.19.43DataSet.Last. e 264
10.19.44DataSet.Locate 264
10.19.45DataSet.Lookup 265
10.19.4@DataSet.MoveBy 265

22

CONTENTS

10.19.47DataSet.Next e 265
10.19.48DataSet.Open o v it e e e e 266
10.19.49DataSet.Post 266
10.19.5DataSet.Prior 267
10.19.5MDataSet.Refresh o 267
10.19.5TDataSet.Resync e 267
10.19.53DataSet.SetFields 268
10.19.54DataSet. Translate e 268
10.19.55DataSet.UpdateCursorPos 268
10.19.5@'DataSet.UpdateRecord, 268
10.19.5TTDataSet.UpdateStatus 269
10.19.58DataSet. BOF 269
10.19.59DataSet.Bookmark oo oo 269
10.19.6(DataSet.CanModify e 270
10.19.6ITDataSet.DataSource 270
10.19.6XDataSet.DefaultFields 271
10.19.63DataSet. EOF 271
10.19.64DataSet.FieldCount 272
10.19.65DataSet.FieldDefs 272
10.19.6@DataSet.Found 272
10.19.67TDataSet.Modified L 273
10.19.68DataSet.IsUniDirectional 273
10.19.69DataSet.RecordCount 273
10.19.7DataSet.RecNo 274
10.19.7TDataSet.RecordSize L. 274
10.19.7ADataSet.State e e 274
10.19.73DataSet.Fields 275
10.19.74DataSet.FieldValues 275
10.19.79DataSet.Filter 275
10.19.7@DataSet.Filtered 276
10.19.7TDataSet.FilterOptions 276
10.19.78DataSet. Active o e e 276
10.19.79DataSet.AutoCalcFields 277
10.19.8'DataSet.BeforeOpen 277
10.19.8MDataSet. AfterOpen v i it 278
10.19.8DataSet.BeforeClose 278
10.19.83DataSet. AfterClose it 278
10.19.84DataSet.Beforelnsert L oo 278
10.19.85DataSet.AfterInsert 279
10.19.8'DataSet.BeforeEdit 279

23

CONTENTS

10.19.8DataSet. AfterEdit o 279
10.19.8&DataSet.BeforePost 280
10.19.89DataSet.AfterPost L 280
10.19.90'DataSet.BeforeCancel 280
10.19.9MDataSet.AfterCancel 281
10.19.9 DataSet.BeforeDelete Lo 281
10.19.93DataSet.AfterDelete 281
10.19.94DataSet.BeforeScroll 281
10.19.98DataSet.AfterScroll 282
10.19.9@DataSet.BeforeRefresh Lo 0oL, 282
10.19.9TDataSet.AfterRefresh o oL, 282
10.19.98DataSet.OnCalcFields 283
10.19.99DataSet.OnDeleteError L. 283
10.19.10DataSet.OnEditError 284
10.19.10IDataSet.OnFilterRecord L. 284
10.19.102DataSet.OnNewRecord L. 284
10.19.108DataSet.OnPostError oo 285
10.20TDataSource oo e e e e e 285
10.20.1 Description o oo i e e e e 285
10.20.2Method overview 285
10.20.3 Property OVerview e e 286
10.20.4 TDataSource.Create v v v v ittt 286
10.20.5 TDataSource.Destroy oo 286
10.20.6 TDataSource.Edit 286
10.20.7 TDataSource.IsLinkedTo 287
10.20.8 TDataSource.State 287
10.20.9 TDataSource.AutoEdit 287
10.20.10fDataSource.DataSet L 287
10.20.1TDataSource.Enabled 288
10.20.1TDataSource.OnStateChange 288
10.20.13DataSource.OnDataChange 288
10.20.14DataSource.OnUpdateData 289
10.21TDateField 289
10.21.1 Description o v i e e e e e e e e 289
10.21.2Method overview o 289
10.21.3 TDateField.Create 289
10.22TDateTimeField 289
10.22.1 Description v v o e e e e e e e e e 289
10.222Method Overview oo e 290
10.22.3 Property OVerview o o e e 290

24

CONTENTS

10.22.4 TDateTimeField.Create 290
10.22.5 TDateTimeField.Value 290
10.22.6 TDateTimeField.DisplayFormat 290
10.23TDBDataset oo e e 291
10.23. 1 Description oo e e e e e e 291
10.232Method overview oL 291
10.23.3 Property OVerview e e 291
10.23.4 TDBDataset.destroy 291
10.23.5 TDBDataset.DataBase 291
10.23.6 TDBDataset. Transaction v 292
10.24TDBTransaction« o v v vt e e e e e e e 292
10.24.1 Descriptiono oo e 292
10.242Method overview L e 292
10.24.3 Property OVEIVIEW v v v v v e e i e e e e e e e e e e 292
10.24.4 TDBTransaction.Create v i i .. 292
10.24.5 TDBTransaction.destroyo v v v v v i it 293
10.24.6 TDBTransaction.CloseDataSets 293
10.24.7 TDBTransaction.DataBase 293
10.24.8 TDBTransaction.Active o o v v ittt 293
10.25TDefCollection e 294
10.25. 1 Description o e e e e e e e 294
10.252Method overview oL 294
10.25.3 Property OVeIVIEW v v v v v bt e e e e e 294
10.25.4 TDefCollection.create o v v v v it 294
10.25.5 TDefCollection.Find, 294
10.25.6 TDefCollection.GetltemNames 295
10.25.7 TDefCollection.IndexOf 295
10.25.8 TDefCollection.Dataset 295
10.25.9 TDefCollection.Updated 295
10.26TDetailDatallink e 296
10.26.1 Description o oot e e e e 296
10.26.2 Property OVerview o e e e 296
10.26.3 TDetailDataLink.DetailDataSet 296
10.27TField 296
10.27.1Description o v v i e e e 296
10.27.2Method Overviewo e 297
10.27.3 Property OVEIVIeW oo e 299
10.27.4TField.Create ittt 300
10.27.5 TField.Destroy 300
10.27.6 TField.Assign o 300

25

CONTENTS

10.27.7 TField.AssignValue e 300
10.27.8 TField.Clear 301
10.27.9 TField.FocusControl 301
10.27.100Field.GetData 301
10.27.10FieldIsBlob o 302
10.271AField.IsValidChar 302
10.27.13Field.RefreshLookupList 302
10.27.14Field.SetData 302
10.27.15Field.SetFieldType i 303
10.27.16Field. Validate e 303
10.27.1TTField.AsBCD e 303
10.27.1&Field.AsBoolean 304
10.27. 19U Field. AsCurrency o v v it e e e 304
10.27.20Field.AsDateTime 304
10.27.2MField.AsFloat 305
10.27.2AField.AsLongint 305
10.27.23Field.AsLargeInt e 305
10.27.24&Field. AsInteger e 306
10.27. 25 Field. AsString o e 306
10.27.2(Field. AsWideString 306
10.27.27Field.AsVariant e 307
10.27. 28 Field. AttributeSet 307
10.27.29Field.Calculated 307
10.27.30Field.CanModify 307
10.27.3MField.CurValue 308
10.27.3TField.DataSet 308
10.27.33Field.DataSize 308
10.27.34&Field.DataType o o 308
10.27.35Field.DisplayName 309
10.27.3@ Field.DisplayText o e 309
10.27.3TField.FieldNo 309
10.27.3& Field.IsIndexField 310
102739 Field.IsNull o o 310
10.27.40Field.Lookup e 310
10.27.4MField.NewValue 310
10.27.4TField.Offset e 311
10.27.43Field.Size o e 311
102744 Field. Text o o oo o e 311
10.27.45Field.ValidChars 311
10.27.40Field.Value 312

CONTENTS

10.27.47Field.OldValue e 312
10.27.48Field.LookupList e 312
10.27.49Field. Alignment 313
10.27.50’Field.CustomConstraint 313
10.27.5TField.ConstraintErrorMessage o . v v v v v oL 313
10.27.5XField.DefaultExpression 314
10.27.53Field.DisplayLabel 314
10.27.54&Field.DisplayWidth 314
10.27.59Field.FieldKind L 314
10.27.5Field.FieldName 315
10.27.5TField.HasConstraints 315
10.27.5&Field.Index 315
10.27.59Field.ImportedConstraint o 315
10.27.6(0IField KeyFields 316
10.27.6ITField.LookupCache 316
10.27.6XField.LookupDataSet 316
10.27.63Field.LookupKeyFields 317
10.27.64Field.LookupResultField 317
10.27.65Field.Origin e 317
10.27.6Field.ProviderFlags 317
10.27.67Field.ReadOnly 318
10.27.68Field.Required 318
10.27.69Field.Visible 318
10.27.70Field.OnChange 319
10.27.7MField.OnGetText 319
10.27.7AField.OnSetText oo oo 319
10.27. 737 Field.OnValidate 320
10.28TFieldDef e 320
10.28.1Descriptiono e e e e 320
10.28.2Method overview oL 320
10.28.3 Property OVeIrvIiew v v it e e e e 320
10.28.4 TFieldDef.Create it 320
10.28.5 TFieldDef.Destroy e 321
10.28.6 TFieldDef . Assign i it e e 321
10.28.7 TFieldDef.CreateField 321
10.28.8 TFieldDef . FieldClass 322
10.28.9 TFieldDef.FieldNo 322
10.28.10’FieldDef.InternalCalcField 322
10.28.1TFieldDef.Required 322
10.28.1TFieldDef Attributes 323

27

CONTENTS

10.28.13FieldDef.DataType i ittt 323
10.28.14FieldDef . Precision 323
10.28. 15 FieldDef.Size 324
10.29TFieldDefs 324
10.29.1 Description o e e e e 324
10.29.2Method overviewo oL 324
10.29.3 Property OVeIVIEW o v vt e e e e e 324
10.29.4 TFieldDefs.Create it 324
10.29.5 TFieldDefs.Add 325
10.29.6 TFieldDefs.AddFieldDef 325
10.29.7 TFieldDefs. Assign e 325
10.29.8 TFieldDefs.Find 326
10.29.9 TFieldDefs.Update ittt 326
10.29.10FieldDefs.MakeNameUnique oo . 326
10.29.1TFieldDefs.HiddenFields 326
10.29.1TFieldDefs.Items 327
10.30Tfields o o e 327
10.30.1 Description o i e e e e e e e 327
10.30.2Method overviewo 327
10.30.3 Property OVerview oo e e 327
10304 Thields.Create e 327
10.30.5 Tfields.Destroy i e e 328
10.30.6 Tields.Add 328
10.30.7 Tfields.CheckFieldName 328
10.30.8 Tfields.CheckFieldNames 328
10.30.9 Tfields.Clear i i e 329
10.30.100fields. FindField 329
10.30.1Tfields.FieldByName 329
10.30.1Tfields.FieldByNumber 329
10.30.13fields.GetFieldNames 330
10.30. 14 fields.IndexOf 330
10.30.18fields.Remove 330
10.30.16 ields.Count e e 330
10.30.1Tfields.Dataset 331
10.30. 18 fields. Fields 331
10.31TFloatField e 331
10311 Descriptiono e e e e e 331
1031.2Method overview oL 331
10.31.3 Property OVeIVIEW v v v v it e e e e e 331
10.31.4 TFloatField.Create 332

28

CONTENTS

10.31.5 TFloatField.CheckRange 332
10.31.6 TFloatField.Value, 332
10.31.7 TFloatField.Currency ot i ittt e 332
10.31.8 TFloatField. MaxValue 333
10.31.9 TFloatField.MinValue 333
10.31.100FloatField.Precision 333
10.32TGraphicField 334
10.32.1Description oL e e e 334
10.322Method overview L 334
10.32.3 TGraphicField.Create 334
10.33TGuidField e 334
10.33.1Descriptiono e e 334
10.33.2Method overview L e 334
10.33.3 Property OVEIVIEW o v v i v e e e e e e e e e e e e e 334
10.33.4TGuidField.Create i 335
10.33.5 TGuidField. AsGuid 335
1034TIndexDef o e 335
10.34. 1 Description o v v i e e e e e e e e e 335
10.342Method overviewo 335
10.34.3 Property OVerview v it e e e 335
10344 TIndexDef.Create 336
10.34.5 TIndexDef.Destroy i i i it e e 336
10.34.6 TIndexDef.Expression o 336
10.34.7 TIndexDef.Fields 336
10.34.8 TIndexDef.CaselnsFields 337
10.34.9 TIndexDef.DescFields 337
10.34.100IndexDef.Options e 337
10.34.1MIndexDef.Source 338
10.35TIndexDefs o e 338
10.35. 1 Description o v i e e e e e e e e e 338
10.352Method overviewo e 338
10.35.3 Property OVerview o it e 338
10.35.4 TIndexDefs.Create ittt 338
10.35.5 TIndexDefs.Destroy o it te 339
10.35.6 TIndexDefs. Add 339
10.35.7 TIndexDefs.AddIndexDef 339
10.35.8 TIndexDefs.Find 339
10.35.9 TIndexDefs.FindIndexForFields 340
10.35.10N'IndexDefs.GetIndexForFields 340
10.35.1MIndexDefs.Update i 340

CONTENTS

10.35.1AIndexDefs.Items 340
10.36TLargeintField e 341
10.36.1 Description o oo i e e e e 341
10.36.2Method overviewo 341
10.36.3 Property OVErview i it e e e e e e 341
10.36.4 TLargeintField.Create, 341
10.36.5 TLargeintField.CheckRange 341
10.36.6 TLargeintField.Value 342
10.36.7 TLargeintField. MaxValue 342
10.36.8 TLargeintField.MinValue 342
10.37TLongintField 343
10.37.1Description oo e e 343
10.37.2Method overview L 343
10.37.3 Property OVEIVIEW v v v v v e e e e e e e e e e e e e 343
10.37.4 TLongintField.Create 343
10.37.5 TLongintField.CheckRange 343
10.37.6 TLongintField.Value 344
10.37.7 TLongintField MaxValue 344
10.37.8 TLongintFieldMinValue 344
10.38TLookupList o e e e 344
10.38.1 Description oL e e e e e 344
10.38.2Method overview oL 345
10.38.3 TLookupList.Createo i it 345
10.38.4 TLookupList.Destroy 345
10.38.5 TLookupList. Add 345
10.38.6 TLookupList.Clear i it e e 345
10.38.7 TLookupList.FirstkeyByValue 346
10.38.8 TLookupList.ValueOfKey 346
10.38.9 TLookupList.ValuesToStrings 346
10.39TMasterDatallink e 346
10.39.1 Description v o i e e e e 346
10.39.2Method overviewo 347
10.39.3 Property OVerview oo 347
10.39.4 TMasterDataLink.Create 347
10.39.5 TMasterDataLink.Destroy 347
10.39.6 TMasterDataLink .FieldNames 347
10.39.7 TMasterDataLink.Fields 348
10.39.8 TMasterDataLink.OnMasterChange 348
10.39.9 TMasterDataLink.OnMasterDisable 348
10.40TMasterParamsDatalink 348

30

CONTENTS

10.40.1 Description oL e e e e 348
10.40.2Method overview oL e 349
10.40.3 Property OVeIVIEW v v it e e e 349
10.40.4 TMasterParamsDataLink.Create 349
10.40.5 TMasterParamsDataLink.RefreshParamNames 349
10.40.6 TMasterParamsDataLink.CopyParamsFromMaster 349
10.40.7 TMasterParamsDataLink.Params 350
1041TMemoField 350
1041.1 Description L e e e e e 350
10.41.2Method overview e 350
10.41.3 Property OVEIVIEW o v v vttt i e e e 350
10.41.4 TMemoField.Create 350
10.41.5 TMemoField.Transliterate 351
10.42TNamedItem oL 351
10421 Description v v v vt e e e e e 351
10.42.2 Property OVeIVIEW o v v vt i e e 351
10.42.3 TNamedItem.DisplayName 351
10.42.4 TNamedItem.Name 351
10.43TNumericField 352
10.43.1Descriptiono e e 352
10.432Method overview oL 352
10.43.3 Property OVEIVIEW v v v v e et e e e e e e e e e e 352
10.43.4 TNumericField.Create 352
10.43.5 TNumericField.Alignment 352
10.43.6 TNumericField.DisplayFormat 353
10.43.7 TNumericField.EditFormat 353
10.44TParam oo e e e e 353
10.44.1 Description o v it e e e e 353
10.44.2Method Overview oL e e 354
10.44.3 Property OVEIVIEW v v v v v e et e e e e e e e e e 354
10444 TParam.Create it ittt 354
10.44.5 TParam.ASsign o i e 355
10.44.6 TParam.AssignField, 355
10.44.7 TParam.AssignToField 355
10.44.8 TParam.AssignFieldValue 356
10.44.9 TParam.AssignFromField 356
10.44. 100 Param.Clear o o i e 356
1044 1MTParam.GetData 356
10.44. 1T Param.GetDataSize 357
10.44.13Param.LoadFromFile 357

31

CONTENTS

10.44. 14 Param.LoadFromStream 357
10.44.15Param.SetBlobData 357
10.44. 16 Param.SetData L 358
10.44. 1TTParam.AsBlob 358
10.44. 1&Param.AsBoolean o 358
10.44. 1T Param.ASCUITENCY . . .« v v v v v e e e e e e e e e e 358
10.44200Param.AsDate L 359
10.442MParam.AsDateTime 359
10.44 2 Param.AsFloat 359
10.44.23Param.AsInteger e 359
104424 Param.AsLargelnt o 360
104425 Param. AsMemo 360
104420 Param. AsSmalllnt o 360
10.44.2TTParam.ASString o o e e e 360
10.44 28 Param. AsTime 361
10.44. 20 Param.AsWord 361
10.4430Param.Bound L o 361
10.443MParam.Dataset 361
1044 3T Param.IsNull 362
10.44.33Param.NativeStr 362
104434 Param. Text e 362
104435 Param.Value 362
10.44.3@Param. AsWideString 363
10.44.3TTParam.DataType 363
1044 3FParam.Name L 363
104439 Param.NumericScale o 363
10.44.400Param.ParamType 364
1044 4MParam.Precision 364
10.44. AT Param.SiZe o o i e e e e e e e e e 364
1045TParams o oo e e e e e e 365
10451 Description v v v i e e e e 365
10.452Method Overviewo 365
10.45.3 Property OVEIVIEW o o e e 365
10454 TParams.Create ot i i it e 365
10.45.5 TParams.AddParam 366
10.45.6 TParams.AssignValues, 366
10.45.7 TParams.CreateParam 366
10.45.8 TParams.FindParam 366
10.45.9 TParams.GetParamList, 367
10.45.100Params.IsEqual 367

32

CONTENTS

10.45. 1 TParams.ParamByName 367
10.45. 1A Params.ParseSQL 367
10.45.13Params.RemoveParam 368
10.45.14Params.CopyParamValuesFromDataset 368
10.45.15Params.Dataset 369
1045. 1@ Params.Items Lo 369
10.45.1TTParams.ParamValues 369
10.46TSmallintField 370
10.46.1 Description L e e e e e e 370
10.46.2Method overview oL 370
10.46.3 TSmallintField.Create 370
10.47TStringField e 370
1047.1 Description oo e e e e e e 370
10.47.2Method overview oL e 370
10.47.3 Property OVEIVIEW o v v v it e e e e e 370
10.47.4 TStringField.Create, 371
10.47.5 TStringField.SetFieldType 371
10.47.6 TStringField.FixedChar 371
10.47.7 TStringField. Transliterate 371
10.47.8 TStringField.Value 371
10.47.9 TStringField.Size 372
10.48TTimeField e 372
1048.1 Description v v v i e e e 372
10.48.2Method overviewo 372
10.48.3 TTimeField.Create 372
10.49TVarBytesField e 372
10.49.1 Description v v oo e e e e 372
10.49.2Method OVerviewo e 373
10.49.3 TVarBytesField.Create 373
10.50TVariantField e 373
10.50.1 Description v oo e e e 373
10.50.2Method overview 373
10.50.3 TVariantField.Create 373
10.51TWideMemoField e 374
10511 Description o v v vt e e e 374
10.51.2Method overview Lo 374
10.51.3 Property OVEIVIEW oo e e 374
10.51.4 TWideMemoField.Create 374
10.51.5 TWideMemoField.Value 374
10.52TWideStringField 375

33

CONTENTS

10.52. 1 Description o oL e e e e e 375
10.522Method overviewo e 375
10.52.3 Property OVeIVIEW o v v v it i e e e e e 375
10.52.4 TWideStringField.Create 375
10.52.5 TWideStringField.Value 375
10.53TWordField o e 375
10.53.1Description v o i e e e e 375
10.53.2Method overview oL e 376
10.53.3TWordField.Create 376

11 Reference for unit *dbugintf’ 381
11.1 Writingadebugserver it 381
11.2 Overview o e e 381
11.3 Constants, types and variables L oL 381
11.3.1 Resource strings o o v i it it e 381
1132 Constants e e 382
11.3.3 TYPES . v o o v o e e e e e e e e e e e 382

11.4 Procedures and functionso 382
11.4.1 GetDebuggingEnabled 382
11.4.2 InitDebugClient. i e 383
11.43 SendBoolean 383
11.4.4 SendDateTime i 383
11.4.5 SendDebug e 383
11.4.6 SendDebugEx 384
11.4.7 SendDebugFmt 384
11.4.8 SendDebugFmtEx 384
11.49 SendInteger L 385
11.4.10 SendMethodEnter 385
11.4.11 SendMethodExit 385
11.4.128endPointer 386
11.4.13 SendSeparator 386
11.4.14 SetDebuggingEnabled oL, 386
11.4.15 StartDebugServer e 386

12 Reference for unit ’"dbugmsg’ 388
121 Usedunits oo oo e 388
122 OVEIVIEW . . . o oot s e e e e e e 388
12.3 Constants, types and variables L L oL oL 388
12.3.1 Constants e e e 388
1232 TYPES . v o o e e e e e e e e e 389

12.4 Procedures and functions oL 389

CONTENTS

12.4.1 DebugMessageName e 389
12.4.2 ReadDebugMessageFromStream 389
12.4.3 WriteDebugMessageToStream 390

13 Reference for unit ’eventlog’ 391
13.1 Usedunits oo e 391
132 OVervIiew o o e e e 391
13.3 Constants, types and variables o o 391
13.3.1 Resource strings o v i i i e e e 391
1332 Types o o e 392

13.4 ELogError e 393
13.4.1 Description it e e e e e 393

13.5 TEventLog o e e e e e 393
13.5.1 Descriptiono oo e 393
13.5.2 Method overview 393
13.5.3 Property OVErview oot e e e e 393
13.5.4 TEventLog.Destroy i i 394
13.5.5 TEventLog.EventTypeToString 394
13.5.6 TEventLog.RegisterMessageFile 394
13.5.7 TEventLog.Log e 395
13.5.8 TEventLog.Warning v v i vt i ittt 395
13.5.9 TEventLog.Error 396
13.5.10 TEventLog.Debug 396
13.5.11 TEventLog.Info 396
13.5.12 TEventLog.Identification 396
13.5.13 TEventLog.LogType« . i it 397
13.5.14 TEventLog.Active e 397
13.5.15 TEventLog.RaiseExceptionOnError 397
13.5.16 TEventLog.DefaultEventType 397
13.5.17 TEventLog.FileName 398
13.5.18 TEventLog.TimeStampFormat 398
13.5.19 TEventLog.CustomLogType 398
13.5.20 TEventLog.EventIDOAfset 399
13.5.21 TEventLog.OnGetCustomCategory o v v v v v o 399
13.5.22 TEventLog.OnGetCustomEventID 399
13.5.23 TEventLog.OnGetCustomEvent 400

14 Reference for unit ’ezcgi’ 401
141 Usedunits o e e 401
142 OVerview o o e e e e 401
14.3 Constants, types and variables Lo 401

CONTENTS

143.1 Constants e e 401

14.4 ECGIEXCEption v v v it it e et e e e e e e e e e 401
14.4.1 Description o v v vt e e e e 401

145 TEZcgi . . .« o o o 402
14.5.1 Description o i i e e e 402
1452 Methodoverview L 402
14.5.3 Property OVerview it e e e 402
1454 TEZcgi.Create ittt ittt 402
14.5.5 TEZcgi.Destroy o i i e 402
145.6 TEZcgi.Run. 403
1457 TEZcgi.WriteContent.o v i it et 403
1458 TEZcgi.Putline 403
14.5.9 TEZcgi.GetValue e 404
14.5.10 TEZcgi.DoPost e e 404
14511 TEZcgi.DoGet e 404
145,12 TEZcgi.Values e 404
14513 TEZcgi.Names vt vttt e e e 405
14.5.14 TEZcgi.Variables e 405
14.5.15 TEZcgi.VariableCount 406
14516 TEZcgiName e 406
145.17TEZcgi.Email o e 406

15 Reference for unit *fpTimer’ 407
15.1 Usedunits o e e 407
15.2 Overview o o e e 407
15.3 Constants, types and variables Lo 407
153.1 Types . . . o o o o e 407
1532 Variables 407

15.4 TFPCustomTimer i e 408
15.4.1 Description o v vt e e e 408
1542 Methodoverview L 408
15.4.3 TFPCustomTimer.Createo i v 408
15.4.4 TFPCustomTimer.Destroy 408
15.4.5 TFPCustomTimer.StartTimer. 409
15.4.6 TFPCustomTimer.StopTimer 409

15.5 TFPTImer o o e e e e e e 409
15.5.1 Description v i i e e e e e e e e 409
15.5.2 Property OVerview i it e e e e 409
15.5.3 TFPTimer.Enabled 409
15.5.4 TFPTimerInterval 410

36

CONTENTS

15.5.5 TFPTimer.OnTimer. 410

15.6 TFPTimerDriver e e 410
15.6.1 Description oot e e 410
15.6.2 Method overview e 410
15.6.3 Property OVErview e e e 410
15.6.4 TFPTimerDriver.Create 411
15.6.5 TFPTimerDriver.StartTimer 411
15.6.6 TFPTimerDriver.StopTimer 411
15.6.7 TFPTimerDriver.Timer 411

16 Reference for unit *gettext’ 412
16.1 Usedunits e 412
16.2 OVerview o e e e 412
16.3 Constants, types and variables oL 412
16.3.1 Constants e 412
1632 TYpes . . . o v o i e 412

16.4 Procedures and functions Lo e 413
16.4.1 GetLanguagelDs 413
16.4.2 TranslateResourceStrings 414
16.4.3 TranslateUnitResourceStrings 414

16.5 EMOFileError e 414
16.5.1 Description o v it e e e 414
16.6 TMOFile 414
16.6.1 Description i e e e 414
16.6.2 Methodoverview L 415
16.6.3 TMOFile.Create ittt 415
16.6.4 TMOFile.Destroy i 415
16.6.5 TMOFile.Translate 415

17 Reference for unit ’idea’ 416
17.1 Usedunits o e 416
17.2 OVerview o o e e e 416
17.3 Constants, types and variables oL oo 416
17.3.1 Constantsot e e 416
1732 TYPES . o o o v e e e e e 417
17.4 Procedures and functions L e 417
17.4.1 Cipherldea 417
1742 DeKeyldea 417
1743 EnKeyldea e 418
17.5 EIDEAETror o e 418
17.5.1 Description o v v vt e e e 418

CONTENTS

17.6 TIDEADeCryptStream o v v v vt et e e e e e e 418
17.6.1 Description it e e e e e e e 418
17.6.2 Methodoverview e 418
17.6.3 TIDEADeCryptStream.Create 418
17.6.4 TIDEADeCryptStream.Read 419
17.6.5 TIDEADeCryptStream.Seek 419

17.7 TIDEAEncryptStream ot v it e e e e 419
17.7.1 Description oo i e 419
1772 Methodoverview e 420
17.7.3 TIDEAEncryptStream.Create v 420
17.7.4 TIDEAEncryptStream.Destroy 420
17.7.5 TIDEAEncryptStream.Write 420
17.7.6 TIDEAEncryptStream.Seek 421
17.7.7 TIDEAEncryptStream.Flush 421

17.8 TIDEAStreamo 421
17.8.1 Description o it 421
17.82 Methodoverview e 421
17.8.3 Property OVEIrvView o it i e e e e e e e 421
17.8.4 TIDEAStream.Create vt v ittt e 422
17.8.5 TIDEAStream.Key 422

18 Reference for unit ’inicol’ 423

18.1 Usedunits o 423

182 Overview e 423

18.3 Constants, types and variables 423
18.3.1 Constantsot e e 423

18.4 EIniCol e 424
18.4.1 Description o e e e 424

18.5 TIniCollection i e 424
18.5.1 Description o v it e e 424
18.5.2 Methodoverview L 424
18.5.3 Property OVErview oL .o e e e e e 424
18.5.4 TIniCollection.Load 424
18.5.5 TIniCollection.Save it 425
18.5.6 TIniCollection.SaveTolni 425
18.5.7 TIniCollection.SaveToFile 425
18.5.8 TIniCollection.LoadFromIni 426
18.5.9 TIniCollection.LoadFromFile 426
18.5.10 TIniCollection.Prefix 426
18.5.11 TIniCollection.SectionPrefix 427

38

CONTENTS

18.5.12 TIniCollection.FileName 427
18.5.13 TIniCollection.GlobalSection 427

18.6 TIniCollectionltem e 427
18.6.1 Description e 427
18.6.2 Methodoverview e 428
18.6.3 Property OVEIrvView i it e e e e e 428
18.6.4 TIniCollectionltem.SaveTolni 428
18.6.5 TIniCollectionltem.LoadFromIni 428
18.6.6 TIniCollectionltem.SaveToFile 428
18.6.7 TIniCollectionltem.LoadFromFile 429
18.6.8 TIniCollectionltem.SectionName 429

18.7 TNamedIniCollection 429
18.7.1 Description e e e 429
18.7.2 Methodoverview L 429
18.7.3 Property OVerview oo e e e 430
18.7.4 TNamedIniCollection.IndexOfUserData 430
18.7.5 TNamedIniCollection.IndexOfName 430
18.7.6 TNamedIniCollection.FindByName 430
18.7.7 TNamedIniCollection.FindByUserData 431
18.7.8 TNamedIniCollection.NamedItems 431

18.8 TNamedIniCollectionltem 431
18.8.1 Description ot e e e e e 431
18.8.2 Property OVerview oo e e 431
18.8.3 TNamedIniCollectionltem.UserData 431
18.8.4 TNamedIniCollectionltem.Name 432

19 Reference for unit *IniFiles’ 433
19.1 Usedunits o e 433
19.2 OVEIVIEW o e e 433
193 TCustomIniFile o 433
19.3.1 Descriptiono oo e 433
1932 Methodoverview L 434
19.3.3 Property OVEIrVIEW v v vt e e e e e e e e e e e 434
19.3.4 TCustomlniFile.Create 434
19.3.5 TCustomlIniFile.Destroy 435
19.3.6 TCustomlniFile.SectionExists 435
19.3.7 TCustomlIniFile.ReadString 435
19.3.8 TCustomlIniFile.WriteString 436
19.3.9 TCustomlIniFile.ReadInteger 436
19.3.10 TCustomlIniFile.WriteInteger 436

39

CONTENTS

19.3.11 TCustomlIniFile.ReadBool 436
19.3.12 TCustomlIniFile.WriteBool 437
19.3.13 TCustomIniFile.ReadDate 437
19.3.14 TCustomlIniFile.ReadDateTime 437
19.3.15 TCustomlIniFile.ReadFloat 438
19.3.16 TCustomlIniFile.ReadTime 438
19.3.17 TCustomlIniFile.ReadBinaryStream 438
19.3.18 TCustomlIniFile.WriteDate 439
19.3.19 TCustomlIniFile.WriteDateTime 439
19.3.20 TCustomlIniFile.WriteFloat 439
19.3.21 TCustomIniFile. WriteTime 440
19.3.22 TCustomIniFile.WriteBinaryStream 440
19.3.23 TCustomlIniFile.ReadSection 440
19.3.24 TCustomlIniFile.ReadSections 441
19.3.25 TCustomlIniFile.ReadSectionValues 441
19.3.26 TCustomlIniFile.EraseSection 441
19.3.27 TCustomlIniFile.DeleteKey 441
19.3.28 TCustomlniFile.UpdateFile 442
19.3.29 TCustomlIniFile.ValueExists 442
19.3.30 TCustomlIniFile.FileName 442
19.3.31 TCustomlIniFile.EscapeLineFeeds 443
19.3.32 TCustomlIniFile.CaseSensitive 443
19.3.33 TCustomlIniFile.StripQuotes 443
19.4 THashedStringList 443
19.4.1 Description ot e e e e 443
19.42 Methodoverview L 444
19.4.3 THashedStringList.Create 444
19.4.4 THashedStringList.Destroy 444
19.4.5 THashedStringList.IndexOf 444
19.4.6 THashedStringList.IndexOfName 444
195 TIniFile L o e 445
19.5.1 Description oo i e 445
19.5.2 Method overview e 445
19.5.3 Property OVEIrvView v v it e e e e e e e e e 445
19.54 TIniFile.Create o ittt 445
19.5.5 TIniFile.Destroy e 445
19.5.6 TIniFileReadString 446
19.5.7 TIniFile.WriteString o e 446
19.5.8 TIniFile.ReadSection 446
19.5.9 TIniFile.ReadSectionRaw 446

40

CONTENTS

19.5.10 TIniFile.ReadSections 447
19.5.11 TIniFile.ReadSectionValues 447
19.5.12 TIniFile.EraseSection 447
19.5.13 TIniFile.DeleteKey 447
19.5.14 TIniFile.UpdateFile 448
19.5.15 TniFile.Stream L 448
19.5.16 TIniFile.CacheUpdates 448
19.6 TIniFileKey e 449
19.6.1 Description i e e e e 449
19.6.2 Methodoverview L 449
19.6.3 Property OVerview oo e e 449
19.6.4 TIniFileKey.Create 449
19.6.5 TIniFileKey.Ident 449
19.6.6 TIniFileKey.Value 449
19.7 TIniFileKeyList e 450
19.7.1 Description oo i e 450
19.7.2 Methodoverview L e 450
19.7.3 Property OVEIVIEW v v v vt e e e e e e e e e e e 450
19.7.4 TIniFileKeyList.Destroy 450
19.7.5 TIniFileKeyList.Clear, 450
19.7.6 TIniFileKeyList.Items 450
19.8 TIniFileSection e 451
19.8.1 Description v vt e e 451
19.8.2 Methodoverview 451
19.8.3 Property Overview 451
19.8.4 TIniFileSection.Empty 451
19.8.5 TIniFileSection.Create 451
19.8.6 TIniFileSection.Destroy 451
19.8.7 TIniFileSection.Name 452
19.8.8 TIniFileSection.KeyList 452
19.9 TIniFileSectionList e 452
19.9.1 Description oo i e 452
19.9.2 Method overview e e 452
19.9.3 Property OVEIrvView v v vt i e e e e e e e e 452
19.9.4 TIniFileSectionList.Destroy 453
19.9.5 TIniFileSectionList.Clear 453
19.9.6 TIniFileSectionList.Items 453
19.10TMemIniFile e 453
19.10.1 Description v v v i e e e e 453
19.10.2Method overviewo 453

41

CONTENTS

19.10.3 TMemlIniFile.Create 454
19.10.4 TMemlIniFile.Clear 454
19.10.5 TMemlIniFile.GetStrings 454
19.10.6 TMemlIniFile. Rename 454
19.10.7 TMemlIniFile.SetStrings 455

20 Reference for unit ’iostream’ 456
20.1 Usedunitso oo e e 456
20.2 OVEIVIEW . . . o v vttt s e e e e e e e e e 456
20.3 Constants, types and variables Lo 456
20.3.1 Types . . o o o e e e 456
20.4 EIOStreamError 457
20.4.1 Description e e e e e e e e e 457
20.5 TIOStream 457
20.5.1 Descriptiono e e e 457
20.5.2 Methodoverview L e 457
20.5.3 TIOStream.Create o v v v v v e e 457
20.5.4 TIOStream.Read 457
20.5.5 TIOStream.Write o o e 458
20.5.6 TIOStream.SetSize e 458
20.5.7 TIOStream.Seek 458

21 Reference for unit ’libtar’ 459
21.1 Usedunits o o oo o e e 459
21.2 OVEIVIEW . . . o oot i e 459
21.3 Constants, types and variables 0oL 459
21.3.1 Constants e e e e 459
2132 TYPES . o o o e e e e e e e e 460
21.4 Procedures and functions e 462
21.4.1 ClearDirRec 462
21.4.2 ConvertFilename e 462
21.4.3 FileTimeGMT e 462
21.4.4 PermissionStringo 462
21.5 TTarArchive o e 463
21.5.1 Description e e e e 463
21.52 Methodoverview L e 463
21.5.3 TTarArchive.Create o ittt 463
21.5.4 TTarArchive.Destroy i 463
21.5.5 TTarArchive.Reset 463
21.5.6 TTarArchive.FindNext 464
21.5.7 TTarArchiveReadFile 464

CONTENTS

21.5.8 TTarArchive.GetFilePos 464
21.5.9 TTarArchive.SetFilePos 465

21.6 TTarWriter o s e e e e 465
21.6.1 Description e 465
21.6.2 Methodoverview L 465
21.6.3 Property OVEIrVIEW v v i i e e e e e e e e e 465
21.6.4 TTarWriter.Create o v it ittt e et 465
21.6.5 TTarWriter.Destroy it 466
21.6.6 TTarWriterAddFile 466
21.6.7 TTarWriter. AddStream 466
21.6.8 TTarWriter.AddString 467
21.6.9 TTarWriterAddDir 467
21.6.10 TTarWriter. AddSymbolicLink 467
21.6.11 TTarWriter. AddLink 468
21.6.12 TTarWriter. AddVolumeHeader 468
21.6.13 TTarWriter.Finalize 468
21.6.14 TTarWriter.Permissions 468
21.6.15 TTarWriter.UID o o e 469
21.6.16 TTarWriter.GID 469
21.6.17 TTarWriter.UserName i 469
21.6.18 TTarWriter.GroupName ot v i v ittt 469
21.6.19 TTarWriterMode 470
21.6.20 TTarWriterMagic o 470

22 Reference for unit *Pipes’ 471
221 Usedunitso o e e 471
222 OVEIVIEW . . v v it e e e e e e e e e e e 471
22.3 Constants, types and variables L Lo 471
22.3.1 Constantso e e e e e e 471

22.4 Procedures and functions e 471
22.4.1 CreatePipeHandles 471
22.4.2 CreatePipeStreams e 472

22.5 EPipeCreation i e e e e e e e e e 472
22.5.1 Descriptiono e 472

22.6 EPipeError 472
22.6.1 Description e e e 472

227 EPipeSeek o e e e 472
22.7.1 Description o i it e e e e e e 472

22.8 TInputPipeStream 472
22.8.1 Description e e e e 472

43

CONTENTS

22.82 Methodoverview oL 473
22.8.3 Property OVEIrVieW v i it e e e e e e e e e e 473
22.8.4 TInputPipeStream.Write 473
22.8.5 TInputPipeStream.Seek 473
22.8.6 TInputPipeStream.Read 474
22.8.7 TInputPipeStream.NumBytesAvailable 474
22.9 TOutputPipeStream e 474
22.9.1 Descriptiono e 474
2292 Methodoverview L 474
22.9.3 TOutputPipeStream.Seek, 474
22.9.4 TOutputPipeStream.Read 475

23 Reference for unit ’pooledmm’ 476
23,1 Usedunits oo oo 476
232 OVEIVIEW . . . o o v o it e e e e e e 476
23.3 Constants, types and variables L o e 476
23.3.1 TYPES . v o i e e e e e 476
23.4 TNonFreePooledMemManager i 477
23.4.1 Description e 477
23.42 Methodoverview L 477
23.4.3 Property OVEIVIEW v v v v v v it e e e e e e e e e 477
23.4.4 TNonFreePooledMemManager.Clear 477
23.4.5 TNonFreePooledMemManager.Create 477
23.4.6 TNonFreePooledMemManager.Destroy 478
23.4.7 TNonFreePooledMemManager.Newltem 478
23.4.8 TNonFreePooledMemManager.Enumerateltems 478
23.4.9 TNonFreePooledMemManager.ItemSize 478
23.5 TPooledMemManager i i v it e e e 479
23.5.1 Description e e e e e e e 479
23.5.2 Methodoverview e 479
23.5.3 Property OVerview e e 479
23.5.4 TPooledMemManager.Clear 479
23.5.5 TPooledMemManager.Create v v 479
23.5.6 TPooledMemManager.Destroy 479
23.5.7 TPooledMemManager.MinimumFreeCount 480
23.5.8 TPooledMemManager.MaximumFreeCountRatio 480
23.5.9 TPooledMemManager.Count., 480
23.5.10 TPooledMemManager.FreeCount 481
23.5.11 TPooledMemManager.AllocatedCount 481
23.5.12 TPooledMemManager.FreedCount 481

44

CONTENTS

24 Reference for unit ’process’ 482
241 Usedunits oot e e e 482
242 OVEIVIEW . . . v v v v i e e e e e e e 482
24.3 Constants, types and variables Lo oL o 482

2431 TYPES . o o o e e e e 482
244 EPIOCESS . » o ¢ v v v e e e e e e e e e e e e e e 484
24.4.1 Description v v it e e e 484
245 TProcess« o v v i i e e e e e 484
24.5.1 Description e e e e e 484
2452 Methodoverview oL 485
24.5.3 Property OVeIrview o i it e e e e e 485
24.5.4 TProcess.Create v v i it e e 486
24.5.5 TProcess.Destroyo 486
24.5.6 TProcess.Execute e 486
2457 TProcess.Closelnput 487
24.5.8 TProcess.CloseOutput it 487
2459 TProcess.CloseStderr 487
245.10 TProcess.Resume 487
24.5.11 TProcess.Suspend e 488
24.5.12 TProcess. Terminate 488
24.5.13 TProcess.WaitOnEXxit 488
24.5.14 TProcess.WindowRect oo, 489
24.5.15TProcess.Handle 489
24.5.16 TProcess.ProcessHandle 489
24.5.17 TProcess. ThreadHandle 489
24.5.18 TProcess.ProcessID 490
24.5.19 TProcess.ThreadID 490
24520 TProcess.Inputo 490
24521 TProcess.Output L 491
24522 TProcess.Stderr 491
24.5.23 TProcess.ExitStatus 491
24.5.24 TProcess.InheritHandles 492
24525 TProcess. ACtive v it e e e 492
24.5.26 TProcess.ApplicationName 492
24.5.27 TProcess.CommandLine 492
24.5.28 TProcess.ConsoleTitle 493
24.5.29 TProcess.CurrentDirectory 493
24.5.30 TProcess.Desktop o v i i e e 493
24.5.31 TProcess.Environment o 494
24.5.32TProcess.Options« i i e e 494

45

CONTENTS

24.5.33 TProcess.Priority e 495
24.5.34 TProcess.StartupOptions v v v v vt e e 495
24.5.35TProcess.Running 496
24.5.36 TProcess.ShowWindow, 496
24.5.37 TProcess.WindowColumns, 497
24.5.38 TProcess.WindowHeight 497
24.5.39 TProcess.WindowLeft 497
24.5.40 TProcess.WindowRows Lo 498
24.5.41 TProcess.WindowTop i 498
24.5.42 TProcess.WindowWidth 498
24.5.43 TProcess.FillAttribute 499

25 Reference for unit ’rttiutils’ 500
25.1 Usedunits oo e 500
252 OVEIVIEW . . . o v it et e e e e e e e e e 500
25.3 Constants, types and variables L Lo 500
253.1 Constantso e e e e 500
2532 TYPES « v v o i e 500
25.3.3 Variables 501

25.4 Procedures and functionso 501
25.4.1 CreateStoredItem 501
25.4.2 ParseStoredItem 502
25.4.3 UpdateStoredList 502

25.5 TPropInfollist e e 502
25.5.1 Description e e e e e 502
25.52 Methodoverview oL 502
25.5.3 Property OVerviewo e e e 503
25.5.4 TPropInfoList.Create 503
25.5.5 TPropInfoList.Destroy i 503
25.5.6 TPropInfoList.Contains i 503
25.5.7 TProplnfoList.Find 503
25.5.8 TPropInfoList.Delete 504
25.5.9 TPropInfoList.Intersect i 504
25.5.10 TPropInfoList.Count 504
25.5.11 TPropInfoList.Items 504

25.6 TPropsStorage e e e 505
25.6.1 Description e e e e e 505
25.6.2 Methodoverview oL 505
25.6.3 Property OVerviewo e e 505
25.6.4 TPropsStorage.StoreAnyProperty 505

46

CONTENTS

25.6.5 TPropsStorage.LoadAnyProperty 505
25.6.6 TPropsStorage.StoreProperties 506
25.6.7 TPropsStorage.LoadProperties 506
25.6.8 TPropsStorage.LoadObjectsProps 506
25.6.9 TPropsStorage.StoreObjectsProps L. 507
25.6.10 TPropsStorage.AObject e 508
25.6.11 TPropsStorage.Prefix 508
25.6.12 TPropsStorage.Sectiono 508
25.6.13 TPropsStorage.OnReadString 508
25.6.14 TPropsStorage.OnWriteString 509
25.6.15 TPropsStorage.OnEraseSection 509

26 Reference for unit ’simpleipc’ 510
26.1 Usedunits o e 510
26.2 OVEIVIEW . . . o v v it e e e e e e e e e 510
26.3 Constants, types and variables L Lo 510
26.3.1 Resource strings i it e e e e e 510
26.3.2 Constantso e e e 511
26.3.3 TYPES . . o o i 511
26.3.4 Variables 511

204 EIPCEITOr o o e e e e 512
26.4.1 Descriptiono e e e 512

26.5 TIPCClientComm o v vt ittt e e e 512
26.5.1 Description e e 512
26.52 Methodoverview oL e 512
26.5.3 Property OVerviewo e e 512
26.5.4 TIPCClientComm.Create o v v v i vii e et 512
26.5.5 TIPCClientComm.Connect 512
26.5.6 TIPCClientComm.Disconnect 513
26.5.7 TIPCClientComm.ServerRunning 513
26.5.8 TIPCClientComm.SendMessage 513
26.5.9 TIPCClientComm.Owner 514

26.6 TIPCServerComm ittt e e 514
26.6.1 Description e 514
26.6.2 Methodoverview 514
26.6.3 Property OVEIrVIiewo 514
26.6.4 TIPCServerComm.Create, 514
26.6.5 TIPCServerComm.StartServer 515
26.6.6 TIPCServerComm.StopServer 515
26.6.7 TIPCServerComm.PeekMessage 515

47

CONTENTS

26.6.8 TIPCServerComm.ReadMessage 516
26.6.9 TIPCServerComm.OWner, 516
26.6.10 TIPCServerComm.InstancelD 516

26.7 TSimpleIPC 516
26.7.1 Description e e e e e e 516
26.7.2 Property OVEIVIEW v v v vt i e e e e e e e e 516
26.7.3 TSimpleIPC.Active 517
26.7.4 TSimpleIPC.ServerID 517

26.8 TSimpleIPCClient. e e e 517
26.8.1 Description e e e e e 517
26.8.2 Methodoverview L 517
26.8.3 Property OVerviewo e e e 518
26.8.4 TSimple[PCClient.Create 518
26.8.5 TSimpleIPCClient.Destroy v i e .. 518
26.8.6 TSimpleIPCClient.Connect 518
26.8.7 TSimpleIPCClient.Disconnect 519
26.8.8 TSimpleIPCClient.ServerRunning 519
26.8.9 TSimpleIPCClient.SendMessage v ... 519
26.8.10 TSimpleIPCClient.SendStringMessage 519
26.8.11 TSimpleIPCClient.SendStringMessageFmt 520
26.8.12 TSimpleIPCClient.ServerInstance 520

26.9 TSimpleIPCServer e e e e 520
26.9.1 Description e e 520
26.9.2 Methodoverview 521
26.9.3 Property OVEIrVIeWo 521
26.9.4 TSimpleIPCServer.Create v i ... 521
26.9.5 TSimpleIPCServer.Destroy i 521
26.9.6 TSimpleIPCServer.StartServer 521
26.9.7 TSimpleIPCServer.StopServer 522
26.9.8 TSimpleIPCServer.PeekMessage 522
26.9.9 TSimpleIPCServer.GetMessageData 522
26.9.10 TSimpleIPCServer.StringMessage 523
26.9.11 TSimpleIPCServerMsgType 523
26.9.12 TSimpleIPCServer.MsgData 523
26.9.13 TSimpleIPCServer.InstancelD 523
26.9.14 TSimpleIPCServer.Global 524
26.9.15 TSimpleIPCServer.OnMessage 524

27 Reference for unit ’streamcoll’ 525
27.1 Usedunits o e 525

48

CONTENTS

27.2 OVEIVIBW . . .« o v it s e e e e e e e 525
27.3 Procedures and functions e 525
27.3.1 ColReadBoolean 525
27.3.2 ColReadCurrency o oo e 526
2733 ColReadDateTime 526
2734 ColReadFloat 526
27.3.5 ColReadlnteger L 526
27.3.6 ColReadString 527
2737 ColWriteBoolean 527
27.3.8 ColWriteCurrency o v v v v it e e e e e e e e 527
27.3.9 ColWriteDateTime i 527
27.3.10 ColWriteFloat 528
27.3.11 ColWriteInteger i it e 528
27312 ColWriteString e e 528

274 EStreamColl 528
27.4.1 Description e e 528
27.5 TStreamCollection e 528
27.5.1 Description oo e e e e 528
27.52 Methodoverview oL 529
27.5.3 Property OVerviewo e e 529
27.5.4 TStreamCollection.LoadFromStream 529
27.5.5 TStreamCollection.SaveToStream 529
27.5.6 TStreamCollection.Streaming 529
27.6 TStreamCollectionltem L 530
27.6.1 Description e e e 530

28 Reference for unit ’streamex’ 531
28.1 Usedunits e 531
282 OVEIVIEW . . . o v vttt e e e e e e e 531
28.3 TBidirBinaryObjectReader o 531
28.3.1 Description e e 531
28.3.2 Property OVEIrVIewo 531
28.3.3 TBidirBinaryObjectReader.Position 531
28.4 TBidirBinaryObjectWriter e 532
28.4.1 Description e 532
28.4.2 Property OVEIVIEWo 532
28.4.3 TBidirBinaryObjectWriter.Position 532
28.5 TDelphiReader e 532
28.5.1 Description e e 532
28.5.2 Methodoverview Lo e 532

49

CONTENTS

28.5.3 Property OVErview oo e e e e e 532
28.5.4 TDelphiReader.GetDriver, 533
28.5.5 TDelphiReaderReadStr 533
28.5.6 TDelphiReaderRead 533
28.5.7 TDelphiReader.Position 533
28.6 TDelphiWriter. o e e e e e e 533
28.6.1 Description e 533
28.6.2 Methodoverview 534
28.6.3 Property OVErviewo e e e e e e e 534
28.6.4 TDelphiWriter.GetDriver 534
28.6.5 TDelphiWriter.FlushBuffer. 534
28.6.6 TDelphiWriter.Write 534
28.6.7 TDelphiWriter.WriteStr 534
28.6.8 TDelphiWriter.WriteValue 535
28.6.9 TDelphiWriter.Position 535

29 Reference for unit ’StreamIO’ 536
29.1 Usedunits oo o e e 536
2902 OVEIVIEW . . . o v it et e e e e e e e e 536
29.3 Procedures and functionso 536
29.3.1 AssignStream e e e e e 536
2932 GetStreamo e e 537

30 Reference for unit ’syncobjs’ 538
30.1 Usedunitso oo e e 538
30.2 OVEIVIEW . . . o v v it e e e e e e e e e 538
30.3 Constants, types and variables Lo e 538
30.3.1 Constantso e e e e e e 538
30.3.2 TYPES .« v 538
30.4 TCriticalSection o i 539
30.4.1 Description e e e e e e 539
3042 Methodoverview 539
30.4.3 TCriticalSection.Acquire i 540
30.4.4 TCriticalSection.Release 540
30.4.5 TCriticalSection.Enter, 540
30.4.6 TCriticalSection.Leave 540
30.4.7 TCriticalSection.Create 541
30.4.8 TCriticalSection.Destroy 541
30.5 TEventObject o o v i e e e e e e 541
30.5.1 Description oo e e e e e e e 541
30.5.2 Methodoverview 541

CONTENTS

30.5.3 Property OVEIVIiEeW oL e e e e 541
30.5.4 TEventObject.Create v v v v v it ettt 542
30.5.5 TEventObject.destroy i 542
30.5.6 TEventObject.ResetEvent 542
30.5.7 TEventObject.SetEvent 542
30.5.8 TEventObject.WaitFor 543
30.5.9 TEventObjectManualReset 543
30.6 THandleObject e 543
30.6.1 Description e e e 543
30.6.2 Methodoverview L e 543
30.6.3 Property OVEIview e e 543
30.6.4 THandleObject.destroy i 543
30.6.5 THandleObject.Handle 544
30.6.6 THandleObject.LastError. 544
30.7 TSimpleEvent e 544
30.7.1 Description 544
30.7.2 Methodoverview e 544
30.7.3 TSimpleEvent.Create it 544
30.8 TSynchroObject e 545
30.8.1 Description 545
30.8.2 Methodoverview L e 545
30.8.3 TSynchroObject. Acquire v v v v v i ettt e 545
30.8.4 TSynchroObjectRelease 545

31 Reference for unit "URIParser’ 546
311 OVEIVIEW . . . o oot o e e e 546
31.2 Constants, types and variables L oL o 546
31.2.1 TYPES .« v v o e e e e e 546
31.3 Procedures and functions Lo 546
31.3.1 EncodeURI 546
31.3.2 FilenameToURI. o o 547
31.3.3 IsAbsoluteURI 547
31.3.4 ParseURI oo e 547
31.3.5 ResolveRelativeURI 548
31.3.6 URIToFilename 548

32 Reference for unit ’zstream’ 549
321 Usedunits oo 549
322 OVEIVIEW oo it e e 549
32.3 Constants, types and variables L e 549
3231 TYPES .« o 549

CONTENTS

32.4 EcOmMPIresSiONeITOr . . . v v v v v v v e v e e e e e e e e e e e e e e e e e 550
32.4.1 Description o v i i e e e e e e e e e 550
32.5 Edecompressionerror oooiu et e e e e e e e e 550
32.5.1 Description 550
32.6 Egzfileerror e e e 550
32.6.1 Description e e e e e e 550
327 Ezliberror e 550
32.7.1 Description 550
32.8 TcompressionStream v v v bt e e e e e e e e e e e e e e e 550
32.8.1 Description e e e e e e 550
32.8.2 Methodoverview 551
32.8.3 TcompressionsStream.Create« v v v v v et e 551
32.8.4 Tcompressionstream.destroy oo 551
32.8.5 TcompressionsStream.write v v v v i e 551
32.8.6 Tcompressionstream.flush L. 552
32.8.7 Tcompressionstream.get_compressionrate 552
32.9 Tecustomzlibstream L 552
32.9.1 Description o v v i e e e e e e e e e 552
32.9.2 Methodoverview 552
32.9.3 Tcustomzlibstream.create 552
3294 Tcustomzlibstream.destroyo 553
32.10TdecompresSionstream o v v v v e e e e e e e e e e e e e e e e e 553
32.10.1 Descriptiono e e 553
32.10.2Method overview 553
32.10.3 Tdecompressionstream.create o ooviu e 553
32.10.4 Tdecompressionstream.destroy o i e 553
32.10.5 Tdecompressionstream.readl 554
32.10.6 Tdecompressionstream.seek 554
32.10.7 Tdecompressionstream.get_compressionrate 555
32 11TGZFileStream oot e 555
3211 1 Descriptiono e e 555
32.11.2Method overview 555
32.11.3 TGZFileStream.create v v v v v v i e et e 555
32.11.4 TGZFileStream.read e 555
32.11.5 TGZFileStream.write vt v i 556
32.11.6 TGZFileStream.seek 556
32.11.7 TGZFileStream.destroy 556

52

CONTENTS

About this guide

This document describes all constants, types, variables, functions and procedures as they are declared
in the units that come standard with the FCL (Free Component Library).

Throughout this document, we will refer to functions, types and variables with typewriter font.
Functions and procedures gave their own subsections, and for each function or procedure we have
the following topics:

Declaration The exact declaration of the function.
Description What does the procedure exactly do ?
Errors What errors can occur.

See Also Cross references to other related functions/commands.

0.1 Overview

The Free Component Library is a series of units that implemenent various classes and non-visual
components for use with Free Pascal. They are building blocks for non-visual and visual programs,
such as designed in Lazarus.

The TDataset descendents have been implemented in a way that makes them compatible to the
Delphi implementation of these units. There are other units that have counterparts in Delphi, but
most of them are unique to Free Pascal.

53

Chapter 1

Reference for unit ’ascii85’

1.1 Used units

Table 1.1: Used units by unit "ascii85’

Name Page
Classes ??
sysutils ??

1.2 Overview

The ascii85 provides an ASCII 85 or base 85 decoding algorithm. It is class and stream based: the
TASCII85DecoderStream (54) stream can be used to decode any stream with ASCII8S5 encoded data.

Currently, no ASCII85 encoder stream is available.

It’s usage and purpose is similar to the IDEA (416) or base64 (73) units.

1.3 Constants, types and variables

1.3.1 Types

TASCII85State = (ascInitial, ascOneEncodedChar, ascTwoEncodedChars,
ascThreeEncodedChars, ascFourEncodedChars,
ascNoEncodedChar, ascPrefix)

TASCII85State is for internal use, it contains the current state of the decoder.

1.4 TASCII85DecoderStream
1.4.1 Description
TASCII85DecoderStreamisaread-only stream: it takes an input stream with ASCII 85 encoded

data, and decodes the data as it is read. To this end, it overrides the TSTream.Read (??) method.

54

CHAPTER 1. REFERENCE FOR UNIT *ASCII85’

Table 1.2: Enumeration values for type TASCII85State

Value Explanation
ascFourEncodedChars Four encoded characters in buffer.
asclnitial Initial state

ascNoEncodedChar No encoded characters in buffer.
ascOneEncodedChar One encoded character in buffer.
ascPrefix Prefix processing

ascThreeEncodedChars Three encoded characters in buffer.
ascTwoEncodedChars Two encoded characters in buffer.

The stream cannot be written to, trying to write to the stream will result in an exception.

1.4.2 Method overview

Page Property Description

56 Close Close decoder

56 ClosedP Check if the state is correct

55 Create Create new ASCII 85 decoder stream
55 Decode Decode source byte

56 Destroy Clean up instance
56 Read Read data from stream
57 Seek Set stream position

1.4.3 Property overview

Page Property Access Description
57 BExpectBoundary rw Expect Character

1.4.4 TASCII85DecoderStream.Create
Synopsis: Create new ASCII 85 decoder stream
Declaration: constructor Create (aStream: TStream)
Visibility: published

Description: Create instantiates a new TASCII85DecoderStream instance, and sets aStream as the
source stream.

See also: TASCII85DecoderStream.Destroy (56)

1.4.5 TASCII85DecoderStream.Decode
Synopsis: Decode source byte
Declaration: procedure Decode (aInput: Byte)
Visibility: published

Description: Decode decodes a source byte, and transfers it to the buffer. It is an internal routine and should not
be used directly.

See also: TASCII85DecoderStream.Close (56)

55

CHAPTER 1. REFERENCE FOR UNIT *ASCII85’

1.4.6 TASCII85DecoderStream.Close

Synopsis: Close decoder
Declaration: procedure Close
Visibility: published

Description: Close closes the decoder mechanism: it checks if all data was read and performs a check to see
whether all input data was consumed.

Errors: If the input stream was invalid, an EConvertError exception is raised.

See also: TASCII85DecoderStream.ClosedP (56), TASCII85DecoderStream.Read (56), TASCII85DecoderStream.Destroy
(56)

1.4.7 TASCII85DecoderStream.ClosedP

Synopsis: Check if the state is correct
Declaration: function ClosedP : Boolean
Visibility: published

Description: C1osedP checks if the decoder state is one of ascInitial, ascNoEncodedChar, ascPrefix,
and returns True if it is.

See also: TASCII85DecoderStream.Close (56), TASCII85DecoderStream.BExpectBoundary (57)

1.4.8 TASCII85DecoderStream.Destroy
Synopsis: Clean up instance

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy closes the input stream using Close (56) and cleans up the TASCII85DecoderStream
instance from memory.

Errors: In case the input stream was invalid, an exception may occur.

See also: TASCII85DecoderStream.Close (56)

1.4.9 TASCII85DecoderStream.Read

Synopsis: Read data from stream
Declaration: function Read(var aBuffer;aCount: LongInt) : LongInt; Override
Visibility: public

Description: Read attempts to read aCount bytes from the stream and places them in aBuf fer. It reads only
as much data as is available. The actual number of read bytes is returned.

The read method reads as much data from the input stream as needed to get to aCount bytes, in
general this will be aCount «5/4 bytes.

56

CHAPTER 1. REFERENCE FOR UNIT *ASCII85’

1.4.10 TASCII85DecoderStream.Seek

Synopsis: Set stream position

Declaration: function Seek (aOffset: LongInt;aOrigin: Word) : LongInt; Override
function Seek (const aOffset: Int64;aOrigin: TSeekOrigin) : Int64
; Override; Overload

Visibility: public

Description: Seek sets the stream position. It only allows to set the position to the current position of this file,
and returns then the current position. All other arguments will result in an EReadError exception.

Errors: In case the arguments are different from soCurrent and 0, an EReadError exception will be
raised.

See also: TASCII85DecoderStream.Read (56)

1.4.11 TASCII85DecoderStream.BExpectBoundary

Synopsis: Expect character
Declaration: Property BExpectBoundary : Boolean
Visibility: published
Access: Read,Write
Description: BExpectBoundary is True if a encoded data boundary is to be expected ("5").

See also: TASCII85DecoderStream.ClosedP (56)

1.5 TASCII85EncoderStream

1.5.1 Method overview
Page Property Description

57 Create
58 Destroy
58 Write

1.5.2 Property overview

Page Property Access Description
58 Boundary r
58 Width r

1.5.3 TASCII85EncoderStream.Create

Declaration: constructor Create (ADest: TStream;AWidth: Integer;ABoundary: Boolean)

Visibility: public

57

CHAPTER 1. REFERENCE FOR UNIT *ASCII85’

1.5.4 TASCII85EncoderStream.Destroy

Declaration: destructor Destroy; Override

Visibility: public

1.5.5 TASCII85EncoderStream.Write
Declaration: function Write (const aBuffer;aCount: LongInt)

Visibility: public

1.5.6 TASCII85EncoderStream.Width

Declaration: Property Width : Integer
Visibility: public

Access: Read

1.5.7 TASCII85EncoderStream.Boundary

Declaration: Property Boundary : Boolean
Visibility: public

Access: Read

1.6 TASCII85RingBuffer

1.6.1 Description

LongInt; Override

TASCII85RingBuffer is an internal buffer class: it maintains a memory buffer of 1Kb, for
faster reading of the stream. It should not be necessary to instantiate an instance of this class, the
TASCII85DecoderStream (54) decoder stream will create an instance of this class automatically.

1.6.2 Method overview
Page Property Description

59 Read Read data from the internal buffer
58 Write Write data to the internal buffer

1.6.3 Property overview
Page Property Access Description

59 FillCount r Number of bytes in buffer
59 Size r Size of buffer

1.6.4 TASCII85RingBuffer.Write

Synopsis: Write data to the internal buffer

Declaration: procedure Write (const aBuffer;aSize: Cardinal)

58

CHAPTER 1. REFERENCE FOR UNIT *ASCII85’

Visibility: published

Description: Write writes aSize bytes from aBuf fer to the internal memory buffer. Only as much bytes are
written as will fit in the buffer.

See also: TASCII85RingBuffer.FillCount (59), TASCII85RingBuffer.Read (59), TASCII85RingBuffer.Size
(59)

1.6.5 TASCII85RingBuffer.Read

Synopsis: Read data from the internal buffer
Declaration: function Read(var aBuffer;aSize: Cardinal) : Cardinal
Visibility: published

Description: Read will read aSize bytes from the internal buffer and writes them to aBuf fer. If not enough
bytes are available, only as much bytes as available will be written. The function returns the number
of bytes transferred.

See also: TASCII85RingBuffer.FillCount (59), TASCII85RingBuffer.Write (58), TASCII85RingBuffer.Size
(59)

1.6.6 TASCII85RingBuffer.FillCount
Synopsis: Number of bytes in buffer

Declaration: Property FillCount : Cardinal
Visibility: published
Access: Read
Description: FillCount is the available amount of bytes in the buffer.

See also: TASCII85RingBuffer.Write (58), TASCII85RingBuffer.Read (59), TASCII85RingBuffer.Size (59)

1.6.7 TASCII85RingBuffer.Size
Synopsis: Size of buffer

Declaration: Property Size : Cardinal
Visibility: published
Access: Read
Description: size is the total size of the memory buffer. This is currently hardcoded to 1024Kb.

See also: TASCII85RingBuffer.FillCount (59)

59

Chapter 2

Reference for unit ’AVL_ Tree’

2.1 Used units

Table 2.1: Used units by unit ’AVL_Tree’

Name Page
Classes 2?
sysutils 7?

2.2 Overview

The avl_tree unit implements a general-purpose AVL (balanced) tree class: the TAVLTree (60)
class and it’s associated data node class TAVLTreeNode (69).

2.3 TAVLTree

2.3.1 Description

TAVLTree maintains a balanced AVL tree. The tree consists of TAVLTreeNode (69) nodes, each of
which has a Data pointer associated with it. The TAVLTree component offers methods to balance
and search the tree.

By default, the list is searched with a simple pointer comparison algorithm, but a custom search
mechanism can be specified in the OnCompare (68) property.

60

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.2 Method overview

Page Property Description

65 Add Add a new node to the tree

66 Clear Clears the tree

67 ConsistencyCheck Check the consistency of the tree

68 Create Create a new instance of TAVLTree

65 Delete Delete a node from the tree

68 Destroy Destroy the TAVLTree instance

61 Find Find a data item in the tree.

63 FindHighest Find the highest (rightmost) node in the tree.

62 FindKey Find a data item in the tree using alternate compare mecha-

nism

63 FindLeftMost Find the node most left to a specified data node

64 FindLeftMostKey Find the node most left to a specified key node

64 FindLeftMostSameKey Find the node most left to a specified node with the same data

62 FindLowest Find the lowest (leftmost) node in the tree.

63 FindNearest Find the node closest to the data in the tree

63 FindPointer Search for a data pointer

62 FindPrecessor

64 FindRightMost Find the node most right to a specified node

64 FindRightMostKey Find the node most right to a specified key node

65 FindRightMostSameKey Find the node most right of a specified node with the same

data

62 FindSuccessor Find successor to node

67 FreeAndClear Clears the tree and frees nodes

67 FreeAndDelete Delete a node from the tree and destroy it

66 MoveDataLeftMost Move data to the nearest left element

66 MoveDataRightMost Move data to the nearest right element

65 Remove Remove a data item from the list.

66 RemovePointer Remove a pointer item from the list.

68 ReportAsString Return the tree report as a string

68 SetNodeManager

67 WriteReportToStream Write the contents of the tree consistency check to the stream
2.3.3 Property overview

Page Property Access Description

69 Count r Number of nodes in the tree.

68 OnCompare rw Compare function used when comparing nodes

2.3.4 TAVLTree.Find

Synopsis: Find a data item in the tree.

Declaration: function Find (Data: Pointer) TAVLTreeNode

Visibility: public

Description: Find uses the default OnCompare (68) comparing function to find the Data pointer in the tree. It
returns the TAVLTreeNode instance that results in a successful compare with the Data pointer, or
Nil if none is found.

The default OnCompare function compares the actual pointers, which means that by default Find
will give the same result as FindPointer (63).

61

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

See also: TAVLTree.OnCompare (68), TAVLTree.FindKey (62)

2.3.5 TAVLTree.FindKey

Synopsis: Find a data item in the tree using alternate compare mechanism

Declaration: function FindKey (Key: Pointer;OnCompareKeyWithData: TListSortCompare)
TAVLTreeNode

Visibility: public

Description: FindKey uses the specified OnCompareKeyWithData comparing function to find the Key
pointer in the tree It returns the TAVLTreeNode instance that matches the Data pointer, or Ni1 if
none is found.

See also: TAVLTree.OnCompare (68), TAVLTree.Find (61)

2.3.6 TAVLTree.FindSuccessor

Synopsis: Find successor to node
Declaration: function FindSuccessor (ANode: TAVLTreeNode) : TAVLTreeNode
Visibility: public

Description: FindSuccessor returns the successor to ANode: this is the leftmost node in the right subtree, or
the leftmost node above the node ANode. This can of course be Nil.

This method is used when a node must be inserted at the rightmost position.

See also: TAVLTree.FindPrecessor (62), TAVLTree.MoveDataRightMost (66)

2.3.7 TAVLTree.FindPrecessor
Synopsis:
Declaration: function FindPrecessor (ANode: TAVLTreeNode) : TAVLTreeNode
Visibility: public

Description: FindPrecessor returns the successor to ANode: this is the rightmost node in the left subtree, or
the rightmost node above the node ANode. This can of course be Nil.

This method is used when a node must be inserted at the leftmost position.

See also: TAVLTree.FindSuccessor (62), TAVLTree.MoveDatalLeftMost (66)

2.3.8 TAVLTree.FindLowest

Synopsis: Find the lowest (leftmost) node in the tree.
Declaration: function FindLowest : TAVLTreeNode
Visibility: public

Description: FindLowest returns the leftmost node in the tree, i.e. the node which is reached when descending
from the rootnode via the left (??) subtrees.

See also: TAVLTree.FindHighest (63)

62

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.9 TAVLTree.FindHighest
Synopsis: Find the highest (rightmost) node in the tree.

Declaration: function FindHighest : TAVLTreeNode
Visibility: public

Description: FindHighest returns the rightmost node in the tree, i.e. the node which is reached when descend-
ing from the rootnode via the Right (??) subtrees.

See also: TAVLTree.FindLowest (62)

2.3.10 TAVLTree.FindNearest

Synopsis: Find the node closest to the data in the tree
Declaration: function FindNearest (Data: Pointer) : TAVLTreeNode
Visibility: public

Description: FindNearest searches the node in the data tree that is closest to the specified Data. If Data
appears in the tree, then its node is returned.

See also: TAVLTree.FindHighest (63), TAVLTree.FindLowest (62), TAVLTree.Find (61), TAVLTree.FindKey
(62)

2.3.11 TAVLTree.FindPointer

Synopsis: Search for a data pointer
Declaration: function FindPointer (Data: Pointer) : TAVLTreeNode
Visibility: public

Description: FindPointer searches for a node where the actual data pointer equals Data. This is a more fine
search than find (61), where a custom compare function can be used.

The default OnCompare (68) compares the data pointers, so the default Find will return the same
node as FindPointer

See also: TAVLTree.Find (61), TAVLTree.FindKey (62)

2.3.12 TAVLTree.FindLeftMost

Synopsis: Find the node most left to a specified data node
Declaration: function FindLeftMost (Data: Pointer) : TAVLTreeNode
Visibility: public

Description: FindLeftMost finds the node most left from the Data node. It starts at the preceding node for
Data and tries to move as far right in the tree as possible.

This operation corresponds to finding the previous item in a list.

See also: TAVLTree.FindRightMost (64), TAVLTree.FindLeftMostKey (64), TAVLTree.FindRightMostKey
(64)

63

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.13 TAVLTree.FindRightMost

Synopsis: Find the node most right to a specified node
Declaration: function FindRightMost (Data: Pointer) : TAVLTreeNode
Visibility: public

Description: FindRightMost finds the node most right from the Data node. It starts at the succeding node
for Data and tries to move as far left in the tree as possible.

This operation corresponds to finding the next item in a list.

See also: TAVLTree.FindLeftMost (63), TAVLTree.FindLeftMostKey (64), TAVLTree.FindRightMostKey (64)

2.3.14 TAVLTree.FindLeftMostKey

Synopsis: Find the node most left to a specified key node

Declaration: function FindLeftMostKey (Key: Pointer;
OnCompareKeyWithData: TListSortCompare)
TAVLTreeNode

Visibility: public

Description: FindLeftMostKey finds the node most left from the node associated with Key. It starts at the
preceding node for Key and tries to move as far left in the tree as possible.

See also: TAVLTree.FindLeftMost (63), TAVLTree.FindRightMost (64), TAVLTree.FindRightMostKey (64)

2.3.15 TAVLTree.FindRightMostKey

Synopsis: Find the node most right to a specified key node

Declaration: function FindRightMostKey (Key: Pointer;
OnCompareKeyWithData: TListSortCompare)
TAVLTreeNode

Visibility: public

Description: FindRightMostKey finds the node most left from the node associated with Key. It starts at the
succeding node for Key and tries to move as far right in the tree as possible.

See also: TAVLTree.FindLeftMost (63), TAVLTree.FindRightMost (64), TAVLTree.FindLeftMostKey (64)

2.3.16 TAVLTree.FindLeftMostSameKey

Synopsis: Find the node most left to a specified node with the same data
Declaration: function FindLeftMostSameKey (ANode: TAVLTreeNode) : TAVLTreeNode
Visibility: public

Description: FindLe fMost SameKey finds the node most left from and with the same data as the specified
node ANode.

See also: TAVLTree.FindLeftMost (63), TAVLTree.FindLeftMostKey (64), TAVLTree.FindRightMostSameKey
(65)

64

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.17 TAVLTree.FindRightMostSameKey

Synopsis: Find the node most right of a specified node with the same data
Declaration: function FindRightMostSameKey (ANode: TAVLTreeNode) : TAVLTreeNode
Visibility: public

Description: FindRighMost SameKey finds the node most right from and with the same data as the specified
node ANode.

See also: TAVLTree.FindRightMost (64), TAVLTree.FindRightMostKey (64), TAVLTree.FindLeftMostSameKey
(64

2.3.18 TAVLTree.Add
Synopsis: Add a new node to the tree

Declaration: procedure Add (ANode: TAVLTreeNode)
function Add(Data: Pointer) : TAVLTreeNode

Visibility: public

Description: Add adds a new Data or Node to the tree. It inserts the node so that the tree is maximally balanced
by rebalancing the tree after the insert. In case a data pointer is added to the tree, then the node that
was created is returned.

See also: TAVLTree.Delete (65), TAVLTree.Remove (65)

2.3.19 TAVLTree.Delete

Synopsis: Delete a node from the tree
Declaration: procedure Delete (ANode: TAVLTreeNode)
Visibility: public

Description: Delete removes the node from the tree. The node is not freed, but is passed to a TAVLTreeNode-
MemManager (69) instance for future reuse. The data that the node represents is also not freed.

The tree is rebalanced after the node was deleted.

See also: TAVLTree.Remove (65), TAVLTree.RemovePointer (66), TAVLTree.Clear (66)

2.3.20 TAVLTree.Remove

Synopsis: Remove a data item from the list.
Declaration: procedure Remove (Data: Pointer)
Visibility: public

Description: Remove finds the node associated with Dat a using find (61) and, if found, deletes it from the tree.
Only the first occurrence of Data will be removed.

See also: TAVLTree.Delete (65), TAVLTree.RemovePointer (66), TAVLTree.Clear (66), TAVLTree.Find (61)

65

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.21 TAVLTree.RemovePointer

Synopsis: Remove a pointer item from the list.
Declaration: procedure RemovePointer (Data: Pointer)
Visibility: public

Description: Remove uses FindPointer (63) to find the node associated with the pointer Data and, if found,
deletes it from the tree. Only the first occurrence of Data will be removed.

See also: TAVLTree.Remove (65), TAVLTree.Delete (65), TAVLTree.Clear (66)

2.3.22 TAVLTree.MoveDatalLeftMost

Synopsis: Move data to the nearest left element
Declaration: procedure MoveDatalLeftMost (var ANode: TAVLTreeNode)
Visibility: public

Description: MoveDataLeftMost moves the data from the node ANode to the nearest left location relative to
Anode. It returns the new node where the data is positioned. The data from the former left node will
be switched to ANode.

This operation corresponds to switching the current with the previous element in a list.

See also: TAVLTree.MoveDataRightMost (66)

2.3.23 TAVLTree.MoveDataRightMost

Synopsis: Move data to the nearest right element
Declaration: procedure MoveDataRightMost (var ANode: TAVLTreeNode)
Visibility: public

Description: MoveDataRightMost moves the data from the node ANode to the rightmost location relative to
Anode. It returns the new node where the data is positioned. The data from the former rightmost
node will be switched to ANode.

This operation corresponds to switching the current with the next element in a list.

See also: TAVLTree.MoveDataleftMost (66)

2.3.24 TAVLTree.Clear
Synopsis: Clears the tree

Declaration: procedure Clear
Visibility: public

Description: Clear deletes all nodes from the tree. The nodes themselves are not freed, and the data pointer in
the nodes is also not freed.

If the node’s data must be freed as well, use TAVLTree.FreeAndClear (67) instead.
See also: TAVLTree.FreeAndClear (67), TAVLTree.Delete (65)

66

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.25 TAVLTree.FreeAndClear
Synopsis: Clears the tree and frees nodes
Declaration: procedure FreeAndClear
Visibility: public

Description: FreeAndClear deletes all nodes from the tree. The data pointer in the nodes is assumed to be an
object, and is freed prior to deleting the node from the tree.

See also: TAVLTree.Clear (66), TAVLTree.Delete (65), TAVLTree.FreeAndDelete (67)

2.3.26 TAVLTree.FreeAndDelete

Synopsis: Delete a node from the tree and destroy it
Declaration: procedure FreeAndDelete (ANode: TAVLTreeNode)
Visibility: public

Description: FreeAndDelete deletes a node from the tree, and destroys the data pointer: The data pointer in
the nodes is assumed to be an object, and is freed by calling its destructor.

See also: TAVLTree.Clear (66), TAVLTree.Delete (65), TAVLTree.FreeAndClear (67)

2.3.27 TAVLTree.ConsistencyCheck

Synopsis: Check the consistency of the tree
Declaration: function ConsistencyCheck : Integer
Visibility: public

Description: ConsistencyCheck checks the correctness of the tree. It returns O if the tree is internally con-
sistent, and a negative number if the tree contais an error somewhere.

-1The Count property doesn’t match the actual node count
-2A left node does not point to the correct parent

-3A left node is larger than parent node

-4A right node does not point to the correct parent

-5A right node is less than parent node

-6The balance of a node is not calculated correctly

See also: TAVLTree.WriteReportToStream (67)

2.3.28 TAVLTree.WriteReportToStream

Synopsis: Write the contents of the tree consistency check to the stream
Declaration: procedure WriteReportToStream(s: TStream;var StreamSize: Inté64)
Visibility: public

Description: WriteReportToStream writes a visual representation of the tree to the stream S. The total
number of written bytes is returnes in StreamSize. This method is only useful for debugging
purposes.

See also: TAVLTree.ConsistencyCheck (67)

67

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.29 TAVLTree.ReportAsString

Synopsis: Return the tree report as a string
Declaration: function ReportAsString : String
Visibility: public
Description: ReportAsString calls WriteReportToStream (67) and retuns the stream data as a string.

See also: TAVLTree.WriteReportToStream (67)

2.3.30 TAVLTree.SetNodeManager

Declaration: procedure SetNodeManager (newmgr: TBaseAVLTreeNodeManager)

Visibility: public

2.3.31 TAVLTree.Create

Synopsis: Create a new instance of TAVLTree

Declaration: constructor Create (OnCompareMethod: TListSortCompare)
constructor Create

Visibility: public

Description: Create initializes a new instance of TAVLTree (60). An alternate OnCompare (60) can be pro-
vided: the default OnCompare method compares the 2 data pointers of a node.

See also: OnCompare (60)

2.3.32 TAVLTree.Destroy

Synopsis: Destroy the TAVLTree instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy clears the nodes (the node data is not freed) and then destroys the TAVLTree instance.

See also: TAVLTree.Create (68), TAVLTree.Clean (60)

2.3.33 TAVLTree.OnCompare

Synopsis: Compare function used when comparing nodes
Declaration: Property OnCompare : TListSortCompare
Visibility: public
Access: Read,Write

Description: OnCompare is the comparing function used when the data of 2 nodes must be compared. By
default, the function simply compares the 2 data pointers. A different function can be specified on
creation.

See also: TAVLTree.Create (68)

68

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.3.34 TAVLTree.Count
Synopsis: Number of nodes in the tree.
Declaration: Property Count : Integer
Visibility: public
Access: Read

Description: Count is the number of nodes in the tree.

2.4 TAVLTreeNode

2.4.1 Description

TAVLTreeNode represents a single node in the AVL tree. It contains references to the other nodes
in the tree, and provides a Data (??) pointer which can be used to store the data, associated with the
node.

2.4.2 Method overview

Page Property Description
69 Clear Clears the node’s data
69 TreeDepth Level of the node in the tree below

2.4.3 TAVLTreeNode.Clear
Synopsis: Clears the node’s data
Declaration: procedure Clear
Visibility: public
Description: Clear clears all pointers and references in the node. It does not free the memory pointed to by
these references.

2.44 TAVLTreeNode.TreeDepth
Synopsis: Level of the node in the tree below
Declaration: function TreeDepth : Integer
Visibility: public
Description: TreeDepth is the height of the node: this is the largest height of the left or right nodes, plus 1. If
no nodes appear below this node (1eft and Right are Nil), the depthis 1.

See also: TAVLTreeNode.Balance (??)

2.5 TAVLTreeNodeMemManager

2.5.1 Description

TAVLTreeNodeMemManager is an internal object used by the avl_tree unit. Normally, no in-
stance of this object should be created: An instance is created by the unit initialization code, and
freed when the unit is finalized.

69

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.5.2 Method overview

Page Property Description

70 Clear Frees all unused nodes

71 Create Create a new instance of TAVLTreeNodeMemManager
71 Destroy

70 DisposeNode Return a node to the free list

70 NewNode Create a new TAVLTreeNode instance

2.5.3 Property overview

Page Property Access Description

72 Count r Number of nodes in the list.

71 MaximumFreeNodeRatio rw Maximum amount of free nodes in the list
71 MinimumFreeNode ™™ Minimum amount of free nodes to be kept.

2.5.4 TAVLTreeNodeMemManager.DisposeNode

Synopsis: Return a node to the free list
Declaration: procedure DisposeNode (ANode: TAVLTreeNode); Override
Visibility: public

Description: DisposeNode is used to put the node ANode in the list of free nodes, or optionally destroy it if
the free list is full. After a call to DisposeNode, ANode must be considered invalid.

See also: TAVLTreeNodeMemManager.NewNode (70)

2.5.5 TAVLTreeNodeMemManager.NewNode

Synopsis: Create a new TAVLTreeNode instance
Declaration: function NewNode : TAVLTreeNode; Override
Visibility: public

Description: NewNode returns a new TAVLTreeNode (69) instance. If there is a node in the free list, itare
returned. If no more free nodes are present, a new node is created.

See also: TAVLTreeNodeMemManager.DisposeNode (70)

2.5.6 TAVLTreeNodeMemManager.Clear

Synopsis: Frees all unused nodes
Declaration: procedure Clear
Visibility: public
Description: Clear removes all unused nodes from the list and frees them.

See also: TAVLTreeNodeMemManager.MinimumFreeNode (71), TAVLTreeNodeMemManager.MaximumFreeNodeRatio
(71)

70

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.5.7 TAVLTreeNodeMemManager.Create

Synopsis: Create a new instance of TAVL TreeNodeMemManager
Declaration: constructor Create
Visibility: public
Description: Create initializes a new instance of TAVLTreeNodeMemManager.

See also: TAVLTreeNodeMemManager.Destroy (71)

2.5.8 TAVLTreeNodeMemManager.Destroy
Synopsis:
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy calls clear to clean up the free node list and then calls the inherited destroy.

See also: TAVLTreeNodeMemManager.Create (71)

2.5.9 TAVLTreeNodeMemManager.MinimumFreeNode

Synopsis: Minimum amount of free nodes to be kept.
Declaration: Property MinimumFreeNode : Integer
Visibility: public
Access: Read,Write
Description: MinimumFreeNode is the minimum amount of nodes that must be kept in the free nodes list.

See also: TAVLTreeNodeMemManager.MaximumFreeNodeRatio (71)

2.5.10 TAVLTreeNodeMemManager.MaximumFreeNodeRatio

Synopsis: Maximum amount of free nodes in the list
Declaration: Property MaximumFreeNodeRatio : Integer
Visibility: public
Access: Read,Write

Description: MaximumFreeNodeRatio is the maximum amount of free nodes that should be kept in the list:
if a node is disposed of, then the ratio of the free nodes versus the total amount of nodes is checked,
and if it is less than the MaximumFreeNodeRatio ratio but larger than the minimum amount of
free nodes, then the node is disposed of instead of added to the free list.

See also: TAVLTreeNodeMemManager.Count (72), TAVLTreeNodeMemManager.MinimumFreeNode (71)

71

CHAPTER 2. REFERENCE FOR UNIT "AVL_TREE’

2.5.11 TAVLTreeNodeMemManager.Count
Synopsis: Number of nodes in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read
Description: Count is the total number of nodes in the list, used or not.

See also: TAVLTreeNodeMemManager.MinimumFreeNode (71), TAVLTreeNodeMemManager.MaximumFreeNodeRatio
(71

2.6 TBaseAVLTreeNodeManager

2.6.1 Method overview

Page Property Description
72 DisposeNode
72 NewNode

2.6.2 TBaseAVLTreeNodeManager.DisposeNode

Declaration: procedure DisposeNode (ANode: TAVLTreeNode); Virtual; Abstract

Visibility: public

2.6.3 TBaseAVLTreeNodeManager.NewNode
Declaration: function NewNode : TAVLTreeNode; Virtual; Abstract

Visibility: public

72

Chapter 3

Reference for unit ’base64’

3.1 Used units

Table 3.1: Used units by unit base64’

Name Page
Classes 7?
sysutils ??

3.2 Overview

base64 implements base64 encoding (as used for instance in MIME encoding) based on streams. it
implements 2 streams which encode or decode anything written or read from it. The source or the des-
tination of the encoded data is another stream. 2 classes are implemented for this: TBase64EncodingStream
(76) for encoding, and TBase64DecodingStream (74) for decoding.

The streams are designed as plug-in streams, which can be placed between other streams, to provide
base64 encoding and decoding on-the-fly...

3.3 Constants, types and variables

3.3.1 Types

TBase64DecodingMode = (bdmStrict, bdmMIME)

Table 3.2: Enumeration values for type TBase64DecodingMode

Value Explanation
bdmMIME MIME encoding
bdmStrict Strict encoding

TBaseb6t4DecodingMode determines the decoding algorithm used by TBase64DecodingStream
(74). There are 2 modes:

73

CHAPTER 3. REFERENCE FOR UNIT 'BASE64’

bdmStrict Strict mode, which follows RFC3548 and rejects any characters outside of base64 alpha-
bet. In this mode only up to two ’=’ characters are accepted at the end. It requires the input to
have a Size being a multiple of 4, otherwise an EBase64DecodingException (74) exception is
raised.

bdmMime MIME mode, which follows RFC2045 and ignores any characters outside of base64
alphabet. In this mode any ’=’ is seen as the end of string, it handles apparently truncated input
streams gracefully.

3.4 EBase64DecodingException

3.4.1 Description

EBase64DecodeException is raised when the stream contains errors against the encoding for-
mat. Whether or not this exception is raised depends on the mode in which the stream is decoded.

3.5 TBase64DecodingStream

3.5.1 Description

TBase64DecodingStream can be used to read data from a stream (the source stream) that con-
tains Base64 encoded data. The data is read and decoded on-the-fly.

The decoding stream is read-only, and provides a limited forward-seek capability.

3.5.2 Method overview
Page Property Description

74 Create Create a new instance of the TBase64DecodingStream class
75 Read Read and decrypt data from the source stream

75 Reset Reset the stream

75 Seek Set stream position.

3.5.3 Property overview

Page Property Access Description
76 EOF r
76 Mode ™wW Decoding mode

3.5.4 TBase64DecodingStream.Create

Synopsis: Create a new instance of the TBase64DecodingStream class

Declaration: constructor Create (ASource: TStream)
constructor Create (ASource: TStream;AMode: TBase64DecodingMode)

Visibility: public

Description: Create creates a new instance of the TBase64DecodingStreamn class. It stores the source
stream ASource for reading the data from.

The optional AMode parameter determines the mode in which the decoding will be done. If omitted,
bdmMIME is used.

74

CHAPTER 3. REFERENCE FOR UNIT 'BASE64’

See also: TBase64EncodingStream.Create (76), TBase64DecodingMode (73)

3.5.5 TBase64DecodingStream.Reset

Synopsis: Reset the stream
Declaration: procedure Reset
Visibility: public
Description: Reset resets the data as if it was again on the start of the decoding stream.
Errors: None.

See also: TBase64DecodingStream.EOF (76), TBase64DecodingStream.Read (75)

3.5.6 TBase64DecodingStream.Read

Synopsis: Read and decrypt data from the source stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read reads encrypted data from the source stream and stores this data in Buf fer. At most Count
bytes will be stored in the buffer, but more bytes will be read from the source stream: the encoding
algorithm multiplies the number of bytes.

The function returns the number of bytes stored in the buffer.
Errors: If an error occurs during the read from the source stream, an exception may occur.

See also: TBase64DecodingStream. Write (74), TBase64DecodingStream.Seek (75), #rtl.classes. TStream.Read
(??)

3.5.7 TBase64DecodingStream.Seek

Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek sets the position of the stream. In the TBase64DecodingStream class, the seek oper-
ation is forward only, it does not support backward seeks. The forward seek is emulated by reading
and discarding data till the desired position is reached.

For an explanation of the parameters, see TStream.Seek (??)
Errors: In case of an unsupported operation, an ESt reamError exception is raised.

See also: TBase64DecodingStream.Read (75), TBase64DecodingStream. Write (74), TBase64EncodingStream.Seek
(77), #rtl.classes. TStream.Seek (??)

75

CHAPTER 3. REFERENCE FOR UNIT 'BASE64’

3.5.8 TBase64DecodingStream.EOF
Synopsis:
Declaration: Property EOF : Boolean
Visibility: public
Access: Read

Description:

3.5.9 TBase64DecodingStream.Mode
Synopsis: Decoding mode
Declaration: Property Mode : TBase64DecodingMode
Visibility: public
Access: Read,Write

Description: Mode is the mode in which the stream is read. It can be set when creating the stream or at any time
afterwards.

See also: TBase64DecodingStream (74)

3.6 TBase64EncodingStream

3.6.1 Description

TBaseb64EncodingStream can be used to encode data using the base64 algorithm. At creation
time, a destination stream is specified. Any data written to the TBase64EncodingStream in-
stance will be base64 encoded, and subsequently written to the destination stream.

The TBase64EncodingStream stream is a write-only stream. Obviously it is also not seekable.
It is meant to be included in a chain of streams.

3.6.2 Method overview
Page Property Description

76 Create Create a new instance of the TBase64EncodingStream class.
77 Destroy Remove a TBase64EncodingStream instannce from memory
77 Seek Position the stream

77 Write Write data to the stream.

3.6.3 TBase64EncodingStream.Create

Synopsis: Create a new instance of the TBase64EncodingStream class.
Declaration: constructor Create (ASource: TStream)
Visibility: public

Description: Create instantiates a new TBase64EncodingStream class. The ASource stream is stored
and used to write the encoded data to.

See also: TBase64EncodingStream.Destroy (77), TBase64DecodingStream.Create (74)

76

CHAPTER 3. REFERENCE FOR UNIT 'BASE64’

3.6.4 TBase64EncodingStream.Destroy

Synopsis: Remove a TBase64EncodingSt ream instannce from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes any remaining output and then removes the TBase64EncodingStream in-
stance from memory by calling the inherited destructor.

Errors: An exception may be raised if the destination stream no longer exists or is closed.

See also: TBase64EncodingStream.Create (76)

3.6.5 TBase64EncodingStream.Write
Synopsis: Write data to the stream.

Declaration: function Write (const Buffer;Count: LongInt) : LonglInt; Override
Visibility: public

Description: Write encodes Count bytes from Buffer using the Base64 mechanism, and then writes the
encoded data to the destination stream. It returns the number of bytes from Buffer that were
actually written. Note that this is not the number of bytes written to the destination stream: the
base64 mechanism writes more bytes to the destination stream.

Errors: If there is an error writing to the destination stream, an error may occur.

See also: TBase64EncodingStream.Seek (77), TBase64EncodingStream.Read (76), TBase64DecodingStream. Write
(74), #rtl.classes. TStream.Write (??)

3.6.6 TBase64EncodingStream.Seek

Synopsis: Position the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: seek always raises an ESt reamError exception unless the arguments it received it don’t change
the current file pointer position. The encryption stream is not seekable.

Errors: An EStreamError error is raised.

See also: TBase64EncodingStream.Read (76), TBase64EncodingStream. Write (77), #rtl.classes. TStream.Seek
27

77

Chapter 4

Reference for unit ’BlowFish’

4.1 Used units

Table 4.1: Used units by unit ’'BlowFish’

Name Page
Classes 2?
sysutils 7?

4.2 Overview

The BlowFish implements a class TBlowFish (79) to handle blowfish encryption/descryption of
memory buffers, and 2 TStream (??) descendents TBlowFishDeCryptStream (80) which descrypts
any data that is read from it on the fly, as well as TBlowFishEnCryptStream (81) which encrypts the
data that is written to it on the fly.

4.3 Constants, types and variables

4.3.1 Constants
BFRounds = 16

Number of rounds in blowfish encryption.

4.3.2 Types

PBlowFishKey = "TBlowFishKey

PBlowFishKey is a simple pointer to a TBlowFishKey (79) array.

TBFBlock = Array[0..1] of LongInt

78

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

TBFBlock is the basic data structure used by the encrypting/decrypting routines in TBlowFish (79),
TBlowFishDeCryptStream (80) and TBlowFishEnCryptStream (81). It is the basic encryption/de-
cryption block for all encrypting/decrypting: all encrypting/decrypting happens on a TBFBlock
structure.

TBlowFishKey = Array[0..55] of Byte

TBlowFishKey is a data structure which keeps the encryption or decryption key for the TBlowFish
(79), TBlowFishDeCryptStream (80) and TBlowFishEnCryptStream (81) classes. It should be filled
with the encryption key and passed to the constructor of one of these classes.

4.4 EBlowFishError

4.4.1 Description

EBlowFishError isused by the TBlowFishStream (82), TBlowFishEncryptStream (81) and TBlow-
FishDecryptStream (80) classes to report errors.

4.5 TBlowFish

4.5.1 Description

TBlowFish is a simple class that can be used to encrypt/decrypt a single TBFBlock (79) data block
with the Encrypt (79) and Decrypt (80) calls. It is used internally by the TBlowFishEnCryptStream
(81) and TBlowFishDeCryptStream (80) classes to encrypt or decrypt the actual data.

4.5.2 Method overview

Page Property Description

79 Create Create a new instance of the TB1owFish class
80 Decrypt Decrypt a block

79 Encrypt Encrypt a block

4.5.3 TBlowFish.Create
Synopsis: Create a new instance of the TB1owF ish class

Declaration: constructor Create (Key: TBlowFishKey;KeySize: Integer)
Visibility: public

Description: Create initializes a new instance of the TBLlowFish class: it stores the key Key in the internal
data structures so it can be used in later calls to Encrypt (79) and Decrypt (80).

See also: TBlowFish.Encrypt (79), TBlowFish.Decrypt (80)

4.5.4 TBlowFish.Encrypt
Synopsis: Encrypt a block

Declaration: procedure Encrypt (var Block: TBFBlock)

79

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

Visibility: public
Description: Encrypt encrypts the data in Block (always 8 bytes) using the key (79) specified when the

TBlowF ish instance was created.

See also: TBlowFishKey (79), TBlowFish.Decrypt (80), TBlowFish.Create (79)

4.5.5 TBlowFish.Decrypt
Synopsis: Decrypt a block

Declaration: procedure Decrypt (var Block: TBFBlock)
Visibility: public

Description: ncrypt decrypts the datain B1ock (always 8 bytes) using the key (79) specified when the TB1owFish
instance was created. The data must have been encrypted with the same key and the Encrypt (79)
call.

See also: TBlowFishKey (79), TBlowFish.Encrypt (79), TBlowFish.Create (79)

4.6 TBlowFishDeCryptStream

4.6.1 Description

The TBlowFishDecryptStream provides On-the-fly Blowfish decryption: all data that is read
from the source stream is decrypted before it is placed in the output buffer. The source stream must
be specified when the TBlowFishDecryptStreaminstance is created. The Decryption key must
also be created when the stream instance is created, and must be the same key as the one used when
encrypting the data.

This is a read-only stream: it is seekable only in a forward direction, and data can only be read from
it, writing is not possible. For writing data so it is encrypted, the TBlowFishEncryptStream (81)
stream must be used.

4.6.2 Method overview

Page Property Description
80 Read Read data from the stream
81 Seek Set the stream position.

4.6.3 TBlowFishDeCryptStream.Read

Synopsis: Read data from the stream
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read reads Count bytes from the source stream, decrypts them using the key provided when the
TBlowFishDeCryptStream instance was created, and writes the decrypted data to Buffer

See also: TBlowFishStream.Create (83), TBlowFishEncryptStream (81)

80

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

4.6.4 TBlowFishDeCryptStream.Seek

Synopsis: Set the stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: seek emulates a forward seek by reading and discarding data. The discarded data is lost. Since it is
a forward seek, this means that only soFromCurrent can be specified for Origin with a positive
(or zero) Of fset value. All other values will result in an exception. The function returns the new
position in the stream.

Errors: If any other combination of Of fset and Origin than the allowed combination is specified, then
an EBlowFishError (79) exception will be raised.

See also: TBlowFishDeCryptStream.Read (80), EBlowFishError (79)

4.7 TBlowFishEncryptStream

4.7.1 Description

The TBlowFishEncryptStream provides On-the-fly Blowfish encryption: all data that is writ-
ten to it is encrypted and then written to a destination stream, which must be specified when the
TBlowFishEncryptStream instance is created. The encryption key must also be created when
the stream instance is created.

This is a write-only stream: it is not seekable, and data can only be written to it, reading is not
possible. For reading encrypted data, the TBlowFishDecryptStream (80) stream must be used.

4.7.2 Method overview
Page Property Description

81 Destroy Free the TBlowFishEncryptStream
82 Flush Flush the encryption buffer

82 Seek Set the position in the stream

81 Write Write data to the stream

4.7.3 TBlowFishEncryptStream.Destroy

Synopsis: Free the TBlowFishEncryptStream
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes the encryption buffer, and writes it to the destination stream. After that the
Inherited destructor is called to clean up the TBlowFishEncryptStream instance.

See also: TBlowFishEncryptStream.Flush (82), TBlowFishStream.Create (83)

4.7.4 TBlowFishEncryptStream.Write

Synopsis: Write data to the stream

Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override

81

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

Visibility: public

Description: Write will encrypt and write Count bytes from Buffer to the destination stream. The function
returns the actual number of bytes written. The data is not encrypted in-place, but placed in a special
buffer for encryption.

Data is always written 4 bytes at a time, since this is the amount of bytes required by the Blowfish
algorithm. If no multiple of 4 was written to the destination stream, the Flush (82) mechanism can
be used to write the remaining bytes.

See also: TBlowFishEncryptStream.Read (81)

4.7.5 TBlowFishEncryptStream.Seek

Synopsis: Set the position in the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Read will raise an EBlowFishError exception: TBlowFishEncryptStreamisa write-only
stream, and cannot be positioned.

Errors: Calling this function always results in an EBlowFishError (79) exception.

See also: TBlowFishEncryptStream.Write (81)

4.7.6 TBlowFishEncryptStream.Flush
Synopsis: Flush the encryption buffer

Declaration: procedure Flush
Visibility: public
Description: F1ush writes the remaining data in the encryption buffer to the destination stream.

For efficiency, data is always written 4 bytes at a time, since this is the amount of bytes required
by the Blowfish algorithm. If no multiple of 4 was written to the destination stream, the Flush
mechanism can be used to write the remaining bytes.

Flush is called automatically when the stream is destroyed, so there is no need to call it after all
data was written and the stream is no longer needed.

See also: TBlowFishEncryptStream.Write (81), TBFBlock (79)

4.8 TBlowFishStream

4.8.1 Description

TBlowFishStream is an abstract class which is used as a parent class for TBlowFishEncrypt-
Stream (81) and TBlowFishDecryptStream (80). It simply provides a constructor and storage for a
TBlowFish (79) instance and for the source or destination stream.

Do not create an instance of TBlowFishStream directly. Instead create one of the descendent
classes TBlowFishEncryptStreamor TBlowFishDecryptStream.

82

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

4.8.2 Method overview

Page Property Description
83 Create Create a new instance of the TBlowFishStream class
83 Destroy Destroy the TBlowFishStream instance.

4.8.3 Property overview

Page Property Access Description
83 BlowFish r Blowfish instance used when encrypting/descrypting

4.8.4 TBlowFishStream.Create

Synopsis: Create a new instance of the TBlowFishStream class

Declaration: constructor Create (AKey: TBlowFishKey;AKeySize: Byte;Dest: TStream)
constructor Create (const KeyPhrase: String;Dest: TStream)

Visibility: public

Description: Create initializes a new instance of TBlowFishStream, and creates an internal instance of
TBlowFish (79) using AKey and AKeySize. The Dest stream is stored so the descendent classes
can refer to it.

Do not create an instance of TBlowFishStream directly. Instead create one of the descendent
classes TBlowFishEncryptStreamor TBlowFishDecryptStream.

The overloaded version with the KeyPhrase string argument is used for easy access: it computes
the blowfish key from the given string.

See also: TBlowFishEncryptStream (81), TBlowFishDecryptStream (80), TBlowFish (79)

4.8.5 TBlowFishStream.Destroy

Synopsis: Destroy the TB1owFishStream instance.
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy cleans up the internal TBlowFish (79) instance.
Errors:

See also: TBlowFishStream.Create (83), TBlowFish (79)

4.8.6 TBlowFishStream.BlowFish

Synopsis: Blowfish instance used when encrypting/descrypting
Declaration: Property BlowFish : TBlowFish
Visibility: public
Access: Read

Description: Bl owF i sh is the TBlowFish (79) instance which is created when the TB1owF i shSt ream class is
initialized. Normally it should not be used directly, it’s intended for access by the descencent classes
TBlowFishEncryptStream (81) and TBlowFishDecryptStream (80).

83

CHAPTER 4. REFERENCE FOR UNIT 'BLOWFISH’

See also: TBlowFishEncryptStream (81), TBlowFishDecryptStream (80), TBlowFish (79)

84

Chapter 5

Reference for unit ’bufstream’

5.1 Used units

Table 5.1: Used units by unit "bufstream’

Name Page
Classes ??
sysutils 2?

5.2 Overview

BufStream implements two one-way buffered streams: the streams store all data from (or for) the
source stream in a memory buffer, and only flush the buffer when it’s full (or refill it when it’s empty).
The buffer size can be specified at creation time. 2 streams are implemented: TReadBufStream (88)
which is for reading only, and TWriteBufStream (88) which is for writing only.

Buffered streams can help in speeding up read or write operations, especially when a lot of small
read/write operations are done: it avoids doing a lot of operating system calls.

5.3 Constants, types and variables

5.3.1 Constants
DefaultBufferCapacity : Integer = 16

If no buffer size is specified when the stream is created, then this size is used.

5.4 TBufStream
5.4.1 Description

TBufStream is the common ancestor for the TReadBufStream (88) and TWriteBufStream (88)
streams. It completely handles the buffer memory management and position management. An in-

85

CHAPTER 5. REFERENCE FOR UNIT 'BUFSTREAM’

stance of TBufStream should never be created directly. It also keeps the instance of the source
stream.

5.4.2 Method overview

Page Property Description
86 Create Create a new TBuf St ream instance.
86 Destroy Destroys the TBuf St ream instance

5.4.3 Property overview
Page Property Access Description

86 Buffer r The current buffer

87 BufferPos r Current buffer position.

87 BufferSize r Amount of data in the buffer
87 Capacity w Current buffer capacity

5.4.4 TBufStream.Create

Synopsis: Create a new TBuf St ream instance.

Declaration: constructor Create (ASource: TStream;ACapacity: Integer)
constructor Create (ASource: TStream)

Visibility: public

Description: Create creates a new TBufStream instance. A buffer of size ACapacity is allocated, and the
ASource source (or destination) stream is stored. If no capacity is specified, then DefaultBufferCa-

pacity (85) is used as the capacity.

An instance of TBuf St ream should never be instantiated directly. Instead, an instance of TRead-
BufStream (88) or TWriteBufStream (88) should be created.

Errors: If not enough memory is available for the buffer, then an exception may be raised.

See also: TBufStream.Destroy (86), TReadBufStream (88), TWriteBufStream (88)

5.4.5 TBufStream.Destroy

Synopsis: Destroys the TBuf St ream instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy destroys the instance of TBufStream. It flushes the buffer, deallocates it, and then
destroys the TBuf St ream instance.

See also: TBufStream.Create (86), TReadBufStream (88), TWriteBufStream (88)

5.4.6 TBufStream.Buffer
Synopsis: The current buffer

Declaration: Property Buffer : Pointer

86

CHAPTER 5. REFERENCE FOR UNIT 'BUFSTREAM’

Visibility: public
Access: Read
Description: Buf fer is a pointer to the actual buffer in use.

See also: TBufStream.Create (86), TBufStream.Capacity (87), TBufStream.BufferSize (87)

5.4.7 TBufStream.Capacity
Synopsis: Current buffer capacity

Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the amount of memory the buffer occupies. To change the buffer size, the capacity
can be set. Note that the capacity cannot be set to a value that is less than the current buffer size, i.e.
the current amount of data in the buffer.

See also: TBufStream.Create (86), TBufStream.Buffer (86), TBufStream.BufferSize (87), TBufStream.BufferPos
(87)

5.4.8 TBufStream.BufferPos
Synopsis: Current buffer position.

Declaration: Property BufferPos : Integer
Visibility: public
Access: Read

Description: BufPos is the current stream position in the buffer. Depending on whether the stream is used for
reading or writing, data will be read from this position, or will be written at this position in the buffer.

See also: TBufStream.Create (86), TBufStream.Buffer (86), TBufStream.BufferSize (87), TBufStream.Capacity
(87)

5.4.9 TBufStream.BufferSize

Synopsis: Amount of data in the buffer
Declaration: Property BufferSize : Integer
Visibility: public
Access: Read

Description: BufferSize is the actual amount of data in the buffer. This is always less than or equal to the
Capacity (87).

See also: TBufStream.Create (86), TBufStream.Buffer (86), TBufStream.BufferPos (87), TBufStream.Capacity
(87)

87

CHAPTER 5. REFERENCE FOR UNIT 'BUFSTREAM’

5.5 TReadBufStream

5.5.1 Description

TReadBufStream is a read-only buffered stream. It implements the needed methods to read data
from the buffer and fill the buffer with additional data when needed.

The stream provides limited forward-seek possibilities.

5.5.2 Method overview

Page Property Description
88 Read Reads data from the stream
88 Seek Set location in the buffer

5.5.3 TReadBufStream.Seek
Synopsis: Set location in the buffer

Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek sets the location in the buffer. Currently, only a forward seek is allowed. It is emulated by
reading and discarding data. For an explanation of the parameters, see TStream.Seek" (??)

The seek method needs enhancement to enable it to do a full-featured seek. This may be implemented
in a future release of Free Pascal.

Errors: In case an illegal seek operation is attempted, an exception is raised.

See also: TWriteBufStream.Seek (89), TReadBufStream.Read (88), TReadBufStream. Write (88)

5.5.4 TReadBufStream.Read
Synopsis: Reads data from the stream
Declaration: function Read(var ABuffer;ACount: LongInt) : Integer; Override
Visibility: public
Description: Read reads at most ACount bytes from the stream and places them in Buf fer. The number of
actually read bytes is returned.
TReadBuf St ream first reads whatever data is still available in the buffer, and then refills the buffer,

after which it continues to read data from the buffer. This is repeated untill ACount bytes are read,
or no more data is available.

See also: TReadBufStream.Seek (88), TReadBufStream.Read (88)

5.6 TWriteBufStream

5.6.1 Description

TWriteBufStream is a write-only buffered stream. It implements the needed methods to write
data to the buffer and flush the buffer (i.e., write its contents to the source stream) when needed.

88

CHAPTER 5. REFERENCE FOR UNIT 'BUFSTREAM’

5.6.2 Method overview
Page Property Description

89 Destroy Remove the TWriteBufStream instance from memory
89 Seek Set stream position.
89 Write Write data to the stream

5.6.3 TWriteBufStream.Destroy

Synopsis: Remove the TWriteBufStream instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy flushes the buffer and then calls the inherited Destroy (86).
Errors: If an error occurs during flushing of the buffer, an exception may be raised.

See also: TBufStream.Create (86), TBufStream.Destroy (86)

5.6.4 TWriteBufStream.Seek
Synopsis: Set stream position.
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Seek always raises an ESt reamError exception, except when the seek operation would not alter
the current position.

A later implementation may perform a proper seek operation by flushing the buffer and doing a seek
on the source stream.

Errors:

See also: TWriteBufStream. Write (89), TWriteBufStream.Read (88), TReadBufStream.Seek (88)

5.6.5 TWriteBufStream.Write
Synopsis: Write data to the stream
Declaration: function Write (const ABuffer;ACount: LongInt) : Integer; Override
Visibility: public
Description: Write writes at most ACount bytes from ABuffer to the stream. The data is written to the

internal buffer first. As soon as the internal buffer is full, it is flushed to the destination stream, and
the internal buffer is filled again. This process continues till all data is written (or an error occurs).

Errors: An exception may occur if the destination stream has problems writing.

See also: TWriteBufStream.Seek (89), TWriteBufStream.Read (88), TReadBufStream. Write (88)

&9

Chapter 6

Reference for unit ’CacheCls’

6.1 Used units

Table 6.1: Used units by unit *’CacheCls’

Name Page
sysutils 7

6.2 Overview

The CacheCls unit implements a caching class: similar to a hash class, it can be used to cache data,
associated with string values (keys). The class is calles TCache

6.3 Constants, types and variables

6.3.1 Resource strings

SInvalidIndex = ’"Invalid index %i’

Message shown when an invalid index is passed.

6.3.2 Types

PCacheSlot = "TCacheSlot

Pointer to TCacheSlot (91) record.
PCacheSlotArray = “TCacheSlotArray
Pointer to TCacheSlotArray (91) array

TCacheSlot = record

90

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

Prev : PCacheSlot;
Next : PCacheSlot;

Data : Pointer;
Index : Integer;
end

TCacheSlot is internally used by the TCache (91) class. It represents 1 element in the linked list.
TCacheSlotArray = Array[0..MaxIntdivSizeOf (TCacheSlot)-1] of TCacheSlot

TCacheSlotArray is an array of TCacheSlot items. Do not use TCacheSlotArray di-
rectly, instead, use PCacheSlotArray (90) and allocate memory dynamically.

TOnFreeSlot = procedure (ACache: TCache;SlotIndex: Integer) of object
TOnFreeSlot is acallback prototype used when not enough slots are free, and a slot must be freed.

TOnIsDatakEqual = function (ACache: TCache;ADatal: Pointer;
AData2: Pointer) : Boolean of obiject

TOnIsDataEqual is a callback prototype; It is used by the TCache.Add (92) call to determine
whether the item to be added is a new item or not. The function returns True if the 2 data pointers
ADatal and AData2 should be considered equal, or False when they are not.

For most purposes, comparing the pointers will be enough, but if the pointers are ansistrings, then
the contents should be compared.

6.4 ECacheError

6.4.1 Description

Exception class used in the cachecls unit.

6.5 TCache

6.5.1 Description

TCache implements a cache class: it is a list-like class, but which uses a counting mechanism,
and keeps a Most-Recent-Used list; this list represents the cache’. The list is internally kept as a
doubly-linked list.

The Data (94) property offers indexed access to the array of items. When accessing the array through
this property, the MRUSIot (94) property is updated.

91

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

6.5.2 Method overview
Page Property Description

92 Add Add a data element to the list.

93 AddNew Add a new item to the list.

92 Create Create a new cache class.

92 Destroy Free the TCache class from memory

93 FindSlot Find data pointer in the list
93 IndexOf Return index of a data pointer in the list.
94 Remove Remove a data item from the list.

6.5.3 Property overview

Page Property Access Description

94 Data ™w Indexed access to data items

95 LRUSIot r Last used item

94 MRUSIot w Most recent item slot.

96 OnFreeSlot w Event called when a slot is freed
95 OnlsDataEqual 1w Event to compare 2 items.

95 SlotCount ™w Number of slots in the list

95 Slots r Indexed array to the slots

6.5.4 TCache.Create

Synopsis: Create a new cache class.
Declaration: constructor Create (ASlotCount: Integer)
Visibility: public

Description: Create instantiates a new instance of TCache. It allocates room for AS1otCount entries in the
list. The number of slots can be increased later.

See also: TCache.SlotCount (95)

6.5.5 TCache.Destroy

Synopsis: Free the TCache class from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up the array for the elements, and calls the inherited Destroy. The elements in
the array are not freed by this action.

See also: TCache.Create (92)

6.5.6 TCache.Add
Synopsis: Add a data element to the list.

Declaration: function Add(AData: Pointer) : Integer

Visibility: public

92

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

Description: Add checks whether ADat a is already in the list. If so, the item is added to the top of the MRU list.
If the item is not yet in the list, then the item is added to the list and placed at the top of the MRU list
using the AddNew (93) call.

The function returns the index at which the item was added.

If the maximum number of slots is reached, and a new item is being added, the least used item is
dropped from the list.

See also: TCache.AddNew (93), TCache.FindSlot (93), TCache.IndexOf (93), TCache.Data (94), TCache. MRUSIot
%94)

6.5.7 TCache.AddNew
Synopsis: Add a new item to the list.

Declaration: function AddNew (AData: Pointer) : Integer
Visibility: public

Description: AddNew adds a new item to the list: in difference with the Add (92) call, no checking is performed
to see whether the item is already in the list.

The function returns the index at which the item was added.

If the maximum number of slots is reached, and a new item is being added, the least used item is
dropped from the list.

See also: TCache.Add (92), TCache.FindSlot (93), TCache.IndexOf (93), TCache.Data (94), TCache. MRUSlot
%94)

6.5.8 TCache.FindSlot

Synopsis: Find data pointer in the list
Declaration: function FindSlot (AData: Pointer) : PCacheSlot
Visibility: public

Description: FindSlot checks all items in the list, and returns the slot which contains a data pointer that
matches the pointer AData.

If no item with data pointer that matches AData is found, Nil is returned.

For this function to work correctly, the OnlsDataEqual (95) event must be set.
Errors: If OnIsDataEqual is not set, an exception wil be raised.

See also: TCache.IndexOf (93), TCache.Add (92), TCache.OnlsDataEqual (95)

6.5.9 TCache.IndexOf

Synopsis: Return index of a data pointer in the list.
Declaration: function IndexOf (AData: Pointer) : Integer

Visibility: public

93

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

Description: IndexOF searches in the list for a slot with data pointer that matches ADat a and returns the index
of the slot.

If no item with data pointer that matches AData is found, -1 is returned.

For this function to work correctly, the OnIsDataEqual (95) event must be set.
Errors: If OnIsDataEqual is not set, an exception wil be raised.

See also: TCache.FindSlot (93), TCache.Add (92), TCache.OnlsDataEqual (95)

6.5.10 TCache.Remove

Synopsis: Remove a data item from the list.
Declaration: procedure Remove (AData: Pointer)
Visibility: public

Description: Remove searches the slot which matches AData and if it is found, sets the data pointer to Nil,
thus effectively removing the pointer from the list.

Errors: None.

See also: TCache.FindSlot (93)

6.5.11 TCache.Data

Synopsis: Indexed access to data items
Declaration: Property Data[SlotIndex: Integer]: Pointer
Visibility: public
Access: Read,Write

Description: Data offers index-based access to the data pointers in the cache. By accessing an item in the list

in this manner, the item is moved to the front of the MRU list, i.e. MRUSlot (94) will point to the
accessed item. The access is both read and write.

The index is zero-based and can maximally be SlotCount-1 (95). Providing an invalid index will
result in an exception.

See also: TCache.MRUSlIot (94)

6.5.12 TCache.MRUSIot

Synopsis: Most recent item slot.
Declaration: Property MRUSlot : PCacheSlot
Visibility: public
Access: Read,Write

Description: MRUS1ot points to the most recent used slot. The most recent used slot is updated when the list
is accessed through the Data (94) property, or when an item is added to the list with Add (92) or
AddNew (93)

See also: TCache.Add (92), TCache.AddNew (93), TCache.Data (94), TCache.LRUSIot (95)

94

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

6.5.13 TCache.LRUSIot

Synopsis: Last used item
Declaration: Property LRUSlot : PCacheSlot
Visibility: public
Access: Read
Description: LRUS 1ot points to the least recent used slot. It is the last item in the chain of slots.

See also: TCache.Add (92), TCache.AddNew (93), TCache.Data (94), TCache. MRUSIot (94)

6.5.14 TCache.SlotCount

Synopsis: Number of slots in the list
Declaration: Property SlotCount : Integer
Visibility: public
Access: Read,Write

Description: SlotCount is the number of slots in the list. Its initial value is set when the TCache instance is
created, but this can be changed at any time. If items are added to the list and the list is full, then

the number of slots is not increased, but the least used item is dropped from the list. In that case
OnFreeSlot (96) is called.

See also: TCache.Create (92), TCache.Data (94), TCache.Slots (95)

6.5.15 TCache.Slots
Synopsis: Indexed array to the slots

Declaration: Property Slots[SlotIndex: Integer]: PCacheSlot
Visibility: public
Access: Read

Description: S1lots provides index-based access to the TCacheSlot records in the list. Accessing the records
directly does not change their position in the MRU list.

The index is zero-based and can maximally be SlotCount-1 (95). Providing an invalid index will
result in an exception.

See also: TCache.Data (94), TCache.SlotCount (95)

6.5.16 TCache.OnisDataEqual

Synopsis: Event to compare 2 items.
Declaration: Property OnIsDataEqual : TOnIsDataEqual
Visibility: public

Access: Read,Write

95

CHAPTER 6. REFERENCE FOR UNIT "CACHECLS’

Description: OnIsDataEqual is used by FindSlot (93) and IndexOf (93) to compare items when looking for
a particular item. These functions are called by the Add (92) method. Failing to set this event will
result in an exception. The function should return True if the 2 data pointers should be considered
equal.

See also: TCache.FindSlot (93), TCache.IndexOf (93), TCache.Add (92)

6.5.17 TCache.OnFreeSlot

Synopsis: Event called when a slot is freed
Declaration: Property OnFreeSlot : TOnFreeSlot
Visibility: public
Access: Read,Write

Description: OnFreeSlot is called when an item needs to be freed, i.e. when a new item is added to a full list,
and the least recent used item needs to be dropped from the list.

The cache class instance and the index of the item to be removed are passed to the callback.

See also: TCache.Add (92), TCache.AddNew (93), TCache.SlotCount (95)

96

Chapter 7

Reference for unit ’contnrs’

7.1 Used units

Table 7.1: Used units by unit ’contnrs’

Name Page
Classes 2?
sysutils 7?

7.2 Overview
The contnrs unit implements various general-purpose classes:

Object lists lists that manage objects instead of pointers, and which automatically dispose of the
objects.

Component lists lists that manage components instead of pointers, and which automatically dispose
the components.

Class lists lists that manage class pointers instead of pointers.
Stacks Stack classes to push/pop pointers or objects
Queues Classes to manage a FIFO list of pointers or objects

Hash lists General-purpose Hash lists.

7.3 Constants, types and variables

7.3.1 Constants
MaxHashListSize = Maxint div 16

MaxHashListSize is the maximum number of elements a hash list can contain.

97

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

MaxHashStrSize = Maxint

MaxHashStrSize is the maximum amount of data for the key string values. The key strings are
kept in a continuous memory area. This constant determines the maximum size of this memory area.

MaxHashTableSize = Maxint div 4
MaxHashTableSize is the maximum number of elements in the hash.
MaxItemsPerHash = 3

MaxItemsPerHash is the threshold above which the hash is expanded. If the number of elements
in a hash bucket becomes larger than this value, the hash size is increased.

7.3.2 Types

PBucket = "TBucket

Pointer to TBucket (98)" type.

PHashItem = "THashItem

PHashItemis a pointer type, pointing to the THashItem (100) record.
PHashItemList = “THashItemList

PHashItemList is a pointer to the THashItemList (100). It’s used in the TFPHashList (117) as a
pointer to the memory area containing the hash item records.

PHashTable = “THashTable

PHashTable is a pointer to the THashTable (100). It’s used in the TFPHashList (117) as a pointer
to the memory area containing the hash values.

TBucket = record

Count : Integer;

Items : TBucketItemArray;
end

TBucket describes 1 bucket in the TCustomBucketList (108) class. It is a container for TBuck-
etltem (99) records. It should never be used directly.

TBucketArray = Array of TBucket
Array of TBucket (98) records.

TBucketItem = record

Item : Pointer;
Data : Pointer;
end

98

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

TBucketItem is a record used for internal use in TCustomBucketList (108). It should not be
necessary to use it directly.

TBucketItemArray = Array of TBucketItem
Array of TBucket Itemrecords

TBucketListSizes = (bl2,bl4,bl8,bll6,bl32,bl64,b1128,0b1256)

Table 7.2: Enumeration values for type TBucketListSizes

Value Explanation

bl128 List with 128 buckets
bl16 List with 16 buckets
bl2 List with 2 buckets
bl256 List with 256 buckets
bl32 List with 32 buckets
bl4 List with 4 buckets
bl64 List with 64 buckets
bl8 List with 8 buckets

TBucketListSizes is used to set the bucket list size: It specified the number of buckets created
by TBucketList (101).

TBucketProc = procedure (AInfo: Pointer;AItem: Pointer;AData: Pointer;
out AContinue: Boolean)

TBucketProc is the prototype for the #TCustomBucketList.Foreach (??) call. It is the plain pro-
cedural form. The Continue parameter can be set to False to indicate that the Foreach call
should stop the iteration.

For a procedure of object (a method) callback, see the TBucketProcObject (99) prototype.

TBucketProcObject = procedure (Altem: Pointer;AData: Pointer;
out AContinue: Boolean) of object

TBucketProcObject is the prototype for the #TCustomBucketList.Foreach (??) call. It is the
method (procedure of object) form. The Cont inue parameter can be set to False to indicate that
the Foreach call should stop the iteration.

For a plain procedural callback, see the TBucketProc (99) prototype.

TDatalteratorMethod = procedure (Item: Pointer;const Key: String;
var Continue: Boolean) of object

TDatalIteratorMethod is a callback prototype for the TDataHashTable.Iterate (97) method. It
is called for each data pointer in the hash list, passing the key (key) and data pointer (item) for
each item in the list. If Continue is set to false, the iteration stops.

THashFunction = function(const S: String;const TableSize: LongWord)
LongWord

99

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

THashFunction is the prototype for a hash calculation function. It should calculate a hash of
string S, where the hash table size is TableSize. The return value should be the hash value.

THashItem = record
HashValue : LongWord;
StrIndex : Integer;

NextIndex : Integer;
Data : Pointer;
end

THashItem is used internally in the hash list. It should never be used directly.
THashItemList = Array[0..MaxHashListSize-1] of THashItem

THashItemList is an array type, primarily used to be able to define the PHashltemList (98) type.
It’s used in the TFPHashList (117) class.

THashTable = Array[0..MaxHashTableSize-1] of Integer

THashTable defines an array of integers, used to hold hash values. It’s mainly used to define the
PHashTable (98) class.

THTCustomNodeClass = Class of THTCustomNode

THTCustomNodeClass is used by THTCustomHashTable (97) to decide which class should be
created for elements in the list.

THTNode = THTDataNode

THTNode is provided for backwards compatibility.
TIteratorMethod = TDatalIteratorMethod
TIteratorMethod is used in an internal TFPHashTable (97) method.

TObjectIteratorMethod = procedure (Item: TObject;const Key: String;
var Continue: Boolean) of object

TObjectIteratorMethod is the iterator callback prototype. It is used to iterate over all items in
the hash table, and is called with each key value (Key) and associated object (Item). If Continue
is set to false, the iteration stops.

TObjectListCallback = procedure (data: TObject;arg: pointer) of object

TObjectListCallback is used as the prototype for the TFPObjectList.ForEachCall (141) link
call when a method should be called. The Data argument will contain each of the objects in the list
in turn, and the Data argument will contain the data passed to the ForEachCall call.

TObjectListStaticCallback = procedure (data: TObject;arg: pointer)

100

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

TObjectListCallback is used as the prototype for the TFPObjectList.ForEachCall (141) link
call when a plain procedure should be called. The Data argument will contain each of the objects
in the list in turn, and the Data argument will contain the data passed to the ForEachCall call.

TStringIteratorMethod = procedure(Item: String;const Key: String;
var Continue: Boolean) of object

TStringIteratorMethod is the callback prototype for the Iterate (110) method. It is called for
each element in the hash table, with the string. If Cont inue is set to false, the iteration stops.

7.4 Procedures and functions

7.4.1 RSHash

Synopsis: Standard hash value calculating function.
Declaration: function RSHash (const S: String;const TableSize: LongWord) : LongWord
Visibility: default

Description: RSHash is the standard hash calculating function used in the TFPCustomHashTable (110) hash
class. It’s Robert Sedgwick’s "Algorithms in C" hash function.

Errors: None.

See also: TFPCustomHashTable (110)

7.5 EDuplicate

7.5.1 Description

Exception raised when a key is stored twice in a hash table.

7.6 EKeyNotFound

7.6.1 Description

Exception raised when a key is not found.

7.7 TBucketList

7.7.1 Description

TBucketList is a descendent of TCustomBucketList which allows to specify a bucket count
which is a multiple of 2, up to 256 buckets. The size is passed to the constructor and cannot be
changed in the lifetime of the bucket list instance.

The buckets for an item is determined by looking at the last bits of the item pointer: For 2 buckets,
the last bit is examined, for 4 buckets, the last 2 bits are taken and so on. The algorithm takes into
account the average granularity (4) of heap pointers.

101

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.7.2 Method overview

Page Property Description
102 Create Create a new TBucketList instance.

7.7.3 TBucketList.Create

Synopsis: Create a new TBucketList instance.
Declaration: constructor Create (ABuckets: TBucketListSizes)
Visibility: public
Description: Create instantiates a new bucketlist instance with a number of buckets determined by ABuckets.
After creation, the number of buckets can no longer be changed.

Errors: If not enough memory is available to create the instance, an exception may be raised.

See also: TBucketListSizes (99)

7.8 TClassList

7.8.1 Description

TClassList is a Tlist (??) descendent which stores class references instead of pointers. It intro-
duces no new behaviour other than ensuring all stored pointers are class pointers.

The OwnsObjects property as found in TComponentList and TObjectList is not imple-
mented as there are no actual instances.

7.8.2 Method overview
Page Property Description

102 Add Add a new class pointer to the list.
103 Extract Extract a class pointer from the list.
104 First Return first non-nil class pointer
103 IndexOf Search for a class pointer in the list.
104 Insert Insert a new class pointer in the list.
104 Last Return last non-Ni1l class pointer

103 Remove Remove a class pointer from the list.

7.8.3 Property overview

Page Property Access Description
104 Items ™w Index based access to class pointers.

7.8.4 TClassList.Add

Synopsis: Add a new class pointer to the list.
Declaration: function Add(AClass: TClass) : Integer

Visibility: public

102

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: Add adds AClass to the list, and returns the position at which it was added. It simply overrides the
TList (??) bevahiour, and introduces no new functionality.

Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TClassList.Extract (103), #rtl.classes.tlist.add (??)

7.8.5 TClassList.Extract

Synopsis: Extract a class pointer from the list.
Declaration: function Extract (Item: TClass) : TClass
Visibility: public

Description: Extract extracts a class pointer ITtem from the list, if it is present in the list. It returns the
extracted class pointer, or Nil if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Remove (103), #rtl.classes.Tlist. Extract (??)

7.8.6 TClassList.Remove

Synopsis: Remove a class pointer from the list.
Declaration: function Remove (AClass: TClass) : Integer
Visibility: public

Description: Remove removes a class pointer Item from the list, if it is present in the list. It returns the index of
the removed class pointer, or —1 if the class pointer was not present in the list. It simply overrides the
implementation in TList so it accepts a class pointer instead of a simple pointer. No new behaviour
is introduced.

Errors: None.

See also: TClassList.Extract (103), #rtl.classes.Tlist. Remove (??)

7.8.7 TClassList.IndexOf

Synopsis: Search for a class pointer in the list.
Declaration: function IndexOf (AClass: TClass) : Integer
Visibility: public

Description: ITndexOf searches for AClass in the list, and returns it’s position if it was found, or -1 if it was
not found in the list.

Errors: None.

See also: #rtl.classes.tlist.indexof (2?)

103

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.8.8 TClassList.First

Synopsis: Return first non-nil class pointer
Declaration: function First : TClass
Visibility: public

Description: First returns a reference to the first non-N1i1 class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.Last (104), TClassList.Pack (102)

7.8.9 TClassList.Last
Synopsis: Return last non-N1i1 class pointer

Declaration: function Last : TClass
Visibility: public

Description: Last returns a reference to the last non-Ni1l class pointer in the list. If no non-Nil element is
found, Nil is returned.

Errors: None.

See also: TClassList.First (104), TClassList.Pack (102)

7.8.10 TClassList.Insert

Synopsis: Insert a new class pointer in the list.
Declaration: procedure Insert (Index: Integer;AClass: TClass)
Visibility: public

Description: Insert inserts a class pointer in the list at position Index. It simply overrides the parent imple-
mentation so it only accepts class pointers. It introduces no new behaviour.

Errors: None.

See also: #rtl.classes. TList.Insert (??), TClassList. Add (102), TClassList.Remove (103)

7.8.11 TClassList.ltems

Synopsis: Index based access to class pointers.
Declaration: Property Items[Index: Integer]: TClass; default
Visibility: public
Access: Read,Write

Description: Items provides index-based access to the class pointers in the list. TClassList overrides the
default Ttems implementation of TList so it returns class pointers instead of pointers.

See also: #rtl.classes. TList.Items (??), #rtl.classes. TList.Count (??)

104

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.9 TComponentList

7.9.1 Description

TComponentList is a TObjectList (148) descendent which has as the default array property
TComponents (??) instead of objects. It overrides some methods so only components can be added.

In difference with TObjectList (148), TComponentList removes any TComponent from the list
if the TComponent instance was freed externally. It uses the FreeNotification mechanism
for this.

7.9.2 Method overview

Page Property Description

105 Add Add a component to the list.

105 Destroy Destroys the instance

106 Extract =~ Remove a component from the list without destroying it.

107 First First non-nil instance in the list.
106 IndexOf Search for an instance in the list
107 Insert Insert a new component in the list
107 Last Last non-nil instance in the list.

106 Remove Remove a component from the list, possibly destroying it.

7.9.3 Property overview

Page Property Access Description
107 Items ™w Index-based access to the elements in the list.

7.9.4 TComponentList.Destroy
Synopsis: Destroys the instance

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy unhooks the free notification handler and then calls the inherited destroy to clean up the
TComponentList instance.

Errors: None.

See also: TObjectList (148), #rtl.classes. TComponent (2?)

7.9.5 TComponentList.Add

Synopsis: Add a component to the list.
Declaration: function Add(AComponent: TComponent) : Integer
Visibility: public

Description: Add overrides the Add operation of it’s ancestors, so it only accepts TComponent instances. It
introduces no new behaviour.

The function returns the index at which the component was added.

Errors: If not enough memory is available to expand the list, an exception may be raised.

105

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

See also: TObectList.Add (97)

7.9.6 TComponentList.Extract

Synopsis: Remove a component from the list without destroying it.
Declaration: function Extract (Item: TComponent) : TComponent
Visibility: public

Description: Ext ract removes a component (Item) from the list, without destroying it. It overrides the imple-
mentation of TObjectList (148) so only TComponent descendents can be extracted. It introduces
no new behaviour.

Extract returns the instance that was extracted, or Ni1 if no instance was found.

See also: TComponentList.Remove (106), TObjectList.Extract (149)

7.9.7 TComponentList.Remove

Synopsis: Remove a component from the list, possibly destroying it.
Declaration: function Remove (AComponent: TComponent) : Integer
Visibility: public

Description: Remove removes item from the list, and if the list owns it’s items, it also destroys it. It returns the
index of the item that was removed, or -1 if no item was removed.

Remove simply overrides the implementation in TObjectList (148) so it only accepts TComponent
descendents. It introduces no new behaviour.

Errors: None.

See also: TComponentList.Extract (106), TObjectList.Remove (150)

7.9.8 TComponentList.IndexOf

Synopsis: Search for an instance in the list
Declaration: function IndexOf (AComponent: TComponent) : Integer
Visibility: public

Description: IndexOf searches for an instance in the list and returns it’s position in the list. The position is
zero-based. If no instance is found, -1 is returned.

IndexOf just overrides the implementation of the parent class so it accepts only TComponent
instances. It introduces no new behaviour.

Errors: None.

See also: TObjectList.IndexOf (150)

106

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.9.9 TComponentList.First

Synopsis: First non-nil instance in the list.
Declaration: function First : TComponent
Visibility: public

Description: First overrides the implementation of it’s ancestors to return the first non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.Last (107), TObjectList.First (151)

7.9.10 TComponentList.Last

Synopsis: Last non-nil instance in the list.
Declaration: function Last : TComponent
Visibility: public

Description: Last overrides the implementation of it’s ancestors to return the last non-nil instance of TComponent
in the list. If no non-nil instance is found, Ni1 is returned.

Errors: None.

See also: TComponentList.First (107), TObjectList.Last (151)

7.9.11 TComponentList.Insert

Synopsis: Insert a new component in the list
Declaration: procedure Insert (Index: Integer;AComponent: TComponent)
Visibility: public

Description: Insert inserts a TComponent instance (AComponent) in the list at position Index. It simply
overrides the parent implementation so it only accepts TComponent instances. It introduces no new
behaviour.

Errors: None.

See also: TObjectList.Insert (151), TComponentList. Add (105), TComponentList.Remove (106)

7.9.12 TComponentList.ltems

Synopsis: Index-based access to the elements in the list.
Declaration: Property Items[Index: Integer]: TComponent; default
Visibility: public
Access: Read,Write

Description: Ttems provides access to the components in the list using an index. It simply overrides the default
property of the parent classes so it returns/accepts TComponent instances only. Note that the index
is zero based.

See also: TObjectList.Items (152)

107

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.10 TCustomBucketList

7.10.1 Description

TCustomBucketList is an associative list using buckets for storage. It scales better than a regular
TList (??) list class, escpecially when an item must be searched in the list.

Since the list associates a data pointer with each item pointer, it follows that each item pointer must
be unique, and can be added to the list only once.

The TCustomBucketList class does not determine the number of buckets or the bucket hash
mechanism, this must be done by descendent classes such as TBucketList (101). TCustomBucketList
only takes care of storage and retrieval of items in the various buckets.

Because TCustomBucketList is an abstract class - it does not determine the number of buckets
- one should never instantiate an instance of TCustomBucketList, but always use a descendent
class such as TCustomBucketList (108).

7.10.2 Method overview

Page Property Description

109 Add Add an item to the list

109 Assign Assign one bucket list to another
108 Clear Clear the list

108 Destroy Frees the bucketlist from memory
109 Exists Check if an item exists in the list.
109 Find Find an item in the list

110 ForEach Loop over all items.

110 Remove Remove an item from the list.

7.10.3 Property overview

Page Property Access Description
110 Data ™w Associative array for data pointers

7.10.4 TCustomBucketList.Destroy

Synopsis: Frees the bucketlist from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Det sroy frees all storage for the buckets from memory. The items themselves are not freed from
memory.

7.10.5 TCustomBucketList.Clear
Synopsis: Clear the list

Declaration: procedure Clear
Visibility: public

Description: Clear clears the list. The items and their data themselves are not disposed of, this must be done
separately. Clear only removes all references to the items from the list.

108

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Errors: None.

See also: TCustomBucketList.Add (109)

7.10.6 TCustomBucketList.Add
Synopsis: Add an item to the list

Declaration: function Add(AItem: Pointer;AData: Pointer) : Pointer
Visibility: public
Description: Add adds AItem with it’s associated AData to the list and returns ADat a.
Errors: If AItem is already in the list, an E1istError exception will be raised.

See also: TCustomBucketList.Exists (109), TCustomBucketList.Clear (108)

7.10.7 TCustomBucketList.Assign
Synopsis: Assign one bucket list to another

Declaration: procedure Assign (AList: TCustomBucketList)
Visibility: public

Description: Assign is implemented by TCustomBucketList to copy the contents of another bucket list to
the bucket list. It clears the contents prior to the copy operation.

See also: TCustomBucketList.Add (109), TCustomBucketList.Clear (108)

7.10.8 TCustomBucketList.Exists
Synopsis: Check if an item exists in the list.

Declaration: function Exists (AItem: Pointer) : Boolean
Visibility: public

Description: Exists searches the list and returns True if the ATt em is already present in the list. If the item is
not yet in the list, False is returne5Ad.

If the data pointer associated with ATtem is also needed, then it is better to use Find (109).

See also: TCustomBucketList.Find (109)

7.10.9 TCustomBucketList.Find

Synopsis: Find an item in the list
Declaration: function Find(AItem: Pointer;out AData: Pointer) : Boolean
Visibility: public

Description: Find searches for AItem in the list and returns the data pointer associated with it in ADat a if the
item was found. In that case the return value is True. If AItem is not found in the list, False is
returned.

See also: TCustomBucketList.Exists (109)

109

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.10.10 TCustomBucketList.ForEach

Synopsis: Loop over all items.

Declaration: function ForEach (AProc: TBucketProc;AInfo: Pointer) : Boolean
function ForEach (AProc: TBucketProcObject) : Boolean

Visibility: public
Description: Foreach loops over all items in the list and calls AProc, passing it in turn each item in the list.

AProc exists in 2 variants: one which is a simple procedure, and one which is a method. In the case
of the simple procedure, the AInfo argument is passed as well in each call to AProc.

The loop stops when all items have been processed, or when the ACont inue argument of AProc
contains False on return.

The result of the function is True if all items were processed, or False if the loop was interrupted
with a AContinue return of False.

Errors: None.

See also: TCustomBucketList.Data (110)

7.10.11 TCustomBucketList.Remove

Synopsis: Remove an item from the list.
Declaration: function Remove (AItem: Pointer) : Pointer
Visibility: public

Description: Remove removes AItem from the list, and returns the associated data pointer of the removed item.
If the item was not in the list, then Ni1 is returned.

See also: TCustomBucketList.Find (109)

7.10.12 TCustomBucketList.Data

Synopsis: Associative array for data pointers
Declaration: Property Data[Altem: Pointer]: Pointer; default
Visibility: public
Access: Read,Write

Description: Dat a provides direct access to the Dat a pointers associated with the ATt em pointers. If ATtem is
not in the list of pointers, an EListError exception will be raised.

See also: TCustomBucketList.Find (109), TCustomBucketList.Exists (109)

7.11 TFPCustomHashTable

7.11.1 Description

TFPCustomHashTable is a general-purpose hashing class. It can store string keys and pointers
associated with these strings. The hash mechanism is configurable and can be optionally be specified

110

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

when a new instance of the class is created; A default hash mechanism is implemented in RSHash
(101).

A TFPHasList should be used when fast lookup of data based on some key is required. The other
container objects only offer linear search methods, while the hash list offers faster search mecha-
nisms.

7.11.2 Method overview

Page Property Description

112 ChangeTableSize Change the table size of the hash table.

112 Clear Clear the hash table.

111 Create Instantiate a new TFPCustomHashTable instance using the de-
fault hash mechanism

111 CreateWith Instantiate a new TFPCustomHashTable instance with given al-
gorithm and size

113 Delete Delete a key from the hash list.

112 Destroy Free the hash table.

113 Find Search for an item with a certain key value.

113 IsEmpty Check if the hash table is empty.

7.11.3 Property overview

Page Property Access Description

115 AVGChainLen r Average chain length

114 Count r Number of items in the hash table.
116 Density r Number of filled slots

113 HashFunction w Hash function currently in use

114 HashTable r Hash table instance

114 HashTableSize w Size of the hash table

115 LoadFactor r Fraction of count versus size

115 MaxChainLength r Maximum chain length

116 ~ NumberOfCollisions r Number of extra items

115 VoidSlots r Number of empty slots in the hash table.

7.11.4 TFPCustomHashTable.Create

Synopsis: Instantiate a new TFPCustomHashTable instance using the default hash mechanism
Declaration: constructor Create
Visibility: public

Description: Create creates a new instance of TFPCustomHashTable with hash size 196613 and hash al-
gorithm RSHash (101)

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable.CreateWith (111)

7.11.5 TFPCustomHashTable.CreateWith

Synopsis: Instantiate a new TFPCustomHashTable instance with given algorithm and size

111

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Declaration: constructor CreateWith (AHashTableSize: LongWord;
aHashFunc: THashFunction)

Visibility: public

Description: CreateWith creates a new instance of TFPCustomHashTable with hash size AHashTableSize
and hash calculating algorithm aHashFunc.

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable.Create (111)

7.11.6 TFPCustomHashTable.Destroy
Synopsis: Free the hash table.

Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy removes the hash table from memory. If any data was associated with the keys in the
hash table, then this data is not freed. This must be done by the programmer.

Errors: None.

See also: TFPCustomHashTable.Destroy (112), TFPCustomHashTable.Create (111), TFPCustomHashTable.Create With
(111), THTCustomNode.Data (144)

7.11.7 TFPCustomHashTable.ChangeTableSize
Synopsis: Change the table size of the hash table.

Declaration: procedure ChangeTableSize (const ANewSize: LongWord); Virtual
Visibility: public

Description: ChangeTableSize changes the size of the hash table: it recomputes the hash value for all of the
keys in the table, so this is an expensive operation.

Errors: If no memory is available, an exception may be raised.

See also: TFPCustomHashTable. HashTableSize (114)

7.11.8 TFPCustomHashTable.Clear
Synopsis: Clear the hash table.

Declaration: procedure Clear; Virtual
Visibility: public

Description: Clear removes all keys and their associated data from the hash table. The data itself is not freed
from memory, this should be done by the programmer.

Errors: None.

See also: TFPCustomHashTable.Destroy (112)

112

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.11.9 TFPCustomHashTable.Delete
Synopsis: Delete a key from the hash list.

Declaration: procedure Delete (const aKey: String); Virtual
Visibility: public

Description: Delete deletes all keys with value AKey from the hash table. It does not free the data associated
with key. If AKey is not in the list, nothing is removed.

Errors: None.

See also: TFPCustomHashTable.Find (113), TFPCustomHashTable.Add (110)

7.11.10 TFPCustomHashTable.Find

Synopsis: Search for an item with a certain key value.
Declaration: function Find(const aKey: String) : THTCustomNode
Visibility: public

Description: Find searches for the THTCustomNode (144) instance with key value equal to Akey and if it finds
it, it returns the instance. If no matching value is found, Ni1 is returned.

Note that the instance returned by this function cannot be freed; If it should be removed from the
hash table, the Delete (113) method should be used instead.

Errors: None.

See also: TFPCustomHashTable.Add (110), TFPCustomHashTable.Delete (113)

7.11.11 TFPCustomHashTable.IsEmpty
Synopsis: Check if the hash table is empty.

Declaration: function IsEmpty : Boolean
Visibility: public

Description: TsEmpty returns True if the hash table contains no elements, or False if there are still elements
in the hash table.

Errors:

See also: TFPCustomHashTable.Count (114), TFPCustomHashTable.HashTableSize (114), TFPCustomHashTable. AVGChainLen
(115), TFPCustomHashTable.MaxChainLength (115)

7.11.12 TFPCustomHashTable.HashFunction

Synopsis: Hash function currently in use
Declaration: Property HashFunction : THashFunction
Visibility: public

Access: Read,Write

113

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: HashFunction is the hash function currently in use to calculate hash values from keys. The
property can be set, this simply calls SetHashFunction (110). Note that setting the hash function
does NOT the hash value of all keys to be recomputed, so changing the value while there are still
keys in the table is not a good idea.

See also: TFPCustomHashTable.SetHashFunction (110), TFPCustomHashTable.HashTableSize (114)

7.11.13 TFPCustomHashTable.Count

Synopsis: Number of items in the hash table.
Declaration: Property Count : LongWord
Visibility: public
Access: Read
Description: Count is the number of items in the hash table.

See also: TFPCustomHashTable.ISEmpty (113), TFPCustomHashTable.HashTableSize (114), TFPCustomHashTable. AVGChainLen
(115), TFPCustomHashTable.MaxChainLength (115)

7.11.14 TFPCustomHashTable.HashTableSize
Synopsis: Size of the hash table

Declaration: Property HashTableSize : LongWord
Visibility: public
Access: Read,Write

Description: HashTableSize is the size of the hash table. It can be set, in which case it will be rounded to the
nearest prime number suitable for RSHash.

See also: TFPCustomHashTable.ISEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable. AVGChainLen
(115), TFPCustomHashTable.MaxChainLength (115), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116)

7.11.15 TFPCustomHashTable.HashTable

Synopsis: Hash table instance
Declaration: Property HashTable : TFPObjectList
Visibility: public
Access: Read

Description: TFPCustomHashTable is the internal list object (TFPObjectList (136) used for the hash table.
Each element in this table is again a TFPObjectList (136) instance or Nil.

114

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.11.16 TFPCustomHashTable.VoidSlots

Synopsis: Number of empty slots in the hash table.
Declaration: Property VoidSlots : LongWord
Visibility: public
Access: Read

Description: VoidSlots is the number of empty slots in the hash table. Calculating this is an expensive opera-
tion.

See also: TFPCustomHashTable.IsEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable. AVGChainLen
(115), TFPCustomHashTable.MaxChainLength (115), TFPCustomHashTable.L.oadFactor (115), TF-
PCustomHashTable.Density (116), TFPCustomHashTable.NumberOfCollisions (116)

7.11.17 TFPCustomHashTable.LoadFactor

Synopsis: Fraction of count versus size
Declaration: Property LoadFactor : double
Visibility: public
Access: Read

Description: LoadFactor is the ratio of elements in the table versus table size. Ideally, this should be as small
as possible.

See also: TFPCustomHashTable.IsEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable. AVGChainLen
(115), TFPCustomHashTable.MaxChainLength (115), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116), TFPCustomHashTable.NumberOfCollisions (116)

7.11.18 TFPCustomHashTable.AVGChainLen
Synopsis: Average chain length

Declaration: Property AVGChainLen : double
Visibility: public
Access: Read

Description: AvGChainLen is the average chain length, i.e. the ratio of elements in the table versus the number
of filled slots. Calculating this is an expensive operation.

See also: TFPCustomHashTable.IsSEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable.LoadFactor
(115), TFPCustomHashTable.MaxChainLength (115), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116), TFPCustomHashTable.NumberOfCollisions (116)

7.11.19 TFPCustomHashTable.MaxChainLength

Synopsis: Maximum chain length
Declaration: Property MaxChainLength : LongWord

Visibility: public

115

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Access: Read

Description: MaxChainLength is the length of the longest chain in the hash table. Calculating this is an
expensive operation.

See also: TFPCustomHashTable.IsSEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable.LoadFactor
(115), TFPCustomHashTable. AvgChainLength (110), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116), TFPCustomHashTable.NumberOfCollisions (116)

7.11.20 TFPCustomHashTable.NumberOfCollisions

Synopsis: Number of extra items
Declaration: Property NumberOfCollisions : LongWord
Visibility: public
Access: Read

Description: NumberOfCollisions is the number of items which are not the first item in a chain. If this
number is too big, the hash size may be too small.

See also: TFPCustomHashTable.IsSEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable.LoadFactor
(115), TFPCustomHashTable.AvgChainLength (110), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116)

7.11.21 TFPCustomHashTable.Density
Synopsis: Number of filled slots

Declaration: Property Density : LongWord
Visibility: public
Access: Read
Description: Density is the number of filled slots in the hash table.

See also: TFPCustomHashTable.IsSEmpty (113), TFPCustomHashTable.Count (114), TFPCustomHashTable.LoadFactor
(115), TFPCustomHashTable.AvgChainLength (110), TFPCustomHashTable.VoidSlots (115), TFP-
CustomHashTable.Density (116)

7.12 TFPDataHashTable

7.12.1 Description

TFPDataHashTable is a TFPCustomHashTable (110) descendent which stores simple data point-
ers together with the keys. In case the data associated with the keys are objects, it’s better to use
TFPObjectHashTable (134), or for string data, TFPStringHashTable (143) is more suitable. The data
pointers are exposed with their keys through the Items (117) property.

7.12.2 Method overview

Page Property Description
117 Add Add a data pointer to the list.

116

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.12.3 Property overview

Page Property Access Description
117 Items w Key-based access to the items in the table

7.12.4 TFPDataHashTable.Add
Synopsis: Add a data pointer to the list.

Declaration: procedure Add(const aKey: String;AItem: pointer); Virtual
Visibility: public
Description: Add adds a data pointer (AItem) to the list with key AKey.
Errors: If AKey already exists in the table, an exception is raised.

See also: TFPDataHashTable.Items (117)

7.12.5 TFPDataHashTable.ltems

Synopsis: Key-based access to the items in the table
Declaration: Property Items[index: String]: Pointer; default
Visibility: public
Access: Read,Write

Description: Ttems provides access to the items in the hash table using their key: the array index Index is the
key. A key which is not present will result in an Ni1 pointer.

See also: TFPStringHashTable.Add (143)

7.13 TFPHashList

7.13.1 Description

TFPHashList implements a fast hash class. The class is built for speed, therefore the key values
can be shortstrings only, and the data can only be pointers.

if a base class for an own hash class is wanted, the TFPCustomHashTable (110) class can be used.
If a hash class for objects is needed instead of pointers, the TFPHashObjectList (127) class can be
used.

117

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.13.2 Method overview

Page Property Description

119 Add Add a new key/data pair to the list

119 Clear Clear the list

118 Create Create a new instance of the hashlist

120 Delete Delete an item from the list.

118 Destroy Removes an instance of the hashlist from the heap
120 Error Raise an error

120 Expand Expand the list

121 Extract Extract a pointer from the list

121 Find Find data associated with key

121 FindIndexOf Return index of named item.

122 FindWithHash Find first element with given name and hash value
123 ForEachCall Call a procedure for each element in the list
120 GetNextCollision Get next collision number

119 HashOfIndex Return the hash valye of an item by index
121 IndexOf Return the index of the data pointer

119 NameOfIndex Returns the key name of an item by index
122 Pack Remove nil pointers from the list

122 Remove Remove first instance of a pointer

122 Rename Rename a key

123 ShowsStatistics Return some statistics for the list.

7.13.3 Property overview

Page Property Access Description

123 Capacity 1w Capacity of the list.

123 Count W Current number of elements in the list.
124 Ttems ™W Indexed array with pointers

124 List r Low-level hash list

124 Strs r Low-level memory area with strings.

7.13.4 TFPHashList.Create

Synopsis: Create a new instance of the hashlist

Visibility: public

Description: Create creates a new instance of TFPHashList on the heap and sets the hash capacity to 1.

See also: TFPHashList.Destroy (118)

Declaration: constructor Create

7.13.5 TFPHashList.Destroy

Synopsis: Removes an instance of the hashlist from the heap

Declaration: destructor Destroy;

Visibility: public

Description: Dest roy cleans up the memory structures maintained by the hashlist and removes the TFPHashList

instance from the heap.

Destroy should not be called directly, it’s better to use Free or FreeAndNil instead.

Override

118

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

See also: TFPHashList.Create (118), TFPHashList.Clear (119)

7.13.6 TFPHashList.Add
Synopsis: Add a new key/data pair to the list

Declaration: function Add(const AName: shortstring;Item: Pointer) : Integer
Visibility: public

Description: Add adds a new data pointer (Item) with key AName to the list. It returns the position of the item
in the list.

Errors: If not enough memory is available to hold the key and data, an exception may be raised. If an item
with this name already exists in the list, an exception is raised.

See also: TFPHashList.Extract (121), TFPHashList.Remove (122), TFPHashList.Delete (120)

7.13.7 TFPHashList.Clear
Synopsis: Clear the list

Declaration: procedure Clear
Visibility: public

Description: Clear removes all items from the list. It does not free the data items themselves. It frees all
memory needed to contain the items.

Errors: None.

See also: TFPHashList.Extract (121), TFPHashList.Remove (122), TFPHashList.Delete (120), TFPHashList. Add
(119)

7.13.8 TFPHashList.NameOfindex

Synopsis: Returns the key name of an item by index
Declaration: function NameOfIndex (Index: Integer) : ShortString
Visibility: public
Description: NameOf Index returns the key name of the item at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashList.HashOfIndex (119), TFPHashList.Find (121), TFPHashList.FindIndexOf (121), TF-
PHashList.FindWithHash (122)

7.13.9 TFPHashList.HashOflndex

Synopsis: Return the hash valye of an item by index
Declaration: function HashOfIndex (Index: Integer) : LongWord
Visibility: public

Description: HashOf Index returns the hash value of the item at position Index.

119

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashList.HashOfName (117), TFPHashList.Find (121), TFPHashList.FindIndexOf (121), TF-
PHashList.FindWithHash (122)

7.13.10 TFPHashList.GetNextCollision

Synopsis: Get next collision number
Declaration: function GetNextCollision(Index: Integer) : Integer
Visibility: public

Description: GetNextCollision returns the next collision in hash item Index. This is the count of items
with the same hash.means that the next it

Errors:

7.13.11 TFPHashList.Delete
Synopsis: Delete an item from the list.

Declaration: procedure Delete (Index: Integer)
Visibility: public
Description: Delete deletes the item at position Index. The data to which it points is not freed from memory.

Errors: TFPHashList.Extract (121)TFPHashList.Remove (122)TFPHashList.Add (119)

7.13.12 TFPHashList.Error

Synopsis: Raise an error
Declaration: procedure Error (const Msg: String;Data: PtrInt)
Visibility: public

Description: Error raises an EListError exception, with message Msg. The Data pointer is used to format
the message.

7.13.13 TFPHashList.Expand
Synopsis: Expand the list

Declaration: function Expand : TFPHashList
Visibility: public
Description: Expand enlarges the capacity of the list if the maximum capacity was reached. It returns itself.
Errors: If not enough memory is available, an exception may be raised.

See also: TFPHashList.Clear (119)

120

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.13.14 TFPHashList.Extract

Synopsis: Extract a pointer from the list
Declaration: function Extract (item: Pointer) : Pointer
Visibility: public

Description: Ext ract removes the data item from the list, if it is in the list. It returns the pointer if it was
removed from the list, Ni1 otherwise.

Extract does a linear search, and is not very efficient.

See also: TFPHashList.Delete (120), TFPHashList. Remove (122), TFPHashList.Clear (119)

7.13.15 TFPHashList.IndexOf

Synopsis: Return the index of the data pointer
Declaration: function IndexOf (Item: Pointer) : Integer
Visibility: public

Description: IndexOf returns the index of the first occurrence of pointer Item. If the item is not in the list, -1
is returned.

The performed search is linear, and not very efficient.

See also: TFPHashList.HashOfIndex (119), TFPHashList.NameOfIndex (119), TFPHashList.Find (121), TF-
PHashList.FindIndexOf (121), TFPHashList.FindWithHash (122)

7.13.16 TFPHashList.Find
Synopsis: Find data associated with key

Declaration: function Find(const AName: shortstring) : Pointer
Visibility: public

Description: Find searches (using the hash) for the data item associated with item AName and returns the data
pointer associated with it. If the item is not found, N1i1 is returned. It uses the hash value of the key
to perform the search.

See also: TFPHashList.HashOfIndex (119), TFPHashList.NameOfIndex (119), TFPHashList.IndexOf (121),
TFPHashList.FindIndexOf (121), TFPHashList.FindWithHash (122)

7.13.17 TFPHashList.FindindexOf

Synopsis: Return index of named item.
Declaration: function FindIndexOf (const AName: shortstring) : Integer
Visibility: public

Description: FindIndexOf returns the index of the key AName, or -1 if the key does not exist in the list. It uses
the hash value to search for the key.

See also: TFPHashList.HashOfIndex (119), TFPHashList.NameOfIndex (119), TFPHashList.IndexOf (121),
TFPHashList.Find (121), TFPHashList.FindWithHash (122)

121

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.13.18 TFPHashList.FindWithHash

Synopsis: Find first element with given name and hash value

Declaration: function FindWithHash (const AName: shortstring;AHash: LongWord)
Pointer

Visibility: public

Description: FindWithHash searches for the item with key AName. It uses the provided hash value AHash to
perform the search. If the item exists, the data pointer is returned, if not, the result is Ni1.

See also: TFPHashList.HashOfIndex (119), TFPHashList.NameOfIndex (119), TFPHashList.IndexOf (121),
TFPHashList.Find (121), TFPHashList.FindIndexOf (121)

7.13.19 TFPHashList.Rename
Synopsis: Rename a key

Declaration: function Rename (const AOldName: shortstring;const ANewName: shortstring)
Integer

Visibility: public

Description: Rename renames key AOldname to ANewName. The hash value is recomputed and the item is
moved in the list to it’s new position.

Errors: If an item with ANewName already exists, an exception will be raised.

7.13.20 TFPHashList.Remove

Synopsis: Remove first instance of a pointer
Declaration: function Remove (Item: Pointer) : Integer
Visibility: public

Description: Remove removes the first occurence of the data pointer Item in the list, if it is present. The return
value is the removed data pointer, or Ni1 if no data pointer was removed.

See also: TFPHashList.Delete (120), TFPHashList.Clear (119), TFPHashList.Extract (121)

7.13.21 TFPHashList.Pack

Synopsis: Remove nil pointers from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1 items from the list, and frees all unused memory.

See also: TFPHashList.Clear (119)

122

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.13.22 TFPHashList.ShowStatistics

Synopsis: Return some statistics for the list.
Declaration: procedure ShowStatistics
Visibility: public

Description: showStatistics prints some information about the hash list to standard output. It prints the
following values:

HashSizeSize of the hash table
HashMeanMean hash value
HashStdDevStandard deviation of hash values
ListSizeSize and capacity of the list

StringSizeSize and capacity of key strings

7.13.23 TFPHashList.ForEachCall

Synopsis: Call a procedure for each element in the list

Declaration: procedure ForEachCall (proc2call: TListCallback;arg: pointer)
procedure ForEachCall (proc2call: TListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops over the items in the list and calls proc2call, passing it the item and arg.

7.13.24 TFPHashList.Capacity
Synopsis: Capacity of the list.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity returns the current capacity of the list. The capacity is expanded as more elements are
added to the list. If a good estimate of the number of elements that will be added to the list, the
property can be set to a sufficiently large value to avoid reallocation of memory each time the list
needs to grow.

See also: TFPHashList.Count (123), TFPHashList.Items (124)

7.13.25 TFPHashList.Count

Synopsis: Current number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the current number of elements in the list.

See also: TFPHashList.Capacity (123), TFPHashList.Items (124)

123

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.13.26 TFPHashList.ltems
Synopsis: Indexed array with pointers

Declaration: Property Items[Index: Integer]: Pointer; default
Visibility: public
Access: Read, Write
Description: Items provides indexed access to the pointers, the index runs from 0 to Count-1 (123).
Errors: Specifying an invalid index will result in an exception.

See also: TFPHashList.Capacity (123), TFPHashList.Count (123)

7.13.27 TFPHashList.List

Synopsis: Low-level hash list
Declaration: Property List : PHashItemList
Visibility: public
Access: Read
Description: 1.1 st exposes the low-level item list (100). It should not be used directly.

See also: TFPHashList.Strs (124), THashItemList (100)

7.13.28 TFPHashList.Strs

Synopsis: Low-level memory area with strings.
Declaration: Property Strs : PChar
Visibility: public
Access: Read
Description: St rs exposes the raw memory area with the strings.

See also: TFPHashList.List (124)

7.14 TFPHashObject

7.14.1 Description

TFPHashObject is a TObject descendent which is aware of the TFPHashObjectList (127) class.
It has a name property and an owning list: if the name is changed, it will reposition itself in the list
which owns it. It offers methods to change the owning list: the object will correctly remove itself
from the list which currently owns it, and insert itself in the new list.

124

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.14.2 Method overview

Page Property Description

125 ChangeOwner Change the list owning the object.

126 ChangeOwnerAndName Simultaneously change the list owning the object and the
name of the object.

125 Create Create a named instance, and insert in a hash list.
125 CreateNotOwned Create an instance not owned by any list.
126 Rename Rename the object

7.14.3 Property overview

Page Property Access Description
126 Hash r Hash value
126 Name r Current name of the object

7.14.4 TFPHashObject.CreateNotOwned
Synopsis: Create an instance not owned by any list.
Declaration: constructor CreateNotOwned
Visibility: public
Description: CreateNotOwned creates an instance of TFPHashObject which is not owned by any TF-

PHashObjectList (127) hash list. It also has no name when created in this way.

See also: TFPHashObject.Name (126), TFPHashObject.ChangeOwner (125), TFPHashObject.ChangeOwnerAndName
(126)

7.14.5 TFPHashObject.Create

Synopsis: Create a named instance, and insert in a hash list.

Declaration: constructor Create (HashObjectList: TFPHashObjectList;
const s: shortstring)

Visibility: public

Description: Create creates an instance of TFPHashOb ject, gives it the name S and inserts it in the hash list
HashObjectList (127).

See also: TFPHashObject.CreateNotOwned (125), TFPHashObject.ChangeOwner (125), TFPHashObject.Name
(126)

7.14.6 TFPHashObject.ChangeOwner
Synopsis: Change the list owning the object.
Declaration: procedure ChangeOwner (HashObjectList: TFPHashObjectList)
Visibility: public
Description: ChangeOwner can be used to move the object between hash lists: The object will be removed
correctly from the hash list that currently owns it, and will be inserted in the list HashOb jectList.

Errors: If an object with the same name already is present in the new hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwnerAndName (126), TFPHashObject.Name (126)

125

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.14.7 TFPHashObject.ChangeOwnerAndName

Synopsis: Simultaneously change the list owning the object and the name of the object.

Declaration: procedure ChangeOwnerAndName (HashObjectList: TFPHashObjectList;
const s: shortstring)

Visibility: public

Description: ChangeOwnerAndName can be used to move the object between hash lists: The object will be
removed correctly from the hash list that currently owns it (using the current name), and will be
inserted in the list HashObjectList with the new name S.

Errors: If the new name already is present in the new hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwner (125), TFPHashObject.Name (126)

7.14.8 TFPHashObject.Rename
Synopsis: Rename the object

Declaration: procedure Rename (const ANewName: shortstring)
Visibility: public
Description: Rename changes the name of the object, and notifies the hash list of this change.
Errors: If the new name already is present in the hash list, an exception will be raised.

See also: TFPHashObject.ChangeOwner (125), TFPHashObject.ChangeOwnerAndName (126), TFPHashOb-
ject.Name (126)

7.14.9 TFPHashObject.Name

Synopsis: Current name of the object
Declaration: Property Name : shortstring
Visibility: public
Access: Read
Description: Name is the name of the object, it is stored in the hash list using this name as the key.

See also: TFPHashObject.Rename (126), TFPHashObject.ChangeOwnerAndName (126)

7.14.10 TFPHashObject.Hash

Synopsis: Hash value
Declaration: Property Hash : LongWord
Visibility: public
Access: Read
Description: Hash is the hash value of the object in the hash list that owns it.

See also: TFPHashObject.Name (126)

126

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15 TFPHashObjectList

7.15.1 Method overview
Page Property Description
128 Add Add a new key/data pair to the list
128 Clear Clear the list
127 Create Create a new instance of the hashlist
129 Delete Delete an object from the list.
127 Destroy Removes an instance of the hashlist from the heap
129 Expand Expand the list
130 Extract Extract a object instance from the list
130 Find Find data associated with key
131 FindIndexOf Return index of named object.
131 FindInstanceOf Search an instance of a certain class
131 FindWithHash Find first element with given name and hash value
132 ForEachCall Call a procedure for each object in the list
129 GetNextCollision Get next collision number
129 HashOfIndex Return the hash valye of an object by index
130 IndexOf Return the index of the object instance
128 NameOflIndex Returns the key name of an object by index
132 Pack Remove nil object instances from the list
130 Remove Remove first occurrence of a object instance
131 Rename Rename a key
132 ShowsStatistics Return some statistics for the list.

7.15.2 Property overview

Page Property Access Description

132 Capacity w Capacity of the list.

133 Count w Current number of elements in the list.
133 Items ™w Indexed array with object instances

133 List r Low-level hash list

133 OwnsObjects rw Does the list own the objects it contains

7.15.3 TFPHashObjectList.Create

Synopsis: Create a new instance of the hashlist

Declaration: constructor Create (FreeObjects: Boolean)

Visibility: public

Description: Create creates a new instance of TFPHashObjectList on the heap and sets the hash capacity
to 1.

If FreeObjects is True (the default), then the list owns the objects: when an object is removed
from the list, it is destroyed (freed from memory). Clearing the list will free all objects in the list.

See also: TFPHashObjectList.Destroy (127), TFPHashObjectList.OwnsObjects (133)

7.15.4 TFPHashObjectList.Destroy

Synopsis: Removes an instance of the hashlist from the heap

127

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Declaration: destructor Destroy; Override
Visibility: public

Description: De st roy cleans up the memory structures maintained by the hashlist and removes the TFPHashObjectList
instance from the heap. If the list owns its objects, they are freed from memory as well.

Destroy should not be called directly, it’s better to use Free or FreeAndNil instead.

See also: TFPHashObjectList.Create (127), TFPHashObjectList.Clear (128)

7.15.5 TFPHashObjectList.Clear
Synopsis: Clear the list

Declaration: procedure Clear
Visibility: public

Description: C1lear removes all objects from the list. It does not free the objects themselves, unless OwnsObjects
(133) is True. It always frees all memory needed to contain the objects.

Errors: None.

See also: TFPHashObjectList.Extract (130), TFPHashObjectList.Remove (130), TFPHashObjectList.Delete
(129), TFPHashObjectList.Add (128)

7.15.6 TFPHashObjectList.Add
Synopsis: Add a new key/data pair to the list

Declaration: function Add(const AName: shortstring;AObject: TObject) : Integer
Visibility: public

Description: 2dd adds a new object instance (AOb ject) with key AName to the list. It returns the position of
the object in the list.

Errors: If not enough memory is available to hold the key and data, an exception may be raised. If an object
with this name already exists in the list, an exception is raised.

See also: TFPHashObjectList.Extract (130), TFPHashObjectList.Remove (130), TFPHashObjectList.Delete
(129)

7.15.7 TFPHashObjectList.NameOfindex

Synopsis: Returns the key name of an object by index
Declaration: function NameOfIndex (Index: Integer) : ShortString
Visibility: public
Description: NameOf Index returns the key name of the object at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashObjectList.HashOfIndex (129), TFPHashObjectList.Find (130), TFPHashObjectList.FindIndexOf
(131), TFPHashObjectList.FindWithHash (131)

128

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15.8 TFPHashObjectList.HashOfindex

Synopsis: Return the hash valye of an object by index
Declaration: function HashOfIndex (Index: Integer) : LongWord
Visibility: public
Description: HashOf Index returns the hash value of the object at position Index.
Errors: If Index is out of the valid range, an exception is raised.

See also: TFPHashObjectList.HashOfName (127), TFPHashObjectList.Find (130), TFPHashObjectList.FindIndexOf
(131), TFPHashObjectList.FindWithHash (131)

7.15.9 TFPHashObjectList.GetNextCollision
Synopsis: Get next collision number

Declaration: function GetNextCollision (Index: Integer) : Integer
Visibility: public
Description: Get next collision number

Errors:

7.15.10 TFPHashObjectList.Delete

Synopsis: Delete an object from the list.
Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Delete deletes the object at position ITndex. If OwnsObjects (133) is True, then the object itself
is also freed from memory.

See also: TFPHashObjectList.Extract (130), TFPHashObjectList.Remove (130), TFPHashObjectList. Add (128),
TFPHashObjectList.OwnsObjects (133)

7.15.11 TFPHashObjectList.Expand
Synopsis: Expand the list

Declaration: function Expand : TFPHashObjectList
Visibility: public
Description: Expand enlarges the capacity of the list if the maximum capacity was reached. It returns itself.
Errors: If not enough memory is available, an exception may be raised.

See also: TFPHashObjectList.Clear (128)

129

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15.12 TFPHashObjectList.Extract

Synopsis: Extract a object instance from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes the data object from the list, if it is in the list. It returns the object instance if it
was removed from the list, Ni1 otherwise. The object is not freed from memory, regardless of the
value of OwnsObjects (133).

Extract does a linear search, and is not very efficient.

See also: TFPHashObjectList.Delete (129), TFPHashObjectList.Remove (130), TFPHashObjectList.Clear (128)

7.15.13 TFPHashObjectList.Remove

Synopsis: Remove first occurrence of a object instance
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes the first occurence of the object instance Item in the list, if it is present. The
return value is the location of the removed object instance, or —1 if no object instance was removed.

If OwnsObjects (133) is True, then the object itself is also freed from memory.

See also: TFPHashObjectList.Delete (129), TFPHashObjectList.Clear (128), TFPHashObjectList.Extract (130)

7.15.14 TFPHashObjectList.IndexOf
Synopsis: Return the index of the object instance

Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: IndexOf returns the index of the first occurrence of object instance AOb ject. If the object is not
in the list, -1 is returned.

The performed search is linear, and not very efficient.

See also: TFPHashObjectList.HashOfIndex (129), TFPHashObjectList.NameOfIndex (128), TFPHashObjectList.Find
(130), TFPHashObjectList.FindIndexOf (131), TFPHashObjectList.FindWithHash (131)

7.15.15 TFPHashObjectList.Find
Synopsis: Find data associated with key

Declaration: function Find(const s: shortstring) : TObject
Visibility: public

Description: Find searches (using the hash) for the data object associated with key AName and returns the data
object instance associated with it. If the object is not found, Nil is returned. It uses the hash value
of the key to perform the search.

See also: TFPHashObjectList. HashOfIndex (129), TFPHashObjectList. NameOflIndex (128), TFPHashObjectList.IndexOf
(130), TFPHashObjectList.FindIndexOf (131), TFPHashObjectList.FindWithHash (131)

130

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15.16 TFPHashObjectList.FindindexOf

Synopsis: Return index of named object.
Declaration: function FindIndexOf (const s: shortstring) : Integer
Visibility: public

Description: FindIndexOf returns the index of the key AName, or -1 if the key does not exist in the list. It uses
the hash value to search for the key.

See also: TFPHashObjectList. HashOfIndex (129), TFPHashObjectList. NameOflIndex (128), TFPHashObjectList.IndexOf
(130), TFPHashObjectList.Find (130), TFPHashObjectList.FindWithHash (131)

7.15.17 TFPHashObjectList.FindWithHash

Synopsis: Find first element with given name and hash value

Declaration: function FindWithHash (const AName: shortstring;AHash: LongWord)
Pointer

Visibility: public

Description: FindWithHash searches for the object with key AName. It uses the provided hash value AHash
to perform the search. If the object exists, the data object instance is returned, if not, the result is
Nil.

See also: TFPHashObjectList.HashOfIndex (129), TFPHashObjectList. NameOflIndex (128), TFPHashObjectList.IndexOf
(130), TFPHashObjectList.Find (130), TFPHashObjectList.FindIndexOf (131)

7.15.18 TFPHashObjectList.Rename

Synopsis: Rename a key

Declaration: function Rename (const AOldName: shortstring;const ANewName: shortstring)
Integer

Visibility: public

Description: Rename renames key AOldname to ANewName. The hash value is recomputed and the object is
moved in the list to it’s new position.

Errors: If an object with ANewName already exists, an exception will be raised.

7.15.19 TFPHashObjectList.FindInstanceOf

Synopsis: Search an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer
Visibility: public

Description: FindInstanceOf searches the list for an instance of class AClass. It starts searching at position
AStartAt. If AExact is True, only instances of class AClass are considered. If AExact is
False, then descendent classes of AClass are also taken into account when searching. If no
instance is found, Ni1 is returned.

131

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15.20 TFPHashObjectList.Pack

Synopsis: Remove nil object instances from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1l objects from the list, and frees all unused memory.

See also: TFPHashObjectList.Clear (128)

7.15.21 TFPHashObjectList.ShowStatistics
Synopsis: Return some statistics for the list.

Declaration: procedure ShowStatistics
Visibility: public

Description: ShowStatistics prints some information about the hash list to standard output. It prints the
following values:

HashSizeSize of the hash table
HashMeanMean hash value
HashStdDevStandard deviation of hash values
ListSizeSize and capacity of the list
StringSizeSize and capacity of key strings

7.15.22 TFPHashObjectList.ForEachCall

Synopsis: Call a procedure for each object in the list

Declaration: procedure ForEachCall (proc2call: TObjectListCallback;arg: pointer)
procedure ForEachCall (proc2call: TObjectListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops over the objects in the list and calls proc2call, passing it the object and
arg.

7.15.23 TFPHashObjectList.Capacity
Synopsis: Capacity of the list.
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity returns the current capacity of the list. The capacity is expanded as more elements are
added to the list. If a good estimate of the number of elements that will be added to the list, the
property can be set to a sufficiently large value to avoid reallocation of memory each time the list
needs to grow.

See also: TFPHashObjectList.Count (133), TFPHashObjectList.Items (133)

132

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.15.24 TFPHashObjectList.Count

Synopsis: Current number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the current number of elements in the list.

See also: TFPHashObjectList.Capacity (132), TFPHashObjectList.Items (133)

7.15.25 TFPHashObjectList.OwnsObjects

Synopsis: Does the list own the objects it contains
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsOb-jects determines what to do when an object is removed from the list: if it is True (the
default), then the list owns the objects: when an object is removed from the list, it is destroyed (freed
from memory). Clearing the list will free all objects in the list.

The value of OwnsOb jects is set when the hash list is created, and cannot be changed during the
lifetime of the hash list.

See also: TFPHashObjectList.Create (127)

7.15.26 TFPHashObjectList.ltems
Synopsis: Indexed array with object instances

Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write
Description: Ttems provides indexed access to the object instances, the index runs from 0 to Count-1 (133).
Errors: Specifying an invalid index will result in an exception.

See also: TFPHashObjectList.Capacity (132), TFPHashObjectList.Count (133)

7.15.27 TFPHashObijectList.List
Synopsis: Low-level hash list

Declaration: Property List : TFPHashList
Visibility: public
Access: Read
Description: List exposes the low-level hash list (117). It should not be used directly.

See also: TFPHashList (117)

133

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.16 TFPObjectHashTable

7.16.1 Description

TFPStringHashTable is a TFPCustomHashTable (110) descendent which stores object instances
together with the keys. In case the data associated with the keys are strings themselves, it’s better
to use TFPStringHashTable (143), or for arbitrary pointer data, TFPDataHashTable (116) is more
suitable. The objects are exposed with their keys through the Items (135) property.

7.16.2 Method overview
Page Property Description
135 Add Add a new object to the hash table
134 Create Create a new instance of TFPObjectHashTable
134 CreateWith Create a new hash table with given size and hash function

7.16.3 Property overview

Page Property Access Description
135 Items rw Key-based access to the objects
135 OwnsObjects 1w Does the hash table own the objects ?

7.16.4 TFPObjectHashTable.Create
Synopsis: Create a new instance of TFPObjectHashTable
Declaration: constructor Create (AOwnsObjects: Boolean)
Visibility: public
Description: Create creates a new instance of TFPObjectHashTable on the heap. It sets the OwnsObjects
(135) property to AOwnsObjects, and then calls the inherited Create. If AOwnsObjects is

set to True, then the hash table owns the objects: whenever an object is removed from the list, it is
automatically freed.

Errors: If not enough memory is available on the heap, an exception may be raised.

See also: TFPObjectHashTable.OwnsObjects (135), TFPObjectHashTable.CreateWith (134), TFPObjectHashTable.Items
(135)

7.16.5 TFPObjectHashTable.CreateWith

Synopsis: Create a new hash table with given size and hash function

Declaration: constructor CreateWith (AHashTableSize: LongWord;
aHashFunc: THashFunction;AOwnsObjects: Boolean)
Visibility: public

Description: CreateWith sets the OwnsObjects (135) property to AOwnsObjects, and then calls the in-
herited CreateWith. If AOwnsObjects is set to True, then the hash table owns the objects:
whenever an object is removed from the list, it is automatically freed.

This constructor should be used when a table size and hash algorithm should be specified that differ
from the default table size and hash algorithm.

134

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Errors: If not enough memory is available on the heap, an exception may be raised.

See also: TFPObjectHashTable.OwnsObjects (135), TFPObjectHashTable.Create (134), TFPObjectHashTable.Items
(135)

7.16.6 TFPObjectHashTable.Add
Synopsis: Add a new object to the hash table

Declaration: procedure Add(const aKey: String;AItem: TObject); Virtual
Visibility: public
Description: Add adds the object ATtem to the hash table, and associates it with key aKey.
Errors: If the key aKey is already in the hash table, an exception will be raised.

See also: TFPObjectHashTable.Items (135)

7.16.7 TFPObjectHashTable.ltems
Synopsis: Key-based access to the objects

Declaration: Property Ttems[index: String]: TObject; default
Visibility: public
Access: Read,Write

Description: Items provides access to the objects in the hash table using their key: the array index Index is
the key. A key which is not present will result in an N1i1 instance.

See also: TFPObjectHashTable.Add (135)

7.16.8 TFPObjectHashTable.OwnsObjects

Synopsis: Does the hash table own the objects ?
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read,Write

Description: OwnsOb-jects determines what happens with objects which are removed from the hash table: if
True, then removing an object from the hash list will free the object. If False, the object is not
freed. Note that way in which the object is removed is not relevant: be it Delete, Remove or
Clear.

See also: TFPObjectHashTable.Create (134), TFPObjectHashTable.Items (135)

135

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.17 TFPObjectList

7.17.1 Description

TFPObjectList is a TFPList (??) based list which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TObjectList (148), TFPOb jectList offers no notification mechanism of list op-
erations, allowing it to be faster than TOb jectList. For the same reason, it is also not a descendent
of TFPList (although it uses one internally).

7.17.2 Method overview

Page Property Description

137 Add Add an object to the list.

141 Assign Copy the contents of a list.

137 Clear Clear all elements in the list.

136 Create Create a new object list

137 Delete Delete an element from the list.

137 Destroy Clears the list and destroys the list instance

138 Exchange Exchange the location of two objects

138 Expand Expand the capacity of the list.

138 Extract Extract an object from the list

139 FindInstanceOf Search for an instance of a certain class

140 First Return the first non-nil object in the list

141 ForEachCall For each object in the list, call a method or procedure, passing it the
object.

139 IndexOf Search for an object in the list

139 Insert Insert a new object in the list

140 Last Return the last non-nil object in the list.

140 Move Move an object to another location in the list.

141 Pack Remove all Ni1 references from the list

139 Remove Remove an item from the list.

141 Sort Sort the list of objects

7.17.3 Property overview

Page Property Access Description

142 Capacity rw Capacity of the list

142 Count ™w Number of elements in the list.

143 Items ™w Indexed access to the elements of the list.

143 List r Internal list used to keep the objects.

142 OwnsObjects rw Should the list free elements when they are removed.

7.17.4 TFPObjectList.Create

Synopsis: Create a new object list

Declaration: constructor Create
constructor Create (FreeObjects: Boolean)

Visibility: public

136

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: Create instantiates a new object list. The FreeObjects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TFPObjectList.Destroy (137), TFPObjectList.OwnsObjects (142), TObjectList (148)

7.17.5 TFPObjectList.Destroy

Synopsis: Clears the list and destroys the list instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy clears the list, freeing all objects in the list if OwnsObjects (142) is True.

See also: TFPObjectList.OwnsObjects (142), TObjectList.Create (149)

7.17.6 TFPObjectList.Clear

Synopsis: Clear all elements in the list.
Declaration: procedure Clear
Visibility: public
Description: Removes all objects from the list, freeing all objects in the list if OwnsObjects (142) is True.

See also: TObjectList.Destroy (148)

7.17.7 TFPObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: Add adds AObject to the list and returns the index of the object in the list.

Note that when OwnsObjects (142) is True, an object should not be added twice to the list: this will
result in memory corruption when the object is freed (as it will be freed twice). The Add method
does not check this, however.

Errors: None.

See also: TFPObjectList.OwnsObjects (142), TFPObjectList.Delete (137)

7.17.8 TFPObjectList.Delete

Synopsis: Delete an element from the list.
Declaration: procedure Delete (Index: Integer)

Visibility: public

137

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: Delete removes the object at index Index from the list. When OwnsObjects (142) is True, the
object is also freed.

Errors: An access violation may occur when OwnsObjects (142) is True and either the object was freed
externally, or when the same object is in the same list twice.

See also: TTFPObjectList.Remove (97), TFPObjectList.Extract (138), TFPObjectList.OwnsObjects (142),
TTFPObjectList.Add (97), TTFPObjectList.Clear (97)

7.17.9 TFPObjectList.Exchange

Synopsis: Exchange the location of two objects
Declaration: procedure Exchange (Indexl: Integer;Index2: Integer)
Visibility: public

Description: Exchange exchanges the objects at indexes Index1 and Index2 in a direct operation (i.e. no
delete/add is performed).

Errors: If either Index1 or Index?2 is invalid, an exception will be raised.

See also: TTFPObjectList.Add (97), TTFPObjectList.Delete (97)

7.17.10 TFPObjectList.Expand
Synopsis: Expand the capacity of the list.

Declaration: function Expand : TFPObjectList
Visibility: public

Description: Expand increases the capacity of the list. It calls #rtl.classes.tfplist.expand (??) and then returns a
reference to itself.

Errors: If there is not enough memory to expand the list, an exception will be raised.

See also: TFPObjectList.Pack (141), TFPObjectList.Clear (137), #rtl.classes.tfplist.expand (??)

7.17.11 TFPObjectList.Extract

Synopsis: Extract an object from the list
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes ITtem from the list, if it is present in the list. It returns Ttem if it was found,
Nil if item was not present in the list.

Note that the object is not freed, and that only the first found object is removed from the list.
Errors: None.

See also: TFPObjectList.Pack (141), TFPObjectList.Clear (137), TFPObjectList.Remove (139), TFPObjectList.Delete
(137)

138

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.17.12 TFPObjectList.Remove

Synopsis: Remove an item from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes Item from the list, if it is present in the list. It frees Item if OwnsObjects (142)
is True, and returns the index of the object that was found in the list, or -1 if the object was not
found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TFPObjectList.Pack (141), TFPObjectList.Clear (137), TFPObjectList.Delete (137), TFPObjectList.Extract
(138)

7.17.13 TFPObjectList.IndexOf
Synopsis: Search for an object in the list

Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public

Description: IndexOf searches for the presence of A0bject in the list, and returns the location (index) in the
list. The index is 0-based, and -1 is returned if AOb ject was not found in the list.

Errors: None.

See also: TFPObjectList.Items (143), TFPObjectList.Remove (139), TFPObjectList.Extract (138)

7.17.14 TFPObjectList.FindinstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

Description: FindInstanceOf will look through the instances in the list and will return the first instance which
is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni1l is returned.
Errors: None.

See also: TFPObjectList.IndexOf (139)

139

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.17.15 TFPObijectList.Insert

Synopsis: Insert a new object in the list
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insert inserts AObject at position Index in the list. All elements in the list after this position
are shifted. The index is zero based, i.e. an insert at position 0 will insert an object at the first position
of the list.

Errors: None.

See also: TFPObjectList.Add (137), TFPObjectList.Delete (137)

7.17.16 TFPObijectList.First

Synopsis: Return the first non-nil object in the list
Declaration: function First : TObject
Visibility: public

Description: First returns a reference to the first non-Ni1 element in the list. If no non-Ni 1 element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.Last (140), TFPObjectList.Pack (141)

7.17.17 TFPODbjectList.Last

Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public

Description: Last returns a reference to the last non-Nil element in the list. If no non-Nil element is found,
Nil is returned.

Errors: None.

See also: TFPObjectList.First (140), TFPObjectList.Pack (141)

7.17.18 TFPObjectList.Move

Synopsis: Move an object to another location in the list.
Declaration: procedure Move (CurIndex: Integer;NewIndex: Integer)
Visibility: public

Description: Move moves the object at current location CurIndex to location NewIndex. Note that the
NewIndex is determined affer the object was removed from location Cur Index, and can hence be
shifted with 1 position if CurIndex is less than NewIndex.

Contrary to exchange (138), the move operation is done by extracting the object from it’s current
location and inserting it at the new location.

140

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Errors: If either Cur Index or NewIndex is out of range, an exception may occur.

See also: TFPObjectList.Exchange (138), TFPObjectList.Delete (137), TFPObjectList.Insert (139)

7.17.19 TFPObjectList.Assign

Synopsis: Copy the contents of a list.
Declaration: procedure Assign (Obj: TFPObjectList)
Visibility: public
Description: Assign copies the contents of Ob j if Obj is of type TFPObjectList

Errors: None.

7.17.20 TFPObjectList.Pack

Synopsis: Remove all Nil references from the list
Declaration: procedure Pack
Visibility: public
Description: Pack removes all Ni1 elements from the list.
Errors: None.

See also: TFPObjectList.First (140), TFPObjectList.Last (140)

7.17.21 TFPObijectList.Sort
Synopsis: Sort the list of objects

Declaration: procedure Sort (Compare: TListSortCompare)
Visibility: public

Description: sort will perform a quick-sort on the list, using Compare as the compare algorithm. This function
should accept 2 pointers and should return the following result:

less than OIf the first pointer comes before the second.
equal to OIf the pointers have the same value.

larger than 0If the first pointer comes after the second.

The function should be able to deal with Ni1l values.
Errors: None.

See also: #rtl.classes. TList.Sort (??)

141

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.17.22 TFPObjectList.ForEachCall

Synopsis: For each object in the list, call a method or procedure, passing it the object.

Declaration: procedure ForEachCall (proc2call: TObjectListCallback;arg: pointer)
procedure ForEachCall (proc2call: TObjectListStaticCallback;arg: pointer)

Visibility: public

Description: ForEachCall loops through all objects in the list, and calls proc2call, passing it the object in
the list. Additionally, arg is also passed to the procedure. Proc2call can be a plain procedure or
can be a method of a class.

Errors: None.

See also: TObjectListStaticCallback (101), TObjectListCallback (100)

7.17.23 TFPObjectList.Capacity
Synopsis: Capacity of the list
Declaration: Property Capacity : Integer
Visibility: public
Access: Read,Write

Description: Capacity is the number of elements that the list can contain before it needs to expand itself, i.e.,
reserve more memory for pointers. It is always equal or larger than Count (142).

See also: TFPObjectList.Count (142)

7.17.24 TFPObjectList.Count

Synopsis: Number of elements in the list.
Declaration: Property Count : Integer
Visibility: public
Access: Read,Write
Description: Count is the number of elements in the list. Note that this includes Ni1 elements.

See also: TFPObjectList.Capacity (142)

7.17.25 TFPODbjectList.OwnsObjects

Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public

Access: Read,Write

142

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: OwnsOb-jects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TFPObjectList.Create (136), TFPObjectList.Delete (137), TFPObjectList.Remove (139), TFPOb-
jectList.Clear (137)

7.17.26 TFPObjectList.ltems

Synopsis: Indexed access to the elements of the list.
Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Items is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from 0 (zero) to Count—1.

See also: TFPObjectList.Count (142)

7.17.27 TFPObjectList.List
Synopsis: Internal list used to keep the objects.
Declaration: Property List : TFPList
Visibility: public
Access: Read
Description: List is a reference to the TFPList (??) instance used to manage the elements in the list.

See also: #rtl.classes.tfplist (??)

7.18 TFPStringHashTable

7.18.1 Description

TFPStringHashTable is a TFPCustomHashTable (110) descendent which stores simple strings
together with the keys. In case the data associated with the keys are objects, it’s better to use TFPOb-
jectHashTable (134), or for arbitrary pointer data, TFPDataHashTable (116) is more suitable. The
strings are exposed with their keys through the Items (144) property.

7.18.2 Method overview

Page Property Description
143 Add Add a new string to the hash list

7.18.3 Property overview

Page Property Access Description
144 Ttems ™w Key based access to the strings in the hash table

143

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.18.4 TFPStringHashTable.Add
Synopsis: Add a new string to the hash list

Declaration: procedure Add (const aKey: String;const altem: String); Virtual
Visibility: public
Description: Add adds a new string AItem to the hash list with key AKey.
Errors: If a string with key Akey already exists in the hash table, an exception will be raised.

See also: TFPStringHashTable.Items (144)

7.18.5 TFPStringHashTable.ltems

Synopsis: Key based access to the strings in the hash table
Declaration: Property Items[index: String]: String; default
Visibility: public
Access: Read,Write

Description: Items provides access to the strings in the hash table using their key: the array index Index is the
key. A key which is not present will result in an empty string.

See also: TFPStringHashTable.Add (143)

7.19 THTCustomNode

7.19.1 Description

THTCustomNode is used by the TFPCustomHashTable (110) class to store the keys and associated
values.

7.19.2 Method overview

Page Property Description
144 CreateWith Create a new instance of THTCustomNode
145 HasKey Check whether this node matches the given key.

7.19.3 Property overview

Page Property Access Description
145 Key r Key value associated with this hash item.

7.19.4 THTCustomNode.CreateWith

Synopsis: Create a new instance of THTCustomNode
Declaration: constructor CreateWith (const AString: String)

Visibility: public

144

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: CreateWith creates a new instance of THTCustomNode and stores the string AString in it.
It should never be necessary to call this method directly, it will be called by the TFPHashTable (97)
class when needed.

Errors: If no more memory is available, an exception may be raised.

See also: TFPHashTable (97)

7.19.5 THTCustomNode.HasKey

Synopsis: Check whether this node matches the given key.
Declaration: function HasKey (const AKey: String) : Boolean
Visibility: public

Description: HasKey checks whether this node matches the given key AKey, by comparing it with the stored
key. It returns True if it does, False if not.

Errors: None.

See also: THTCustomNode.Key (145)

7.19.6 THTCustomNode.Key

Synopsis: Key value associated with this hash item.
Declaration: Property Key : String
Visibility: public
Access: Read

Description: Key is the key value associated with this hash item. It is stored when the item is created, and is
read-only.

See also: THTCustomNode.CreateWith (144)

7.20 THTDataNode

7.20.1 Description

THTDataNode is used by TDataHashTable (97) to store the hash items in. It simply holds the data
pointer.

It should not be necessary to use THTDataNode directly, it’s only for inner use by TFPDataHashTable

7.20.2 Property overview

Page Property Access Description
145 Data ™™ Data pointer

145

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.20.3 THTDataNode.Data
Synopsis: Data pointer
Declaration: Property Data : pointer
Visibility: public
Access: Read, Write

Description: Pointer containing the user data associated with the hash value.

7.21 THTObjectNode

7.21.1 Description

THTOb jectNode is a THTCustomNode (144) descendent which holds the data in the TFPObjec-
tHashTable (134) hash table. It exposes a data string.

It should not be necessary to use THTOb jectNode directly, it’s only for inner use by TFPObjectHashTable

7.21.2 Property overview

Page Property Access Description
146 Data w Object instance

7.21.3 THTODbjectNode.Data
Synopsis: Object instance

Declaration: Property Data : TObject
Visibility: public
Access: Read,Write

Description: Dat a is the object instance associated with the key value. It is exposed in TFPObjectHashTable.Items
(135)

See also: TFPObjectHashTable (134), TFPObjectHashTable.Items (135), THTOwnedObjectNode (146)

7.22 THTOwnedObjectNode

7.22.1 Description

THTOwnedOb jectNode is used instead of THTObjectNode (146) in case TFPObjectHashTable
(134) owns it’s objects. When this object is destroyed, the associated data object is also destroyed.

7.22.2 Method overview

Page Property Description
146 Destroy Destroys the node and the object.

146

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.22.3 THTOwnedObjectNode.Destroy

Synopsis: Destroys the node and the object.
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy first frees the data object, and then only frees itself.

See also: THTOwnedObjectNode (146), TFPObjectHashTable.OwnsObjects (135)

7.23 THTStringNode

7.23.1 Description

THTStringNode is a THTCustomNode (144) descendent which holds the data in the TFPString-
HashTable (143) hash table. It exposes a data string.

It should not be necessary to use THT St ringNode directly, it’s only for inner use by TFPStringHashTable

7.23.2 Property overview

Page Property Access Description
147 Data w String data

7.23.3 THTStringNode.Data
Synopsis: String data
Declaration: Property Data : String
Visibility: public
Access: Read,Write

Description: Data is the data of this has node. The data is a string, associated with the key. It is also exposed in
TFPStringHashTable.Items (144)

See also: TFPStringHashTable (143)

7.24 TObjectBucketList

7.24.1 Description

TObjectBucketList is aclass that redefines the associative Data array using TOb ject instead
of Pointer. It also adds some overloaded versions of the Add and Remove calls using TObject
instead of Pointer for the argument and result types.

7.24.2 Method overview

Page Property Description
147 Add Add an object to the list
148 Remove Remove an object from the list

147

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.24.3 Property overview

Page Property Access Description
148 Data w Associative array of data items

7.24.4 TObjectBucketList.Add
Synopsis: Add an object to the list

Declaration: function Add(AItem: TObject;AData: TObject) : TObject
Visibility: public
Description: Add adds AItem to the list and associated AData with it.

See also: TObjectBucketList.Data (148), TObjectBucketList.Remove (148)

7.24.5 TObjectBucketList.Remove

Synopsis: Remove an object from the list
Declaration: function Remove (Altem: TObject) : TObject
Visibility: public

Description: Remove removes the object ATtem from the list. It returns the Data object which was associated
with the item. If ATt em was not in the list, then Ni1 is returned.

See also: TObjectBucketList.Add (147), TObjectBucketList.Data (148)

7.24.6 TObjectBucketList.Data

Synopsis: Associative array of data items
Declaration: Property Data[AItem: TObject]: TObject; default
Visibility: public
Access: Read,Write

Description: Data provides associative access to the data in the list: it returns the data object associated with the
ATtem object. If the ATt em object is not in the list, an EListError exception is raised.

See also: TObjectBucketList.Add (147)

7.25 TObjectList

7.25.1 Description

TObjectList is a TList (??) descendent which has as the default array property TObjects (??)
instead of pointers. By default it also manages the objects: when an object is deleted or removed
from the list, it is automatically freed. This behaviour can be disabled when the list is created.

In difference with TFPObjectList (136), TObjectList offers a notification mechanism of list
change operations: insert, delete. This slows down bulk operations, so if the notifications are not
needed, TOb jectList may be more appropriate.

148

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.25.2 Method overview

Page Property Description

149 Add Add an object to the list.

149 create Create a new object list.

149 Extract Extract an object from the list.

150 FindInstanceOf Search for an instance of a certain class

151 First Return the first non-nil object in the list

150 IndexOf Search for an object in the list

151 Insert Insert an object in the list.

151 Last Return the last non-nil object in the list.

150 Remove Remove (and possibly free) an element from the list.

7.25.3 Property overview

Page Property Access Description
152 Items ™w Indexed access to the elements of the list.
151 OwnsObjects 1w Should the list free elements when they are removed.

7.25.4 TObjectList.create

Synopsis: Create a new object list.

Declaration: constructor create
constructor create (freeobjects: Boolean)

Visibility: public

Description: Create instantiates a new object list. The FreeOb jects parameter determines whether objects
that are removed from the list should also be freed from memory. By default this is True. This
behaviour can be changed after the list was instantiated.

Errors: None.

See also: TObjectList.Destroy (148), TObjectList.OwnsObjects (151), TFPObjectList (136)

7.25.5 TObjectList.Add
Synopsis: Add an object to the list.

Declaration: function Add(AObject: TObject) : Integer
Visibility: public
Description: Add overrides the TList (??) implementation to accept objects (AOb ject) instead of pointers.
The function returns the index of the position where the object was added.
Errors: If the list must be expanded, and not enough memory is available, an exception may be raised.

See also: TObjectList.Insert (151), #rtl.classes. TList.Delete (??), TObjectList.Extract (149), TObjectList.Remove
(150)

149

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.25.6 TODbjectList.Extract

Synopsis: Extract an object from the list.
Declaration: function Extract (Item: TObject) : TObject
Visibility: public

Description: Ext ract removes the object Item from the list if it is present in the list. Contrary to Remove
(150), Ext ract does not free the extracted element if OwnsObjects (151) is True

The function returns a reference to the item which was removed from the list, or Ni1 if no element
was removed.

Errors: None.

See also: TObjectList.Remove (150)

7.25.7 TObjectList.Remove

Synopsis: Remove (and possibly free) an element from the list.
Declaration: function Remove (AObject: TObject) : Integer
Visibility: public

Description: Remove removes ITtem from the list, if it is present in the list. It frees Ttem if OwnsObjects (151)
is True, and returns the index of the object that was found in the list, or -1 if the object was not
found.

Note that only the first found object is removed from the list.
Errors: None.

See also: TObjectList.Extract (149)

7.25.8 TObijectList.IndexOf

Synopsis: Search for an object in the list
Declaration: function IndexOf (AObject: TObject) : Integer
Visibility: public
Description: IndexOf overrides the TList (??) implementation to accept an object instance instead of a pointer.
The function returns the index of the first match for AOb ject in the list, or -1 if no match was found.
Errors: None.

See also: TObjectList.FindInstanceOf (150)

7.25.9 TObijectList.FindinstanceOf

Synopsis: Search for an instance of a certain class

Declaration: function FindInstanceOf (AClass: TClass;AExact: Boolean;
AStartAt: Integer) : Integer

Visibility: public

150

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Description: FindInstanceOf will look through the instances in the list and will return the first instance which
is a descendent of class AClass if AExact is False. If AExact is true, then the instance should
be of class AClass.

If no instance of the requested class is found, Ni1 is returned.
Errors: None.

See also: TObjectList.IndexOf (150)

7.25.10 TObijectList.Insert

Synopsis: Insert an object in the list.
Declaration: procedure Insert (Index: Integer;AObject: TObject)
Visibility: public

Description: Insert inserts AObject in the list at position Index. The index is zero-based. This method
overrides the implementation in TList (??) to accept objects instead of pointers.

Errors: If an invalid Index is specified, an exception is raised.

See also: TObjectList.Add (149), TObjectList.Remove (150)

7.25.11 TObjectList.First
Synopsis: Return the first non-nil object in the list

Declaration: function First : TObject
Visibility: public

Description: First returns a reference to the first non-N1i1 element in the list. If no non-Ni1 element is found,
Nil is returned.

Errors: None.

See also: TObjectList.Last (151), TObjectList.Pack (148)

7.25.12 TObijectList.Last

Synopsis: Return the last non-nil object in the list.
Declaration: function Last : TObject
Visibility: public

Description: Last returns a reference to the last non-Ni1 element in the list. If no non-Ni1 element is found,
Nil is returned.

Errors: None.

See also: TObjectList.First (151), TObjectList.Pack (148)

151

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.25.13 TObjectList.OwnsObjects

Synopsis: Should the list free elements when they are removed.
Declaration: Property OwnsObjects : Boolean
Visibility: public
Access: Read, Write

Description: OwnsObjects determines whether the objects in the list should be freed when they are removed
(not extracted) from the list, or when the list is cleared. If the property is True then they are freed.
If the property is False the elements are not freed.

The value is usually set in the constructor, and is seldom changed during the lifetime of the list. It
defaults to True.

See also: TObjectList.Create (149), TObjectList.Delete (148), TObjectList.Remove (150), TObjectList.Clear
(148)

7.25.14 TObjectList.ltems
Synopsis: Indexed access to the elements of the list.

Declaration: Property Items[Index: Integer]: TObject; default
Visibility: public
Access: Read,Write

Description: Items is the default property of the list. It provides indexed access to the elements in the list. The
index Index is zero based, i.e., runs from O (zero) to Count—1.

See also: #rtl.classes. TList.Count (??)

7.26 TObjectQueue

7.26.1 Method overview
Page Property Description

153 Peek Look at the first object in the queue.
152 Pop Pop the first element off the queue
152 Push Push an object on the queue

7.26.2 TObjectQueue.Push

Synopsis: Push an object on the queue
Declaration: function Push (AObject: TObject) : TObject
Visibility: public

Description: Push pushes another object on the queue. It overrides the Push method as implemented in TQueue
so it accepts only objects as arguments.

Errors: If not enough memory is available to expand the queue, an exception may be raised.

See also: TObjectQueue.Pop (152), TObjectQueue.Peek (153)

152

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.26.3 TObjectQueue.Pop
Synopsis: Pop the first element off the queue
Declaration: function Pop : TObject
Visibility: public
Description: Pop removes the first element in the queue, and returns a reference to the instance. If the queue is
empty, Nil is returned.

Errors: None.

See also: TObjectQueue.Push (152), TObjectQueue.Peek (153)

7.26.4 TObjectQueue.Peek
Synopsis: Look at the first object in the queue.
Declaration: function Peek : TObject
Visibility: public
Description: Peek returns the first object in the queue, without removing it from the queue. If there are no more
objects in the queue, N1i1 is returned.

Errors: None

See also: TObjectQueue.Push (152), TObjectQueue.Pop (152)

7.27 TObjectStack

7.27.1 Description
TObjectStack is a stack implementation which manages pointers only.

TObjectStack introduces no new behaviour, it simply overrides some methods to accept and/or
return TOb ject instances instead of pointers.

7.27.2 Method overview
Page Property Description

154 Peek Look at the top object in the stack.
153 Pop Pop the top object of the stack.
153 Push Push an object on the stack.

7.27.3 TObjectStack.Push
Synopsis: Push an object on the stack.

Declaration: function Push (AObject: TObject) : TObject
Visibility: public
Description: Push pushes another object on the stack. It overrides the Push method as implemented in TStack
S0 it accepts only objects as arguments.

Errors: If not enough memory is available to expand the stack, an exception may be raised.

See also: TObjectStack.Pop (153), TObjectStack.Peek (154)

153

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.27.4 TObjectStack.Pop
Synopsis: Pop the top object of the stack.

Declaration: function Pop : TObject
Visibility: public

Description: Pop pops the top object of the stack, and returns the object instance. If there are no more objects on
the stack, Ni1 is returned.

Errors: None

See also: TObjectStack.Push (153), TObjectStack.Peek (154)

7.27.5 TObjectStack.Peek
Synopsis: Look at the top object in the stack.

Declaration: function Peek : TObject
Visibility: public

Description: Peek returns the top object of the stack, without removing it from the stack. If there are no more
objects on the stack, Nil is returned.

Errors: None

See also: TObjectStack.Push (153), TObjectStack.Pop (153)

7.28 TOrderedList

7.28.1 Description

TOrderedList provides the base class for TQueue (156) and TStack (156). It provides an inter-
face for pushing and popping elements on or off the list, and manages the internal list of pointers.

Note that TOrderedList does not manage objects on the stack, i.e. objects are not freed when the
ordered list is destroyed.

7.28.2 Method overview

Page Property Description
155 AtLeast Check whether the list contains a certain number of elements.

155 Count Number of elements on the list.

154 Create Create a new ordered list

154 Destroy Free an ordered list

156 Peek Return the next element to be popped from the list.
156 Pop Remove an element from the list.

155 Push Push another element on the list.

7.28.3 TOrderedList.Create

Synopsis: Create a new ordered list

Declaration: constructor Create

154

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

Visibility: public
Description: Create instantiates a new ordered list. It initializes the internal pointer list.
Errors: None.

See also: TOrderedList.Destroy (154)

7.28.4 TOrderedList.Destroy

Synopsis: Free an ordered list
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy cleans up the internal pointer list, and removes the TOrderedList instance from mem-
ory.

Errors: None.

See also: TOrderedList.Create (154)

7.28.5 TOrderedList.Count
Synopsis: Number of elements on the list.

Declaration: function Count : Integer
Visibility: public
Description: Count is the number of pointers in the list.
Errors: None.

See also: TOrderedList. AtLeast (155)

7.28.6 TOrderedList.AtLeast

Synopsis: Check whether the list contains a certain number of elements.
Declaration: function AtLeast (ACount: Integer) : Boolean
Visibility: public

Description: At Least returns True if the number of elements in the list is equal to or bigger than ACount. It
returns False otherwise.

Errors: None.

See also: TOrderedList.Count (155)

155

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.28.7 TOrderedList.Push

Synopsis: Push another element on the list.
Declaration: function Push (AItem: Pointer) : Pointer
Visibility: public
Description: Push adds ATtem to the list, and returns ATtem.
Errors: If not enough memory is available to expand the list, an exception may be raised.

See also: TOrderedList.Pop (156), TOrderedList.Peek (156)

7.28.8 TOrderedList.Pop

Synopsis: Remove an element from the list.
Declaration: function Pop : Pointer
Visibility: public

Description: Pop removes an element from the list, and returns the element that was removed from the list. If no
element is on the list, Ni1 is returned.

Errors: None.

See also: TOrderedList.Peek (156), TOrderedList.Push (155)

7.28.9 TOrderedList.Peek

Synopsis: Return the next element to be popped from the list.
Declaration: function Peek : Pointer
Visibility: public

Description: Peek returns the element that will be popped from the list at the next call to Pop (156), without
actually popping it from the list.

Errors: None.

See also: TOrderedList.Pop (156), TOrderedList.Push (155)

7.29 TQueue

7.29.1 Description

TQueue is a descendent of TOrderedList (154) which implements Push (155) and Pop (156) be-
haviour as a queue: what is first pushed on the queue, is popped of first (FIFO: First in, first out).

TQueue offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(154)

156

CHAPTER 7. REFERENCE FOR UNIT "CONTNRS’

7.30 TStack

7.30.1 Description

TStack is a descendent of TOrderedList (154) which implements Push (155) and Pop (156) be-
haviour as a stack: what is last pushed on the stack, is popped of first (LIFO: Last in, first out).

TStack offers no new methods, it merely implements some abstract methods introduced by TOrderedList
(154)

157

Chapter 8

Reference for unit ’CustApp’

8.1 Used units

Table 8.1: Used units by unit *CustApp’

Name Page
Classes 2?
sysutils 7

8.2 Overview

The CustApp unit implements the TCustomApplication (158) class, which serves as the common
ancestor to many kinds of TApplication classes: a GUI application in the LCL, a CGI applica-
tion in FPCGI, a daemon application in daemonapp. It introduces some properties to describe the
environment in which the application is running (environment variables, program command-line pa-
rameters) and introduces some methods to initialize and run a program, as well as functionality to
handle exceptions.

Typical use of a descendent class is to introduce a global variable Application and use the fol-
lowing code:

Application.Initialize;
Application.Run;

Since normally only a single instance of this class is created, and it is a TComponent descendent, it
can be used as an owner for many components, doing so will ensure these components will be freed
when the application terminates.

8.3 Constants, types and variables

8.3.1 Types

TExceptionEvent = procedure (Sender: TObject;E: Exception) of object

TExceptionEvent is the prototype for the exception handling events in TCustomApplication.

158

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

8.4 TCustomApplication

8.4.1

Description

TCustomApplication is the ancestor class for classes that whish to implement a global applica-
tion class instance. It introduces several application-wide functionalities.

e Exception handling in HandleException (159), ShowException (160), OnException (164) and
StopOnException (166).

e Command-line parameter parsing in FindOptionlndex (160), GetOptionValue (161), Check-
Options (162) and HasOption (161)

e Environment variable handling in GetEnvironmentList (163) and EnvironmentVariable (165).

Descendent classes need to override the DoRun protected method to implement the functionality of
the program.

8.4.2 Method overview
Page Property Description
162 CheckOptions Check whether all given options on the command-line are valid.
158 Create Create a new instance of the TCustomApplication class
159 Destroy Destroys the TCustomApplication instance.
160 FindOptionIndex Return the index of an option.
163 GetEnvironmentList Return a list of environment variables.
161 GetOptionValue Return the value of a command-line option.
159 HandleException Handle an exception.
161 HasOption Check whether an option was specified.
159 Initialize Initialize the application
160 Run Runs the application.
160 ShowException Show an exception to the user
160 Terminate Terminate the application.
8.4.3 Property overview
Page Property Access Description
166 CaseSensitiveOptions 1w Are options interpreted case sensitive or not
164 ConsoleApplication r Is the application a console application or not
165 EnvironmentVariable r Environment variable access
163 ExeName r Name of the executable.
163 HelpFile ™w Location of the application help file.
164 Location r Application location
164 OnException ™w Exception handling event
166 OptionChar ™w Command-line switch character
165 ParamCount r Number of command-line parameters
165 Params r Command-line parameters
166 StopOnException ™w Should the program loop stop on an exception
163 Terminated r Was Terminate called or not
164 Title ™w Application title
8.4.4 TCustomApplication.Create

Synopsis: Create a new instance of the TCustomApplication class

159

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public
Description: Create creates a new instance of the TCustomApplication class. It sets some defaults for the

various properties, and then calls the inherited Create.

See also: TCustomApplication.Destroy (159)

8.4.5 TCustomApplication.Destroy
Synopsis: Destroys the TCustomApplication instance.
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy simply calls the inherited Destroy.

See also: TCustomApplication.Create (158)

8.4.6 TCustomApplication.HandleException
Synopsis: Handle an exception.
Declaration: procedure HandleException (Sender: TObject); Virtual
Visibility: public
Description: HandleException is called (or can be called) to handle the exception Sender. If the exception

is not of class Except ion then the default handling of exceptions in the SysUtils unit is called.

If the exception is of class Exception and the OnException (164) handler is set, the handler is
called with the exception object and Sender argument.

If the OnException handler is not set, then the exception is passed to the ShowException (160)
routine, which can be overridden by descendent application classes to show the exception in a way
that is fit for the particular class of application. (a GUI application might show the exception in a
message dialog.

When the exception is handled in the above manner, and the StopOnException (166) property is set
to True, the Terminated (163) property is set to True, which will cause the Run (160) loop to stop,
and the application will exit.

See also: TCustomApplication.ShowException (160), TCustomApplication.StopOnException (166), TCus-
tomApplication. Terminated (163), TCustomApplication.Run (160)

8.4.7 TCustomApplication.Initialize
Synopsis: Initialize the application
Declaration: procedure Initialize; Virtual
Visibility: public

Description: Initialize can be overridden by descendent applications to perform any initialization after the
class was created. It can be used to react to properties being set at program startup. End-user code
should call Initialize prior to calling Run

In TCustomApplication, Initialize sets TerminatedtoFalse.

See also: TCustomApplication.Run (160), TCustomApplication. Terminated (163)

160

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

8.4.8 TCustomApplication.Run

Synopsis: Runs the application.
Declaration: procedure Run
Visibility: public
Description: Run is the start of the user code: when called, it starts a loop and repeatedly calls DoRun until
Terminated is set to True. If an exception is raised during the execution of DoRun, it is caught
and handled to TCustomApplication.HandleException (159). If TCustomApplication.StopOnException

(166) is set to True (which is not the default), Run will exit, and the application will then terminate.
The default is to call DoRun again, which is useful for applications running a message loop such as

services and GUI applications.

See also: TCustomApplication.HandleException (159), TCustomApplication.StopException (158)

8.4.9 TCustomApplication.ShowException
Synopsis: Show an exception to the user
Declaration: procedure ShowException(E: Exception); Virtual
Visibility: public

Description: ShowException should be overridden by descendent classes to show an exception message to
the user. The default behaviour is to call the ShowException (??) procedure in the SysULtils unit.

Descendent classes should do something appropriate for their context: GUI applications can show a
message box, daemon applications can write the exception message to the system log, web applica-
tions can send a 500 error response code.

Errors: None.

See also: #rtl.sysutils.ShowException (??), TCustomApplication.HandleException (159), TCustomApplica-
tion.StopException (158)

8.4.10 TCustomApplication.Terminate
Synopsis: Terminate the application.
Declaration: procedure Terminate; Virtual
Visibility: public

Description: Terminate sets the Terminated property to True. By itself, this does not terminate the appli-
cation. Instead, descendent classes should in their DoRun method, check the value of the Terminated

(163) property and properly shut down the application if it is set to True.

See also: TCustomApplication. Terminated (163), TCustomApplication.Run (160)

8.4.11 TCustomApplication.FindOptionindex

Synopsis: Return the index of an option.

Declaration: function FindOptionIndex (const S: String;var Longopt: Boolean) Integer

Visibility: public

161

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

Description: FindOptionIndex will return the index of the option S or the long option LongOpt. Neither
of them should include the switch character. If no such option was specified, -1 is returned. If either
the long or short option was specified, then the position on the command-line is returned.

Depending on the value of the CaseSensitiveOptions (166) property, the search is performed case
sensitive or case insensitive.

Options are identified as command-line parameters which start with OptionChar (166) (by default
the dash (’-’) character).

See also: TCustomApplication.HasOption (161), TCustomApplication.GetOptionValue (161), TCustomAp-
plication.CheckOptions (162), TCustomApplication.CaseSensitiveOptions (166), TCustomApplica-
tion.OptionChar (166)

8.4.12 TCustomApplication.GetOptionValue

Synopsis: Return the value of a command-line option.

Declaration: function GetOptionValue (const S: String) : String
function GetOptionValue (const C: Char;const S: String) : String

Visibility: public
Description: GetOptionValue returns the value of an option. Values are specified in the usual GNU option
format, either of
——longopt=Value
or

-c Value

is supported.
The function returns the specified value, or the empty string if none was specified.

Depending on the value of the CaseSensitiveOptions (166) property, the search is performed case
sensitive or case insensitive.

Options are identified as command-line parameters which start with OptionChar (166) (by default
the dash (’-”) character).

See also: TCustomApplication.FindOptionIndex (160), TCustomApplication.HasOption (161), TCustomAp-
plication.CheckOptions (162), TCustomApplication.CaseSensitiveOptions (166), TCustomApplica-
tion.OptionChar (166)

8.4.13 TCustomApplication.HasOption

Synopsis: Check whether an option was specified.

Declaration: function HasOption(const S: String) : Boolean
function HasOption (const C: Char;const S: String) : Boolean

Visibility: public

162

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

Description: HasOpt ion returns True if the specified option was given on the command line. Either the short
option character C or the long option S may be used. Note that both options (requiring a value) and
switches can be specified.

Depending on the value of the CaseSensitiveOptions (166) property, the search is performed case
sensitive or case insensitive.

Options are identified as command-line parameters which start with OptionChar (166) (by default
the dash (’-’) character).

See also: TCustomApplication.FindOptionIndex (160), TCustomApplication.GetOptionValue (161), TCus-
tomApplication.CheckOptions (162), TCustomApplication.CaseSensitiveOptions (166), TCustom-
Application.OptionChar (166)

8.4.14 TCustomApplication.CheckOptions

Synopsis: Check whether all given options on the command-line are valid.

Declaration: function CheckOptions (const ShortOptions: String;

const Longopts: TStrings;Opts: TStrings;
NonOpts: TStrings) : String

function CheckOptions (const ShortOptions: String;
const Longopts: TStrings) : String

function CheckOptions (const ShortOptions: String;
const LongOpts: Array of String) : String

function CheckOptions (const ShortOptions: String;const LongOpts: String)

String

Visibility: public
Description: CheckOptions scans the command-line and checks whether the options given are valid options.

It also checks whether options that require a valued are indeed specified with a value.

The ShortOptions contains a string with valid short option characters. Each character in the
string is a valid option character. If a character is followed by a colon (:), then a value must be
specified. If it is followed by 2 colon characters (::) then the value is optional.

LongOpts is a list of strings (which can be specified as an array, a TSt rings instance or a string
with whitespace-separated values) of valid long options.

When the function returns, if Opts is non-Ni1, the Opts stringlist is filled with the passed valid
options. If NonOpts is non-nil, it is filled with any non-option strings that were passed on the
command-line.

The function returns an empty string if all specified options were valid options, and whether options
requiring a value have a value. If an error was found during the check, the return value is a string
describing the error.

Options are identified as command-line parameters which start with OptionChar (166) (by default
the dash (’-’) character).

Errors: if an error was found during the check, the return value is a string describing the error.

See also: TCustomApplication.FindOptionIndex (160), TCustomApplication.GetOptionValue (161), TCus-
tomApplication.HasOption (161), TCustomApplication.CaseSensitiveOptions (166), TCustomAp-
plication.OptionChar (166)

163

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

8.4.15 TCustomApplication.GetEnvironmentList

Synopsis: Return a list of environment variables.

Declaration: procedure GetEnvironmentList (List: TStrings;NamesOnly: Boolean)
procedure GetEnvironmentList (List: TStrings)

Visibility: public

Description: GetEnvironmentList returns a list of environment variables in List. They are in the form
Name=Value, one per item in 1ist. If NamesOnly is True, then only the names are returned.

See also: TCustomApplication.EnvironmentVariable (165)

8.4.16 TCustomApplication.ExeName
Synopsis: Name of the executable.

Declaration: Property ExeName : String
Visibility: public
Access: Read

Description: ExeName returns the full name of the executable binary (path+filename). This is equivalent to
Paramstr (0)

Note that some operating systems do not return the full pathname of the binary.

See also: #rtl.system.paramstr (??)

8.4.17 TCustomApplication.HelpFile
Synopsis: Location of the application help file.

Declaration: Property HelpFile : String
Visibility: public
Access: Read,Write

Description: He1pFi le is the location of the application help file. It is a simple string property which can be set
by an IDE such as Lazarus, and is mainly provided for compatibility with Delphi’s TApplication
implementation.

See also: TCustomApplication.Title (164)

8.4.18 TCustomApplication.Terminated

Synopsis: Was Terminate called or not
Declaration: Property Terminated : Boolean
Visibility: public
Access: Read

Description: Terminated indicates whether Terminate (160) was called or not. Descendent classes should
check Terminated at regular intervals in their implementation of DoRun, and if it is set to True,
should exit gracefully the DoRun method.

See also: TCustomApplication. Terminate (160)

164

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

8.4.19 TCustomApplication.Title
Synopsis: Application title
Declaration: Property Title : String
Visibility: public
Access: Read,Write

Description: Title is a simple string property which can be set to any string describing the application. It
does nothing by itself, and is mainly introduced for compatibility with Delphi’s TApplication
implementation.

See also: TCustomApplication.HelpFile (163)

8.4.20 TCustomApplication.OnException

Synopsis: Exception handling event
Declaration: Property OnException : TExceptionEvent
Visibility: public
Access: Read,Write

Description: OnException can be set to provide custom handling of events, instead of the default action, which
is simply to show the event using ShowEvent (158).

If set, OnException is called by the HandleEvent (158) routine. Do not use the OnException
event directly, instead call HandleEvent

See also: TCustomApplication.ShowEvent (158)

8.4.21 TCustomApplication.ConsoleApplication

Synopsis: Is the application a console application or not
Declaration: Property ConsoleApplication : Boolean
Visibility: public
Access: Read

Description: ConsoleApplication returns True if the application is compiled as a console application (the
default) or False if not. The result of this property is determined at compile-time by the settings of
the compiler: it returns the value of the IsConsole (??) constant.

See also: #rtl.system.IsConsole (??)

8.4.22 TCustomApplication.Location
Synopsis: Application location

Declaration: Property Location : String
Visibility: public

Access: Read

165

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

Description: Location returns the directory part of the application binary. This property works on most plat-
forms, although some platforms do not allow to retrieve this information (Mac OS under certain
circumstances). See the discussion of Paramstr (??) in the RTL documentation.

See also: #rtl.system.paramstr (??), TCustomApplication.Params (165)

8.4.23 TCustomApplication.Params

Synopsis: Command-line parameters
Declaration: Property Params[Index: Integer]: String
Visibility: public
Access: Read

Description: Params gives access to the command-line parameters. They contain the value of the Index-th
parameter, where Index runs from 0 to ParamCount (165). It is equivalent to calling ParamStr (??).

See also: TCustomApplication.ParamCount (165), #rtl.system.paramstr (??)

8.4.24 TCustomApplication.ParamCount

Synopsis: Number of command-line parameters
Declaration: Property ParamCount : Integer
Visibility: public
Access: Read

Description: ParamCount returns the number of command-line parameters that were passed to the program.
The actual parameters can be retrieved with the Params (165) property.

See also: TCustomApplication.Params (165), #rtl.system.paramstr (2?), #rtl.system.paramcount (??)

8.4.25 TCustomApplication.EnvironmentVariable

Synopsis: Environment variable access
Declaration: Property EnvironmentVariable[envName: String]: String
Visibility: public
Access: Read

Description: EnvironmentVariable gives access to the environment variables of the application: It returns
the value of the environment variable EnvName, or an empty string if no such value is available.

To use this property, the name of the environment variable must be known. To get a list of available
names (and values), GetEnvironmentList (163) can be used.

See also: TCustomApplication.GetEnvironmentList (163), TCustomApplication.Params (165)

166

CHAPTER 8. REFERENCE FOR UNIT 'CUSTAPP’

8.4.26 TCustomApplication.OptionChar

Synopsis: Command-line switch character
Declaration: Property OptionChar : Char
Visibility: public
Access: Read,Write

Description: Opt ionChar is the character used for command line switches. By default, this is the dash (*-”)
character, but it can be set to any other non-alphanumerical character (although no check is performed
on this).

See also: TCustomApplication.FindOptionIndex (160), TCustomApplication.GetOptionValue (161), TCus-
tomApplication.HasOption (161), TCustomApplication.CaseSensitiveOptions (166), TCustomAp-
plication.CheckOptions (162)

8.4.27 TCustomApplication.CaseSensitiveOptions

Synopsis: Are options interpreted case sensitive or not
Declaration: Property CaseSensitiveOptions : Boolean
Visibility: public
Access: Read,Write

Description: CaseSensitiveOptions determines whether FindOptionIndex (160) and CheckOptions (162)
perform searches in a case sensitive manner or not. By default, the search is case-sensitive. Setting
this property to False makes the search case-insensitive.

See also: TCustomApplication.FindOptionIndex (160), TCustomApplication.GetOptionValue (161), TCus-
tomApplication.HasOption (161), TCustomApplication.OptionChar (166), TCustomApplication.CheckOptions
(162)

8.4.28 TCustomApplication.StopOnException

Synopsis: Should the program loop stop on an exception
Declaration: Property StopOnException : Boolean
Visibility: public
Access: Read,Write

Description: StopOnException controls the behaviour of the Run (160) and HandleException (159) proce-
dures in case of an unhandled exception in the DoRun code. If StopOnException is True then
Terminate (160) will be called after the exception was handled.

See also: TCustomApplication.Run (160), TCustomApplication.HandleException (159), TCustomApplica-
tion. Terminate (160)

167

Chapter 9

Reference for unit ’"daemonapp’

9.1 Daemon application architecture

[Still needs to be completed]
9.2 Used units

Table 9.1: Used units by unit ’"daemonapp’

Name Page
Classes ??
CustApp 157
eventlog 391
rtlconsts 167
sysutils ??

9.3 Overview

The daemonapp unit implements a TApplication class which encapsulates a daemon or service
application. It handles installation where this is necessary, and does instantiation of the various
daemons where necessary.

The unit consists of 3 separate classes which cooperate tightly:

TDaemon This is a class that implements the daemon’s functionality. One or more descendents
of this class can be implemented and instantiated in a single daemon application. For more
information, see TDaemon (182).

TDaemonApplication This is the actual daemon application class. A global instance of this class
is instantiated. It handles the command-line arguments, and instantiates the various daemons.
For more information, see TDaemonApplication (187).

TDaemonDef This class defines the daemon in the operation system. The TDaemonApplication
class has a collection of TDaemonDe £ instances, which it uses to start the various daemons.
For more information, see TDaemonDef (190).

168

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

As can be seen, a single application can implement one ore more daemons (services). Each daemon
will be run in a separate thread which is controlled by the application class.

The classes take care of logging through the TEventLog (393) class.

Many options are needed only to make the application behave as a windows service application on
windows. These options are ignored in unix-like environment. The documentation will mention this.

9.4 Constants, types and variables

9.4.1 Resource strings

SControlFailed = ’'Control code %s handling failed: %s’

The control code was not handled correctly

SCustomCode = ' [Custom code %d]’

A custom code was received

SDaemonStatus = ’'Daemon %s current status: %s’

Daemon status report log message

SErrApplicationAlreadyCreated = 'An application instance of class %s was already cre

A second application instance is created

SErrDaemonStartFailed = 'Failed to start daemon %s %s’

The application failed to start the daemon

SErrDuplicateName = ’'Duplicate daemon name: %s’

Duplicate service name

SErrNoDaemonDefForStatus = ’'%s: No daemon definition for status report’
Internal error: no daemon definition to report status for

SErrNoDaemonForStatus = ’%s: No daemon for status report’

Internal error: no daemon to report status for

SErrNoServiceMapper = 'No daemon mapper class registered.’

No service mapper was found.

SErrNothingToDo = ’'Options do not allow determining what needs to be done.’

No operation can be performed
SErrOnlyOneMapperAllowed = ’'Not changing daemon mapper class %s with %s: Only 1 mapp

An attempt was made to install a second service mapper

169

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

4

SErrServiceManagerStartFailed = 'Failed to start service manager: $s
Unable to start or contact the service manager

SErrUnknownDaemonClass = ’'Unknown daemon class name: %s’

Unknown daemon class requested

SErrWindowClass = ’'Could not register window class’

Could not register window class

9.4.2 Types
TCurrentStatus = (csStopped,csStartPending, csStopPending, csRunning,
csContinuePending, csPausePending, csPaused)
Table 9.2: Enumeration values for type TCurrentStatus

Value Explanation
csContinuePending The daemon is continuing, but not yet running
csPaused The daemon is paused: running but not active.
csPausePending The daemon is about to be paused.
csRunning The daemon is running (it is operational).
csStartPending The daemon is starting, but not yet fully running.
csStopped The daemon is stopped, i.e. inactive.
csStopPending The daemon is stopping, but not yet fully stopped.

TCurrentStatus indicates the current state of the daemon. It changes from one state to the next
during the time the instance is active. The daemon application changes the state of the daemon,
depending on signals it gets from the operating system, by calling the appropriate methods.

TCustomControlCodeEvent = procedure (Sender: TCustomDaemon;ACode: DWord;
var Handled: Boolean) of object

In case the system sends a non-standard control code to the daemon, an event handler is executed
with this prototype.

TCustomDaemonApplicationClass = Class of TCustomDaemonApplication
Class pointer for TCustomDaemonApplication

TCustomDaemonClass = Class of TCustomDaemon

The class type is needed in the TDaemonDef (190) definition.
TCustomDaemonMapperClass = Class of TCustomDaemonMapper

TCustomDaemonMapperClass is the class of TCustomDaemonMapper. It is used in the
RegisterDaemonMapper (173) call.

170

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

ThDaemonClass = Class of TDaemon
Class type of TDaemon
TDaemonEvent = procedure (Sender: TCustomDaemon) of object

TDaemonEvent is used in event handling. The Sender is the TCustomDaemon (173) instance
that has initiated the event.

TDaemonOKEvent = procedure (Sender: TCustomDaemon;var OK: Boolean)
of object

TDaemonOKEvent is used in event handling, when a boolean result must be obtained, for instance,
to see if an operation was performed succesfully.

TDaemonOption = (doAllowStop,doAllowPause,dolInteractive)

Table 9.3: Enumeration values for type TDaemonOption

Value Explanation

doAllowPause The daemon can be paused.
doAllowStop The daemon can be stopped.
dolnteractive The daemon interacts with the desktop.

Enumerated that enumerates the various daemon operation options.
TDaemonOptions= Set of (doAllowPause,doAllowStop,doInteractive)
TDaemonOpt ion enumerates the various options a daemon can have.

TDaemonRunMode = (drmUnknown,drmInstall,drmUninstall,drmRun)

Table 9.4: Enumeration values for type TDaemonRunMode

Value Explanation
drmlInstall Daemon install mode (windows only)
drmRun Daemon is running normally

drmUninstall Daemon uninstall mode (windows only)
drmUnknown Unknown mode

TDaemonRunMode indicates in what mode the daemon application (as a whole) is currently run-
ning.

TErrorSeverity = (esIgnore,esNormal,esSevere,esCritical)

TErrorSeverity determines what action windows takes when the daemon fails to start. It is used
on windows only, and is ignored on other platforms.

171

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Table 9.5: Enumeration values for type TErrorSeverity

Value Explanation

esCritical ~ Error is logged, and startup is stopped if last known good configuration is active, or system is restarted using las
eslgnore Ignore startup errors

esNormal Error is logged, but startup continues

esSevere Error is logged, and startup is continued if last known good configuration is active, or system is restarted using 1

TGuiLoopEvent = procedure of object

TGuiLoopEvent is the main GUI loop event procedure prototype. It is called by the application
instance in case the daemon has a visual part, which needs to handle visual events. It is run in the
main application thread.

TServiceType = (stWin32, stDevice,stFileSystem)

Table 9.6: Enumeration values for type TServiceType

Value Explanation

stDevice Device driver
stFileSystem File system driver
stWin32 Regular win32 service

The type of service. This type is used on windows only, to signal the operating system what kind of
service is being installed or run.

TStartType = (stBoot,stSystem,stAuto,stManual,stDisabled)

Table 9.7: Enumeration values for type TStartType

Value Explanation
stAuto Started automatically by service manager during system startup
stBoot During system boot

stDisabled Service is not started, it is disabled
stManual Started manually by the user or other processes.
stSystem During load of device drivers

TStartType can be used to define when the service must be started on windows. This type is not
used on other platforms.

9.4.3 Variables

CurrentStatusNames : Array[TCurrentStatus] of String = (’Stopped’,’Start Pending’,’S

Names for various service statuses

172

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

DefaultDaemonOptions : TDaemonOptions = [doAllowStop,doAllowPause]

DefaultDaemonOptions are the default options with which a daemon definition (TDaemonDef
(190)) is created.

SStatus : Array[l..5] of String = (’'Stop’,’Pause’,’Continue’,’Interrogate’,’ Shutdown

Status message

9.5 Procedures and functions

9.5.1 Application
Synopsis: Application instance
Declaration: function Application : TCustomDaemonApplication
Visibility: default

Description: Application is the TCustomDaemonApplication (176) instance used by this application. The
instance is created at the first invocation of this function, so it is possible to use RegisterDaemon-
ApplicationClass (172) to register an alternative TCustomDaemonApplication class to run the
application.

See also: TCustomDaemonApplication (176), RegisterDaemonApplicationClass (172)

9.5.2 DaemonError

Synopsis: Raise an EDaemon exception

Declaration: procedure DaemonError (Msg: String)
procedure DaemonError (Fmt: String;Args: Array of const)

Visibility: default

Description: DaemonError raises an EDaemon (173) exception with message Msg or it formats the message
using Fmt and Args.

See also: EDaemon (173)

9.5.3 RegisterDaemonApplicationClass

Synopsis: Register alternative TCustomDaemonApplication class.

Declaration: procedure RegisterDaemonApplicationClass
(AClass: TCustomDaemonApplicationClass)

Visibility: default

Description: RegisterDaemonApplicationClass can be used to register an alternative TCustomDae-
monApplication (176) descendent which will be used when creating the global Application (172)
instance. Only the last registered class pointer will be used.

See also: TCustomDaemonApplication (176), Application (172)

173

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.5.4 RegisterDaemonClass
Synopsis: Register daemon
Declaration: procedure RegisterDaemonClass (AClass: TCustomDaemonClass)
Visibility: default

Description: RegisterDaemonClass must be called for each TCustomDaemon (173) descendent that is used
in the class: the class pointer and class name are used by the TCustomDaemonMapperClass (169)
class to create a TCustomDaemon instance when a daemon is required.

See also: TCustomDaemonMapperClass (169), TCustomDaemon (173)

9.5.5 RegisterDaemonMapper

Synopsis: Register a daemon mapper class
Declaration: procedure RegisterDaemonMapper (AMapperClass: TCustomDaemonMapperClass)
Visibility: default

Description: RegisterDaemonMapper can be used to register an alternative class for the global daemon-
mapper. The daemonmapper will be used only when the application is being run, by the TCustom-
DaemonApplication (176) code, so registering an alternative mapping class should happen in the
initialization section of the application units.

See also: TCustomDaemonApplication (176), TCustomDaemonMapperClass (169)

9.6 EDaemon

9.6.1 Description
EDaemon is the exception class used by all code in the DaemonApp unit.

9.7 TCustomDaemon

9.7.1 Description

TCustomDaemon implements all the basic calls that are needed for a daemon to function. Descen-
dents of TCustomDaemon can override these calls to implement the daemon-specific behaviour.

TCustomDaemon is an abstract class, it should never be instantiated. Either a descendent of it must

be created and instantiated, or a descendent of TDaemon (182) can be designed to implement the
behaviour of the daemon.

9.7.2 Method overview

Page Property Description
174 LogMessage Log a message to the system log
174 ReportStatus Report the current status to the operating system

174

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.7.3 Property overview

Page Property Access Description

175 Controller r TDaemonController instance controlling this daemon
instance

175 DaemonThread r Thread in which daemon is running

174 Definition r The definition used to instantiate this daemon instance

176 Logger r TEventLog instance used to send messages to the system
log

175 Status ™w Current status of the daemon

9.7.4 TCustomDaemon.LogMessage
Synopsis: Log a message to the system log

Declaration: procedure LogMessage (Msg: String)
Visibility: public

Description: LogMessage can be used to send a message Msg to the system log. A TEventLog (393) instance
is used to actually send messages to the system log.

The message is sent with an ’error’ flag (using TEventLog.Error (396)).
Errors: None.

See also: TCustomDaemon.ReportStatus (174)

9.7.5 TCustomDaemon.ReportStatus

Synopsis: Report the current status to the operating system
Declaration: procedure ReportStatus
Visibility: public

Description: ReportStatus can be used to report the current status to the operating system. The start and stop
or pause and continue operations can be slow to start up. This call can (and should) be used to report
the current status to the operating system during such lengthy operations, or else it may conclude that
the daemon has died.

This call is mostly important on windows operating systems, to notify the service manager that the
operation is still in progress.

The implementation of ReportStatus simply calls ReportStatus in the controller.
Errors: None.

See also: TCustomDaemon.LogMessage (174)

9.7.6 TCustomDaemon.Definition

Synopsis: The definition used to instantiate this daemon instance
Declaration: Property Definition : TDaemonDef
Visibility: public

Access: Read

175

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Description: Definition is the TDaemonDef (190) definition that was used to start the daemon instance. It
can be used to retrieve additional information about the intended behaviour of the daemon.

See also: TDaemonDef (190)

9.7.7 TCustomDaemon.DaemonThread

Synopsis: Thread in which daemon is running
Declaration: Property DaemonThread : TThread
Visibility: public
Access: Read

Description: DaemonThread is the thread in which the daemon instance is running. Each daemon instance in
the application runs in it’s own thread, none of which are the main thread of the application. The
application main thread is used to handle control messages coming from the operating system.

See also: TCustomDaemon.Controller (175)

9.7.8 TCustomDaemon.Controller

Synopsis: TDaemonController instance controlling this daemon instance
Declaration: Property Controller : TDaemonController
Visibility: public
Access: Read

Description: Controller points to the TDaemonController instance that was created by the application
instance to control this daemon.

See also: TCustomDaemon.DaemonThread (175)

9.7.9 TCustomDaemon.Status

Synopsis: Current status of the daemon
Declaration: Property Status : TCurrentStatus
Visibility: public
Access: Read,Write

Description: status indicates the current status of the daemon. It is set by the various operations that the
controller operates on the daemon, and should not be set manually.

Status is the value which ReportStatus will send to the operating system.

See also: TCustomDaemon.ReportStatus (174)

176

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.7.10 TCustomDaemon.Logger

Synopsis: TEvent Log instance used to send messages to the system log

Declaration: Property Logger : TEventLog

Visibility: public

Access: Read

Description: Logger is the TEventLog (393) instance used to send messages to the system log. It is used by
the LogMessage (174) call, but is acessible through the Logger property in case more configurable
logging is needed than offered by LogMessage.

See also: TCustomDaemon.LogMessage (174), #fcl.eventlog. TEventLog (393)

9.8 TCustomDaemonApplication

9.8.1

Description

TCustomDaemonApplication is a TCustomApplication (158) descendent which is the main
application instance for a daemon. It handles the command-line and decides what to do when the
application is started, depending on the command-line options given to the application, by calling the
various methods.

It creates the necessary TDaemon (182) instances by checking the TCustomDaemonMapperClass
(169) instance that contains the daemon maps.

9.8.2 Method overview
Page Property Description
177 CreateDaemon Create daemon instance
178 CreateForm Create a component
177 InstallDaemons Install all daemons.
177 RunDaemons Run all daemons.
176~ ShowException Show an exception
177 StopDaemons Stop all daemons
178 UnlnstallDaemons Uninstall all daemons
9.8.3 Property overview
Page Property Access Description
179 GuiHandle w Handle of GUI loop main application window handle
179 GUIMainLoop 1w GUI main loop callback
178 Logger r Event logging instance used for logging messages
179 RunMode r Application mode
9.8.4 TCustomDaemonApplication.ShowException

Synopsis: Show an exception

Declaration: procedure ShowException(E: Exception); Override

Visibility: public

177

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Description: ShowException is overridden by TCustomDaemonApplication, it sends the exception
message to the system log.

9.8.5 TCustomDaemonApplication.CreateDaemon

Synopsis: Create daemon instance
Declaration: function CreateDaemon (DaemonDef: TDaemonDef) : TCustomDaemon
Visibility: public

Description: CreateDaemon is called whenever a TCustomDaemon (173) instance must be created from a
TDaemonDef (190) daemon definition, passed in DaemonDef. It initializes the TCustomDaemon
instance, and creates a controller instance of type TDaemonController (187) to control the daemon.
Finally, it assigns the created daemon to the TDaemonDef.Instance (191) property.

Errors: In case of an error, an exception may be raised.

See also: TDaemonController (187), TCustomDaemon (173), TDaemonDef (190), TDaemonDef Instance
(191)

9.8.6 TCustomDaemonApplication.StopDaemons
Synopsis: Stop all daecmons

Declaration: procedure StopDaemons (Force: Boolean)
Visibility: public

Description: StopDaemons sends the STOP control code to all daemons, or the SHUTDOWN control code in
case Force is True.

See also: TDaemonController.Controller (188), TCustomDaemonApplication.UnInstallDaemons (178), TCus-
tomDaemonApplication.RunDaemons (177)

9.8.7 TCustomDaemonApplication.InstallDaemons

Synopsis: Install all daemons.
Declaration: procedure InstallDaemons
Visibility: public

Description: ITnstallDaemons installs all known daemons, i.e. registers them with the service manager on
Windows. This method is called if the application is run with the -1 or ~install or /install
command-line option.

See also: TCustomDaemonApplication.UnInstallDaemons (178), TCustomDaemonApplication.RunDaemons
(177), TCustomDaemonApplication.StopDaemons (177)

9.8.8 TCustomDaemonApplication.RunDaemons

Synopsis: Run all daecmons.
Declaration: procedure RunDaemons

Visibility: public

178

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Description: RunDaemons runs (starts) all known daemons. This method is called if the application is run with
the —r or —run methods.

Errors:

See also: TCustomDaemonApplication.UnInstallDaemons (178), TCustomDaemonApplication.InstallDaemons
(177), TCustomDaemonApplication.StopDaemons (177)

9.8.9 TCustomDaemonApplication.UnlnstallDaemons

Synopsis: Uninstall all daemons
Declaration: procedure UnInstallDaemons
Visibility: public

Description: UnInstallDaemons uninstalls all known daemons, i.e. deregisters them with the service man-
ager on Windows. This method is called if the application is run with the —u or —uninstall or
/uninstall command-line option.

See also: TCustomDaemonApplication.RunDaemons (177), TCustomDaemonApplication.InstallDaemons (177),
TCustomDaemonApplication.StopDaemons (177)

9.8.10 TCustomDaemonApplication.CreateForm

Synopsis: Create a component

Declaration: procedure CreateForm(InstanceClass: TComponentClass;var Reference)
; Virtual

Visibility: public

Description: CreateForm creates an instance of InstanceClass and fills Reference with the class in-
stance pointer. It’s main purpose is to give an IDE a means of assuring that forms or datamodules are
created on application startup: the IDE will generate calls for all modules that are auto-created.

Errors: An exception may arise if the instance wants to stream itself from resources, but no resources are
found.

See also: TCustomDaemonApplication.CreateDaemon (177)

9.8.11 TCustomDaemonApplication.Logger

Synopsis: Event logging instance used for logging messages
Declaration: Property Logger : TEventLog
Visibility: public
Access: Read

Description: Logger contains a reference to the TEventLog (393) instance that can be used to send messages to
the system log.

See also: TCustomDaemon.LogMessage (174)

179

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.8.12 TCustomDaemonApplication.GUIMainLoop
Synopsis: GUI main loop callback

Declaration: Property GUIMainLoop : TGuiLoopEvent
Visibility: public
Access: Read,Write

Description: GUIMainLoop contains a reference to a method that can be called to process a main GUI loop.
The procedure should return only when the main GUI has finished and the application should exit. It
is called when the daemons are running.

See also: TCustomDaemonApplication.GuiHandle (179)

9.8.13 TCustomDaemonApplication.GuiHandle
Synopsis: Handle of GUI loop main application window handle

Declaration: Property GuiHandle : THandle
Visibility: public
Access: Read,Write

Description: GuiHandle is the handle of a GUI window which can be used to run a message handling loop on.
It is created when no GUIMainLoop (179) procedure exists, and the application creates and runs a
message loop by itself.

See also: TCustomDaemonApplication.GUIMainLoop (179)

9.8.14 TCustomDaemonApplication.RunMode
Synopsis: Application mode
Declaration: Property RunMode : TDaemonRunMode
Visibility: public
Access: Read

Description: RunMode indicates in which mode the application is running currently. It is set automatically by
examining the command-line, and when set, one of InstallDaemons (177), RunDaemons (177) or
UnlInstallDaemons (178) is called.

See also: TCustomDaemonApplication.InstallDaemons (177), TCustomDaemonApplication.RunDaemons (177),
TCustomDaemonApplication.UnInstallDaemons (178)

9.9 TCustomDaemonMapper

9.9.1 Description

The TCustomDaemonMapper class is responsible for mapping a daemon definition to an actual
TDaemon instance. It maintains a TDaemonDefs (194) collection with daemon definitions, which
can be used to map the definition of a daemon to a TDaemon descendent class.

180

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

An IDE such as Lazarus can design a TCustomDaemonMapper instance visually, to help estab-
lish the relationship between various TDaemonDef (190) definitions and the actual TDaemon (182)
instances that will be used to run the daecmons.

The TCustomDaemonMapper class has no support for streaming. The TDaemonMapper (196)
class has support for streaming (and hence visual designing).

9.9.2 Method overview

Page Property Description
180 Create Create a new instance of TCustomDaemonMapper
180 Destroy Clean up and destroy a TCustomDaemonMapper instance.

9.9.3 Property overview

Page Property Access Description

180 DaemonDefs rw Collection of daemons

181 OnCreate ™w Event called when the daemon mapper is created
181 OnDestroy ™w Event called when the daemon mapper is freed.
182 Onlnstall ™™ Event called when the daemons are installed

181 OnRun ™w Event called when the daemons are executed.
182 OnUnlnstall rw Event called when the daecmons are uninstalled

9.9.4 TCustomDaemonMapper.Create

Synopsis: Create a new instance of TCustomDaemonMapper
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new instance of a TCust omDaemonMapper. It creates the TDaemonDefs (194)
collection and then calls the inherited constructor. It should never be necessary to create a daemon
mapper manually, the application will create a global TCust omDaemonMapper instance.

See also: TDaemonDefs (194), TCustomDaemonApplication (176), TCustomDaemonMapper.Destroy (180)

9.9.5 TCustomDaemonMapper.Destroy

Synopsis: Clean up and destroy a TCustomDaemonMapper instance.
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy frees the DaemonDefs (180) collection and calls the inherited destructor.

See also: TDaemonDefs (194), TCustomDaemonMapper.Create (180)
9.9.6 TCustomDaemonMapper.DaemonDefs

Synopsis: Collection of daemons

Declaration: Property DaemonDefs : TDaemonDefs

181

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Visibility: published
Access: Read,Write

Description: DaemonDefs is the application’s global collection of daemon definitions. This collection will be
used to decide at runtime which TDaemon class must be created to run or install a daemon.

See also: TCustomDaemonApplication (176)

9.9.7 TCustomDaemonMapper.OnCreate

Synopsis: Event called when the daemon mapper is created
Declaration: Property OnCreate : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnCreate is an event that is called when the TCustomDaemonMapper instance is created. It
can for instance be used to dynamically create daemon definitions at runtime.

See also: TCustomDaemonMapper.OnDestroy (181), TCustomDaemonMapper.OnUnlInstall (182), TCustom-
DaemonMapper.OnCreate (181), TCustomDaemonMapper.OnDestroy (181)

9.9.8 TCustomDaemonMapper.OnDestroy

Synopsis: Event called when the daemon mapper is freed.
Declaration: Property OnDestroy : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnDestroy is called when the global daemon mapper instance is destroyed. it can be used to
release up any resources that were allocated when the instance was created, in the OnCreate (181)
event.

See also: TCustomDaemonMapper.OnCreate (181), TCustomDaemonMapper.Onlnstall (182), TCustomDae-
monMapper.OnUnlnstall (182), TCustomDaemonMapper.OnCreate (181)

9.9.9 TCustomDaemonMapper.OnRun

Synopsis: Event called when the daemons are executed.
Declaration: Property OnRun : TNotifyEvent
Visibility: published
Access: Read,Write

Description: onRun is the event called when the daemon application is executed to run the daemons (with
command-line parameter ’-1r’). it is called exactly once.

See also: TCustomDaemonMapper.Onlnstall (182), TCustomDaemonMapper.OnUnlnstall (182), TCustom-
DaemonMapper.OnCreate (181), TCustomDaemonMapper.OnDestroy (181)

182

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.9.10 TCustomDaemonMapper.Oninstall

Synopsis: Event called when the daemons are installed
Declaration: Property OnInstall : TNotifyEvent
Visibility: published
Access: Read, Write

Description: OnInstall is the event called when the daemon application is executed to install the daemons
(with command-line parameter ’-i’ or ’/install’). it is called exactly once.

See also: TCustomDaemonMapper.OnRun (181), TCustomDaemonMapper.OnUnlnstall (182), TCustomDae-
monMapper.OnCreate (181), TCustomDaemonMapper.OnDestroy (181)

9.9.11 TCustomDaemonMapper.OnUninstall

Synopsis: Event called when the daemons are uninstalled
Declaration: Property OnUnInstall : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnUnInstall is the event called when the daemon application is executed to uninstall the dae-
mons (with command-line parameter ’-u’ or ’/uninstall’). it is called exactly once.

See also: TCustomDaemonMapper.OnRun (181), TCustomDaemonMapper.Onlnstall (182), TCustomDae-
monMapper.OnCreate (181), TCustomDaemonMapper.OnDestroy (181)

9.10 TDaemon

9.10.1 Description

TDaemon is a TCustomDaemon (173) descendent which is meant for development in a visual envi-
ronment: it contains event handlers for all major operations. Whenever a TCust omDaemon method
is executed, it’s execution is shunted to the event handler, which can be filled with code in the IDE.

All the events of the daemon are executed in the thread in which the daemon’s controller is running
(as given by DaemonThread (175)), which is not the main program thread.

183

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.10.2 Property overview

Page Property Access Description

186 AfterInstall ™w Called after the daemon was installed

186 AfterUnlInstall ™w Called after the daemon is uninstalled

185 Beforelnstall ™w Called before the daemon will be installed
186 BeforeUnlnstall rw Called before the daemon is uninstalled
183 Definition

184 OnContinue ™w Daemon continue

186 OnControlCode 1w Called when a control code is received for the daemon
185 OnExecute ™w Daemon execute event

184 OnPause ™w Daemon pause event

185 OnShutDown ™w Daemon shutdown

183 OnStart ™w Daemon start event

184 OnStop W Daemon stop event

183 Status

9.10.3 TDaemon.Definition

Declaration: Property Definition
Visibility: public

Access:

9.10.4 TDaemon.Status

Declaration: Property Status
Visibility: public

Access:

9.10.5 TDaemon.OnStart

Synopsis: Daemon start event
Declaration: Property OnStart : TDaemonOKEvent
Visibility: published
Access: Read,Write

Description: OnStart is the event called when the daemon must be started. This event handler should return
as quickly as possible. If it must perform lengthy operations, it is best to report the status to the
operating system at regular intervals using the ReportStatus (174) method.

If the start of the daemon should do some continuous action, then this action should be performed in
a new thread: this thread should then be created and started in the OnExecute (185) event handler, so
the event handler can return at once.

See also: TDaemon.OnStop (184), TDaemon.OnExecute (185), TDaemon.OnContinue (184), TCustomDae-
mon.ReportStatus (174)

184

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.10.6 TDaemon.OnStop

Synopsis: Daemon stop event
Declaration: Property OnStop : TDaemonOKEvent
Visibility: published
Access: Read,Write

Description: OnStart is the event called when the daemon must be stopped. This event handler should return
as quickly as possible. If it must perform lengthy operations, it is best to report the status to the
operating system at regular intervals using the ReportStatus (174) method.

If a thread was started in the OnExecute (185) event, this is the place where the thread should be
stopped.

See also: TDaemon.OnStart (183), TDaemon.OnPause (184), TCustomDaemon.ReportStatus (174)

9.10.7 TDaemon.OnPause
Synopsis: Daemon pause event
Declaration: Property OnPause : TDaemonOKEvent
Visibility: published
Access: Read,Write

Description: OnPause is the event called when the daemon must be stopped. This event handler should return
as quickly as possible. If it must perform lengthy operations, it is best to report the status to the
operating system at regular intervals using the ReportStatus (174) method.

If a thread was started in the OnExecute (185) event, this is the place where the thread’s execution
should be suspended.

See also: TDaemon.OnStop (184), TDaemon.OnContinue (184), TCustomDaemon.ReportStatus (174)

9.10.8 TDaemon.OnContinue
Synopsis: Daemon continue
Declaration: Property OnContinue : TDaemonOKEvent
Visibility: published
Access: Read,Write

Description: OnPause is the event called when the daemon must be stopped. This event handler should return
as quickly as possible. If it must perform lengthy operations, it is best to report the status to the
operating system at regular intervals using the ReportStatus (174) method.

If a thread was started in the OnExecute (185) event and it was suspended in a OnPause (183) event,
this is the place where the thread’s executed should be resumed.

See also: TDaemon.OnStart (183), TDaemon.OnPause (184), TCustomDaemon.ReportStatus (174)

185

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.10.9 TDaemon.OnShutDown

Synopsis: Daemon shutdown
Declaration: Property OnShutDown : TDaemonEvent
Visibility: published
Access: Read, Write

Description: OnshutDown is the event called when the daemon must be shut down. When the system is being
shut down and the daemon does not respond to stop signals, then a shutdown message is sent to the
daemon. This event can be used to respond to such a message. The daemon process will simply be
stopped after this event.

If a thread was started in the OnExecute (185), this is the place where the thread’s executed should
be stopped or the thread freed from memory.

See also: TDaemon.OnStart (183), TDaemon.OnPause (184), TCustomDaemon.ReportStatus (174)

9.10.10 TDaemon.OnExecute

Synopsis: Daemon execute event
Declaration: Property OnExecute : TDaemonEvent
Visibility: published
Access: Read,Write

Description: OnExecute is executed once after the daemon was started. If assigned, it should perform whatever
operation the daemon is designed.

If the daemon’s action is event based, then no OnExecute handler is needed, and the events will
control the daemon’s execution: the daemon thread will then go in a loop, passing control messages
to the daemon.

If an OnExecute event handler is present, the checking for control messages must be done by the
implementation of the OnExecute handler.

See also: TDaemon.OnStart (183), TDaemon.OnStop (184)

9.10.11 TDaemon.Beforelnstall
Synopsis: Called before the daemon will be installed

Declaration: Property BeforelInstall : TDaemonEvent
Visibility: published
Access: Read,Write

Description: BeforeInstall is called before the daemon is installed. It can be done to specify extra depen-
dencies, or change the daemon description etc.

See also: TDaemon. AfterInstall (186), TDaemon.BeforeUnlInstall (186), TDaemon.AfterUnInstall (186)

186

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.10.12 TDaemon.Afterlnstall

Synopsis: Called after the daemon was installed
Declaration: Property AfterInstall : TDaemonEvent
Visibility: published
Access: Read, Write
Description: AfterInstall is called after the daemon was succesfully installed.

See also: TDaemon.Beforelnstall (185), TDaemon.BeforeUnlInstall (186), TDaemon.AfterUnlInstall (186)

9.10.13 TDaemon.BeforeUninstall
Synopsis: Called before the daemon is uninstalled

Declaration: Property BeforeUnInstall : TDaemonEvent
Visibility: published
Access: Read,Write
Description: BeforeUnInstall is called before the daemon is uninstalled.

See also: TDaemon.Beforelnstall (185), TDaemon.AfterInstall (186), TDaemon.AfterUnInstall (186)

9.10.14 TDaemon.AfterUninstall
Synopsis: Called after the daemon is uninstalled

Declaration: Property AfterUnInstall : TDaemonEvent
Visibility: published
Access: Read,Write
Description: AfterUnInstall is called after the daemon is succesfully uninstalled.

See also: TDaemon.Beforelnstall (185), TDaemon.AfterInstall (186), TDaemon.BeforeUnlInstall (186)

9.10.15 TDaemon.OnControlCode

Synopsis: Called when a control code is received for the daemon
Declaration: Property OnControlCode : TCustomControlCodeEvent
Visibility: published
Access: Read,Write

Description: OnControlCode is called when the daemon receives a control code. If the daemon has not han-
dled the control code, it should set the Handled parameter to False. By default it is set to True.

See also: daemonapp.architecture (167)

187

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.11 TDaemonApplication

9.11.1 Description

TDaemonApplication is the default TCustomDaemonApplication (176) descendent that is used
to run the daemon application. It is possible to register an alternative TCust omDaemonApplication
class (using RegisterDaemonApplicationClass (172)) to run the application in a different manner.

9.12 TDaemonController

9.12.1 Description

ThDaemonController is a class that is used by the TDaemonApplication (187) class to con-
trol the daemon during runtime. The TDaemonApplication class instantiates an instance of
TDaemonController for each daemon in the application and communicates with the daemon
through the TDaemonController instance. It should rarely be necessary to access or use this
class.

9.12.2 Method overview

Page Property Description

188 Controller Controller

187 Create Create a new instance of the TDaemonController class
188 Destroy Free a TDaemonController instance.

188 Main Daemon main entry point

189 ReportStatus Report the status to the operating system.
188 StartService Start the service

9.12.3 Property overview

Page Property Access Description

190 CheckPoint Send checkpoint signal to the operating system
189 Daemon r Daemon instance this controller controls.

189 LastStatus r Last reported status

189 Params r Parameters passed to the daemon

9.12.4 TDaemonController.Create

Synopsis: Create a new instance of the TDaemonController class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new instance of the TDaemonController class. It should never be necessary
to create a new instance manually, because the controllers are created by the global TDaemonAppli-
cation (187) instance, and AOwner will be set to the global TDaemonApplication (187) instance.

See also: TDaemonApplication (187), TDaemonController.Destroy (188)

188

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.12.5 TDaemonController.Destroy

Synopsis: Free a TDaemonController instance.
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy deallocates some resources allocated when the instance was created.

See also: TDaemonController.Create (187)

9.12.6 TDaemonController.StartService

Synopsis: Start the service
Declaration: procedure StartService; Virtual
Visibility: public
Description: StartService starts the service controlled by this instance.
Errors: None.

See also: TDaemonController.Main (188)

9.12.7 TDaemonController.Main

Synopsis: Daemon main entry point
Declaration: procedure Main (Argc: DWord;Args: PPChar); Virtual
Visibility: public

Description: Main is the service’s main entry point, called when the system wants to start the service. The global
application will call this function whenever required, with the appropriate arguments.

The standard implementation starts the daemon thread, and waits for it to stop. All other daemon
action - such as responding to control code events - is handled by the thread.

Errors: If the daemon thread cannot be created, an exception is raised.

See also: TDaemonThread (196)

9.12.8 TDaemonController.Controller
Synopsis: Controller

Declaration: procedure Controller (ControlCode: DWord;EventType: DWord;
EventData: Pointer); Virtual

Visibility: public
Description: Controller is responsible for sending the control code to the daemon thread so it can be pro-

cessed.

This routine is currently only used on windows, as there is no service manager on linux. Later on
this may be changed to respond to signals on linux as well.

See also: TDaemon.OnControlCode (186)

189

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.12.9 TDaemonController.ReportStatus
Synopsis: Report the status to the operating system.

Declaration: function ReportStatus : Boolean; Virtual
Visibility: public

Description: ReportStatus reports the status of the daemon to the operating system. On windows, this sends
the current service status to the service manager. On other operating systems, this sends a message
to the system log.

Errors: If an error occurs, an error message is sent to the system log.

See also: TDaemon.ReportStatus (182), TDaemonController.LastStatus (189)

9.12.10 TDaemonController.Daemon

Synopsis: Daemon instance this controller controls.
Declaration: Property Daemon : TCustomDaemon
Visibility: public
Access: Read

Description: Daemon is the daemon instance that is controller by this instance of the TDaemonController
class.

9.12.11 TDaemonController.Params
Synopsis: Parameters passed to the daemon

Declaration: Property Params : TStrings
Visibility: public
Access: Read

Description: Params contains the parameters passed to the daemon application by the operating system, compa-
rable to the application’s command-line parameters. The property is set by the Main (188) method.

9.12.12 TDaemonController.LastStatus
Synopsis: Last reported status

Declaration: Property LastStatus : TCurrentStatus
Visibility: public
Access: Read
Description: Last Status is the last status reported to the operating system.

See also: TDaemonController.ReportStatus (189)

190

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.12.13 TDaemonController.CheckPoint

Synopsis: Send checkpoint signal to the operating system

Declaration: Property CheckPoint

Visibility: public

Access:

DWord

Description: CheckPoint can be used to send a checkpoint signal during lengthy operations, to signal that

a lengthy operation is in progress. This should be used mainly on windows, to signal the service
manager that the service is alive.

See also: TDaemonController.ReportStatus (189)

9.13 TDaemonDef

9.13.1 Description

TDaemonDef contains the definition of a daemon in the application: The name of the daemon,
which TCustomDaemon (173) descendent should be started to run the daemon, a description, and
various other options should be set in this class. The global TDaemonApplication instance
maintains a collection of TDaemonDef instances and will use these definitions to install or start the
various daemons.

9.13.2 Method overview

Page Property Description
190 Create Create a new TDaemonDef instance
191 Destroy Free a TDaemonDef from memory

9.13.3 Property overview

Page Property Access Description

191 DaemonClass r TDaemon class to use for this daemon

191 DaemonClassName rw Name of the TDaemon class to use for this daemon

192 Description ™w Description of the daemon

192 DisplayName rw Displayed name of the daemon (service)

193 Enabled ™w Is the daemon enabled or not

191 Instance ™w Instance of the daemon class

194 LogStatusReport ™w Log the status report to the system log

192 Name 'w Name of the daemon (service)

193 OnCreatelnstance ™w Event called when a daemon in instantiated

193 Options rw Service options

192 RunArguments rw Additional command-line arguments when running dae-
mon.

193 WinBindings w Windows-specific bindings (windows only)

9.13.4 TDaemonDef.Create

Synopsis: Create a new TDaemonDef instance

Declaration: constructor Create (ACollection: TCollection); Override

191

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Visibility: public

Description: Create initializes a new TDaemonDe £ instance. It should not be necessary to instantiate a defi-
nition manually, it is handled by the collection.

See also: TDaemonDefs (194)

9.13.5 TDaemonDef.Destroy

Synopsis: Free a TDaemonDe f from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy removes the TDaemonDef from memory.

9.13.6 TDaemonDef.DaemonClass

Synopsis: Thaemon class to use for this daemon
Declaration: Property DaemonClass : TCustomDaemonClass
Visibility: public
Access: Read

Description: DaemonClass is the TDaemon class that is used when this service is requested. It is looked up in
the application’s global daemon mapper by it’s name in DaemonClassName (191).

See also: TDaemonDef.DaemonClassName (191), TDaemonMapper (196)

9.13.7 TDaemonDef.Instance

Synopsis: Instance of the daemon class
Declaration: Property Instance : TCustomDaemon
Visibility: public
Access: Read,Write

Description: Instance points to the TDaemon (182) instance that is used when the service is in operation at
runtime.

See also: TDaemonDef.DaemonClass (191)

9.13.8 TDaemonDef.DaemonClassName

Synopsis: Name of the TDaemon class to use for this daemon
Declaration: Property DaemonClassName : String
Visibility: published

Access: Read,Write

192

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Description: DaemonClassName is the name of the TDaemon class that will be used whenever the service
is needed. The name is used to look up the class pointer registered in the daemon mapper, when
TCustomDaemonApplication.CreateDaemonlInstance (176) creates an instance of the daemon.

See also: TDaemonDef.Instance (191), TDaemonDef. DaemonClass (191), RegisterDaemonClass (173)

9.13.9 TDaemonDef.Name
Synopsis: Name of the daemon (service)

Declaration: Property Name : String
Visibility: published
Access: Read,Write
Description: Name is the internal name of the daemon as it is known to the operating system.

See also: TDaemonDef.DisplayName (192)

9.13.10 TDaemonDef.Description

Synopsis: Description of the daemon
Declaration: Property Description : String
Visibility: published
Access: Read,Write

Description: Description is the description shown in the Windows service manager when managing this
service. It is supplied to the windows service manager when the daemon is installed.

9.13.11 TDaemonDef.DisplayName

Synopsis: Displayed name of the daemon (service)
Declaration: Property DisplayName : String
Visibility: published
Access: Read,Write
Description: DisplayName is the displayed name of the daemon as it is known to the operating system.

See also: TDaemonDef.Name (192)

9.13.12 TDaemonDef.RunArguments

Synopsis: Additional command-line arguments when running daemon.
Declaration: Property RunArguments : String
Visibility: published
Access: Read,Write

Description: RunArguments specifies any additional command-line arguments that should be specified when
running the daemon: these arguments will be passed to the service manager when registering the
service on windows.

193

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.13.13 TDaemonDef.Options
Synopsis: Service options
Declaration: Property Options : TDaemonOptions
Visibility: published
Access: Read, Write

Description: Opt ions tells the operating system which operations can be performed on the daemon while it is
running.

This option is only used during the installation of the daemon.

9.13.14 TDaemonDef.Enabled

Synopsis: Is the daemon enabled or not
Declaration: Property Enabled : Boolean
Visibility: published
Access: Read,Write

Description: Enabled specifies whether a daemon should be installed, run or uninstalled. Disabled daemons
are not installed, run or uninstalled.

9.13.15 TDaemonDef.WinBindings
Synopsis: Windows-specific bindings (windows only)
Declaration: Property WinBindings : TWinBindings
Visibility: published
Access: Read,Write

Description: WinBindings is used to group together the windows-specific properties of the daemon. This
property is totally ignored on other platforms.

See also: TWinBindings (201)

9.13.16 TDaemonDef.OnCreatelnstance

Synopsis: Event called when a daemon in instantiated
Declaration: Property OnCreateInstance : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnCreateInstance is called whenever an instance of the daemon is created. This can be used
for instance when a single TDaemon class is used to run several services, to correctly initialize the
TDaemon.

194

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.13.17 TDaemonDef.LogStatusReport

Synopsis: Log the status report to the system log
Declaration: Property LogStatusReport : Boolean
Visibility: published
Access: Read,Write

Description: LogStatusReport can be set to True to send the status reports also to the system log. This can
be used to track the progress of the daemon.

See also: TDaemon.ReportStatus (182)

9.14 TDaemonDefs

9.14.1 Description

TDaemonDefs is the class of the global list of daemon definitions. It contains an item for each
daemon in the application.

Normally it is not necessary to create an instance of TDaemonDefs manually. The global TCus-
tomDaemonMapper (179) instance will create a collection and maintain it.

9.14.2 Method overview

Page Property Description

194 Create Create a new instance of a TDaemonDefs collection.

195 DaemonDefByName Find and return instance of daemon definition with given name.
195 FindDaemonDef Find and return instance of daemon definition with given name.

195 IndexOfDaemonDef Return index of daemon definition

9.14.3 Property overview

Page Property Access Description
195 Daemons rw Indexed access to TDaemonDef instances

9.14.4 TDaemonDefs.Create

Synopsis: Create a new instance of a TDaemonDe s collection.
Declaration: constructor Create (AOwner: TPersistent;AClass: TCollectionItemClass)
Visibility: public

Description: Create creates a new instance of the TDaemonDefs collection. It keeps the AOwner parameter
for future reference and calls the inherited constructor.

Normally it is not necessary to create an instance of TDaemonDefs manually. The global TCus-
tomDaemonMapper (179) instance will create a collection and maintain it.

See also: TDaemonDef (190)

195

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.14.5 TDaemonDefs.IndexOfDaemonDef

Synopsis: Return index of daemon definition
Declaration: function IndexOfDaemonDef (const DaemonName: String) : Integer
Visibility: public

Description: IndexOfDaemonDe £ searches the collection for a TDaemonDef (190) instance with a name equal
to DaemonName, and returns it’s index. It returns -1 if no definition was found with this name. The
search is case insensitive.

See also: TDaemonDefs.FindDaemonDef (195), TDaemonDefs.DaemonDefByName (195)

9.14.6 TDaemonDefs.FindDaemonDef

Synopsis: Find and return instance of daemon definition with given name.
Declaration: function FindDaemonDef (const DaemonName: String) : TDaemonDef
Visibility: public

Description: FindDaemonDef searches the list of daemon definitions and returns the TDaemonDef (190) in-
stance whose name matches DaemonName. If no definition is found, Ni1 is returned.

See also: TDaemonDefs.IndexOfDaemonDef (195), TDaemonDefs.DaemonDefByName (195)

9.14.7 TDaemonDefs.DaemonDefByName

Synopsis: Find and return instance of daemon definition with given name.
Declaration: function DaemonDefByName (const DaemonName: String) : TDaemonDef
Visibility: public

Description: FindDaemonDef searches the list of daemon definitions and returns the TDaemonDef (190) in-
stance whose name matches DaemonName. If no definition is found, an EDaemon (173) exception
is raised.

The FindDaemonDef (195) call does not raise an error, but returns Ni 1 instead.
Errors: If no definition is found, an EDaemon (173) exception is raised.

See also: TDaemonDefs.IndexOfDaemonDef (195), TDaemonDefs.FindDaemonDef (195)

9.14.8 TDaemonDefs.Daemons

Synopsis: Indexed access to TDaemonDe £ instances
Declaration: Property Daemons[Index: Integer]: TDaemonDef; default
Visibility: public
Access: Read,Write

Description: Daemons is the default property of TDaemonDefs, it gives access to the TDaemonDe £ instances
in the collection.

See also: TDaemonDef (190)

196

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.15 TDaemonMapper

9.15.1 Description

TDaemonMapper is a direct descendent of TCustomDaemonMapper (179), but introduces no new
functionality. It’s sole purpose is to make it possible for an IDE to stream the TDaemonMapper
instance.

For this purpose, it overrides the Create constructor and tries to find a resource with the same name
as the class name, and tries to stream the instance from this resource.

If the instance should not be streamed, the CreateNew (196) constructor can be used instead.

9.15.2 Method overview

Page Property Description

196 Create Create a new TDaemonMapper instance and initializes it from streamed
resources.

196 CreateNew Create a new TDaemonMapper instance without initialization

9.15.3 TDaemonMapper.Create
Synopsis: Create a new TDaemonMapper instance and initializes it from streamed resources.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: default

Description: Create initializes a new instance of TDaemonMapper and attempts to read the component from
resources compiled in the application.

If the instance should not be streamed, the CreateNew (196) constructor can be used instead.
Errors: If no streaming system is found, or no resource exists for the class, an exception is raised.

See also: TDaemonMapper.CreateNew (196)

9.15.4 TDaemonMapper.CreateNew
Synopsis: Create a new TDaemonMapper instance without initialization
Declaration: constructor CreateNew (AOwner: TComponent;Dummy: Integer)
Visibility: default

Description: CreateNew itializes a new instance of TDaemonMapper. In difference with the Create con-
structor, it does not attempt to read the component from a stream.

See also: TDaemonMapper.Create (196)

9.16 TDaemonThread

9.16.1 Description

TDaemonThread is the thread in which the daemons in the application are run. Each daemon is
run in it’s own thread.

It should not be necessary to create these threads manually, the TDaemonController (187) class will
take care of this.

197

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.16.2 Method overview

Page Property Description

197 CheckControlMessage Check if a control message has arrived
198 ContinueDaemon Continue the daemon

197 Create Create a new thread

197 Execute Run the daemon

199 InterrogateDaemon Report the daemon status

198 PauseDaemon Pause the daemon

198 ShutDownDaemon Shut down daemon

198 StopDaemon Stops the daemon

9.16.3 Property overview

Page Property Access Description
199 Daemon r Daemon instance

9.16.4 TDaemonThread.Create

Synopsis: Create a new thread
Declaration: constructor Create (ADaemon: TCustomDaemon)
Visibility: public

Description: Create creates a new thread instance. It initializes the Daemon property with the passed ADaemon.
The thread is created suspended.

See also: TDaemonThread.Daemon (199)

9.16.5 TDaemonThread.Execute
Synopsis: Run the daemon

Declaration: procedure Execute; Override
Visibility: public

Description: Execute starts executing the daemon and waits till the daemon stops. It also listens for control
codes for the daemon.

See also: TDaemon.Execute (182)

9.16.6 TDaemonThread.CheckControlMessage
Synopsis: Check if a control message has arrived

Declaration: procedure CheckControlMessage (WaitForMessage: Boolean)
Visibility: public

Description: CheckControlMessage checks if a control message has arrived for the daemon and executes
the appropriate daemon message. If the parameter WaitForMessage is True, then the routine
waits for the message to arrive. If it is False and no message is present, it returns at once.

198

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.16.7 TDaemonThread.StopDaemon

Synopsis: Stops the daemon
Declaration: function StopDaemon : Boolean; Virtual
Visibility: public

Description: St opDaemon attempts to stop the daemon using its TDaemon.Stop (182) method, and terminates
the thread.

See also: TDaemon.Stop (182), TDaemonThread.PauseDaemon (198), TDaemonThread.ShutDownDaemon
(198)

9.16.8 TDaemonThread.PauseDaemon

Synopsis: Pause the daemon
Declaration: function PauseDaemon : Boolean; Virtual
Visibility: public

Description: PauseDaemon attempts to stop the daemon using its TDaemon.Pause (182) method, and suspends
the thread. It returns True if the attempt was succesful.

See also: TDaemon.Pause (182), TDaemonThread.StopDaemon (198), TDaemonThread.ContinueDaemon (198),
TDaemonThread.ShutDownDaemon (198)

9.16.9 TDaemonThread.ContinueDaemon

Synopsis: Continue the daemon
Declaration: function ContinueDaemon : Boolean; Virtual
Visibility: public

Description: Cont inueDaemon attempts to stop the daemon using its TDaemon.Continue (182) method. It
returns True if the attempt was succesful.

See also: TDaemon.Continue (182), TDaemonThread.StopDaemon (198), TDaemonThread.PauseDaemon (198),
TDaemonThread.ShutDownDaemon (198)

9.16.10 TDaemonThread.ShutDownDaemon
Synopsis: Shut down daemon

Declaration: function ShutDownDaemon : Boolean; Virtual
Visibility: public

Description: shutDownDaemon shuts down the daemon. This happens normally only when the system is shut
down and the daemon didn’t respond to the stop request. The return result is the result of the TDae-
mon.Shutdown (182) function. The thread is terminated by this method.

See also: TDaemon.Shutdown (182), TDaemonThread.StopDaemon (198), TDaemonThread.PauseDaemon
(198), TDaemonThread.ContinueDaemon (198)

199

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.16.11 TDaemonThread.InterrogateDaemon

Synopsis: Report the daemon status
Declaration: function InterrogateDaemon : Boolean; Virtual
Visibility: public

Description: InterrogateDaemon simply calls TDaemon.ReportStatus (182) for the daemon that is running
in this thread. It always returns True.

See also: TDaemon.ReportStatus (182)

9.16.12 TDaemonThread.Daemon
Synopsis: Daemon instance
Declaration: Property Daemon : TCustomDaemon
Visibility: public
Access: Read

Description: Daemon is the daemon instance which is running in this thread.

See also: TDaemon (182)

9.17 TDependencies

9.17.1 Description

TDependencies is just a descendent of TCollection which contains a series of dependencies
on other services. It overrides the default property of TCollection to return TDependency (200)
instances.

9.17.2 Method overview

Page Property Description
199 Create Create a new instance of a TDependencies collection.

9.17.3 Property overview

Page Property Access Description
200 Items ™w Default property override

9.17.4 TDependencies.Create

Synopsis: Create a new instance of a TDependencies collection.
Declaration: constructor Create (AOwner: TPersistent)
Visibility: public

Description: Create Create a new instance of a TDependencies collection.

200

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.17.5 TDependencies.ltems
Synopsis: Default property override
Declaration: Property Items[Index: Integer]: TDependency; default
Visibility: public
Access: Read,Write

Description: Ttems overrides the default property of TCollection so the items are of type TDependency
(200).

See also: TDependency (200)

9.18 TDependency

9.18.1 Description

TDependency is a collection item used to specify dependencies on other daemons (services) in
windows. It is used only on windows and when installing the daemon: changing the dependencies of
a running daemon has no effect.

9.18.2 Method overview

Page Property Description
200 Assign Assign TDependency instance to another

9.18.3 Property overview

Page Property Access Description
201 IsGroup rw Name refers to a service group
200 Name w Name of the service

9.18.4 TDependency.Assign

Synopsis: Assign TDependency instance to another
Declaration: procedure Assign (Source: TPersistent); Override
Visibility: public

Description: Assign is overridden by TDependency to copy all properties from one instance to another.

9.18.5 TDependency.Name

Synopsis: Name of the service
Declaration: Property Name : String
Visibility: published
Access: Read,Write
Description: Name is the name of a service or service group that the current daemon depends on.

See also: TDependency.IsGroup (201)

201

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.18.6 TDependency.lsGroup

Synopsis: Name refers to a service group
Declaration: Property IsGroup Boolean
Visibility: published

Access: Read,Write

Description: IsGroup can be set to True to indicate that Name refers to the name of a service group.

See also: TDependency.Name (200)

9.19 TWinBindings

9.19.1 Description

TWinBindings contains windows-specific properties for the daemon definition (in TDaemon-
Def.WinBindings (193)). If the daemon should not run on Windows, then the properties can be

ignored.

9.19.2 Method overview

Page Property Description
202 Assign Copies all properties
201 Create Create a new TWinBindings instance

202 Destroy

Remove a TWinBindings instance from memory

9.19.3 Property overview

Page Property Access Description
203 Dependencies 1w Service dependencies
202 ErrCode ™™ Service specific error code

205 ErrorSeverity rw
203 GroupName ™w

204 IDTag w
203 Password ™w
205 ServiceType ™w
204 StartType ™w
203 UserName W
204 WaitHint ™w

202 Win32ErrCode 1w

Error severity in case of startup failure
Service group name

Location in the service group
Password for service startup

Type of service

Service startup type.

Username to run service as

Timeout wait hint

General windows error code

9.19.4 TWinBindings.Create

Synopsis: Create a new TWinBindings instance
Declaration: constructor Create

Visibility: public

Description: Create initializes various properties such as the dependencies.

See also: TDaemonDef (190), TDaemonDef. WinBindings (193), TWinBindings.Dependencies (203)

202

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.19.5 TWinBindings.Destroy

Synopsis: Remove a TWinBindings instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy cleans up the TWinBindings instance.

See also: TWinBindings.Dependencies (203), TWinBindings.Create (201)

9.19.6 TWinBindings.Assign
Synopsis: Copies all properties
Declaration: procedure Assign (Source: TPersistent); Override
Visibility: public

Description: Assign is overridden by TWinBindings so all properties are copied from Source to the
TWinBindings instance.

9.19.7 TWinBindings.ErrCode

Synopsis: Service specific error code
Declaration: Property ErrCode : DWord
Visibility: public
Access: Read,Write

Description: ErrCode contains a service specific error code that is reported with TDaemon.ReportStatus (182)
to the windows service manager. If it is zero, then the contents of Win32ErrCode (202) are reported.
If it is nonzero, then the windows-errorcode is set to ERROR_SERVICE_SPECIFIC_ERROR.

See also: TWinBindings.Win32ErrCode (202)

9.19.8 TWinBindings.Win32ErrCode

Synopsis: General windows error code
Declaration: Property Win32ErrCode : DWord
Visibility: public
Access: Read,Write

Description: Win32ErrCode is a general windows service error code that can be reported with TDaemon.ReportStatus
(182) to the windows service manager. It is sent if ErrCode (202) is zero.

See also: TWinBindings.ErrCode (202)

203

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.19.9 TWinBindings.Dependencies

Synopsis: Service dependencies
Declaration: Property Dependencies : TDependencies
Visibility: published
Access: Read, Write

Description: Dependencies contains the list of other services (or service groups) that this service depends
on. Windows will first attempt to start these services prior to starting this service. If they cannot be
started, then the service will not be started either.

This property is only used during installation of the service.

9.19.10 TWinBindings.GroupName
Synopsis: Service group name
Declaration: Property GroupName : String
Visibility: published
Access: Read,Write

Description: GroupName specifies the name of a service group that the service belongs to. If it is empty, then
the service does not belong to any group.

This property is only used during installation of the service.

See also: TDependency.IsGroup (201)

9.19.11 TWinBindings.Password

Synopsis: Password for service startup
Declaration: Property Password : String
Visibility: published
Access: Read,Write

Description: Password contains the service password: if the service is started with credentials other than one
of the system users, then the password for the user must be entered here.

This property is only used during installation of the service.

See also: TWinBindings.UserName (203)

9.19.12 TWinBindings.UserName

Synopsis: Username to run service as
Declaration: Property UserName : String
Visibility: published

Access: Read,Write

204

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

Description: Username specifies the name of a user whose credentials should be used to run the service. If it
is left empty, the service is run as the system user. The password can be set in the Password (203)

property.
This property is only used during installation of the service.

See also: TWinBindings.Password (203)

9.19.13 TWinBindings.StartType

Synopsis: Service startup type.
Declaration: Property StartType : TStartType
Visibility: published
Access: Read,Write

Description: startType specifies when the service should be started during system startup.

This property is only used during installation of the service.

9.19.14 TWinBindings.WaitHint

Synopsis: Timeout wait hint
Declaration: Property WaitHint : Integer
Visibility: published
Access: Read,Write

Description: WaitHint specifies the estimated time for a start/stop/pause or continue operation (in millisec-
onds). Reportstatus should be called prior to this time to report the next status.

See also: TDaemon.ReportStatus (182)

9.19.15 TWinBindings.IDTag

Synopsis: Location in the service group
Declaration: Property IDTag : DWord
Visibility: published
Access: Read,Write

Description: IDTag contains the location of the service in the service group after installation of the service. It
should not be set, it is reported by the service manager.

This property is only used during installation of the service.

205

CHAPTER 9. REFERENCE FOR UNIT "DAEMONAPP’

9.19.16 TWinBindings.ServiceType
Synopsis: Type of service

Declaration: Property ServiceType : TServiceType
Visibility: published
Access: Read,Write

Description: serviceType specifies what kind of service is being installed.

This property is only used during installation of the service.

9.19.17 TWinBindings.ErrorSeverity

Synopsis: Error severity in case of startup failure
Declaration: Property ErrorSeverity : TErrorSeverity
Visibility: published
Access: Read,Write

Description: ErrorSeverity can be used at installation time to tell the windows service manager how to
behave when the service fails to start during system startup.

This property is only used during installation of the service.

206

Chapter 10

Reference for unit ’db’

10.1 Used units

Table 10.1: Used units by unit *db’

Name Page

Classes 77
FmtBCD 206
sysutils ??

Variants 206

10.2 Overview

The db unit provides the basis for all database access mechanisms. It introduces abstract classes,
on which all database access mechanisms are based: TDataset (248) representing a set of records
from a database, TField (296) which represents the contents of a field in a record, TDatasource (285)
which acts as an event distributor on behalf of a dataset and TParams (365) which can be used to
parametrize queries. The databases connections themselves are abstracted in the TDatabase (239)
class.

10.3 Constants, types and variables

10.3.1 Constants
DefaultFieldClasses : Array[TFieldType] of TFieldClass = (Tfield, TStringField,TSmall

DefaultFieldClasses contains the TField (296) descendent class to use when a TDataset
instance needs to create fields based on the TFieldDefs (324) field definitions when opening the
dataset. The entries can be set to create customized TField descendents for certain field datatypes
in all datasets.

dsEditModes = [dsEdit,dsInsert,dsSetKey]

207

CHAPTER 10. REFERENCE FOR UNIT 'DB’

dsEditModes contains the various values of TDataset.State (274) for which the dataset is in edit
mode, i.e. states in which it is possible to set field values for that dataset.

dsMaxBufferCount = MAXINT div 8

Maximum data buffers count for dataset

dsMaxStringSize = 8192

Maximum size of string fields

dsWriteModes = [dsEdit,dsInsert,dsSetKey,dsCalcFields,dsFilter,dsNewValue,dsInternal

dsWriteModes contains the various values of TDataset.State (274) for which data can be written
to the dataset buffer.

Fieldtypenames : Array[TFieldType] of String = (’Unknown’,’String’,’Smallint’,’Integ
FieldTypeNames contains the names (in english) for the various field data types.
FieldTypetoVariantMap : Array[TFieldType] of Integer = (varError,varOleStr,varSmalli:

FieldTypetoVariantMap contains for each field datatype the variant value type that corre-
sponds to it. If a field type cannot be expressed by a variant type, then varError is stored in the
variant value.

SQLDelimiterCharacters = [";',", ", ", (",")’,#13,#10, #9]
SQL statement delimiter token characters
YesNoChars : Array[Boolean] of Char = ('N’,’Y")

Array of characters mapping a boolean to Y/N

10.3.2 Types

LargeInt = Int64
Large (64-bit) integer
PBookmarkFlag = "“TBookmarkFlag

PBookmarkFlag is a convenience type, defined for internal use in TDataset (248) or one of it’s
descendents.

PRufferList = "TBufferlList

PBufferList is a pointer to a structure of type TBufferList (209). It is an internal type, and should
not be used in end-user code.

PDateTimeRec = "TdateTimeRec

208

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Pointer to TDateTimeRec record

PLargeInt = "“Largelnt

Pointer to Large (64-bit) integer

PLookupListRec = “TLookupListRec

Pointer to TLookupListRec record

TBlobData = String

TBlobData should never be used directly in application code.

TBlobStreamMode = (bmRead,bmWrite, bmReadWrite)

Table 10.2: Enumeration values for type TBlobStreamMode

Value Explanation

bmRead Read blob data
bmReadWrite Read and write blob data
bmWrite Write blob data

TBlobStramMode is used when creating a stream for redaing BLOB data. It indicates what the
data will be used for: reading, writing or both.

TBlobType = ..ftWideMemo
TBlobType is a subrange type, indicating the various datatypes of BLOB fields.
TBookmark = Pointer

TBookMark is the type used by the TDataset.SetBookMark (248) method. It is an opaque type, and
should not be used any more, it is superseded by the TBookmarkStr (209) type.

TBookmarkFlag = (bfCurrent,bfBOF,bfEOF,bfInserted)

Table 10.3: Enumeration values for type TBookmarkFlag

Value Explanation

bfBOF First record in the dataset.
bfCurrent Buffer used for the current record
bfEOF Last record in the dataset
bflnserted Buffer used for insert

TBookmarkFlag is used internally by TDataset (248) and it’s descendent types to mark the internal
memory buffers. It should not be used in end-user applications.

209

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TBookmarkStr = String

TBookmarkStr is the type used by the TDataset.Bookmark (269) property. It can be used as a
string, but should in fact be considered an opaque type.

TBufferArray = “pchar

TBufferArray is an internally used type. It can change in future implementations, and should not
be used in application code.

TBufferList = Array[0..dsMaxBufferCount-1] of PChar

TBufferList is used intenally by the TDataset (248) class to manage the memory buffers for the
data. It should not be necessary to use this type in end-user applications.

TDataAction = (daFail,daAbort,daRetry)

Table 10.4: Enumeration values for type TDataAction

Value Explanation

daAbort The operation should be aborted (edits are undone, and an EAbort exception is raised)
daFail The operation should fail (an exception will be raised)

daRetry Retry the operation.

TDataAction is used by the TDataSetErrorEvent (210) event handler prototype. The parameter
Action of this event handler is of TDataAction type, and should indicate what action must be
taken by the dataset.

TDatabaseClass = Class of TDataBase
TDatabaseClass is the class pointer for the TDatabase (239) class.
TDataChangeEvent = procedure (Sender: TObject;Field: TField) of object

TDataChangeEvent is the event handler prototype for the TDatasource.OnDataChange (288)
event. The sender parameter is the TDatasource instance that triggered the event, and the Field
parameter is the field whose data has changed. If the dataset has scrolled, then the Fie1d parameter
isNil.

TDataEvent = (deFieldChange,deRecordChange, deDataSetChange,
deDataSetScroll, delLayoutChange, deUpdateRecord,
deUpdateState, deCheckBrowseMode, dePropertyChange,
deFieldListChange,deFocusControl, deParentScroll,
deConnectChange, deReconcileError,deDisabledStateChange)

TDataEvent describes the various events that can be sent to TDatasource (285) instances con-
nected to a TDataset (248) instance.

TDataOperation = procedure of object

210

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.5: Enumeration values for type TDataEvent

Value Explanation

deCheckBrowseMode The browse mode is being checked
deConnectChange Unused

deDataSetChange The dataset property changed

deDataSetScroll The dataset scrolled to another record
deDisabledStateChange Unused

deFieldChange A field value changed

deFieldListChange Event sent when the list of fields of a dataset changes
deFocusControl Event sent whenever a control connected to a field should be focused
deLayoutChange The layout properties of one of the fields changed
deParentScroll Unused

dePropertyChange Unused

deReconcileError Unused

deRecordChange The current record changed

deUpdateRecord The record is being updated

deUpdateState The dataset state is updated

TDataOperation is a prototype handler used internally in TDataset. It can be changed at any
time, so it should not be used in end-user code.

ThDatasetClass = Class of TDataSet

TDatasetClass is the class type for the TDataset (248) class. It is curently unused in the DB unit
and is defined for the benefit of other units.

TDataSetErrorEvent = procedure (DataSet: TDataSet;E: EDatabaseError;
var DataAction: TDataAction) of object

TDatasetErrorEvent is used by the TDataset.OnEditError (284), TDataset.OnPostError (285)
and TDataset.OnDeleteError (283) event handlers to allow the programmer to specfy what should be
done if an update operation fails with an exception: The Dataset parameter indicates what dataset
triggered the event, the E parameter contains the exception object. The DataAction must be set
by the event handler, and based on it’s return value, the dataset instance will take appropriate action.
The default value is daFail, i.e. the exception will be raised again. For a list of available return
values, see TDataAction (209).

TDataSetNotifyEvent = procedure (DataSet: TDataSet) of object

TDatasetNotifyEVent is used in most of the TDataset (248) event handlers. It differs from
the more general TNot i fyEvent (defined in the Classes unit) in that the Sender parameter of
the latter is replaced with the Dataset parameter. This avoids typecasts, the available TDataset
methods can be used directly.

TDataSetState = (dsInactive,dsBrowse,dsEdit,dsInsert,dsSetKey,
dsCalcFields,dsFilter,dsNewValue,dsOldValue, dsCurValue,
dsBlockRead, dsInternalCalc, dsOpening)

TDataSetState describes the current state of the dataset. During it’s lifetime, the dataset’s state
is described by these enumerated values.

211

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.6: Enumeration values for type TDataSetState

Value Explanation

dsBlockRead The dataset is open, but no events are transferred to datasources.

dsBrowse The dataset is active, and the cursor can be used to navigate the data.

dsCalcFields The dataset is calculating it’s calculated fields.

dsCurValue The dataset is showing the current values of a record.

dsEdit The dataset is in editing mode: the current record can be modified.

dsFilter The dataset is filtering records.

dsInactive The dataset is not active. No data is available.

dsInsert The dataset is in insert mode: the current record is a new record which can be edited.

dsInternalCalc The dataset is calculating it’s internally calculated fields.
dsNew Value The dataset is showing the new values of a record.

dsOldValue The dataset is showing the old values of a record.
dsOpening The dataset is currently opening, but is not yet completely open.
dsSetKey The dataset is calculating the primary key.

Some state are not used in the default TDataset implementation, and are only used by certain descen-
dents.

TDateTimeAlias = TDateTime

TDateTimeAlias is no longer used.

TDateTimeRec = record

end

TDateTimeRec was used by older TDataset (248) implementations to store date/time values.
Newer implementations use the TDateTime. This type should no longer be used.
TDBDatasetClass = Class of TDBDataset

TDBDatasetClass is the class pointer for TDBDataset (291)

TDBTransactionClass = Class of TDBTransaction

TDBTransactionClass is the class pointer for the TDBTransaction (292) class.

TFieldAttribute = (faHiddenCol, faReadonly, faRequired, falLink, faUnNamed,
faFixed)

TFieldAttribute is used to denote some attributes of a field in a database. It is used in the
Attributes (323) property of TFieldDef (320).

TFieldAttributes= Set of (faFixed, faHiddenCol, falink, faReadonly,
faRequired, faUnNamed)

TFieldAttributes is used in the TFieldDef.Attributes (323) property to denote additional at-
tributes of the underlying field.

212

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.7: Enumeration values for type TFieldAttribute

Value Explanation

faFixed Fixed length field

faHiddenCol Field is a hidden column (used to construct a unique key)
faLink Field is a link field for other datasets

faReadonly Field is read-only
faRequired Field is required
faUnNamed Field has no original name

TFieldChars = Set of Char
TFieldCharsisatype used in the TField.ValidChars (311) property. It’s a simple set of characters.

TFieldClass = Class of TField

TFieldGetTextEvent = procedure (Sender: TField;var aText: String;
DisplayText: Boolean) of object

TFieldGetTextEvent is the prototype for the TField.OnGetText (319) event handler. It should
be used when the text of a field requires special formatting. The event handler should return the
contents of the field in formatted form in the AText parameter. The DisplayText is True if the

text is used for displaying purposes or is False if it will be used for editing purposes.

TFieldKind = (fkData, fkCalculated, fkLookup, fkInternalCalc)

Table 10.8: Enumeration values for type TFieldKind

Value Explanation

fkCalculated The field is calculated on the fly.

fkData Field represents actual data in the underlying data structure.
fkInternalCalc Field is calculated but stored in an underlying buffer.
fkLookup The field is a lookup field.

TFieldKind indicates the type of a TField instance. Besides TField instances that represent
fields present in the underlying data records, there can also be calculated or lookup fields. To distin-
guish between these kind of fields, TFie1dKind is introduced.

TFieldKinds= Set of (fkCalculated, fkData, fkInternalCalc, fkLookup)

TFieldKinds is a set of TFieldKind (212) values. It is used internally by the classes of the DB
unit.

TFieldMap = Array[TFieldType] of Byte
TFieldMap is no longer used.

TFieldNotifyEvent = procedure (Sender: TField) of object

213

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TFieldNotifyEvent is a prototype for the event handlers in the TField (296) class. It’s Sender
parameter is the field instance that triggered the event.

TFieldRef = "TField
Pointer to a TField instance

TFieldSetTextEvent = procedure (Sender: TField;const aText: String)
of object

TFieldSetTextEvent is the prototype for an event handler used to set the contents of a field
based on a user-edited text. It should be used when the text of a field is entered with special format-
ting. The event handler should set the contents of the field based on the formatted text in the AText
parameter.

TFieldType = (ftUnknown, ftString, ftSmallint, ftInteger, ftWord, ftBoolean,
ftFloat, ftCurrency, ftBCD, ftDate, ftTime, ftDateTime, ftBytes,
ftVarBytes, ftAutolInc, ftBlob, ftMemo, ftGraphic, ftFmtMemo,
ftParadoxOle, ftDBaseOle, ftTypedBinary, ftCursor,
ftFixedChar, ftWideString, ftLargeint, ftADT, ftArray,
ftReference, ftDataSet, ftOraBlob, ftOraClob, ftVariant,
ftInterface, ftIDispatch, ftGuid, ftTimeStamp, ftFMTBcd,
ftFixedWideChar, ftWideMemo)

TFieldType indicates the type of a TField (296) underlying data, in the DataType (308) property.
TFilterOption = (foCaselnsensitive, foNoPartialCompare)
TFilterOption enumerates the various options available when filtering a dataset. The TFilterOp-
tions (213) set is used in the TDataset.FilterOptions (276) property to indicate which of the options
should be used when filtering the data.

TFilterOptions= Set of (foCaselnsensitive, foNoPartialCompare)
TFilterOption is the set of filter options to use when filtering a dataset. This set type is used in
the TDataset.FilterOptions (276) property. The available values are described in the TFilterOption

(213) type.

TFilterRecordEvent = procedure (DataSet: TDataSet;var Accept: Boolean)
of object

TFilterRecordEvent is the prototype for the TDataset.OnFilterRecord (284) event handler.
The Dataset parameter indicates which dataset triggered the event, and the Accept parameter

must be set to t rue if the current record should be shown, False should be used when the record
should be hidden.

TGetMode = (gmCurrent,gmNext,gmPrior)

TGetMode is used internally by TDataset (248) when it needs to fetch more data for its buffers
(using GetRecord). It tells the descendent dataset what operation must be performed.

TGetResult = (grOK,grBOF, grEOF,grError)

214

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TGetResult is used by descendents of TDataset (248) when they have to communicate the result
of the GetRecord operation back to the TDat aset record.

TIndexOption = (ixPrimary, ixUnique, ixDescending, ixCaselInsensitive,
ixExpression, ixNonMaintained)

TIndexOption describes the various properties that an index can have. It is used in the TIndex-
Options (214) set type to describe all properties of an index definition as in TIndexDef (335).

TIndexOptions= Set of (ixCaselnsensitive, ixDescending,ixExpression,
ixNonMaintained, ixPrimary, ixUnique)

TIndexOptions contains the set of properties that an index can have. It is used in the TIn-
dexDef.Options (337) property to describe all properties of an index definition as in TIndexDef (335).

TIntegerField = TLongintField
TIntegerField is an alias for TLongintField (343).
TLocateOption = (loCaselnsensitive, loPartialKey)

TLocateOption is used in the TDataset.Locate (264) call to enumerate the possible options avail-
able when locating a record in the dataset.

TLocateOptions= Set of (loCaselnsensitive,loPartialKey)

TLocateOptions is used in the TDataset.Locate (264) call: It should contain the actual options
to use when locating a record in the dataset.

TLoginEvent = procedure (Sender: TObject;Username: String;
Password: String) of object

TLoginEvent is the prototype for a the the TCustomConnection.OnLogin (238) event handler. It
gets passed the TCustomConnection instance that is trying to login, and the initial username and
password.

TLookupListRec = record
Key : Variant;
Value : Variant;

end

TLookupListRec is used by lookup fields to store lookup results, if the results should be cached.
Its two fields keep the key value and associated lookup value.

TParamBinding = Array of Integer

TParamBinding is an axuiliary type used when parsing and binding parameters in SQL state-
ments. It should never be used directly in application code.

TParamStyle = (psInterbase,psPostgreSQL,psSimulated)

215

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TParamStyle denotes the style in which parameters are specified in a query. It is used in the
TParams.ParseSQI (367) method, and can have the following values:

psInterbase Parameters are specified by a ? character
psPostgreSQL Parameters are specified by a $N character.

psSimulated Parameters are specified by a $N character.
TParamType = (ptUnknown,ptInput,ptOutput,ptInputOutput,ptResult)

TParamType indicates the kind of parameter represented by a TParam (353) instance. it has one of
the following values:

ptUnknown Unknown type

ptInput Input parameter

ptOutput Output paramete, filled on result
ptInputOutput Input/output parameter

ptResult Result parameter

TParamTypes= Set of (ptInput,ptInputOutput,ptOutput,ptResult,ptUnknown)
TParamTypes is defined for completeness: a set of TParamType (215) values.

TProviderFlag = (pfInUpdate,pfInWhere,pfInKey,pfHidden)

TProviderFlag describes how the field should be used when applying updates from a dataset to
the database. Each field of a TDataset (248) has one or more of these flags.

TProviderFlags= Set of (pfHidden,pfInKey,pfInUpdate,pfInWhere)

TProviderFlags is used for the TField.ProviderFlags (317) property to describe the role of the
field when applying updates to a database.

TResolverResponse = (rrSkip,rrAbort,rrMerge, rrApply, rrIgnore)

TResolverResponse is used to indicate what should happen to a pending change that could not
be resolved. It is used in callbacks.

TResyncMode= Set of (rmExact,rmCenter)

TResyncMode is used internally by various TDataset (248) navigation and data manipulation meth-
ods such as the TDataset.Refresh (267) method when they need to reset the cursor position in the
dataset’s buffer.

TStringFieldBuffer = Array[0..dsMaxStringSize] of Char
Type to access string field content buffers as an array of characters

TUpdateAction = (uaFail,uaAbort,uaSkip,uaRetry,ualpplied)

216

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TUpdateAction indicates what action must be taken in case the applying of updates on the un-
derlying database fails. This type is not used in the TDataset (248) class, but is defined on behalf of
TDataset descendents that implement caching of updates: It indicates what should be done when
the (delayed) applying of the updates fails. This event occurs long after the actual post or delete
operation.

TUpdateKind = (ukModify,ukInsert,ukDelete)
TUpdateKind indicates what kind of update operation is in progress when applying updates.
TUpdateMode = (upWhereAll,upWhereChanged, upWhereKeyOnly)

TUpdateMode determines how the WHERE clause of update queries for SQL databases should be
constructed.

TUpdateStatus = (usUnmodified,usModified,usInserted,usDeleted)

TUpdateStatus determines the current state of the record buffer, if updates have not yet been
applied to the database.

TUpdateStatusSet= Set of (usDeleted,usInserted,usModified,usUnmodified)

TUpdateStatusSet is a set of TUpdateStatus (216) values.

10.4 Procedures and functions

10.4.1 BuffersEqual
Synopsis: Check whether 2 memory buffers are equal

Declaration: function BuffersEqual (Bufl: Pointer;Buf2: Pointer;Size: Integer)
Boolean

Visibility: default

Description: Buf fersEqual compares the memory areas pointed to by the Buf1 and Buf2 pointers and re-
turns True if the contents are equal. The memory areas are compared for the first Size bytes. If all
bytes in the indicated areas are equal, then True is returned, otherwise False is returned.

Errors: If Buf1 or Buf2 do not point to a valid memory area or Size is too large, then an exception may
occur

See also: #rtl.system.Comparemem (??)

10.4.2 DatabaseError

Synopsis: Raise an EDatabaseError exception.

Declaration: procedure DatabaseError (const Msg: String); Overload
procedure DatabaseError (const Msg: String;Comp: TComponent); Overload

Visibility: default

Description: DatabaseError raises an EDatabaseError (218) exception, passing it Msg. If Comp is specified,
the name of the component is prepended to the message.

See also: DatabaseErrorFmt (217), EDatabaseError (218)

217

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.4.3 DatabaseErrorFmt

Synopsis: Raise an EDatabaseError exception with a formatted message

Declaration: procedure DatabaseErrorFmt (const Fmt: String;Args: Array of const)
; Overload
procedure DatabaseErrorFmt (const Fmt: String;Args: Array of const;
Comp: TComponent); Overload

Visibility: default

Description: DatabaseErrorFmt raises an EDatabaseError (218) exception, passing it a message made by
calling rtl.sysutils.format (206) with the fmt and Args arguments. If Comp is specified, the name
of the component is prepended to the message.

See also: DatabaseError (216), EDatabaseError (218)

10.4.4 DateTimeRecToDateTime

Synopsis: Convert TDateTimeRec record to a TDateTime value.

Declaration: function DateTimeRecToDateTime (DT: TFieldType;Data: TDateTimeRec)
TDateTime

Visibility: default

Description: DateTimeRecToDateTime examines Data and Dt and uses dt to convert the timestamp in
Datatoa TDateTime value.

See also: TFieldType (213), TDateTimeRec (211), DateTimeToDate TimeRec (217)

10.4.5 DateTimeToDateTimeRec

Synopsis: Convert TDateTime value to a TDateTimeRec record.

Declaration: function DateTimeToDateTimeRec (DT: TFieldType;Data: TDateTime)
TDateTimeRec

Visibility: default

Description: DateTimeToDateTimeRec examines Data and Dt and uses dt to convert the date/time valuein
Data toa TDateTimeRec record.

Errors:

See also: TFieldType (213), TDateTimeRec (211), DateTimeRecToDateTime (217)

10.4.6 DisposeMem

Synopsis: Dispose of a heap memory block and Ni1 the pointer (deprecated)
Declaration: procedure DisposeMem (var Buffer;Size: Integer)
Visibility: default

Description: DisposeMem disposes of the heap memory area pointed to by Buf fer (Buf fer must be of type
Pointer). The Size parameter indicates the size of the memory area (it is, in fact, ignored by the
heap manager). The pointer Buffer is set to Nil. If Buf fer is Nil, then nothing happens. Do
not use DisposeMem on objects, because their destructor will not be called.

218

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Errors: If Buf fer is not pointing to a valid heap memory block, then memory corruption may occur.

See also: #rtl.system.FreeMem (??), #rtl.sysutils.freeandnil (??)

10.4.7 ExtractFieldName

Synopsis: Extract the field name at position

Declaration: function ExtractFieldName (const Fields: String;var Pos: Integer)
String

Visibility: default

Description: Ext ractFieldName returns the string starting at position Pos till the next semicolon (;) char-
acter or the end of the string. On return, Pos contains the position of the first character after the
semicolon character (or one more than the length of the string).

See also: Tfields.GetFieldList (327)

10.4.8 SkipComments
Synopsis: Skip SQL comments

Declaration: function SkipComments (var p: PChar;EscapeSlash: Boolean;
EscapeRepeat: Boolean) : Boolean

Visibility: default

Description: SkipComments examines the null-terminated string in P and skips any SQL comment or string
literal found at the start. It returns P the first non-comment or non-string literal position. The
EscapeSlash parameter determines whether the backslash character (\) functions as an escape
character (i.e. the following character is not considered a delimiter). EscapeRepeat must be set
to True if the quote character is repeated to indicate itself.

The function returns True if a comment was found and skipped, False otherwise.
Errors: No checks are done on the validity of P.

See also: TParams.ParseSQL (367)

10.5 EDatabaseError
10.5.1 Description

EDatabaseError is the base class from which database-related exception classes should derive.
It is raised by the DatabaseError (216) call.

10.6 EUpdateError

10.6.1 Description

EupdateError is an exception used by the TProvider database support. It should never be raised
directly.

219

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.6.2 Method overview

Page Property Description
219 Create Create a new EUpdateError instance
219 Destroy Free the EupdateError instance

10.6.3 Property overview

Page Property Access Description

219 Context Context in which exception occurred.
220 ErrorCode Numerical error code.

220 OriginalExcaption Original exception object, if available.
220 PreviousError Previous error number

r
r
r
r

10.6.4 EUpdateError.Create

Synopsis: Create a new EUpdateError instance

Declaration: constructor Create (NativeError: String;Context: String;ErrCode: Integer;
PrevError: Integer;E: Exception)

Visibility: public

Description: Create instantiates a new EUpdateError object and populates the various properties with the
NativeError, Context, ErrCode and PrevError parameters. The E parameter is the actual
exception that occurred while the update operation was attempted. The exception object E will be
freed if the EUpdateError instance is freed.

See also: EDatabaseError (218)

10.6.5 EUpdateError.Destroy

Synopsis: Free the EupdateError instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy frees the original exception object (if there was one) and then calls the inherited destruc-
tor.

Errors: If the original exception object was already freed, an error will occur.

See also: EUpdateError.OriginalException (218)

10.6.6 EUpdateError.Context

Synopsis: Context in which exception occurred.
Declaration: Property Context : String
Visibility: public
Access: Read
Description: A description of the context in which the original exception was raised.

See also: EUpdateError.OriginalException (218), EUpdateError.ErrorCode (220), EUpdateError.PreviousError
(220)

220

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.6.7 EUpdateError.ErrorCode

Synopsis: Numerical error code.
Declaration: Property ErrorCode : Integer
Visibility: public
Access: Read

Description: ErrorCode is a numerical error code, provided by the native data access layer, to describe the
error. It may or not be filled.

See also: EUpdateError.OriginalException (218), EUpdateError.Context (219), EUpdateError.PreviousError
(220)

10.6.8 EUpdateError.OriginalExcaption

Synopsis: Original exception object, if available.
Declaration: Property OriginalExcaption : Exception
Visibility: public
Access: Read

Description: 0OriginalException is the original exception object as raised by the database access layer. It
may or may not be available.

See also: EUpdateError.ErrorCode (220), EUpdateError.Context (219), EUpdateError.PreviousError (220)

10.6.9 EUpdateError.PreviousError

Synopsis: Previous error number
Declaration: Property PreviousError : Integer
Visibility: public
Access: Read
Description: PreviousError is used to order the errors which occurred during an update operation.

See also: EUpdateError.ErrorCode (220), EUpdateError.Context (219), EUpdateError.OriginalException (218)

10.7 TAutolIncField

10.7.1 Description

TAutoIncField is the class created when a dataset must manage 32-bit signed integer data, of
datatype ftAutoInc: This field gets it’s data automatically by the database engine. It exposes no
new properties, but simply overrides some methods to manage 32-bit signed integer data.

It should never be necessary to create an instance of TAut oIncF ield manually, a field of this class
will be instantiated automatically for each auto-incremental field when a dataset is opened.

221

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.7.2 Method overview

Page Property Description
221 Create Create a new instance of the TAutoIncField class.

10.7.3 TAutolncField.Create

Synopsis: Create a new instance of the TAutoIncField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TAutoIncField class. It simply calls the inherited
constructor and then sets up some of the TField (296) class’ fields.

See also: TField (296)

10.8 TBCDField

10.8.1 Description

TBCDField is the class used when a dataset must manage data of Binary Coded Decimal type.
(TField.DataType (308) equals £tBCD). It initializes some of the properties of the TField (296)
class, and overrides some of its methods to be able to work with BCD fields.

TBCDField assumes that the field’s contents can be stored in a currency type, i.e. the maximum
number of decimals after the decimal separator that can be stored in a TBCDField is 4. Fields that
need to store a larger amount of decimals should be represented by a TFMTBCDField (206) instance.

It should never be necessary to create an instance of TBCDField manually, a field of this class will
be instantiated automatically for each BCD field when a dataset is opened.

10.8.2 Method overview

Page Property Description
222 CheckRange Check whether a values falls within the allowed range
221 Create Create a new instance of a TBCDField class.

10.8.3 Property overview
Page Property Access Description

223 Currency 1w Does the field represent a currency amount

223 MaxValue 1w Maximum value for the field

223 MinValue 1w Minimum value for the field

222 Precision 1w Precision of the BCD field

224 Size Number of decimals after the decimal separator
222 Value ™wW Value of the field contents as a Currency type

10.8.4 TBCDField.Create

Synopsis: Create a new instance of a TBCDField class.

Declaration: constructor Create (AOwner: TComponent); Override

222

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public

Description: Create initializes a new instance of the TBCDField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with BCD data values.

See also: TField (296)

10.8.5 TBCDField.CheckRange

Synopsis: Check whether a values falls within the allowed range
Declaration: function CheckRange (AValue: Currency) : Boolean
Visibility: public

Description: CheckRange returns True if AValue lies within the range defined by the MinValue (223) and
Max Value (223) properties. If the value lies outside of the allowed range, then False is returned.

See also: TBCDField.Max Value (223), TBCDField.MinValue (223)

10.8.6 TBCDField.Value

Synopsis: Value of the field contents as a Currency type
Declaration: Property Value : Currency
Visibility: public
Access: Read,Write

Description: value is overridden from the TField.Value (312) property to a currency type field. It returns the
same value as the TField.AsCurrency (304) field.

See also: TField.Value (312), TField.AsCurrency (304)

10.8.7 TBCDField.Precision
Synopsis: Precision of the BCD field

Declaration: Property Precision : LongInt
Visibility: published
Access: Read,Write

Description: Precision is the total number of decimals in the BCD value. It is not the same as TBCDField.Size
(224), which is the number of decimals after the decimal point. The Precision property should
be set by the descendent classes when they initialize the field, and should be considered read-only.
Changing the value will influence the values returned by the various AsXXX properties.

See also: TBCDField.Size (224), TBCDField. Value (222)

223

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.8.8 TBCDField.Currency

Synopsis: Does the field represent a currency amount
Declaration: Property Currency : Boolean
Visibility: published
Access: Read, Write

Description: Currency can be set to True to indicate that the field contains data representing an amount of
currency. This affects the way the TField.DisplayText (309) and TField.Text (311) properties format
the value of the field: if the Currency property is True, then these properties will format the
value as a currency value (generally appending the currency sign) and if the Currency property is
False, then they will format it as a normal floating-point value.

See also: TField.DisplayText (309), TField. Text (311)

10.8.9 TBCDField.MaxValue

Synopsis: Maximum value for the field
Declaration: Property MaxValue : Currency
Visibility: published
Access: Read,Write

Description: MaxValue can be set to a value different from zero, it is then the maximum value for the field if
set to any value different from zero. When setting the field’s value, the value may not be larger than
MaxValue. Any attempt to write a larger value as the field’s content will result in an exception. By
default MaxValue equals 0, i.e. any floating-point value is allowed.

If MaxValue is set, MinField (206) should also be set, because it will also be checked.

See also: TBCDField.MinValue (223), TBCDField.CheckRange (222)

10.8.10 TBCDField.MinValue

Synopsis: Minimum value for the field
Declaration: Property MinValue : Currency
Visibility: published
Access: Read,Write

Description: Minvalue can be set to a value different from zero, then it is the minimum value for the field.
When setting the field’s value, the value may not be less than MinValue. Any attempt to write a
smaller value as the field’s content will result in an exception. By default MinValue equals 0, i.e.
any floating-point value is allowed.

If MinValue is set, MaxField (206) should also be set, because it will also be checked.

See also: TBCDField.Max Value (223), TBCDField.CheckRange (222)

224

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.8.11 TBCDField.Size
Synopsis: Number of decimals after the decimal separator
Declaration: Property Size
Visibility: published
Access:

Description: size is the number of decimals after the decimal separator. It is not the total number of decimals,
which is stored in the TBCDField.Precision (222) field.

See also: TBCDField.Precision (222)

10.9 TBinaryField

10.9.1 Description

TBinaryField is an abstract class, designed to handle binary data of variable size. It overrides
some of the properties and methods of the TField (296) class to be able to work with binary field
data, such as retrieving the contents as a string or as a variant.

One must never create an instance of TBinaryField manually, it is an abstract class. Instead, a
descendent class such as TBytesField (230) or TVarBytesField (372) should be created.

10.9.2 Method overview

Page Property Description
224 Create Create a new instance of a TBinaryField class.

10.9.3 Property overview

Page Property Access Description
224 Size Size of the binary data

10.9.4 TBinaryField.Create

Synopsis: Create a new instance of a TBinaryField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TBinaryField class. It simply calls the inherited
destructor.

See also: TField (296)

10.9.5 TBinaryField.Size
Synopsis: Size of the binary data

Declaration: Property Size

Visibility: published

225

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Access:
Description: Size is simply redeclared published with a default value of 16.

See also: TField.Size (311)

10.10 TBlobField

10.10.1 Description

TBLobField is the class used when a dataset must manage BLOB data. (TField.DataType (308)
equals £t BLOB). It initializes some of the properties of the TField (296) class, and overrides some of
its methods to be able to work with BLOB fields. It also serves as parent class for some specialized
blob-like field types such as TMemoField (350), TWideMemoField (374) or TGraphicField (334)

It should never be necessary to create an instance of TBlobField manually, a field of this class
will be instantiated automatically for each BLOB field when a dataset is opened.

10.10.2 Method overview

Page Property Description

226 Clear Clear the BLOB field’s contents

225 Create Create a new instance of a TB1obField class.
226 IsBlob Is the field a blob field

226 LoadFromFile Load the contents of the field frop a file
226 LoadFromStream Load the field’s contents from stream

227 SaveToFile Save field contents to a file
227 SaveToStream Save the field’s contents to stream
227 SetFieldType Set field type

10.10.3 Property overview

Page Property Access Description

227 BlobSize r Size of the current blob

228 BlobType ™w Type of blob

228 Modified ™w Has the field’s contents been modified.

229 Size Size of the blob field

228 Transliterate rw Should the contents of the field be transliterated
228 Value ™w Return the field’s contents as a string

10.10.4 TBlobField.Create

Synopsis: Create a new instance of a TB1obField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TBlobField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with BLOB data.

See also: TField (296)

226

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.10.5 TBIlobField.Clear
Synopsis: Clear the BLOB field’s contents

Declaration: procedure Clear; Override
Visibility: public

Description: Clear overrides the TField implementation of TField.Clear (301). It creates and immediatly
releases an empty blob stream in write mode, effectively clearing the contents of the BLOB field.

See also: TField.Clear (301), TField.IsNull (310)

10.10.6 TBlobField.IsBlob
Synopsis: Is the field a blob field

Declaration: function IsBlob : Boolean; Override
Visibility: public
Description: IsBlob is overridden by TBlobField to return True

See also: TField.IsBlob (302)

10.10.7 TBlobField.LoadFromFile
Synopsis: Load the contents of the field frop a file

Declaration: procedure LoadFromFile (const FileName: String)
Visibility: public

Description: LoadFromFile creates a file stream with FileName as the name of the file to open, en then
calls LoadFromStream (226) to read the contents of the blob field from the file. The file is opened in
read-only mode.

Errors: If the file does not exist or is nor available for reading, an exception will be raised.

See also: TBlobField.LoadFromStream (226), TBlobField.SaveToFile (227)

10.10.8 TBlobField.LoadFromStream

Synopsis: Load the field’s contents from stream
Declaration: procedure LoadFromStream (Stream: TStream)
Visibility: public

Description: LoadFromStream can be used to load the contents of the field from a TStream (??) descendent.
The entire data of the stream will be copied, and the stream will be positioned on the first byte of
data, so it must be seekable.

Errors: If the stream is not seekable, an exception will be raised.

See also: TBlobField.SaveToStream (227), TBlobField.LoadFromFile (226)

227

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.10.9 TBlobField.SaveToFile
Synopsis: Save field contents to a file

Declaration: procedure SaveToFile (const FileName: String)
Visibility: public

Description: saveToFile creates a file stream with FileName as the name of the file to open, en then calls
SaveToStream (227) to write the contents of the blob field to the file. The file is opened in write
mode and is created if it does not yet exist.

Errors: If the file cannot be created or is not available for writing, an exception will be raised.

See also: TBlobField.LoadFromFile (226), TBlobField.SaveToStream (227)

10.10.10 TBlobField.SaveToStream
Synopsis: Save the field’s contents to stream

Declaration: procedure SaveToStream (Stream: TStream)
Visibility: public

Description: SaveToStream can be used to save the contents of the field to a TStream (??) descendent. The
entire data of the field will be copied. The stream must of course support writing.

Errors: If the stream is not writable, an exception will be raised.

See also: TBlobField.SaveToFile (227), TBlobField.LoadFromStream (226)

10.10.11 TBlobField.SetFieldType
Synopsis: Set field type

Declaration: procedure SetFieldType (AValue: TFieldType); Override
Visibility: public

Description: SetFieldType is overridden by TBlobField to check whether a valid Blob field type is set. If
S0, it calls the inherited method.

See also: TField.DataType (308)

10.10.12 TBlobField.BlobSize

Synopsis: Size of the current blob
Declaration: Property BlobSize : LongInt
Visibility: public
Access: Read

Description: BlobSize is the size (in bytes) of the current contents of the field. It will vary as the dataset’s
current record moves from record to record.

See also: TField.Size (311), TField.DataSize (308)

228

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.10.13 TBlobField.Modified

Synopsis: Has the field’s contents been modified.
Declaration: Property Modified : Boolean
Visibility: public
Access: Read,Write
Description: Modified indicates whether the field’s contents have been modified for the current record.

See also: TBlobField.LoadFromStream (226)

10.10.14 TBlobField.Value

Synopsis: Return the field’s contents as a string
Declaration: Property Value : String
Visibility: public
Access: Read,Write

Description: value is redefined by TB1obField as a string value: getting or setting this value will convert the
BLOB data to a string, it will return the same value as the TField.AsString (306) property.

See also: TField.Value (312), TField.AsString (306)

10.10.15 TBlobField.Transliterate

Synopsis: Should the contents of the field be transliterated
Declaration: Property Transliterate : Boolean
Visibility: public
Access: Read,Write

Description: Transliterate indicates whether the contents of the field should be transliterated (i.e. changed
from OEM to non OEM codepage and vice versa) when reading or writing the value. The actual
transliteration must be done in the TDataset. Translate (268) method of the dataset to which the field
belongs. By default this property is False, but it can be set to True for BLOB data which contains
text in another codepage.

See also: TStringField. Transliterate (371), TDataset.Translate (268)

10.10.16 TBlobField.BlobType
Synopsis: Type of blob
Declaration: Property BlobType : TBlobType
Visibility: published
Access: Read,Write

Description: BlobType is an alias for TField.DataType (308), but with a restricted set of values. Setting
BlobType is equivalent to setting the TField.DataType (308) property.

See also: TField.DataType (308)

229

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.10.17 TBlobField.Size
Synopsis: Size of the blob field

Declaration: Property Size
Visibility: published
Access:

Description: size is the size of the blob in the internal memory buffer. It defaults to 0, as the BLOB data is
not stored in the internal memory buffer. To get the size of the data in the current record, use the
BlobSize (227) property instead.

See also: TBlobField.BlobSize (227)

10.11 TBooleanField

10.11.1 Description

TBooleanField is the field class used by TDataset (248) whenever it needs to manage boolean
data (TField.DataType (308) equals ftBoolean). It overrides some properties and methods of
TField (296) to be able to work with boolean data.

It should never be necessary to create an instance of TBooleanField manually, a field of this class
will be instantiated automatically for each boolean field when a dataset is opened.

10.11.2 Method overview

Page Property Description
229 Create Create a new instance of the TBooleanField class.

10.11.3 Property overview

Page Property Access Description
230 DisplayValues rw Textual representation of the true and false values
230 Value w Value of the field as a boolean value

10.11.4 TBooleanField.Create

Synopsis: Create a new instance of the TBooleanField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TBooleanField class. It calls the inherited constructor
and then sets some TField (296) properties to configure it for working with boolean values.

See also: TField (296)

230

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.11.5 TBooleanField.Value

Synopsis: Value of the field as a boolean value
Declaration: Property Value : Boolean
Visibility: public
Access: Read, Write

Description: value is redefined from TField.Value (312) by TBooleanField as a boolean value. It returns
the same value as the TField.AsBoolean (304) property.

See also: TField.AsBoolean (304), TField.Value (312)

10.11.6 TBooleanField.DisplayValues

Synopsis: Textual representation of the true and false values
Declaration: Property DisplayValues : String
Visibility: published
Access: Read,Write

Description: DisplayValues contains 2 strings, separated by a semicolon (;) which are used to display the
True and False values of the fields. The first string is used for True values, the second value is
used for False values. If only one value is given, it will serve as the representation of the True
value, the False value will be represented as an empty string.

A value of Yes; No will result in True values being displayed as *Yes’, and False values as 'No’.
When writing the value of the field as a string, the string will be compared (case insensitively) with
the value for True, and if it matches, the field’s value will be set to True. After this it will be
compared to the value for False, and if it matches, the field’s value will be set to False. If the
text matches neither of the two values, an exception will be raised.

See also: TField.AsString (306), TField.Text (311)

10.12 TBytesField

10.12.1 Description

TBytesFieldis the class used when a dataset must manage data of fixed-size binary type. (TField.DataType
(308) equals ftBytes). It initializes some of the properties of the TField (296) class to be able to
work with fixed-size byte fields.

It should never be necessary to create an instance of TBytesField manually, a field of this class
will be instantiated automatically for each binary data field when a dataset is opened.

10.12.2 Method overview

Page Property Description
231 Create Create a new instance of a TBytesField class.

231

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.12.3 TBytesField.Create

Synopsis: Create a new instance of a TBytesField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TBytesField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with binary data values.

See also: TField (296)

10.13 TCheckConstraint

10.13.1 Description

TCheckConstraint can be used to store the definition of a record-level constraint. It does not

enforce the constraint, it only stores the constraint’s definition. The constraint can come from several

sources: an imported constraints from the database, usually stored in the TCheckConstraint.ImportedConstraint
(232) property , or a constraint enforced by the user on a particular dataset instance stored in TCheck-
Constraint.CustomConstraint (232)

10.13.2 Method overview

Page Property Description
231 Assign Assign one constraint to another

10.13.3 Property overview

Page Property Access Description

232 CustomConstraint rw User-defined constraint

232 ErrorMessage ™™ Message to display when the constraint is violated

232 FromDictionary w True if the constraint is imported from a datadictionary
232 ImportedConstraint 1w Constraint imported from the database engine

10.13.4 TCheckConstraint.Assign

Synopsis: Assign one constraint to another
Declaration: procedure Assign (Source: TPersistent); Override
Visibility: public

Description: Assign is overridden by TCheckConstraint to copy all published properties if Source is
also a TCheckConstraint instance.

Errors: If Source is not an instance of TCheckConstraint, an exception may be thrown.

See also: TCheckConstraint.ImportedConstraint (232), TCheckConstraint.CustomConstraint (232)

232

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.13.5 TCheckConstraint.CustomConstraint
Synopsis: User-defined constraint

Declaration: Property CustomConstraint : String
Visibility: published
Access: Read,Write

Description: CustomConstraint is an SQL expression with an additional user-defined constraint. The ex-
pression should be enforced by a TDataset (248) descendent when data is posted to the dataset. If
the constraint is violated, then the dataset should raise an exception, with message as specified in
TCustomConstraint.ErrorMessage (206)

See also: TCustomConstraint. ErrorMessage (206)

10.13.6 TCheckConstraint.ErrorMessage
Synopsis: Message to display when the constraint is violated

Declaration: Property ErrorMessage : String
Visibility: published
Access: Read,Write

Description: ErrorMessage is used as the message when the dataset instance raises an exception if the con-
straint is violated.

See also: TCheckConstraint. CustomConstraint (232)

10.13.7 TCheckConstraint.FromDictionary

Synopsis: True if the constraint is imported from a datadictionary
Declaration: Property FromDictionary : Boolean
Visibility: published
Access: Read,Write

Description: FromDictionary indicates whether a constraint is imported from a data dictionary. This can be
set by TDataset (248) descendents to indicate the source of the constraint, but is otherwise ignored.

See also: TCheckConstraint.ImportedConstraint (232)

10.13.8 TCheckConstraint.ImportedConstraint

Synopsis: Constraint imported from the database engine
Declaration: Property ImportedConstraint : String
Visibility: published
Access: Read,Write

Description: ImportedConstraint is a constraint imported from the database engine: it will not be enforced
locally by the TDataset (248) descendent.

See also: TCheckConstraint.CustomConstraint (232)

233

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.14 TCheckConstraints

10.14.1 Description

TCheckConstraintsisa TCollection descendent which keeps a collection of TCheckCon-
straint (231) items. It overrides the Add (233) method to return a TCheckConstraint instance.

10.14.2 Method overview

Page Property Description
233 Add Add new TCheckConstraint item to the collection
233 Create Create a new instance of the TCheckConstraints class.

10.14.3 Property overview

Page Property Access Description
233 Items ™w Indexed access to the items in the collection

10.14.4 TCheckConstraints.Create

Synopsis: Create a new instance of the TCheckConstraints class.
Declaration: constructor Create (AOwner: TPersistent)
Visibility: public

Description: Create initializes a new instance of the TCheckConstraints class. The AOwner argument
is usually the TDataset (248) instance for which the data is managed. It is kept for future reference.
After storing the owner, the inherited constructor is called with the TCheckConstraint (231) class
pointer.

See also: TCheckConstraint (231), TDataset (248)

10.14.5 TCheckConstraints.Add
Synopsis: Add new TCheckConstraint item to the collection

Declaration: function Add : TCheckConstraint
Visibility: public

Description: 2dd is overridden by TCheckConstraint to add a new TCheckConstraint (231) instance to the
collection. it returns the newly added instance.

See also: TCheckConstraint (231), #rtl.classes. TCollection.Add (??)

10.14.6 TCheckConstraints.ltems

Synopsis: Indexed access to the items in the collection
Declaration: Property Items[Index: LongInt]: TCheckConstraint; default
Visibility: public

Access: Read,Write

234

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Ttems is overridden by TCheckConstraints to provide type-safe access to the items in the
collection. The index is zero-based, so it runs from 0 to Count—1.

See also: #rtl.classes. TCollection.Items (2?)

10.15 TCurrencyField

10.15.1 Description

TCurrencyField is the field class used by TDataset (248) when it needs to manage currency-
valued data.(TField.Datatype (308) equals ftCurrency). It simply sets some Tfield (296) proper-
ties to be able to work with currency data.

It should never be necessary to create an instance of TCurrencyField manually, a field of this
class will be instantiated automatically for each currency field when a dataset is opened.

10.15.2 Method overview

Page Property Description
234 Create Create a new instance of a TCurrencyField.

10.15.3 Property overview

Page Property Access Description
234 Currency Is the field a currency field

10.15.4 TCurrencyField.Create

Synopsis: Create a new instance of a TCurrencyField.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of TCurrencyField. It calls the inherited constructor and
then sets some properties (TCurrencyField.Currency (234)) to be able to work with currency data.

See also: TField (296), TCurrencyField.Currency (234)

10.15.5 TCurrencyField.Currency
Synopsis: Is the field a currency field

Declaration: Property Currency
Visibility: published
Access:

Description: Currency is inherited from TFloatField.Currency (332) but is initialized to True by the TCurrencyField
constructor. It can be set to False if the contents of the field is of type currency, but does not repre-
sent an amount of currency.

See also: TFloatField.Currency (332)

235

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.16 TCustomConnection

10.16.1

Description

TCustomConnection must be used for all database classes that need a connection to a server. The
class introduces some methods and classes to activate the connection (Open (236)) and to deactivate
the connection (TCustomConnection.Close (235)), plus a property to inspect the state (Connected
(237)) of the connected.

10.16.2 Method overview

Page

Property Description

235
235
236

Close Close the connection
Destroy = Remove the TCustomconnection instance from memory
Open Makes the connection to the server

10.16.3 Property overview

Page Property Access Description

237 AfterConnect ™w Event triggered after a connection is made.

237 AfterDisconnect ™w Event triggered after a connection is closed

238 BeforeConnect rw Event triggered before a connection is made.
238 BeforeDisconnect 1w Event triggered before a connection is closed
237 Connected ™w Is the connection established or not

236 DataSetCount r Number of datasets connected to this connection
236 DataSets r Datasets linked to this connection

237 LoginPrompt rw Should the OnLogin be triggered

238 OnLogin ™w Event triggered when a login prompt is shown.

10.16.4 TCustomConnection.Close
Synopsis: Close the connection

Declaration: procedure Close

Visibility: public

Description: Close closes the connection with the server if it was connected. Calling this method first triggers
the BeforeDisconnect (238) event. If an exception is raised during the execution of that event handler,
the disconnect process is aborted. After calling this event, the connection is actually closed. After
the connection was closed, the AfterDisconnect (237) event is triggered.

Calling the C1ose method is equivalent to setting the Connected (237) property to False.

Errors: If the connection cannot be broken for some reason, an EDatabaseError (218) exception will be

raised.

See also: TCustomConnection.BeforeDisconnect (238), TCustomConnection.AfterDisconnect (237), TCus-
tomConnection.Open (236), TCustomConnection.Connected (237)

10.16.5 TCustomConnection.Destroy

Synopsis: Remove the TCustomconnection instance from memory

Declaration: destructor Destroy;

Override

236

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public
Description: Dest roy closes the connection, and then calls the inherited destructor.

Errors: If an exception is raised during the disconnect process, an exception will be raise, and the instance
is not removed from memory.

See also: TCustomConnection.Close (235)

10.16.6 TCustomConnection.Open
Synopsis: Makes the connection to the server
Declaration: procedure Open
Visibility: public
Description: Open establishes the connection with the server if it was not yet connected. Calling this method first
triggers the BeforeConnect (238) event. If an exception is raised during the execution of that event
handler, the connect process is aborted. If LoginPrompt (237) is True, the OnLogin (238) event

handler is called. Only after this event, the connection is actually established. After the connection
was established, the AfterConnect (237) event is triggered.

Calling the Open method is equivalent to setting the Connected (237) property to True.

Errors: If an exception is raised during the BeforeConnect or OnLogin handlers, the connection is not
actually established.

See also: TCustomConnection.BeforeConnect (238), TCustomConnection.LoginPrompt (237), TCustomCon-
nection.OnLogin (238), TCustomConnection.AfterConnect (237), TCustomConnection.Connected
(237)

10.16.7 TCustomConnection.DataSetCount
Synopsis: Number of datasets connected to this connection
Declaration: Property DataSetCount : LongInt
Visibility: public
Access: Read

Description: DatasetCount is the number of datasets connected to this connection component. The actual
datasets are available through the Datasets (236) array property. As implemented in TCustomConnection,
this property is always zero. Descendent classes implement the actual count.

See also: TDataset (248), TCustomConnection.Datasets (236)

10.16.8 TCustomConnection.DataSets
Synopsis: Datasets linked to this connection
Declaration: Property DataSets[Index: LongInt]: TDataSet
Visibility: public
Access: Read

Description: Datasets allows indexed access to the datasets connected to this connection. Index is a zero-
based indexed, it’s maximum value is DatasetCount-1 (236).

See also: TCustomConnection.DatasetCount (236)

237

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.16.9 TCustomConnection.Connected

Synopsis: Is the connection established or not
Declaration: Property Connected : Boolean
Visibility: published
Access: Read,Write

Description: Connected is True if the connection to the server is established, False if it is disconnected.
The property can be set to True to establish a connection (equivalent to calling TCustomConnec-
tion.Open (236), or to False to break it (equivalent to calling TCustomConnection.Close (235).

See also: TCustomConnection.Open (236), TCustomConnection.Close (235)

10.16.10 TCustomConnection.LoginPrompt
Synopsis: Should the OnLogin be triggered

Declaration: Property LoginPrompt : Boolean
Visibility: published
Access: Read,Write

Description: LoginPrompt can be set to True if the OnLogin handler should be called when the Open
method is called. If it is not True, then the event handler is not called.

See also: TCustomConnection.OnLogin (238)

10.16.11 TCustomConnection.AfterConnect

Synopsis: Event triggered after a connection is made.
Declaration: Property AfterConnect : TNotifyEvent
Visibility: published
Access: Read,Write

Description: AfterConnect is called after a connection is succesfully established in TCustomConnection.Open
(236). It can be used to open datasets, or indicate a connection status change.

See also: TCustomConnection.Open (236), TCustomConnection.BeforeConnect (238), TCustomConnection.OnLogin
(238)

10.16.12 TCustomConnection.AfterDisconnect

Synopsis: Event triggered after a connection is closed
Declaration: Property AfterDisconnect : TNotifyEvent
Visibility: published
Access: Read,Write

Description: AfterDisConnect is called after a connection is succesfully closed in TCustomConnection.Close
(235). It can be used for instance to indicate a connection status change.

See also: TCustomConnection.Close (235), TCustomConnection.BeforeDisconnect (238)

238

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.16.13 TCustomConnection.BeforeConnect

Synopsis: Event triggered before a connection is made.
Declaration: Property BeforeConnect : TNotifyEvent
Visibility: published
Access: Read, Write

Description: BeforeConnect is called before a connection is attempted in TCustomConnection.Open (236).
It can be used to set connection parameters, or to abort the establishing of the connection: if an
exception is raised during this event, the connection attempt is aborted.

See also: TCustomConnection.Open (236), TCustomConnection.AfterConnect (237), TCustomConnection.OnLogin
(238)

10.16.14 TCustomConnection.BeforeDisconnect

Synopsis: Event triggered before a connection is closed
Declaration: Property BeforeDisconnect : TNotifyEvent
Visibility: published
Access: Read,Write

Description: BeforeDisConnect is called before a connection is closed in TCustomConnection.Close (235).
It can be used for instance to check for unsaved changes, to save thise changes, or to abort the
disconnect operation: if an exception is raised during the event handler, the disconnect operation is
aborted entirely.

See also: TCustomConnection.Close (235), TCustomConnection. AfterDisconnect (237)

10.16.15 TCustomConnection.OnLogin

Synopsis: Event triggered when a login prompt is shown.
Declaration: Property OnLogin : TLoginEvent
Visibility: published
Access: Read,Write

Description: OnLogin is triggered when the connection needs a login prompt during the call: it is triggered
when the LoginPrompt (237) property is True, after the TCustomConnection.BeforeConnect (238)
event, but before the connection is actually established.

See also: TCustomConnection.BeforeConnect (238), TCustomConnection.LoginPrompt (237), TCustomCon-
nection.Open (236)

239

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.17 TDatabase

10.17.1 Description

TDatabase is a component whose purpose is to provide a connection to an external database
engine, not to provide the database itself. This class provides generic methods for attachment to
databases and querying their contents; the details of the actual connection are handled by database-
specific components (such as SQLDb for SQL-based databases, or DBA for DBASE/FoxPro style
databases).

Like TDataset (248), TDatabase is an abstract class. It provides methods to keep track of datasets
connected to the database, and to close these datasets when the connection to the database is closed.
To this end, it introduces a Connected (242) boolean property, which indicates whether a connection
to the database is established or not. The actual logic to establish a connection to a database must be
implemented by descendent classes.

10.17.2 Method overview

Page Property Description

240 CloseDataSets Close all connected datasets

240 CloseTransactions End all transactions

239 Create Initialize a new TDatabase class instance.
240 Destroy Remove a TDatabase instance from memory.
241 EndTransaction End an active transaction.

240 StartTransaction Start a new transaction.

10.17.3 Property overview

Page Property Access Description

242 Connected ™w Is the datbase connected

242 DatabaseName w Database name or path

241 Directory w Directory for the database

242 IsSQLBased r Is the database SQL based.

242 KeepConnection rw Should the connection be kept active

243 Params ™w Connection parameters

241 TransactionCount r Number of transaction components connected to this
database.

241 Transactions r Indexed access to all transaction components connected to

this database.

10.17.4 TDatabase.Create

Synopsis: Initialize a new TDatabase class instance.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TDatabase class. It allocates some resources and then
calls the inherited constructor.

See also: TDBDataset (291), TTransaction (206), TDatabase.Destroy (240)

240

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.17.5 TDatabase.Destroy

Synopsis: Remove a TDatabase instance from memory.
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy starts by disconnecting the database (thus closing all datasets and ending all transactions),
then notifies all connected datasets and transactions that it is about to be released. After this, it
releases all resources used by the TDatabase instance

See also: TDatabase.CloseDatasets (240)

10.17.6 TDatabase.CloseDataSets

Synopsis: Close all connected datasets
Declaration: procedure CloseDataSets
Visibility: public

Description: CloseDatasets closes all connected datasets. It is called automatically when the connection is
closed.

See also: TCustomConnection.Close (235), TDatabase.CloseTransactions (240)

10.17.7 TDatabase.CloseTransactions
Synopsis: End all transactions

Declaration: procedure CloseTransactions
Visibility: public

Description: CloseTransaction calls TTransaction.EndTransaction (206) on all connected transactions. It
is called automatically when the connection is closed, after all datasets are closed.

See also: TCustomConnection.Close (235), TDatabase.CloseDatasets (240)

10.17.8 TDatabase.StartTransaction

Synopsis: Start a new transaction.
Declaration: procedure StartTransaction; Virtual; Abstract
Visibility: public

Description: Start Transaction must be implemented by descendent classes to start a new transaction. This
method is provided for Delphi compatibility: new applications shoud use a TDBTransaction (292)
component instead and invoke the TDBTransaction.StartTRansaction (292) method.

See also: TDBTransaction (292), TDBTransaction.StartTRansaction (292)

241

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.17.9 TDatabase.EndTransaction

Synopsis: End an active transaction.
Declaration: procedure EndTransaction; Virtual; Abstract
Visibility: public

Description: EndTransaction must be implemented by descendent classes to end an active transaction. This
method is provided for Delphi compatibility: new applications shoud use a TDBTransaction (292)
component instead and invoke the TDBTransaction.EndTransaction (292) method.

See also: TDBTransaction (292), TDBTransaction.EndTransaction (292)

10.17.10 TDatabase.TransactionCount

Synopsis: Number of transaction components connected to this database.
Declaration: Property TransactionCount : LongInt
Visibility: public
Access: Read

Description: TransactionCount is the number of transaction components which are connected to this database
instance. It is the upper bound for the TDatabase.Transactions (241) array property.

See also: TDatabase.Transactions (241)

10.17.11 TDatabase.Transactions

Synopsis: Indexed access to all transaction components connected to this database.
Declaration: Property Transactions[Index: LongInt]: TDBTransaction
Visibility: public
Access: Read

Description: Transactions provides indexed access to the transaction components connected to this database.
The Index is zero based: it runs from O to TransactionCount—-1.

See also: TDatabase.TransactionCount (241)

10.17.12 TDatabase.Directory
Synopsis: Directory for the database

Declaration: Property Directory : String
Visibility: public
Access: Read,Write

Description: Directory is provided for Delphi compatibility: it indicates (for Paradox and dBase based databases)
the directory where the database files are located. It is not used in the Free Pascal implementation of
TDatabase (239).

See also: TDatabase.Params (243), TDatabase. IsSQLBased (242)

242

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.17.13 TDatabase.lsSQLBased
Synopsis: Is the database SQL based.

Declaration: Property IsSQLBased : Boolean
Visibility: public
Access: Read

Description: IssSQLbased is a read-only property which indicates whether a property is SQL-Based, i.e. whether
the database engine accepts SQL commands.

See also: TDatabase.Params (243), TDatabase.Directory (241)

10.17.14 TDatabase.Connected
Synopsis: Is the datbase connected

Declaration: Property Connected : Boolean
Visibility: published
Access: Read,Write
Description: Connected is simply promoted to published property from TCustomConnection.Connected (237).

See also: TCustomConnection.Connected (237)

10.17.15 TDatabase.DatabaseName
Synopsis: Database name or path

Declaration: Property DatabaseName : String
Visibility: published
Access: Read,Write

Description: DatabaseName specifies the path of the database. For directory-based databases this will be the
same as the Directory (241) property. For other databases this will be the name of a known pre-
configured connection, or the location of the database file.

See also: TDatabase.Directory (241), TDatabase.Params (243)

10.17.16 TDatabase.KeepConnection
Synopsis: Should the connection be kept active

Declaration: Property KeepConnection : Boolean
Visibility: published
Access: Read,Write

Description: KeepConnection is provided for Delphi compatibility, and is not used in the Free Pascal imple-
mentation of TDatabase.

See also: TDatabase.Params (243)

243

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.17.17 TDatabase.Params

Synopsis: Connection parameters

Declaration: Property Params

Visibility: published

Access: Read,Write

TStrings

Description: Params is a catch-all storage mechanism for database connection parameters. It is a list of strings in
the form of Name=Value pairs. Which name/value pairs are supported depends on the TDatabase
descendent, but the user_name and password parameters are commonly used to store the login
credentials for the database.

See also: TDatabase.Directory (241), TDatabase.DatabaseName (242)

10.18 TDataLink

10.18.1

Description

TDataLink is used by GUI controls or datasets in a master-detail relationship to handle data events
coming from a TDatasource (285) instance. It is a class that exists for component programmers,
application coders should never need to use TDataLink or one of it’s descendents.

DB-Aware Component coders must use a TDatalink instance to handle all communication with a
TDataset (248) instance, rather than communicating directly with the dataset. TDataLink contains
methods which are called by the various events triggered by the dataset. Inversely, it has some
methods to trigger actions in the dataset.

TDatalink is an abstract class; it is never used directly. Instead, a descendent class is used which
overrides the various methods that are called in response to the events triggered by the dataset. Ex-
amples are .

10.18.2 Method overview

Page Property Description

244 Create Initialize a new instance of TDataLink

244 Destroy Remove an instance of TDatalink from memory
244 Edit Set the dataset in edit mode, if possible

245 ExecuteAction Execute action

245 UpdateAction Update handler for actions

245 UpdateRecord Called when the data in the dataset must be updated

244

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.18.3 Property overview

Page Property Access Description

245 Active r Is the link active

246 ActiveRecord ™w Currently active record

246 BOF r Is the dataset at the first record

246 BufferCount ™ Set to the number of record buffers this datalink needs.
247 DataSet r Dataset this datalink is connected to

247 DataSource w Datasource this datalink is connected to

247 DataSourceFixed rw Can the datasource be changed

247 Editing r Is the dataset in edit mode

248 Eof r

248 ReadOnly ™wW Is the link readonly

248 RecordCount r Number of records in the buffer of the dataset

10.18.4 TDataLink.Create

Synopsis: Initialize a new instance of TDataLink
Declaration: constructor Create
Visibility: public

Description: Create calls the inherited constructor and then initializes some fields. In particular, it sets the
buffercount to 1.

See also: TDatalink.Destroy (244)

10.18.5 TDataLink.Destroy

Synopsis: Remove an instance of TDatalink from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up the TDatalink instance (in particular, it removes itself from the datasource
it is coupled to), and then calls the inherited destructor.

See also: TDatalink.Destroy (244)

10.18.6 TDataLink.Edit
Synopsis: Set the dataset in edit mode, if possible
Declaration: function Edit : Boolean
Visibility: public
Description: Edit attempts to put the dataset in edit mode. It returns True if this operation succeeded, False
if not. To this end, it calls the Edit (286) method of the DataSource (247) to which the datalink
instance is coupled. If the TDatasource.AutoEdit (287) property is False then this operation will

not succeed, inless the dataset is already in edit mode. GUI controls should always respect the result
of this function, and not allow the user to edit data if this function returned false.

See also: TDatasource (285), TDatalink.Datasource (247), TDatasource.Edit (286), TDatasource. AutoEdit
(287)

245

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.18.7 TDataLink.UpdateRecord

Synopsis: Called when the data in the dataset must be updated
Declaration: procedure UpdateRecord
Visibility: public

Description: Updaterecord is called when the dataset expects the GUI controls to post any pending changes
to the dataset. This method guards against recursive behaviour: while an UpdateRecord is in
progress, the TDatalink.RecordChange (243) notification (which could result from writing data to
the dataset) will be blocked.

See also: TDatalink.RecordChange (243)

10.18.8 TDatalLink.ExecuteAction

Synopsis: Execute action
Declaration: function ExecuteAction (Action: TBasicAction) : Boolean; Virtual
Visibility: public

Description: ExecuteAct ion implements action support. It should never be necessary to call ExecuteAction
from program code, as it is called automatically whenever a target control needs to handle an action.
This method must be overridden in case any additional action must be taken when the action must be
executed. The implementation in TDatalink checks if the action handles the datasource, and then
calls Action.ExecuteTarget, passing it the datasource. If so, it returns True.

See also: TDatalink.UpdateAction (245)

10.18.9 TDataLink.UpdateAction

Synopsis: Update handler for actions
Declaration: function UpdateAction (Action: TBasicAction) : Boolean; Virtual
Visibility: public

Description: UpdateAct i on implements action update support. It should never be necessary to call UpdateAction
from program code, as it is called automatically whenever a target control needs to update an action.
This method must be overridden in case any specific action must be taken when the action must be
updated. The implementation in TDatalink checks if the action handles the datasource, and then
calls Action.UpdateTarget, passing it the datasource. If so, it returns True.

See also: TDataLink.ExecuteAction (245)

10.18.10 TDataLink.Active
Synopsis: Is the link active

Declaration: Property Active : Boolean
Visibility: public

Access: Read

246

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Act ive determines whether the events of the dataset are passed on to the control connected to the
actionlink. If it is set to False, then no events are passed between control and dataset. It is set to
TDataset.Active (276) whenever the DataSource (247) property is set.

See also: TDatalink.Datasource (247), TDatalink.ReadOnly (248), TDataset.Active (276)

10.18.11 TDatalLink.ActiveRecord

Synopsis: Currently active record
Declaration: Property ActiveRecord : Integer
Visibility: public
Access: Read,Write
Description: Act iveRecord returns the index of the active record in the dataset’s record buffer for this datalink.

See also: TDatalink.BOF (246), TDatalink.EOF (248)

10.18.12 TDatalLink.BOF

Synopsis: Is the dataset at the first record
Declaration: Property BOF : Boolean
Visibility: public
Access: Read
Description: BOF returns TDataset. BOF (269) if the dataset is available, True otherwise.

See also: TDatalink.EOF (248), TDataset. BOF (269)

10.18.13 TDataLink.BufferCount

Synopsis: Set to the number of record buffers this datalink needs.
Declaration: Property BufferCount : Integer
Visibility: public
Access: Read,Write

Description: Buf ferCount can be set to the number of buffers that the dataset should manage on behalf of the
control connected to this datalink. By default, this is 1. Controls that must display more than 1 buffer
(such as grids) can set this to a higher value.

See also: TDataset. ActiveBuffer (253), TDatalink.ActiveRecord (246)

247

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.18.14 TDataLink.DataSet
Synopsis: Dataset this datalink is connected to
Declaration: Property DataSet : TDataSet
Visibility: public
Access: Read
Description: Dataset equals Datasource.Dataset if the datasource is set, or Ni1 otherwise.

See also: TDatalink.DataSource (247), TDataset (248)

10.18.15 TDataLink.DataSource
Synopsis: Datasource this datalink is connected to
Declaration: Property DataSource : TDatasource
Visibility: public
Access: Read,Write

Description: Datasource should be set to a TDatasource (285) instance to get access to the dataset it is con-
nected to. A datalink never points directly to a TDataset (248) instance, always to a datasource.
When the datasource is enabled or disabled, all TDatalink instances connected to it are enabld or
disabled at once.

See also: TDataset (248), TDatasource (285)

10.18.16 TDataLink.DataSourceFixed
Synopsis: Can the datasource be changed
Declaration: Property DataSourceFixed : Boolean
Visibility: public
Access: Read,Write

Description: DatasourceFixed can be set to True to prevent changing of the DataSource (247) property.
When lengthy operations are in progress, this can be done to prevent user code (e.g. event handlers)
from changing the datasource property which might interfere with the operation in progress.

See also: TDataLink.DataSource (247)

10.18.17 TDataLink.Editing
Synopsis: Is the dataset in edit mode
Declaration: Property Editing : Boolean
Visibility: public
Access: Read

Description: Editing determines whether the dataset is in one of the edit states (dsEdit,dsInsert). It can be set
into this mode by calling the TDatalink.Edit (244) method. Never attempt to set the dataset in editing
mode directly. The Edit method will perform the needed checks prior to setting the dataset in edit
mode and will return True if the dataset was succesfully set in the editing state.

See also: TDatalink.Edit (244), TDataset.Edit (258)

248

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.18.18 TDataLink.Eof
Synopsis:
Declaration: Property Eof : Boolean
Visibility: public
Access: Read
Description: EOF returns TDataset. EOF (271) if the dataset is available, True otherwise.

See also: TDatalink.BOF (246), TDataset.EOF (271)

10.18.19 TDataLink.ReadOnly
Synopsis: Is the link readonly

Declaration: Property ReadOnly : Boolean
Visibility: public
Access: Read,Write

Description: ReadOnly can be set to True to indicate that the link is read-only, i.e. the connected control will
not modify the dataset. Methods as TDatalink.Edit (244) will check this property and fail if the link
is read-only. This setting has no effect on the communication of dataset events to the datalink: the
TDatalink.Active (245) property can be used to disable delivey of events to the datalink.

See also: TDatalink.Active (245), TDatalink.edit (244)

10.18.20 TDataLink.RecordCount
Synopsis: Number of records in the buffer of the dataset
Declaration: Property RecordCount : Integer
Visibility: public
Access: Read

Description: RecordCount returns the number of records in the dataset’s buffer. It is limited by the TDatalink.BufferCount
(246) property: RecordCount i s always less than Buf fercount.

See also: TDatalink.BufferCount (246)

10.19 TDataSet

10.19.1 Description

TDataset is the main class of the db unit. This abstract class provides all basic funtionality to
access data stored in tabular format: The data consists of records, and the data in each record is
organised in several fields.

TDataset has a buffer to cache a few records in memory, this buffer is used by TDatasource to
create the ability to use data-aware components.

TDataset is an abstract class, which provides the basic functionality to access, navigate through
the data and - in case read-write access is available, edit existing or add new records.

249

CHAPTER 10. REFERENCE FOR UNIT 'DB’

TDataset is an abstract class: it does not have the knowledge to store or load the records from
whatever medium the records are stored on. Descendants add the functionality to load and save the
data. Therefor TDataset is never used directly, one always instantiates a descendent class.

Initially, no data is available: the dataset is inactive. The Open (266) method must be used to fetch
data into memory. After this command, the data is available in memory for browsing or editing
purposes: The dataset is active (indicated by the TDataset.Active (276) property). Likewise, the
Close (256) method can be used to remove the data from memory. Any changes not yet saved to the
underlying medium will be lost.

Data is expected to be in tabular format, where each row represents a record. The dataset has an idea
of a cursor: this is the current position of the data cursor in the set of rows. Only the data of the
current record is available for display or editing purposes. Through the Next (265), Prev (248), First
(261) and Last (264) methods, it is possible to navigate through the records. The EOF (271) property
will be True if the last row has been reached. Likewise, the BOF (269) property will return True
if the first record in the dataset has been rechaed when navigating backwards. If both proprties are
empty, then there is no data available. For dataset descendents that support counting the number of
records, the RecordCount (273) will be zero.

The Append (254) and Insert (263) methods can be used to insert new records to the set of records.
The TDataset.Delete (257) statement is used to delete the current record, and the Edit (258) command
must be used to set the dataset in editing mode: the contents of the current record can then be changed.
Any changes made to the current record (be it a new or existing record) must be saved by the Post
(266) method, or can be undone using the Cancel (255) method.

The data in the various fields properties is available through the Fields (275) array property, giving
indexed access to all the fields in a record. The contents of a field is always readable. If the dataset
is in one of the editing modes, then the fields can also be written to.

250

CHAPTER 10. REFERENCE FOR UNIT 'DB’

251

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.2 Method overview

Page Property Description

253 ActiveBuffer Currently active memory buffer

254 Append Append a new record to the data

254 AppendRecord Append a new record to the dataset and fill with data
255 BookmarkValid Test whether ABookMark is a valid bookmark.
255 Cancel Cancel the current editing operation

255 CheckBrowseMode Check whether the dataset is in browse mode.
255 ClearFields Clear the values of all fields

256 Close Close the dataset

256 CompareBookmarks Compare two bookmarks

256 ControlsDisabled Check whether the controls are disabled

253 Create Create a new TDataset instance

257 CreateBlobStream Create blob stream

257 CursorPosChanged Indicate a change in cursor position

257 DataConvert Convert data from/to native format

257 Delete Delete the current record.

253 Destroy Free a TDataset instance

258 DisableControls Disable event propagation of controls

258 Edit Set the dataset in editing mode.

259 EnableControls Enable event propagation of controls

259 FieldByName Search a field by name

259 FindField Find a field by name

260 FindFirst Find the first active record (deprecated)

260 FindLast Find the last active record (deprecated)

260 FindNext Find the next active record (deprecated)

260 FindPrior Find the previous active record (deprecated)
261 First Position the dataset on the first record.

261 FreeBookmark Free a bookmark obtained with Get Bookmark (deprecated)
261 GetBookmark Get a bookmark pointer (deprecated)

262 GetCurrentRecord Copy the data for the current record in a memory buffer
253 GetFieldData Get the data for a field

262 GetFieldList Return field instances in a list

262 GetFieldNames Return a list of all available field names

262 GotoBookmark Jump to bookmark

263 Insert Insert a new record at the current position.

263 InsertRecord Insert a new record with given values.

263 IsEmpty Check if the dataset contains no data

263 IsLinkedTo Check whether a datasource is linked to the dataset
264 IsSequenced Is the data sequenced

264 Last Navigate forward to the last record

264 Locate Locate a record based on some key values

265 Lookup Search for a record and return matching values.
265 MoveBy Move the cursor position

265 Next Go to the next record in the dataset.

266 Open Activate the dataset: Fetch data into memory.
266 Post Post pending edits to the database.

267 Prior Go to the previous record

267 Refresh Refresh the records in the dataset

267 Resync Resynchronize the data buffer

254 SetFieldData Store the data for a field

268 SetFields Set a number of field values at once

268 Translate Transliterate a buffer

268 UpdateCursorPos Update cursor position

268 UpdateRecord Indicate that the record contents have changed
269 UpdateStatus Get the update staprgfor the current record

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.3 Property overview

Page Property Access Description

276 Active w Is the dataset open or closed.

281 AfterCancel ™wW Event triggered after a Cancel operation.

278 AfterClose ™ Event triggered after the dataset is closed

281 AfterDelete ™w

279 AfterEdit rw Event triggered after the dataset is put in edit mode.

279 Afterlnsert w Event triggered after the dataset is put in insert mode.

278 AfterOpen ™w Event triggered after the dataset is opened.

280 AfterPost ™ Event called after changes have been posted to the underly-
ing database

282 AfterRefresh w Event triggered after the data has been refreshed.

282 AfterScroll w Event triggered after the cursor has changed position.

277 AutoCalcFields rw How often should the value of calculated fields be calcu-
lated

280 BeforeCancel W Event triggered before a Cancel operation.

278 BeforeClose ™w Event triggered before the dataset is closed.

281 BeforeDelete w Event triggered before a Delete operation.

279 BeforeEdit w Event triggered before the dataset is put in edit mode.

278 Beforelnsert ™w Event triggered before the dataset is put in insert mode.

277 BeforeOpen ™™ Event triggered before the dataset is opened.

280 BeforePost ™w Event called before changes are posted to the underlying
database

282 BeforeRefresh w Event triggered before the data is refreshed.

281 BeforeScroll ™w Event triggered before the cursor changes position.

269 BOF r Is the cursor at the beginning of the data (on the first record)

269 Bookmark rw Get or set the current cursor position

270 CanModify r Can the data in the dataset be modified

270 DataSource r Datasource this dataset is connected to.

271 DefaultFields r Is the dataset using persisten fields or not.

271 EOF r Indicates whether the last record has been reached.

272 FieldCount r Number of fields

272 FieldDefs ™w Definitions of available fields in the underlying database

275 Fields r Indexed access to the fields of the dataset.

275 FieldValues w Acces to field values based on the field names.

275 Filter ™w Filter to apply to the data in memory.

276 Filtered w Is the filter active or not.

276 FilterOptions rw Options to apply when filtering

272 Found r Check success of one of the Find methods

273 IsUniDirectional r Is the dataset unidirectional (i.e. forward scrolling only)

273 Modified w Was the current record modified ?

283 OnCalcFields ™w Event triggered when values for calculated fields must be
computed.

283 OnDeleteError w Event triggered when a delete operation fails.

284 OnEditError w Event triggered when an edit operation fails.

284 OnFilterRecord 1w Event triggered to filter records.

284 OnNewRecord ™w Event triggered when a new record is created.

285 OnPostError ™w Event triggered when a post operation fails.

274 RecNo ™w Current record number

273 RecordCount r Number of records in the dataset

274 RecordSize r Size of the record in memory

274 State r Current operational state of the dataset

253

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.4 TDataSet.Create

Synopsis: Create a new TDataset instance
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new TDataset (248) instance. It calls the inherited constructor, and then ini-
tializes the internal structures needed to manage the dataset (fielddefs, fieldlist, constraints etc.).

See also: TDataset.Destroy (253)

10.19.5 TDataSet.Destroy

Synopsis: Free a TDataset instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy removes a TDataset instance from memory. It closes the dataset if it was open, clears
all internal sructures and then calls he inherited destructor.

Errors: An exception may occur during the close operation, in that case, the dataset will not be removed
from memory.

See also: TDataset.Close (256), TDataset.Create (253)

10.19.6 TDataSet.ActiveBuffer

Synopsis: Currently active memory buffer
Declaration: function ActiveBuffer : PChar
Visibility: public

Description: Act iveBuf fer points to the currently active memory buffer. It should not be used in application
code.

10.19.7 TDataSet.GetFieldData
Synopsis: Get the data for a field

Declaration: function GetFieldData (Field: TField;Buffer: Pointer) : Boolean; Virtual
; Overload
function GetFieldData (Field: TField;Buffer: Pointer;
NativeFormat: Boolean) : Boolean; Virtual
; Overload

Visibility: public

Description: GetFieldData should copy the data for field Fie1d from the internal dataset memory buffer into
the memory pointed to by Buf fer. This function is not intended for use by end-user applications,
and should be used only in descendent classes, where it can be overridden. The function should
return True if data was available and has been copied, or False if no data was available (in which
case the field has value Null). The NativeFormat determines whether the data should be in
native format (e.g. whether the date/time values should be in TDateTime format).

254

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Errors: No checks are performed on the validity of the memory buffer

See also: TField.DisplayText (309)

10.19.8 TDataSet.SetFieldData
Synopsis: Store the data for a field

Declaration: procedure SetFieldData (Field: TField;Buffer: Pointer); Virtual
; Overload
procedure SetFieldData (Field: TField;Buffer: Pointer;
NativeFormat: Boolean); Virtual; Overload

Visibility: public

Description: SetFieldData should copy the data from field Field, stored in the memory pointed to by
Buffer to the dataset memory buffer for the current record. This function is not intended for use
by end-user applications, and should be used only in descendent classes, where it can be overridden.
The NativeFormat determines whether the data is in native format (e.g. whether the date/time
values are in TDateTime format).

See also: TField.DisplayText (309)

10.19.9 TDataSet.Append
Synopsis: Append a new record to the data

Declaration: procedure Append
Visibility: public

Description: Append appends a new record at the end of the dataset. It is functionally equal to the TDataset.Insert
(263) call, but the cursor is positioned at the end of the dataset prior to performing the insert operation.
The same events occur as when the Insert call is made.

See also: TDataset.Insert (263), TDataset.Edit (258)

10.19.10 TDataSet.AppendRecord
Synopsis: Append a new record to the dataset and fill with data

Declaration: procedure AppendRecord(const Values: Array of const)
Visibility: public

Description: AppendRecord first calls Append to add a new record to the dataset. It then copies the values in
Values to the various fields (using TDataset.SetFields (268)) and attempts to post the record using
TDataset.Post (266). If all went well, the result is that the values in Values have been added as a
new record to the dataset.

Errors: Various errors may occur (not supplying a value for all required fields, invalid values) and may cause
an exception. This may leave the dataset in editing mode.

See also: TDataset.Append (254), TDataset.SetFields (268), TDataset.Post (266)

255

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.11 TDataSet.BookmarkValid

Synopsis: Test whether ABookMark is a valid bookmark.
Declaration: function BookmarkValid (ABookmark: TBookmark) : Boolean; Virtual
Visibility: public

Description: BookmarkValid returns True if ABookMark is a valid bookmark for the dataset. Various op-
erations can render a bookmark invalid: changing the sort order, closing and re-opening the dataset.
BookmarkValid always returns False in TDataset. Descendent classes must override this
method to do an actual test.

Errors: If the bookmark is a completely arbitrary pointer, an exception may be raised.

See also: TDataset.GetBookmark (261), TDataset.SetBookmark (248), TDataset.FreeBookmark (261), TDataset.BookmarkAvailable
(248)

10.19.12 TDataSet.Cancel

Synopsis: Cancel the current editing operation
Declaration: procedure Cancel; Virtual
Visibility: public

Description: Cancel cancels the current editing operation and sets the dataset again in browse mode. This op-
eration triggers the TDataset.OnBeforeCancel (248) and TDataset.OnAfterCancel (248) events. If
the dataset wa sin insert mode, then the TDataset.OnBeforeScroll (248) and TDataset.OnAfterScroll
(248) events are triggered after and respectively before the OnBeforeCancel and OnAfterCancel
events.

If the dataset was not in one of the editing modes when Cancel is called, then nothing will happen.
Errors:

See also: TDataset.State (274), TDataset. Append (254), TDataset.Insert (263), TDataset.Edit (258)

10.19.13 TDataSet.CheckBrowseMode

Synopsis: Check whether the dataset is in browse mode.
Declaration: procedure CheckBrowseMode
Visibility: public

Description: CheckBrowseMode checks whether the dataset is in browse mode (State=dsBrowse). If it is
not, an EDatabaseError (218) exception is raised.

See also: TDataset.State (274)

10.19.14 TDataSet.ClearFields
Synopsis: Clear the values of all fields

Declaration: procedure ClearFields

Visibility: public

256

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: ClearFields clears the values of all fields.

Errors: If the dataset is not in editing mode (State in dsEditmodes), then an EDatabaseError (218)
exception will be raised.

See also: TDataset.State (274), TField.Clear (301)

10.19.15 TDataSet.Close
Synopsis: Close the dataset

Declaration: procedure Close
Visibility: public
Description: Close closes the dataset if it is open (Act i ve=True). This action triggers the TDataset.OnBeforeClose

(248) and TDataset.OnAfterClose (248) events. If the dataset is not active, nothing happens.

Errors: If an exception occurs during the closing of the dataset, the OnAfterClose event will not be
triggered.

See also: TDataset.Active (276), TDataset.Open (266)

10.19.16 TDataSet.ControlsDisabled
Synopsis: Check whether the controls are disabled
Declaration: function ControlsDisabled : Boolean
Visibility: public

Description: ControlsDisabled returns True if the controls are disabled, i.e. no events are propagated to
the controls connected to this dataset. The TDataset.DisableControls (258) call can be used to disable
sending of data events to the controls. The sending can be re-enabled with TDataset.EnableControls
(259). This mechanism has a counting mechanism: in order to enable sending of events to the

controls, EnableControls must be called as much as DisableControls was called. The
ControlsDisabled function will return true as long as the internal counter is not zero.

See also: TDataset.DisableControls (258), TDataset.EnableControls (259)

10.19.17 TDataSet.CompareBookmarks
Synopsis: Compare two bookmarks

Declaration: function CompareBookmarks (Bookmarkl: TBookmark;Bookmark2: TBookmark)
LongInt; Virtual

Visibility: public

Description: CompareBookmarks can be used to compare the relative positions of 2 bookmarks. It returns a
negative value if Bookmark1 is located before Bookmark?2, zero if they refer to the same record,
and a positive value if the second bookmark appears before the first bookmark. This function mustbe
overridden by descendent classes of TDataset. The implementation in TDataset always returns zero.

Errors: No checks are performed on the validity of the bookmarks.

See also: TDataset.BookmarkValid (255), TDataset.GetBookmark (261), TDataset.SetBookmark (248)

257

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.18 TDataSet.CreateBlobStream
Synopsis: Create blob stream

Declaration: function CreateBlobStream(Field: TField;Mode: TBlobStreamMode) : TStream
; Virtual

Visibility: public
Description: CreateBlobStream is not intended for use by applictaion programmers. It creates a stream
object which can be used to read or write data from a blob field. Instead, application programmers
should use the TBlobField.LoadFromStream (226) and TBlobField.SaveToStream (227) methods
when reading and writing data from/to BLOB fields. Which operation must be performed on the

stream is indicated in the Mode parameter, and the Field parameter contains the field whose data
should be read. The caller is responsible for freeing the stream created by this function.

See also: TBlobField.LoadFromStream (226), TBlobField.SaveToStream (227)

10.19.19 TDataSet.CursorPosChanged

Synopsis: Indicate a change in cursor position
Declaration: procedure CursorPosChanged
Visibility: public

Description: CursorPosChanged is not intended for internal use only, and serves to indicate that the current
cursor position has changed. (it clears the internal cursor position).

10.19.20 TDataSet.DataConvert

Synopsis: Convert data from/to native format

Declaration: procedure DataConvert (aField: TField;aSource: Pointer;aDest: Pointer;
aToNative: Boolean); Virtual

Visibility: public
Description: DataConvert converts the data from field AField in buffer ASource to native format and puts
the result in ADest. If the aToNat ive parameter equals False, then the data is converted from
native format to non-native format. Currently, only date/time/datetime and BCD fields are converted

from/to native data. This means the routine handles conversion between TDateTime (the native
format) and TDateTimeRec, and between TBCD and currency (the native format) for BCD fields.

DataConvert is used internally by TDataset and descendent classes. There should be no need
to use this routine in application code.

Errors: No checking on the validity of the buffer pointers is performed. If an invalid pointer is passed, an
exception may be raised.

See also: TDataset.GetFieldData (253), TDataset.SetFieldData (254)

10.19.21 TDataSet.Delete
Synopsis: Delete the current record.

Declaration: procedure Delete

258

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public

Description: Delete will delete the current record. This action will trigger the TDataset.BeforeDelete (281),
TDataset.BeforeScroll (281), TDataset.AfterDelete (281) and TDataset. AfterScroll (282) events. If
the dataset was in edit mode, the edits will be canceled before the delete operation starts.

Errors: If the dataset is empty or read-only, then an EDatabaseError (218) exception will be raised.

See also: TDataset.Cancel (255), TDataset.BeforeDelete (281), TDataset.BeforeScroll (281), TDataset. AfterDelete
(281), TDataset.AfterScroll (282)

10.19.22 TDataSet.DisableControls

Synopsis: Disable event propagation of controls
Declaration: procedure DisableControls
Visibility: public

Description: DisableControls tells the dataset to stop sending data-related events to the controls. This can
be used before starting operations that will cause the current record to change a lot, or before any
other lengthy operation that may cause a lot of events to be sent to the controls that show data from
the dataset: each event will cause the control to update itself, which is a time-consuming operation
that may also cause a lot of flicker on the screen.

The sending of events to the controls can be re-enabled with Tdataset.EnableControls (259). Note
that for each callto DisableControls, a matching call to EnableControls must be made: an
internal count is kept and only when the count reaches zero, the controls are again notified of changes
to the dataset. It is therefore essential that the call to EnableControlsisputinaFinally block:

MyDataset .DisableControls;

Try
// Do some intensive stuff
Finally
MyDataset.EnableControls
end;

Errors: Failure to call enablecontrols will prevent the controls from receiving updates. The state can be
checked with TDataset.ControlsDisabled (256).

See also: TDataset.EnableControls (259), TDataset.ControlsDisabled (256)

10.19.23 TDataSet.Edit

Synopsis: Set the dataset in editing mode.
Declaration: procedure Edit
Visibility: public

Description: Edit will set the dataset in edit mode: the contents of the current record can then be changed. This
action will call the TDataset.BeforeEdit (279) and TDataset.AfterEdit (279) events. If the dataset
was already in insert or edit mode, nothing will happen (the events will also not be triggered). If the
dataset is empty, this action will execute TDataset. Append (254) instead.

Errors: If the dataset is read-only or not opened, then an EDatabaseError (218) exception will be raised.

See also: TDataset.State (274), TDataset. EOF (271), TDataset. BOF (269), TDataset. Append (254), TDataset.BeforeEdit
(279), TDataset.AfterEdit (279)

259

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.24 TDataSet.EnableControls

Synopsis: Enable event propagation of controls
Declaration: procedure EnableControls
Visibility: public

Description: EnableControls tells the dataset to resume sending data-related events to the controls. This
must be used after a call to TDataset.DisableControls (258) to re-enable updating of controls.

Note that for each call to DisableControls, a matching call to EnableControls must be
made: an internal count is kept and only when the count reaches zero, the controls are again notified
of changes to the dataset. It is therefore essential that the call to EnableControls is putin a
Finally block:

MyDataset.DisableControls;

Try

// Do some intensive stuff
Finally

MyDataset .EnableControls
end;

Errors: Failure to call enablecontrols will prevent the controls from receiving updates. The state can be
checked with TDataset.ControlsDisabled (256).

See also: TDataset.DisableControls (258), TDataset.ControlsDisabled (256)

10.19.25 TDataSet.FieldByName
Synopsis: Search a field by name

Declaration: function FieldByName (const FieldName: String) : TField
Visibility: public

Description: FieldByName is a shortcut for Fields.FieldByName (329): it searches for the field with fieldname
equalling FieldName. The case is performed case-insensitive. The matching field instance is
returned.

Errors: If the field is not found, an EDatabaseError (218) exception will be raised.

See also: TFields.FieldByname (329), TDataset.FindField (259)

10.19.26 TDataSet.FindField
Synopsis: Find a field by name

Declaration: function FindField(const FieldName: String) : TField
Visibility: public

Description: FindField is ashortcut for Fields.FindField (329): it searches for the field with fieldname equalling
FieldName. The case is performed case-insensitive. The matching field instance is returned, and
if no match is found, Ni1l is returned.

See also: TDataset.FieldByname (259), TFields.FindField (329)

260

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.27 TDataSet.FindFirst

Synopsis: Find the first active record (deprecated)
Declaration: function FindFirst : Boolean
Visibility: public

Description: FindFirst positions the cursor on the first record (taking into account filtering), and returns
True if the cursor position was changed. This method must be implemented by descendents of
TDataset: The implementation in TDataset always returns False, indicating that the position
was not changed.

This method is deprecated, use TDataset.First (261) instead.

See also: TDataset.First (261), TDataset.FindLast (260), TDataset.FindNext (260), TDataset.FindPrior (260)

10.19.28 TDataSet.FindLast
Synopsis: Find the last active record (deprecated)

Declaration: function FindLast : Boolean
Visibility: public

Description: FindLast positions the cursor on the last record (taking into account filtering), and returns True if
the cursor position was changed. This method must be implemented by descendents of TDataset:
The implementation in TDataset always returns False, indicating that the position was not
changed.

This method is deprecated, use TDataset.Last (264) instead.

See also: TDataset.Last (264), TDataset.FindFirst (260), TDataset.FindNext (260), TDataset.FindPrior (260)

10.19.29 TDataSet.FindNext

Synopsis: Find the next active record (deprecated)
Declaration: function FindNext : Boolean
Visibility: public

Description: FindLast positions the cursor on the next record (taking into account filtering), and returns
True if the cursor position was changed. This method must be implemented by descendents of
TDataset: The implementation in TDataset always returns False, indicating that the position
was not changed.

This method is deprecated, use TDataset.Next (265) instead.

See also: TDataset.Next (265), TDataset.FindFirst (260), TDataset.FindLast (260), TDataset.FindPrior (260)

10.19.30 TDataSet.FindPrior

Synopsis: Find the previous active record (deprecated)
Declaration: function FindPrior : Boolean

Visibility: public

261

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: FindPrior positions the cursor on the previous record (taking into account filtering), and returns
True if the cursor position was changed. This method must be implemented by descendents of
TDataset: The implementation in TDataset always returns False, indicating that the position

was not changed.
This method is deprecated, use TDataset.Prior (267) instead.

See also: TDataset.Prior (267), TDataset.FindFirst (260), TDataset.FindLast (260), TDataset.FindPrior (260)

10.19.31 TDataSet.First

Synopsis: Position the dataset on the first record.
Declaration: procedure First
Visibility: public

Description: First positions the dataset on the first record. This action will trigger the TDataset.BeforeScroll
(281) and TDataset.AfterScroll (282) events. After the action is completed, the TDataset. BOF (269)

property will be True.
Errors: If the dataset is unidirectional or is closed, an EDatabaseError (218) exception will be raised.

See also: TDataset.Prior (267), TDataset.Last (264), TDataset.Next (265), TDataset. BOF (269), TDataset.BeforeScroll
(281), TDataset. AfterScroll (282)

10.19.32 TDataSet.FreeBookmark
Synopsis: Free a bookmark obtained with Get Bookmark (deprecated)
Declaration: procedure FreeBookmark (ABookmark: TBookmark); Virtual
Visibility: public
Description: FreeBookmark must be used to free a bookmark obtained by TDataset.GetBookmark (261).
It should not be used on bookmarks obtained with the TDataset.Bookmark (269) property. Both

GetBookmark and FreeBookmark are deprecated. Use the Bookmark property instead: it uses
a string type, which is automatically disposed of when the string variable goes out of scope.

See also: TDataset.GetBookmark (261), TDataset.Bookmark (269)

10.19.33 TDataSet.GetBookmark
Synopsis: Get a bookmark pointer (deprecated)
Declaration: function GetBookmark : TBookmark; Virtual
Visibility: public
Description: GetBookmark gets a bookmark pointer to the current cursor location. The TDataset.SetBookmark

(248) call can be used to return to the current record in the dataset. After use, the bookmark must be
disposed of with the TDataset.FreeBookmark (261) call. The bookmark will be N1 1 if the dataset is

empty or not active.
This call is deprecated. Use the TDataset.Bookmark (269) property instead to get a bookmark.

See also: TDataset.SetBookmark (248), TDataset.FreeBookmark (261), TDataset.Bookmark (269)

262

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.34 TDataSet.GetCurrentRecord

Synopsis: Copy the data for the current record in a memory buffer
Declaration: function GetCurrentRecord (Buffer: PChar) : Boolean; Virtual
Visibility: public

Description: GetCurrentRecord can be overridden by TDataset descendents to copy the data for the cur-
rent record to Buf fer. Buf fermust point to a memory area, large enough to contain the data for
the record. If the data is copied succesfully to the buffer, the function returns True. The TDataset
implementation is empty, and returns False.

See also: TDataset.ActiveBuffer (253)

10.19.35 TDataSet.GetFieldList

Synopsis: Return field instances in a list
Declaration: procedure GetFieldList (List: TList;const FieldNames: String)
Visibility: public

Description: Get fieldList parses FieldNames for names of fields, and returns the field instances that
match the names in 1ist. FieldNames must be a list of field names, separated by semicolons.
The list is cleared prior to filling with the requested field instances.

Errors: If FieldNames contains a name of a field that does not exist in the dataset, then an EDatabaseError
(218) exception will be raised.

See also: TDataset.GetFieldNames (262), TDataset.FieldByName (259), TDataset.FindField (259)

10.19.36 TDataSet.GetFieldNames
Synopsis: Return a list of all available field names

Declaration: procedure GetFieldNames (List: TStrings)
Visibility: public

Description: GetFieldNames returns in List the names of all available fields, one field per item in the list.
The dataset must be open for this function to work correctly.

See also: TDataset.GetFieldNameList (248), TDataset.FieldByName (259), TDataset.FindField (259)

10.19.37 TDataSet.GotoBookmark
Synopsis: Jump to bookmark

Declaration: procedure GotoBookmark (ABookmark: TBookmark)
Visibility: public

Description: Got oBookmark positions the dataset to the bookmark position indicated by ABookMark. ABookmark
is a bookmark obtained by the TDataset.GetBookmark (261) function.

This function is deprecated, use the TDataset.Bookmark (269) property instead.
Errors: if ABookmark does not contain a valid bookmark, then an exception may be raised.

See also: TDataset.Bookmark (269), TDataset.GetBookmark (261), TDataset.FreeBookmark (261)

263

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.38 TDataSet.Insert

Synopsis: Insert a new record at the current position.
Declaration: procedure Insert
Visibility: public

Description: Insert will insert a new record at the current position. When this function is called, any pending
modifications (when the dataset already is in insert or edit mode) will be posted. After that, the
Beforelnsert (278), BeforeScroll (281), OnNewRecord (284), AfterInsert (279) and AfterScroll (282)
events are triggered in the order indicated here. The dataset is in the dsInsert state after this
method is called, and the contents of the various fields can be set. To write the new record to the
underlying database TDataset.Post (266) must be called.

Errors: If the dataset is read-only, calling Insert will result in an EDatabaseError (218).

See also: TDataset.Beforelnsert (278), TDataset.BeforeScroll (281), TDataset.OnNewrecord (284), TDataset. AfterInsert
(279), TDataset.AfterScroll (282), TDataset.Post (266), TDataset. Append (254)

10.19.39 TDataSet.InsertRecord

Synopsis: Insert a new record with given values.
Declaration: procedure InsertRecord(const Values: Array of const)
Visibility: public
Description: InsertRecord is not yet implemented in Free Pascal. It does nothing.
Errors:

See also: TDataset.Insert (263), TDataset.SetFieldValues (248)

10.19.40 TDataSet.IsEmpty
Synopsis: Check if the dataset contains no data

Declaration: function IsEmpty : Boolean
Visibility: public

Description: IsEmpty returns True if the dataset is empty, i.e. if EOF (271) and TDataset.BOF (269) are both
True, and the dataset is not in insert mode.

See also: TDataset. EOF (271), TDataset.BOF (269), TDataset.State (274)

10.19.41 TDataSet.IsLinkedTo

Synopsis: Check whether a datasource is linked to the dataset
Declaration: function IsLinkedTo (ADataSource: TDatasource) : Boolean
Visibility: public

Description: IsLinkedTo returns True if ADatasource is linked to this dataset, either directly (the AData-
source.Dataset" (287) points to the current dataset instance, or indirectly.

See also: TDatasource.Dataset (287)

264

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.42 TDataSet.IsSequenced

Synopsis: Is the data sequenced
Declaration: function IsSequenced : Boolean; Virtual
Visibility: public

Description: IsSequenced indicates whether it is safe to use the TDataset.RecNo (274) property to navigate
in the records of the data. By default, this property is set to True, but TDataset descendents may
set this property to False (for instance, unidirectional datasets), in which case RecNo should not
be used to navigate through the data.

See also: TDataset.RecNo (274)

10.19.43 TDataSet.Last

Synopsis: Navigate forward to the last record
Declaration: procedure Last
Visibility: public

Description: Last puts the cursor at the last record in the dataset, fetching more records from the underlying
database if needed. After a call to Last, the TDataset.EOF (271) property will be True. Calling
this method will trigger the TDataset.BeforeScroll (281) and TDataset. AfterScroll (282) events.

See also: TDataset.First (261), TDataset.Next (265), TDataset. EOF (271), TDataset.BeforeScroll (281), TDataset.AfterScroll
(282)

10.19.44 TDataSet.Locate

Synopsis: Locate a record based on some key values

Declaration: function Locate (const keyfields: String;const keyvalues: Variant;
options: TLocateOptions) : Boolean; Virtual
Visibility: public
Description: Locate attempts to locate a record in the dataset. There are 2 possible cases when using Locate.

1.Keyvalues is a single value. In that case, KeyFields is the name of the field whose value
must be matched to the value in KeyValues

2.Keyvalues is a variant array. In that case, KeyFields must contain a list of names of fields
(separated by semicolons) whose values must be matched to the values in the KeyValues
array

The matching always happens according to the Opt i ons parameter. For a description of the possible
values, see TLocateOption (214).

If a record is found that matches the criteria, then the 1ocate operation positions the cursor on this
record, and returns True. If no record is found to match the criteria, False is returned, and the
position of the cursor is unchanged.

The implementation in TDataset always returns False. It is up to TDataset descendents to
implement this method and return an appropriate value.

See also: TDataset.Find (248), TDataset.Lookup (265), TLocateOption (214)

265

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.45 TDataSet.Lookup

Synopsis: Search for a record and return matching values.

Declaration: function Lookup (const KeyFields: String;const KeyValues: Variant;
const ResultFields: String) : Variant; Virtual

Visibility: public

Description: Lookup always returns False in TDataset. Descendents of TDataset can override this
method to call TDataset.Locate (264) to locate the record with fields KeyFields matching KeyValues
and then to return the values of the fields in ResultFields. If ResultFields contains more
than one fieldname (separated by semicolons), then the function returns an array. If there is only 1
fieldname, the value is returned directly.

Errors: If the dataset is unidirectional, then a EDatabaseError (218) exception will be raised.

See also: TDataset.Locate (264)

10.19.46 TDataSet.MoveBy

Synopsis: Move the cursor position
Declaration: function MoveBy (Distance: LongInt) : LongInt
Visibility: public

Description: MoveBy moves the current record pointer with Di st ance positions. Di st ance may be a positive
number, in which case the cursor is moved forward, or a negative number, in which case the cursor
is moved backward. The move operation will stop as soon as the beginning or end of the data
is reached. The TDataset.BeforeScroll (281) and TDataset.AfterScroll (282) events are triggered
(once) when this method is called. The function returns the distance which was actually moved by
the cursor.

Errors: A negative distance will result in an EDatabaseError (218) exception on unidirectional datasets.

See also: TDataset.RecNo (274), TDataset.BeforeScroll (281), TDataset. AfterScroll (282)

10.19.47 TDataSet.Next

Synopsis: Go to the next record in the dataset.
Declaration: procedure Next
Visibility: public

Description: Next positions the cursor on the next record in the dataset. It is equivalent to a MoveBy (1)
operation. Calling this method triggers the TDataset.BeforeScroll (281) and TDataset.AfterScroll
(282) events. If the dataset is located on the last known record (EOF (271) is true), then no action is
performed, and the events are not triggered.

Errors: Calling this method on a closed dataset will result in an EDatabaseError (218) exception.

See also: TDataset.MoveBy (265), TDataset.Prior (267), TDataset.Last (264), TDataset.BeforeScroll (281),
TDataset.AfterScroll (282), TDataset. EOF (271)

266

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.48 TDataSet.Open
Synopsis: Activate the dataset: Fetch data into memory.
Declaration: procedure Open
Visibility: public
Description: Open must be used to make the TDataset Active. It does nothing if the dataset is already active.
Open initialises the TDataset and brings the dataset in a browsable state:

Effectively the following happens:

1.The BeforeOpen event is triggered.

2.The descendents InternalOpen method is called to actually fetch data and initialize field-
defs and field instances.

3.BOF (269)is set to True

4.Internal buffers are allocated and filled with data
5.If the dataset is empty, EOF (271) is set to true
6.State (274) is set to dsBrowse

7.The AfterOpen (278) event is triggered

Errors: If the descendent class cannot fetch the data, or the data does not match the field definitions present
in the dataset, then an exception will be raised.

See also: TDataset.Active (276), TDataset.State (274), TDataset.BOF (269), TDataset.EOF (271), TDataset.BeforeOpen
(277), TDataset.AfterOpen (278)

10.19.49 TDataSet.Post

Synopsis: Post pending edits to the database.
Declaration: procedure Post; Virtual
Visibility: public

Description: Post attempts to save pending edits when the dataset is in one of the edit modes: that is, after
a Insert (263), Append (254) or TDataset.Edit (258) operation. The changes will be committed to
memory - and usually immediatly to the underlying database as well. Prior to saving the data to
memory, it will check some constraints: in TDataset, the presence of a value for all required fields
is checked. if for a required field no value is present, an exception will be raised. A call to Post

results in the triggering of the BeforePost (280), AfterPost (280) events. After the call to Past, the
State (274) of the dataset is again dsBrowse, i.e. the dataset is again in browse mode.

Errors: Invoking the post method when the dataset is not in one of the editing modes (dsEditModes (207))
will result in an EdatabaseError (218) exception. If an exception occurs during the save operation,
the OnPostError (285) event is triggered to handle the error.

See also: TDataset.Insert (263), Tdataset. Append (254), TDataset.Edit (258), Tdataset.OnPostError (285),
TDataset.BeforePost (280), TDataset.AfterPost (280), TDataset.State (274)

267

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.50 TDataSet.Prior

Synopsis: Go to the previous record
Declaration: procedure Prior
Visibility: public
Description: Prior moves the cursor to the previous record. It is equivalent to a MoveBy (-1) operation.

Calling this method triggers the TDataset.BeforeScroll (281) and TDataset. AfterScroll (282) events.

If the dataset is located on the first record, (BOF (269) is true) then no action is performed, and the
events are not triggered.

Errors: Calling this method on a closed dataset will result in an EDatabaseError (218) exception.

See also: TDataset.MoveBy (265), TDataset.Next (265), TDataset.First (261), TDataset.BeforeScroll (281),
TDataset.AfterScroll (282), TDataset.BOF (269)

10.19.51 TDataSet.Refresh
Synopsis: Refresh the records in the dataset
Declaration: procedure Refresh
Visibility: public
Description: Re f resh posts any pending edits, and refetches the data in the dataset from the underlying database,
and attempts to reposition the cursor on the same record as it was. This operation is not supported
by all datasets, and should be used with care. The repositioning may not always succeed, in which

case the cursor will be positioned on the first record in the dataset. This is in particular true for

unidirectional datasets. Calling Refresh results in the triggering of the BeforeRefresh (282) and
AfterRefresh (282) events.

Errors: Refreshing may fail if the underlying dataset descendent does not support it.

See also: TDataset.Close (256), TDataset.Open (266), TDataset.BeforeRefresh (282), TDataset. AfterRefresh
(282)

10.19.52 TDataSet.Resync
Synopsis: Resynchronize the data buffer

Declaration: procedure Resync (Mode: TResyncMode) ;
Visibility: public

Virtual

Description: Resync refetches the records around the cursor position. It should not be used by application code,
instead TDataset.Refresh (267) should be used. The Resync parameter indicates how the buffers
should be refreshed.

See also: TDataset.Refresh (267)

268

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.53 TDataSet.SetFields

Synopsis: Set a number of field values at once
Declaration: procedure SetFields (const Values: Array of const)
Visibility: public

Description: setFields sets the values of the fields with the corresponding values in the array. It starts with
the first field in the TDataset.Fields (275) property, and works it’s way down the array.

Errors: If the dataset is not in edit mode, then an EDatabaseError (218) exception will be raised. If there are
more values than fields, an EListError exception will be raised.

See also: TDataset.Fields (275)

10.19.54 TDataSet.Translate
Synopsis: Transliterate a buffer

Declaration: function Translate (Src: PChar;Dest: PChar;ToOem: Boolean) : Integer
; Virtual

Visibility: public

Description: Translate is called for all string fields for which the TStringField. Transliterate (371) property is
set to True. The t oOEM parameter is set to True if the transliteration must happen from the used
codepage to the codepage used for storage, and if it is set to False then the transliteration must
happen from the native codepage to the storage codepage. This call must be overridden by descen-
dents of TDataset to provide the necessary transliteration: TDataset just copies the contents of
the Src buffer to the Dest buffer. The result must be the number of bytes copied to the destination
buffer.

Errors: No checks are performed on the bufffers.

See also: TStringField.Transliterate (371)

10.19.55 TDataSet.UpdateCursorPos
Synopsis: Update cursor position

Declaration: procedure UpdateCursorPos
Visibility: public

Description: UpdateCursorPos should not be used in application code. It is used to ensure that the logical
cursor position is the correct (physical) position.

See also: TDataset.Refresh (267)

10.19.56 TDataSet.UpdateRecord

Synopsis: Indicate that the record contents have changed
Declaration: procedure UpdateRecord

Visibility: public

269

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: UpdateRecord notifies controls that the contents of the current record have changed. It triggers
the event. This should never be called by application code, and is intended only for descendents of
TDataset.

See also: TDataset.OnUpdateRecord (248)

10.19.57 TDataSet.UpdateStatus

Synopsis: Get the update status for the current record
Declaration: function UpdateStatus : TUpdateStatus; Virtual
Visibility: public

Description: UpdateStatus always returns usUnModified in the TDataset implementation. Descendent
classes should override this method to indicate the status for the current record in case they support
cached updates: the function should return the status of the current record: has the record been locally
inserted, modified or deleted, or none of these. UpdateStatus is not used in TDataset itself,
but is provided so applications have a unique API to work with datasets that have support for cached
updates.

10.19.58 TDataSet.BOF

Synopsis: Is the cursor at the beginning of the data (on the first record)
Declaration: Property BOF : Boolean
Visibility: public
Access: Read

Description: BOF returns True if the first record is the first record in the dataset, False otherwise. It will
always be True if the dataset is just opened, or after a call to TDataset.First (261). As soon as
TDataset.Next (265) is called, BOF will no longer be true.

See also: TDataset. EOF (271), TDataset.Next (265), TDataset.First (261)

10.19.59 TDataSet.Bookmark

Synopsis: Get or set the current cursor position
Declaration: Property Bookmark : TBookmarkStr
Visibility: public
Access: Read,Write

Description: Bookmark can be read to obtain a bookmark to the current position in the dataset. The obtained
value can be used to return to current position at a later stage. Writing the Bookmark property with
a value previously obtained like this, will reposition the dataset on the same position as it was when
the property was read.

This is often used when scanning all records, like this:

270

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Var
B : TBookmarkStr;

begin
With MyDataset do
begin
B:=Bookmark;
DisableControls;
try
First;
While Not EOF do
begin
DoSomething;
Next;
end;
finally
EnableControls;
Bookmark:=B;
end;
end;

At the end of this code, the dataset will be positioned on the same record as when the code was
started. The TDataset.DisableControls (258) and TDataset.EnableControls (259) calls prevent the
controls from receiving update notifications as the dataset scrolls through the records, tus recuding
flicker on the screen.

Note that bookmarks become invalid as soon as the dataset closes. A call to refresh may also destroy
the bookmarks.

See also: TDataset.DisableControls (258), TDataset.EnableControls (259)

10.19.60 TDataSet.CanModify
Synopsis: Can the data in the dataset be modified

Declaration: Property CanModify : Boolean
Visibility: public
Access: Read

Description: CanModi fiy indicates whether the dataset allows editing. Unidirectional datasets do not
allow editing. Descendent datasets can impose additioanl conditions under which the data can not
be modified (read-only datasets, for instance). If the CanModi fy property is False, then the edit,
append or insert methods will fail.

See also: TDataset.Insert (263), TDataset. Append (254), TDataset.Delete (257), Tdataset.Edit (258)

10.19.61 TDataSet.DataSource

Synopsis: Datasource this dataset is connected to.
Declaration: Property DataSource : TDatasource
Visibility: public

Access: Read

271

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Datasource is the datasource this dataset is connected to, and from which it can get values for
parameters. In TDataset, the Datasource property is not used, and is always Nil. It is up to
descendent classes that actually support a datasource to implement getter and setter routines for the
Datasource property.

See also: TDatasource (285)

10.19.62 TDataSet.DefaultFields
Synopsis: Is the dataset using persisten fields or not.

Declaration: Property DefaultFields : Boolean
Visibility: public
Access: Read

Description: DefaultFields is True if the fields were generated dynamically when the dataset was opened.
If it is False then the field instances are persistent, i;e. they were created at desin time with the
fields editor. If DefaultFields is True, then for each item in the TDataset.FieldDefs (272)
property, a field instance is created. These fields instances are freed again when the dataset is closed.

If DefaultFields is False, then there may be less field instances than there are items in the
FieldDefs property. This can be the case for instance when opening a DBF file at runtime which
has more fields than the file used at design time.

See also: TDataset.FieldDefs (272), TDataset.Fields (275), TField (296)

10.19.63 TDataSet.EOF

Synopsis: Indicates whether the last record has been reached.
Declaration: Property EOF : Boolean
Visibility: public
Access: Read
Description: EOF is True if the cursor is on the last record in the dataset, and no more records are available. It
is also True for an empty dataset. The EOF property will be set to True in the following cases:
1.The TDataset.Last (264) method is called.
2.The record is on the last record, and the TDataset.Next (265) method is called.
3.The dataset is empty when opened
In all other cases, EOF is False. Note that when the cursor is on the last-but-one record, and Next
is called, EOF will not yet be True. It is only when the cursor is on the last record and Next is

called, that EOF will become True. This means that the following loop will stop after the last record
was visited:

With MyDataset do
While not EOF do
begin
DoSomething;
Next;
end;

See also: TDataset. BOF (269), TDataset.Next (265), TDataset.Last (264), TDataset.IsSEmpty (263)

272

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.64 TDataSet.FieldCount
Synopsis: Number of fields

Declaration: Property FieldCount : LongInt
Visibility: public
Access: Read

Description: FieldCount is the same as Fields.Count (330), i.e. the number of fields. For a dataset with
persistent fields (when DefaultFields (271) is False) then this number will be always the same
every time the dataset is opened. For a dataset with dynamically created fields, the number of fields
may be different each time the dataset is opened.

See also: TFields (327)

10.19.65 TDataSet.FieldDefs
Synopsis: Definitions of available fields in the underlying database

Declaration: Property FieldDefs : TFieldDefs
Visibility: public
Access: Read,Write

Description: FieldDefs is filled by the TDataset descendent when the dataset is opened. It represents the
fields as they are returned by the particular database when the data is initially fetched from the engine.
If the dataset uses dynamically created fields (when DefaultFields (271) is True), then for each item
in this list, a field i nstance will be created with default properties available in the field definition. If
the dataset uses persistent fields, then the fields in the field list will be checked against the items in
the FieldDefs property. If no matching item is found for a persistent field, then an exception will
be raised. Items that exist in the fielddefs property but for which there is no matching field instance,
are ignored.

See also: TDataset.Open (266), TDataset. DefaultFields (271), TDataset.Fields (275)

10.19.66 TDataSet.Found

Synopsis: Check success of one of the Find methods
Declaration: Property Found : Boolean
Visibility: public
Access: Read

Description: Found is True if the last of one of the TDataset.FindFirst (260), TDataset.FindLast (260), TDataset.FindNext
(260) or TDataset.FindPrior (260) operations was succesful.

See also: TDataset.FindFirst (260), TDataset.FindLast (260), TDataset.FindNext (260), TDataset.FindPrior
(260)

273

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.67 TDataSet.Modified

Synopsis: Was the current record modified ?
Declaration: Property Modified : Boolean
Visibility: public
Access: Read,Write

Description: Modi fiedis True if the current record was modified after a call to Tdataset.Edit (258) or Tdataset.Insert
(263). It becomes True if a value was written to one of the fields of the dataset.

See also: Tdataset.Edit (258), TDataset.Insert (263), TDataset. Append (254), TDataset.Cancel (255), TDataset.Post
(266)

10.19.68 TDataSet.IsUniDirectional
Synopsis: Is the dataset unidirectional (i.e. forward scrolling only)

Declaration: Property IsUniDirectional : Boolean
Visibility: public
Access: Read

Description: IsUniDirectional is True if the dataset is unidirectional. By defaultitis False, i.e. scrolling
backwards is allowed. If the dataset is unidirectional, then any attempt to scroll backwards (using one
of TDataset.Prior (267) or TDataset.Next (265)), random positioning of the cursor, editing or filtering
will result in an EDatabaseError (218). Unidirectional datasets are also not suitable for display in a
grid, as they have only 1 record in memory at any given time: they are only useful for performing an
action on all records:

With MyDataset do
While not EOF do
begin
DoSomething;
Next;
end;

See also: TDataset.Prior (267), TDataset.Next (265)

10.19.69 TDataSet.RecordCount

Synopsis: Number of records in the dataset
Declaration: Property RecordCount : LongInt
Visibility: public
Access: Read

Description: RecordCount is the number of records in the dataset. This number is not necessarily equal to the
number of records returned by a query. For optimization purposes, a TDataset descendent may
choose not to fetch all records from the database when the dataset is opened. If this is the case, then
the RecordCount will only reflect the number of records that have actually been fetched at the
current time, and therefor the value will change as more records are fetched from the database.

274

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Only when Last has been called (and the dataset has been forced to fetch all records returned by the
database), will the value of RecordCount be equal to the number of records returned by the query.

In general, datasets based on in-memory data or flat files, will return the correct number of records
in RecordCount.

See also: TDataset.RecNo (274)

10.19.70 TDataSet.RecNo

Synopsis: Current record number
Declaration: Property RecNo : LonglInt
Visibility: public
Access: Read,Write

Description: RecNo returns the current position in the dataset. It can be written to set the cursor to the indi-
cated position. This property must be implemented by TDataset descendents, for TDataset the
property always returns -1.

This property should not be used if exact positioning is required. it is inherently unreliable.

See also: TDataset.RecordCount (273)

10.19.71 TDataSet.RecordSize
Synopsis: Size of the record in memory

Declaration: Property RecordSize : Word
Visibility: public
Access: Read

Description: RecordSize is the total size of the memory buffer used for the records. This property returns
always 0 in the TDataset implementation. Descendent classes should implement this property.
Note that this property does not necessarily reflect the actual data size for the records. that may be
more or less, depending on how the TDataset descendent manages it’s data.

See also: TField.Datasize (308), TDataset.RecordCount (273), TDataset.RecNo (274)

10.19.72 TDataSet.State

Synopsis: Current operational state of the dataset
Declaration: Property State : TDataSetState
Visibility: public
Access: Read

Description: st ate determines the current operational state of the dataset. During it’s lifetime, the dataset is in
one of many states, depending on which operation is currently in progress:

olf a dataset is closed, the State is dsInactive.

eAs soon as it is opened, it is in dsBrowse mode, and remains in this state while changing the
cursor position.

275

CHAPTER 10. REFERENCE FOR UNIT 'DB’

olf the Edit or Insert or Append methods is called, the State changes to dsEdit or
dsInsert, respectively.

e As soon as edits have been posted or cancelled, the state is again dsBrowse.

oClosing the dataset sets the state again to dsInactive.

There are some other states, mainly connected to internal operations, but which can become visible
in some of the dataset’s events.

See also: TDataset.Active (276), TDataset.Edit (258), TDataset.Insert (263), TDataset. Append (254), TDataset.Post
(266), TDataset.Cancel (255)

10.19.73 TDataSet.Fields

Synopsis: Indexed access to the fields of the dataset.
Declaration: Property Fields : Tfields
Visibility: public
Access: Read

Description: Fields provides access to the fields of the dataset. It is of type TFields (327) and therefore gives
indexed access to the fields, but also allows other operations such as searching for fields based on
their names or getting a list of fieldnames.

See also: TFieldDefs (324), TField (296)

10.19.74 TDataSet.FieldValues

Synopsis: Acces to field values based on the field names.
Declaration: Property FieldvValues[fieldname: String]: Variant; default
Visibility: public
Access: Read,Write

Description: Fieldvalues provides array-like access to the values of the fields, based on the names of the
fields. The value is read or written as a variant type. It is equivalent to the following:

FieldByName (FieldName) .AsVariant

It can be read as well as written.

See also: FieldByname (206)

10.19.75 TDataSet.Filter

Synopsis: Filter to apply to the data in memory.
Declaration: Property Filter : String
Visibility: public

Access: Read,Write

276

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Filter is not implemented by TDataset. It is up to descendent classes to implement actual
filtering: the filtering happens on in-memory data, and is not applied on the database level. (in
particular: setting the filter property will in no way influence the WHERE clause of an SQL-based
dataset).

In general, the £ilter property accepts a SQL-like syntax usually encountered in the WHERE
clause of an SQL SELECT statement.

The filter is only applied if the Filtered property is set to True. If the Filtered property is
False, the Filter property is ignored.

See also: TDataset.Filtered (276), TDataset.FilterOptions (276)

10.19.76 TDataSet.Filtered

Synopsis: Is the filter active or not.
Declaration: Property Filtered : Boolean
Visibility: public
Access: Read,Write

Description: Filtered determines whether the filter condition in TDataset.Filter (275) is applied or not. The
filter is only applied if the Fi1ltered property is set to True. If the Filtered property isFalse,
the Filter property is ignored.

See also: TDataset.Filter (275), TDataset.FilterOptions (276)

10.19.77 TDataSet.FilterOptions
Synopsis: Options to apply when filtering

Declaration: Property FilterOptions : TFilterOptions
Visibility: public
Access: Read,Write

Description: FilterOptions determines what options should be taken into account when applying the filter
in TDataset.Filter (275), such as case-sensitivity or whether to treat an asterisk as a wildcard: By
default, an asterisk (*) at the end of a literal string in the filter expression is treated as a wildcard.
When FilterOptions does not include foNoPartialCompare, strings that have an asterisk
at the end, indicate a partial string match. In that case, the asterisk matches any number of characters.
If foNoPartialCompare isincluded in the options, the asterisk is regarded as a regular character.

See also: TDataset.Filter (275), TDataset.FilterOptions (276)

10.19.78 TDataSet.Active

Synopsis: Is the dataset open or closed.
Declaration: Property Active : Boolean
Visibility: public

Access: Read,Write

277

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Active is True if the dataset is open, and False if it is closed (TDataset.State (274) is then
dsInactive). Setting the Act ive property to True is equivalent to calling TDataset.Open (266),
setting it to False is equivalent to calling TDataset.Close (256)

See also: TDataset.State (274), TDataset.Open (266), TDataset.Close (256)

10.19.79 TDataSet.AutoCalcFields

Synopsis: How often should the value of calculated fields be calculated
Declaration: Property AutoCalcFields : Boolean
Visibility: public
Access: Read,Write

Description: AutoCalcFields is by default t rue, meaning that the values of calculated fields will be com-
puted in the following cases:

eWhen the dataset is opened
eWhen the dataset is put in edit mode
eWhen a data field changed

When AutoCalcFields is False, then the calculated fields are called whenever

oThe dataset is opened

eThe dataset is put in edit mode

Both proper calculated fields and lookup fields are computed. Calculated fields are computed through
the TDataset.OnCalcFields (283) event.

See also: TField.FieldKind (314), TDataset.OnCalcFields (283)

10.19.80 TDataSet.BeforeOpen

Synopsis: Event triggered before the dataset is opened.
Declaration: Property BeforeOpen : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeOpen is triggered before the dataset is opened. No actions have been performed yet when
this event is called, and the dataset is still in dsInactive state. It can be used to set parameters
and options that influence the opening process. If an exception is raised during the event handler, the
dataset remains closed.

See also: TDataset.AfterOpen (278), TDataset.State (274)

278

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.81 TDataSet.AfterOpen

Synopsis: Event triggered after the dataset is opened.
Declaration: Property AfterOpen : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterOpen is triggered after the dataset is opened. The dataset has fetched its data and is in
dsBrowse state when this event is triggered. If the dataset is not empty, then a TDataset.AfterScroll
(282) event will be triggered immediatly after the AfterOpen event. If an exception is raised during
the event handler, the dataset remains open, but the AfterScroll event will not be triggered.

See also: TDataset.AfterOpen (278), TDataset.State (274), TDataset. AfterScroll (282)

10.19.82 TDataSet.BeforeClose

Synopsis: Event triggered before the dataset is closed.
Declaration: Property BeforeClose : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeClose is triggered before the dataset is closed. No actions have been performed yet when
this event is called, and the dataset is still in dsBrowse state or one of the editing states. It can be
used to prevent closing of the dataset, for instance if there are pending changes not yet committed to
the database. If an exception is raised during the event handler, the dataset remains opened.

See also: TDataset. AfterClose (278), TDataset.State (274)

10.19.83 TDataSet.AfterClose

Synopsis: Event triggered after the dataset is closed
Declaration: Property AfterClose : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterOpen is triggered after the dataset is opened. The dataset has discarded its data and has
cleaned up it’s internal memory structures. It is in dsInactive state when this event is triggered.

See also: TDataset.BeforeClose (278), TDataset.State (274)

10.19.84 TDataSet.Beforelnsert

Synopsis: Event triggered before the dataset is put in insert mode.

Declaration: Property BeforeInsert : TDataSetNotifyEvent
Visibility: public

Access: Read,Write

279

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: BeforeInsert is triggered at the start of the TDataset.Append (254) or TDataset.Insert (263)
methods. The dataset is still in dsBrowse state when this event is triggered. If an exception is
raised in the BeforeInsert event handler, then the dataset will remain in dsBrowse state, and
the append or insert operation is cancelled.

See also: TDataset.AfterInsert (279), TDataset. Append (254), TDataset.Insert (263)

10.19.85 TDataSet.Afterlnsert

Synopsis: Event triggered after the dataset is put in insert mode.
Declaration: Property AfterInsert : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterInsert is triggered after the dataset has finished putting the dataset in dsInsert state
and it has initialized the new record buffer. This event can be used e.g. to set initial field values.
After the Afterinsert event, the TDataset.AfterScroll (282) event is still triggered. Raising an
exception in the AfterInsert event, will prevent the AfterScroll event from being triggered,
but does not undo the insert or append operation.

See also: TDataset.Beforelnsert (278), TDataset. AfterScroll (282), TDataset. Append (254), TDataset.Insert
(263)

10.19.86 TDataSet.BeforeEdit
Synopsis: Event triggered before the dataset is put in edit mode.

Declaration: Property BeforeEdit : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeEdit is the triggered at the start of the TDataset.Edit (258) method. The dataset is still in
dsBrowse state when this event is triggered. If an exception is raised in the BeforeEdit event
handler, then the dataset will remain in dsBrowse state, and the edit operation is cancelled.

See also: TDataset. AfterEdit (279), TDataset.Edit (258), TDataset.State (274)

10.19.87 TDataSet.AfterEdit
Synopsis: Event triggered after the dataset is put in edit mode.

Declaration: Property AfterEdit : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterEdit is triggered after the dataset has finished putting the dataset in dsEdit state and it
has initialized the edit buffer for the record. Raising an exception in the AfterEdit event does not
undo the edit operation.

See also: TDataset.BeforeEdit (279), TDataset.Edit (258), TDataset.State (274)

280

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.88 TDataSet.BeforePost
Synopsis: Event called before changes are posted to the underlying database

Declaration: Property BeforePost : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforePost is triggered at the start of the TDataset.Post (266) method, when the datset is still
in one of the edit states (dsEdit,dsInsert). If the dataset was not in an edit state when Post
is called, the BeforePost event is not triggered. This event can be used to supply values for
required fields that have no value yet (the Post operation performs the check on required fields only
after this event), or it can be used to abort the post operation: if an exception is raised during the
BeforePost operation, the posting operation is cancelled, and the dataset remains in the editing
state it was in before the post operation.

See also: TDataset.post (266), TDataset. AfterPost (280), TDataset.State (274)

10.19.89 TDataSet.AfterPost
Synopsis: Event called after changes have been posted to the underlying database

Declaration: Property AfterPost : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterPost is triggered when the TDataset.Post (266) operation was succesfully completed, and
the dataset is again in dsBrowse state. If an error occured during the post operation, then the
AfterPost event is not called, but the TDataset.OnPostError (285) event is triggered instead.

See also: TDataset.BeforePost (280), TDataset.Post (266), TDataset.State (274), TDataset.OnPostError (285)

10.19.90 TDataSet.BeforeCancel

Synopsis: Event triggered before a Cancel operation.
Declaration: Property BeforeCancel : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeCancel is triggered at the start of the TDataset.Cancel (255) operation, when the state
is still one of the editing states (dsEdit,dsInsert). The event handler can be used to abort the
cancel operation: if an exception is raised during the event handler, then the cancel operation stops.
If the dataset was not in one of the editing states when the Cancel method was called, then the
event is not triggered.

See also: TDataset.AfterCancel (281), TDataset.Cancel (255), TDataset.State (274)

281

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.91 TDataSet.AfterCancel

Synopsis: Event triggered after a Cancel operation.
Declaration: Property AfterCancel : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterCancel is triggered when the TDataset.Cancel (255) operation was succesfully completed,
and the dataset is again in dsBrowse state.

See also: TDataset.BeforeCancel (280), TDataset.Cancel (255), TDataset.State (274)

10.19.92 TDataSet.BeforeDelete
Synopsis: Event triggered before a Delete operation.

Declaration: Property BeforeDelete : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeDelete is triggered at the start of the TDataset.Delete (257) operation, when the dataset
is still in dsBrowse state. The event handler can be used to abort the delete operation: if an
exception is raised during the event handler, then the delete operation stops. The event is followed
by a TDataset.BeforeScroll (281) event. If the dataset was in insert mode when the Delete method
was called, then the event will not be called, as TDataset.Cancel (255) is called instead.

See also: TDataset.AfterDelete (281), TDataset.Delete (257), TDataset.BeforeScroll (281), TDataset.Cancel
(255), TDataset.State (274)

10.19.93 TDataSet.AfterDelete
Synopsis:
Declaration: Property AfterDelete : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterDelete is triggered after the succesfull completion of the TDataset.Delete (257) operation,
when the dataset is again in dsBrowse state. The event is followed by a TDataset.AfterScroll (282)
event.

See also: TDataset.BeforeDelete (281), TDataset.Delete (257), TDataset.AfterScroll (282), TDataset.State
274)

10.19.94 TDataSet.BeforeScroll

Synopsis: Event triggered before the cursor changes position.
Declaration: Property BeforeScroll : TDataSetNotifyEvent

Visibility: public

282

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Access: Read,Write

Description: BeforeScroll is triggered before the cursor changes position. This can happen with one of the
navigation methods: TDataset.Next (265), TDataset.Prior (267), TDataset.First (261), TDataset.Last
(264), but also with two of the editing operations:TDataset.Insert (263) and TDataset.Delete (257).
Raising an exception in this event handler aborts the operation in progress.

See also: TDataset. AfterScroll (282), TDataset.Next (265), TDataset.Prior (267), TDataset.First (261), TDataset.Last
(264), TDataset.Insert (263), TDataset.Delete (257)

10.19.95 TDataSet.AfterScroll
Synopsis: Event triggered after the cursor has changed position.

Declaration: Property AfterScroll : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: AfterScroll is triggered after the cursor has changed position. This can happen with one of the
navigation methods: TDataset.Next (265), TDataset.Prior (267), TDataset.First (261), TDataset.Last
(264), but also with two of the editing operations:TDataset.Insert (263) and TDataset.Delete (257)
and after the dataset was opened. It is suitable for displaying status information or showing a value
that needs to be calculated for each record.

See also: TDataset. AfterScroll (282), TDataset.Next (265), TDataset.Prior (267), TDataset.First (261), TDataset.Last
(264), TDataset.Insert (263), TDataset.Delete (257), TDataset.Open (266)

10.19.96 TDataSet.BeforeRefresh

Synopsis: Event triggered before the data is refreshed.
Declaration: Property BeforeRefresh : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: BeforeRefresh is triggered at the start of the TDataset.Refresh (267) method, after the dataset
has been put in browse mode. If the dataset cannot be put in browse mode, the BeforeRefresh
method wil not be triggered. If an exception is raised during the BeforeRefresh method, then
the refresh method is cancelled and the dataset remains in the dsBrowse state.

See also: TDataset.Refresh (267), TDataset. AfterRefresh (282), TDataset.State (274)

10.19.97 TDataSet.AfterRefresh

Synopsis: Event triggered after the data has been refreshed.
Declaration: Property AfterRefresh : TDataSetNotifyEvent
Visibility: public

Access: Read,Write

283

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: AfterRefresh is triggered at the end of the TDataset.Refresh (267) method, after the dataset has
refreshed its data and is again in dsBrowse state. This event can be used to react on changes in data
in the current record

See also: TDataset.Refresh (267), TDataset.State (274), TDataset.BeforeRefresh (282)

10.19.98 TDataSet.OnCalcFields
Synopsis: Event triggered when values for calculated fields must be computed.
Declaration: Property OnCalcFields : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: OnCalcFields is triggered whenever the dataset needs to (re)compute the values of any calcu-
lated fields in the dataset. It is called very often, so this event should return as quickly as possible.
Only the values of the calculated fields should be set, no methods of the dataset that change the data
or cursor position may be called during the execution of this event handler. The frequency with which
this event is called can be controlled through the TDataset. AutoCalcFields (277) property. Note that
the value of lookup fields does not need to be calculated in this event, their value is computed auto-
matically before this event is triggered.

See also: TDataset. AutoCalcFields (277), TField.Kind (296)

10.19.99 TDataSet.OnDeleteError

Synopsis: Event triggered when a delete operation fails.
Declaration: Property OnDeleteError : TDataSetErrorEvent
Visibility: public
Access: Read,Write

Description: OnDeleteError is triggered when the TDataset.Delete (257) method fails to delete the record in
the underlying database. The event handler can be used to indicate what the response to the failed
delete should be. To this end, it gets the exception object passed to it (parameter E), and it can
examine this object to return an appropriate action in the DataAct ion parameter. The following
responses are supported:

daFailThe operation should fail (an exception will be raised)
daAbortThe operation should be aborted (edits are undone, and an EAbort exception is raised)
daRetryRetry the operation.

For more information, see also the description of the TDatasetErrorEvent (210) event handler type.

See also: TDatasetErrorEvent (210), TDataset.Delete (257), TDataset.OnEditError (284), TDataset.OnPostError
(285)

284

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.100 TDataSet.OnEditError

Synopsis: Event triggered when an edit operation fails.
Declaration: Property OnEditError : TDataSetErrorEvent
Visibility: public
Access: Read,Write

Description: OnEditError is triggered when the TDataset.Edit (258) method fails to put the dataset in edit
mode because the underlying database engine reported an error. The event handler can be used to
indicate what the response to the failed edit operation should be. To this end, it gets the exception
object passed to it (parameter E), and it can examine this object to return an appropriate action in the
DataAction parameter. The following responses are supported:

daFailThe operation should fail (an exception will be raised)
daAbortThe operation should be aborted (edits are undone, and an EAbort exception is raised)

daRetryRetry the operation.

For more information, see also the description of the TDatasetErrorEvent (210) event handler type.

See also: TDatasetErrorEvent (210), TDataset.Edit (258), TDataset.OnDeleteError (283), TDataset.OnPostError
(285)

10.19.101 TDataSet.OnFilterRecord
Synopsis: Event triggered to filter records.

Declaration: Property OnFilterRecord : TFilterRecordEvent
Visibility: public
Access: Read,Write

Description: OnFilterRecord can be used to provide event-based filtering for datasets that support it. This
event is only triggered when the Tdataset.Filtered (276) property is set to True. The event handler
should set the Accept parameter to True if the current record should be accepted, or to False if
it should be rejected. No methods that change the state of the dataset may be used during this event,
and calculated fields or lookup field values are not yet available.

See also: TDataset.Filter (275), TDataset.Filtered (276), TDataset.state (274)

10.19.102 TDataSet.OnNewRecord

Synopsis: Event triggered when a new record is created.
Declaration: Property OnNewRecord : TDataSetNotifyEvent
Visibility: public
Access: Read,Write

Description: OnNewRecord is triggered by the TDataset. Append (254) or TDataset.Insert (263) methods when
the buffer for the new record’s data has been allocated. This event can be used to set default value
for some of the fields in the dataset. If an exception is raised during this event handler, the operation
is cancelled and the dataset is put again in browse mode (TDataset.State (274) is again dsBrowse).

See also: TDataset. Append (254), TDataset.Insert (263), TDataset.State (274)

285

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.19.103 TDataSet.OnPostError

Synopsis: Event triggered when a post operation fails.
Declaration: Property OnPostError : TDataSetErrorEvent
Visibility: public
Access: Read,Write
Description: OnPostError is triggered when the TDataset.Post (266) method fails to post the changes in the
dataset buffer to the underlying database, because the database engine reported an error. The event
handler can be used to indicate what the response to the failed post operation should be. To this end,

it gets the exception object passed to it (parameter E), and it can examine this object to return an
appropriate action in the DataAct ion parameter. The following responses are supported:

daFailThe operation should fail (an exception will be raised)
daAbortThe operation should be aborted (edits are undone, and an EAbort exception is raised)

daRetryRetry the operation.

For more information, see also the description of the TDatasetErrorEvent (210) event handler type.

See also: TDatasetErrorEvent (210), TDataset.Post (266), TDataset.OnDeleteError (283), TDataset.OnEditError
(284)

10.20 TDataSource

10.20.1 Description

TDatasource is a mediating component: it handles communication between any DB-Aware com-
ponent (often edit controls on a form) and a TDataset (248) instance. Any database aware component
should never communicate with a dataset directly. Instead, it should communicate with a TData-
source (285) instance. The TDataset instance will communicate with the TDatasource instance,
which will notify every component attached to it. Vice versa, any component that wishes to make
changes to the dataset, will notify the TDatasource instance, which will then (if needed) notify the
TDataset instance. The datasource can be disabled, in which case all communication between the
dataset and the DB-AWare components is suspended until the datasource is again enabled.

10.20.2 Method overview
Page Property Description

286 Create Create a new instance of TDatasource
286 Destroy Remove a TDatasource instance from memory
286 Edit Put the dataset in edit mode, if needed

287 IsLinkedTo Check if a dataset is linked to a certain dataset

286

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.20.3 Property overview

Page Property Access Description

287 AutoEdit ™w Should the dataset be put in edit mode automatically
287 DataSet w Dataset this datasource is connected to

288 Enabled ™w Enable or disable sending of events

288 OnDataChange 1w Called whenever data changes in the current record

288 OnStateChange rw Called whenever the state of the dataset changes

289 OnUpdateData 1w Called whenever the data in the dataset must be updated
287 State r State of the dataset

10.20.4 TDataSource.Create

Synopsis: Create a new instance of TDatasource
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of TDatasource. It simply allocates some resources and then
calls the inherited constructor.

See also: TDatasource.Destroy (286)

10.20.5 TDataSource.Destroy

Synopsis: Remove a TDatasource instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: De st roy notifies all TDataLink (243) instances connected to it that the dataset is no loner available,
and then removes itself from the TDatalink instance. It then cleans up all resources and calls the
inherited constructor.

See also: TDatasource.Create (286), TDatalink (243)

10.20.6 TDataSource.Edit

Synopsis: Put the dataset in edit mode, if needed
Declaration: procedure Edit
Visibility: public

Description: Edit will check AutoEdit (287): if it is True, then it puts the Dataset (287) it is connected to in
edit mode, if it was in browse mode. If AutoEdit is False, then nothing happens. Application
or component code that deals with GUI development should always attempt to set a dataset in edit
mode through this method instead of calling TDataset.Edit (258) directly.

Errors: An EDatabaseError (218) exception can occur if the dataset is read-only or fails to set itself in edit
mode. (e.g. unidirectional datasets).

See also: TDatasource. AutoEdit (287), TDataset.Edit (258), TDataset.State (274)

287

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.20.7 TDataSource.lsLinkedTo

Synopsis: Check if a dataset is linked to a certain dataset
Declaration: function IsLinkedTo (ADataSet: TDataSet) : Boolean
Visibility: public

Description: TsLinkedTo checks if it is somehow linked to ADataset: it checks the Dataset (287) property,
and returns True if it is the same. If not, it continues by checking any detail dataset fields that the
dataset posesses (recursively). This function can be used to detect circular links in e.g. master-detail
relationships.

See also: TDatasource.Dataset (287)

10.20.8 TDataSource.State
Synopsis: State of the dataset

Declaration: Property State : TDataSetState
Visibility: public
Access: Read

Description: St ate contains the State (274) of the dataset it is connected to, or dsInact ive if the dataset prop-
erty is not set or the datasource is not enabled. Components connected to a dataset through a data-
source property should always check TDatasource. State instead of checking TDataset.State
(274) directly, to take into account the effect of the Enabled (288) property.

See also: TDataset.State (274), TDatasource.Enabled (288)

10.20.9 TDataSource.AutoEdit

Synopsis: Should the dataset be put in edit mode automatically
Declaration: Property AutoEdit : Boolean
Visibility: published
Access: Read,Write

Description: AutoEdit can be set to True to prevent visual controls from putting the dataset in edit mode.
Visual controls use the TDatasource.Edit (286) method to attempt to put the dataset in edit mode as
soon as the user changes something. If AutoEdit is set to False then the Edit method does
nothing. The effect is that the user must explicitly set the dataset in edit mode (by clicking some
button or some other action) before the fields can be edited.

See also: TDatasource.Edit (286), TDataset.Edit (258)

10.20.10 TDataSource.DataSet

Synopsis: Dataset this datasource is connected to
Declaration: Property DataSet : TDataSet
Visibility: published

Access: Read,Write

288

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Dataset must be set by the applictaion programmer to the TDataset (248) instance for which this
datasource is handling events. Setting it to Nil will disable all controls that are connected to this
datasource instance. Once it is set and the datasource is enabled, the datasource will start sending
data events to the controls or components connected to it.

See also: TDataset (248), TDatasource.Enabled (288)

10.20.11 TDataSource.Enabled
Synopsis: Enable or disable sending of events
Declaration: Property Enabled : Boolean
Visibility: published
Access: Read,Write

Description: Enabled is by default set to True: the datasource instance communicates events from the dataset
to components connected to the datasource, and vice versa: components can interact with the dataset.
If the Enabled property is set to False then no events are communicated to connected compo-
nents: it is as if the dataset property was set to Ni1. Reversely, the components cannot interact with
the dataset if the Enabled property is set to False.

See also: TDataset (248), TDatasource.Dataset (287), TDatasource. AutoEdit (287)

10.20.12 TDataSource.OnStateChange
Synopsis: Called whenever the state of the dataset changes
Declaration: Property OnStateChange : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnStateChange is called whenever the TDataset.State (274) property changes, and the data-
source is enabled. It can be used in application code to react to state changes: enabling or disabling
non-DB-Aware controls, setting empty values etc.

See also: TDatasource.OnUpdateData (289), TDatasource.OnStateChange (288), TDataset.State (274), TData-
source.Enabled (288)

10.20.13 TDataSource.OnDataChange
Synopsis: Called whenever data changes in the current record
Declaration: Property OnDataChange : TDataChangeEvent
Visibility: published
Access: Read,Write

Description: OnDatachange is called whenever a field value changes: if the Field parameter is set, a single
field value changed. If the Field parameter is Nil, then the whole record changed: when the
dataset is opened, when the user scrolls to a new record. This event handler can be set to react to data
changes: to update the contents of non-DB-aware controls for instance. The event is not called when
the datasource is not enabled.

See also: TDatasource.OnUpdateData (289), TDatasource.OnStateChange (288), TDataset. AfterScroll (282),
TField.OnChange (319), TDatasource.Enabled (288)

289

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.20.14 TDataSource.OnUpdateData

Synopsis: Called whenever the data in the dataset must be updated
Declaration: Property OnUpdateData : TNotifyEvent
Visibility: published
Access: Read, Write

Description: OnUpdateData is called whenever the dataset needs the latest data from the controls: usually just
before a TDataset.Post (266) operation. It can be used to copy data from non-db-aware controls to
the dataset just before the dataset is posting the changes to the underlying database.

See also: TDatasource.OnDataChange (288), TDatasource.OnStateChange (288), TDataset.Post (266)

10.21 TDateField

10.21.1 Description

TDateField is the class used when a dataset must manage data of type date. (TField.DataType
(308) equals ftDate). It initializes some of the properties of the TField (296) class to be able to
work with date fields.

It should never be necessary to create an instance of TDateField manually, a field of this class
will be instantiated automatically for each date field when a dataset is opened.

10.21.2 Method overview

Page Property Description
289 Create Create a new instance of a TDateField class.

10.21.3 TDateField.Create

Synopsis: Create a new instance of a TDateField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TDateField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with date values.

See also: TField (296)

10.22 TDateTimeField

10.22.1 Description

TDateTimeFieldisthe class used when a dataset must manage data of type datetime. (TField.DataType
(308) equals ftDateTime). It also serves as base class for the TDateField (289) or TTimeField
(372) classes. It overrides some of the properties and methods of the TField (296) class to be able to
work with date/time fields.

It should never be necessary to create an instance of TDateTimeField manually, a field of this
class will be instantiated automatically for each datetime field when a dataset is opened.

290

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.22.2 Method overview

Page Property Description
290 Create Create a new instance of a TDateTimeField class.

10.22.3 Property overview

Page Property Access Description
290 DisplayFormat rw Formatting string for textual representation of the field
290 Value ™w Contents of the field as a TDateTime value

10.22.4 TDateTimeField.Create

Synopsis: Create a new instance of a TDateTimeField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TDateTimeField class. It calls the inherited destructor,
and then sets some TField (296) properties to configure the instance for working with date/time
values.

See also: TField (296)

10.22.5 TDateTimeField.Value
Synopsis: Contents of the field as a TDateTime value

Declaration: Property Value : TDateTime
Visibility: public
Access: Read,Write

Description: value is redefined from TField.Value (312) by TDateTimeField as a TDateTime value. It
returns the same value as the TField. AsDateTime (304) property.

See also: TField. AsDateTime (304), TField.Value (312)

10.22.6 TDateTimeField.DisplayFormat

Synopsis: Formatting string for textual representation of the field
Declaration: Property DisplayFormat : String
Visibility: published
Access: Read,Write

Description: DisplayFormat can be set to a formatting string that will then be used by the TField.DisplayText
(309) property to format the value with the DateTimeToString (??)function.

See also: #rtl.sysutils.datetimetostring (??), #rtl.sysutils.formatdatetime (??), TField.DisplayText (309)

291

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.23 TDBDataset

10.23.1 Description

TDBDataset is a TDataset descendent which introduces the concept of a database: a central
component (TDatabase (239)) which represents a connection to a database. This central component
is exposed in the TDBDataset.Database (291) property. When the database is no longer connected,
or is no longer in memory, all TDBDataset instances connected to it are disabled.

TDBDataset also introduces the notion of a transaction, exposed in the Transaction (292) property.
TDBDataset is an abstract class, it should never be used directly.

Dataset component writers should descend their component from TDBDataset if they wish to
introduce a central database connection component. The database connection logic will be handled
automatically by TDBDataset.

10.23.2 Method overview

Page Property Description
291 destroy = Remove the TDBDataset instance from memory.

10.23.3 Property overview

Page Property Access Description
291 DataBase ™w Database this dataset is connected to
292 Transaction 1w Transaction in which this dataset is running.

10.23.4 TDBDataset.destroy
Synopsis: Remove the TDBDataset instance from memory.
Declaration: destructor destroy; Override
Visibility: public
Description: Dest roy will disconnect the TDBDataset from its Database (291) and Transaction (292). After
this it calls the inherited destructor.

See also: TDBDataset.Database (291), TDatabase (239)

10.23.5 TDBDataset.DataBase
Synopsis: Database this dataset is connected to
Declaration: Property DataBase : TDataBase
Visibility: public
Access: Read,Write

Description: Database should be set to the TDatabase (239) instance this dataset is connected to. It can only
be set when the dataset is closed.

Descendent classes should check in the property setter whether the database instance is of the correct
class.

Errors: If the property is set when the dataset is active, an EDatabaseError (218) exception will be raised.
See also: TDatabase (239), TDBDataset. Transaction (292)

292

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.23.6 TDBDataset.Transaction

Synopsis: Transaction in which this dataset is running.
Declaration: Property Transaction : TDBTransaction
Visibility: public
Access: Read,Write

Description: Transaction points to a TDBTransaction (292) component that represents the transaction this
dataset is active in. This property should only be used for databases that support transactions.

The property can only be set when the dataset is disabled.

See also: TDBTransaction (292), TDBDataset.Database (291)

10.24 TDBTransaction

10.24.1 Description

TDBTransaction encapsulates a SQL transaction. It is an abstract class, and should be used by
component creators that wish to encapsulate transactions in a class. The TDBTransaction class
offers functionality to refer to a TDatabase (239) instance, and to keep track of TDataset instances
which are connected to the transaction.

10.24.2 Method overview

Page Property Description

293 CloseDataSets Close all connected datasets

292 Create Transaction property

293 destroy Remove a TDBTransaction instance from memory.

10.24.3 Property overview

Page Property Access Description
293 Active ™w Is the transaction active or not
293 DataBase rw Database this transaction is connected to

10.24.4 TDBTransaction.Create
Synopsis: Transaction property
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new TDBTransaction instance. It sets up the necessary resources, after
having called the inherited constructor.

See also: TDBTransaction.Destroy (293)

293

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.24.5 TDBTransaction.destroy

Synopsis: Remove a TDBTransaction instance from memory.
Declaration: destructor destroy; Override
Visibility: public

Description: Destroy first disconnects all connected TDBDataset (291) instances and then cleans up the re-
sources allocated in the Create (292) constructor. After that it calls the inherited destructor.

See also: TDBTransaction.Create (292)

10.24.6 TDBTransaction.CloseDataSets
Synopsis: Close all connected datasets

Declaration: procedure CloseDataSets
Visibility: public

Description: CloseDatasets closes all connected datasets (All TDBDataset (291) instances whose Transac-
tion (292) property points to this TDBTransact ion instance).

See also: TDBDataset (291), TDBDataset. Transaction (292)

10.24.7 TDBTransaction.DataBase

Synopsis: Database this transaction is connected to
Declaration: Property DataBase : TDataBase
Visibility: public
Access: Read,Write

Description: Database points to the database that this transaction is part of. This property can be set only when
the transaction is not active.

Errors: Setting this property to a new value when the transaction is active will result in an EDatabaseError
(218) exception.

See also: TDBTransaction.Active (293), TDatabase (239)

10.24.8 TDBTransaction.Active

Synopsis: Is the transaction active or not
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Active is True if a transaction was started using TDBTransaction.StartTransaction (292). Re-
versely, setting Active to True will call StartTransaction, setting it to False will call
TDBTransaction.EndTransaction (292).

See also: TDBTransaction.StartTransaction (292), TDBTransaction.EndTransaction (292)

294

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.25 TDefCollection

10.25.1 Description

TDefCollection is a parent class for the TFieldDefs (324) and TIndexDefs (338) collections: It
holds a set of named definitions on behalf of a TDataset (248) component. To this end, it introduces
a dataset (295) property, and a mechanism to notify the dataset of any updates in the collection. It
is supposed to hold items of class TNamedItem (351), so the TDefCollection.Find (294) method can
find items by named.

10.25.2 Method overview

Page Property Description

294 create Instantiate a new TDefCollection instance.
294 Find Find an item by name

295 GetltemNames Return a list of all names in the collection

295 IndexOf Find location of item by name

10.25.3 Property overview

Page Property Access Description
295 Dataset r Dataset this collection manages definitions for.
295 Updated rw Has one of the items been changed

10.25.4 TDefCollection.create

Synopsis: Instantiate a new TDefCollection instance.

Declaration: constructor create (ADataset: TDataSet;AOwner: TPersistent;
AClass: TCollectionItemClass)

Visibility: public

Description: Create saves the ADataset and AOwner components in local variables for later reference, and
then calls the inherited Create with AClass as a parameter. AClass should at least be of type
TNamedItem. ADataset is the dataset on whose behalf the collection is managed. AOwner is
the owner of the collection, normally this is the form or datamodule on which the dataset is dropped.

See also: TDataset (248), TNamedItem (351)

10.25.5 TDefCollection.Find
Synopsis: Find an item by name
Declaration: function Find(const AName: String) : TNamedItem
Visibility: public

Description: Find searches for an item in the collection with name AName and returns the item if it is found. If
no item with the requested name is found, Ni1 is returned. The search is performed case-insensitive.

Errors: If no item with matching name is found, N1 1 is returned.

See also: TNamedItem.Name (351), TDefCollection.IndexOf (295)

295

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.25.6 TDefCollection.GetltemNames

Synopsis: Return a list of all names in the collection
Declaration: procedure GetItemNames (List: TStrings)
Visibility: public
Description: Get ItemNames fills List with the names of all items in the collection. It clears the list first.
Errors: If List is not a valid TSt rings instance, an exception will occur.

See also: TNamedItem.Name (351)

10.25.7 TDefCollection.IndexOf

Synopsis: Find location of item by name
Declaration: function IndexOf (const AName: String) : LongInt
Visibility: public

Description: IndexOf searches in the collection for an item whose Name property matches AName and returns
the index of the item if it finds one. If no item is found, -1 is returned. The search is performed
case-insensitive.

See also: TDefCollection.Find (294), TNamedItem.Name (351)

10.25.8 TDefCollection.Dataset

Synopsis: Dataset this collection manages definitions for.
Declaration: Property Dataset : TDataSet
Visibility: public
Access: Read

Description: Dataset is the dataset this collection manages definitions for. It must be supplied when the col-
lection is created and cannot cgange during the lifetime of the collection.

10.25.9 TDefCollection.Updated

Synopsis: Has one of the items been changed
Declaration: Property Updated : Boolean
Visibility: public
Access: Read,Write

Description: Changed indicates whether the collection has changed: an item was added or removed, or one of
the properties of the items was changed.

296

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.26 TDetailDatal.ink

10.26.1 Description

TDetailDataLink handles the communication between a detail dataset and the master datasource
in a master-detail relationship between datasets. It should never be used in an application, and should
only be used by component writers that wish to provide master-detail functionality for TDataset
descendents.

10.26.2 Property overview

Page Property Access Description
296 DetailDataSet r Detail dataset in Master-detail relation

10.26.3 TDetailDataLink.DetailDataSet

Synopsis: Detail dataset in Master-detail relation
Declaration: Property DetailDataSet : TDataSet
Visibility: public
Access: Read

Description: DetailDataset is the detail dataset in a master-detail relationship between 2 datasets. DetailDataset
is always Nil in TDetailDatalink and is only filled in in descendent classes like TMaster-
Datalink (346). The master dataset is available through the regular TDatalLink.DataSource (247)

property.
See also: TDataset (248), TMasterDatalink (346), TDataLink.DataSource (247)

10.27 TField

10.27.1 Description

TField is an abstract class that defines access methods for a field in a record, controlled by a
TDataset (248) instance. It provides methods and properties to access the contents of the field in the
current record. Reading one of the AsXXX properties of TField will access the field contents and
return the contents as the desired type. Writing one of the AsXXX properties will write a value to
the buffer represented by the TFie1d instance.

TField is an abstract class, meaning that it should never be created directly. TDataset instances
always create one of the descendent classes of TField, depending on the type of the underlying data.

297

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.2 Method overview

Page Property Description

300 Assign Copy properties from one TField instance to another
300 AssignValue Assign value of a variant record to the field.

301 Clear Clear the field contents.

300 Create Create a new TField instance

300 Destroy Destroy the TField instance

301 FocusControl Set focus to the first control connected to this field.
301 GetData Get the data from this field

302 IsBlob Is the field a BLOB field (untyped data of indeterminate size).
302 IsValidChar Check whether a character is valid input for the field
302 RefreshLookupList Refresh the lookup list

302 SetData Save the field data

303 SetFieldType Set the field data type

303 Validate Validate the data buffer

298

CHAPTER 10. REFERENCE FOR UNIT 'DB’

299

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.3 Property overview

Page Property Access Description

313 Alignment w Alignment for this field

303 AsBCD ™w Access the field’s contents as a BCD (Binary coded
Decimal)

304 AsBoolean ™w Access the field’s contents as a Boolean value.

304 AsCurrency w Access the field’s contents as a Currency value.

304 AsDateTime ™w Access the field’s contents as a TDateTime value.

305 AsFloat ™w Access the field’s contents as a floating-point (Dou-
ble) value.

306 Aslnteger rw Access the field’s contents as a 32-bit signed integer
(longint) value.

305 AsLargelnt w Access the field’s contents as a 64-bit signed integer
(longint) value.

305 AsLongint ™w Access the field’s contents as a 32-bit signed integer
(longint) value.

306 AsString ™w Access the field’s contents as an AnsiString value.

307 AsVariant w Access the field’s contents as a Variant value.

306 AsWideString ™w Access the field’s contents as a WideString value.

307 AttributeSet ™w

307 Calculated w Is the field a calculated field ?

307 CanModify r Can the field’s contents be modified.

313 ConstraintErrorMessage 1w Message to display if the CustomConstraint
constraint is violated.

308 CurValue r Current value of the field

313 CustomConstraint w Custom constraint for the field’s value

308 DataSet rw Dataset this field belongs to

308 DataSize r Size of the field’s data

308 DataType r The data type of the field.

314 DefaultExpression w Default value for the field

314 DisplayLabel WS Name of the field for display purposes

309 DisplayName r User-readable fieldname

309 DisplayText r Formatted field value

314 DisplayWidth w Width of the field in characters

314 FieldKind ™w The kind of field.

315 FieldName ™w Name of the field

309 FieldNo r Number of the field in the record

315 HasConstraints r Does the field have any constraints defined

315 ImportedConstraint w Constraint for the field value on the level of the un-
derlying database

315 Index ™w Index of the field in the list of fields

310 IsIndexField r Is the field an indexed field ?

310 IsNull r Is the field empty

316 KeyFields w Key fields to use when looking up a field value.

310 Lookup ™w Is the field a lookup field

316 LookupCache w Should lookup values be cached

316 LookupDataSet w Dataset with lookup values

317 LookupKeyFields w Names of fields on which to perform a locate

312 LookupList r List of lookup values

317 LookupResultField w Name of field to use as lookup value

310 NewValue ™w The new value of the field

311 Offset r Offset of the field’s value in the dataset buffer

312 OldValue r Old value of the field

319 OnChange rw Event triggerd when the field’s value has changed

319 OnGetText ™w Event to format the field’s content

319 OnSetText ™w Ever80@ set the field’s content based on a user-
formatted string

320 OnValidate w Event to validate the value of a field before it is writ-
ten to the data buffer

317 Origin w Original fieldname of the field.

317

ProviderFlaos

™V

Flaos for nrovider or undate subpport

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.4 TField.Create

Synopsis: Create a new TField instance
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new TField instance and sets up initial values for the fields. TField is a
component, and AOwner will be used as the owner of the TField instance. This usually will be
the form or datamodule on which the dataset was placed. There should normally be no need for a
programmer to create a Tfield instance manually. The TDataset.Open (266) method will create the
necessary TField instances, if none had been creaed in the designer.

See also: TDataset.Open (266)

10.27.5 TField.Destroy

Synopsis: Destroy the TField instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy cleans up any structures set up by the field instance, and then calls the inherited destructor.
There should be no need to call this method under normal circumstances: the dataset instance will
free any TField instances it has created when the dataset was opened.

See also: TDataset.Close (256)

10.27.6 TField.Assign

Synopsis: Copy properties from one TField instance to another
Declaration: procedure Assign (Source: TPersistent); Override
Visibility: public

Description: Assign is overridden by TField to copy the field value (not the field properties) from Source
if it exists. If Source is Ni1 then the value of the field is cleared.

Errors: If Source is not a TField instance, then an exception will be raised.

See also: TField.Value (312)

10.27.7 TField.AssignValue

Synopsis: Assign value of a variant record to the field.
Declaration: procedure AssignValue (const AValue: TVarRec)
Visibility: public

Description: AssignValue assigns the value of a "array of const" record AValue (of type TVarRec) to the
field’s value. If the record contains a TPersistent instance, it will be used as argument for the Assign
to the field.

The dataset must be in edit mode to execute this method.

301

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Errors: If the AValue contains an unsupported value (such as a non-nil pointer) then an exception will
be raised. If the dataset is not in one of the edit modes, then executing this method will raise an
EDatabaseError (218) exception.

See also: TField.Assign (300), TField. Value (312)

10.27.8 TField.Clear

Synopsis: Clear the field contents.
Declaration: procedure Clear; Virtual
Visibility: public

Description: Clear clears the contents of the field. After calling this method the value of the field is Null and
IsNull (310) returns True.

The dataset must be in edit mode to execute this method.

Errors: If the dataset is not in one of the edit modes, then executing this method will raise an EDatabaseError
(218) exception.

See also: TField.IsNull (310), TField.Value (312)

10.27.9 TField.FocusControl

Synopsis: Set focus to the first control connected to this field.
Declaration: procedure FocusControl
Visibility: public
Description: FocusControl will set focus to the first control that is connected to this field.
Errors: If the control cannot receive focus, then this method will raise an exception.

See also: TDataset.EnableControls (259), TDataset.DisableControls (258)

10.27.10 TField.GetData
Synopsis: Get the data from this field

Declaration: function GetData (Buffer: Pointer) : Boolean; Overload
function GetData (Buffer: Pointer;NativeFormat: Boolean) : Boolean
; Overload

Visibility: public

Description: GetData is used internally by TField to fetch the value of the data of this field into the data
buffer pointed to by Buffer. If it returns False if the field has no value (i.e. is Null). If the
NativeFormat parameter is true, then date/time formats should use the TDateTime format. It
should not be necessary to use this method, instead use the various *AsXXX’ methods to access the
data.

Errors: No validity checks are performed on Buf fer: it should point to a valid memory area, and should be
large enough to contain the value of the field. Failure to provide a buffer that matches these criteria
will result in an exception.

See also: TField.IsNull (310), TField.SetData (302), TField.Value (312)

302

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.11 TField.IsBlob
Synopsis: Is the field a BLOB field (untyped data of indeterminate size).

Declaration: function IsBlob : Boolean; Virtual
Visibility: public

Description: IsBlob returns True if the field is one of the blob field types. The TField implementation
returns false. Only one of the blob-type field classes override this function and let it return True.

Errors: None.

See also: TBlobField.IsBlob (226)

10.27.12 TField.IsValidChar
Synopsis: Check whether a character is valid input for the field

Declaration: function IsValidChar (InputChar: Char) : Boolean; Virtual
Visibility: public

Description: IsvalidChar checks whether InputChar is a valid characters for the current field. It does
this by checking whether InputChar is in the set of characters sepcified by the TField.ValidChars
(311) property. The ValidChars property will be initialized to a correct set of characters by
descendent classes. For instance, a numerical field will only accept numerical characters and the sign
and decimal separator characters.

Descendent classes can override this method to provide custom checks. The ValidChars property
can be set to restrict the list of valid characters to a subset of what would normally be available.

See also: TField.ValidChars (311)

10.27.13 TField.RefreshLookupList
Synopsis: Refresh the lookup list

Declaration: procedure RefreshLookupList
Visibility: public

Description: RefreshLookupList fills the lookup list for a lookup fields with all key, value pairs found in
the lookup dataset. It will open the lookup dataset if needed. The lookup list is only used if the
TField.LookupCache (316) property is set to True.

Errors: If the values of the various lookup properties is not correct or the lookup dataset cannot be opened,
then an exception will be raised.

See also: TField.LookupDataset (316), TField.LookupKeyFields (317), TField.LookupResultField (317)

10.27.14 TField.SetData
Synopsis: Save the field data

Declaration: procedure SetData (Buffer: Pointer); Overload
procedure SetData (Buffer: Pointer;NativeFormat: Boolean); Overload

Visibility: public

303

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: SetData saves the value of the field data in Buf fer to the dataset internal buffer. The Buffer
pointer should point to a memory buffer containing the data for the field in the correct format. If the
NativeFormat parameter is true, then date/time formats should use the TDateTime format.

There should normally not be any need to call SetData directly: it is called by the various setter
methods of the AsXXX properties of TField.

Errors: No validity checks are performed on Buf fer: it should point to a valid memory area, and should be
large enough to contain the value of the field. Failure to provide a buffer that matches these criteria
will result in an exception.

See also: TField.GetData (301), TField. Value (312)

10.27.15 TField.SetFieldType
Synopsis: Set the field data type

Declaration: procedure SetFieldType (AValue: TFieldType); Virtual
Visibility: public

Description: SetFieldType does nothing, but it can be overridden by descendent classes to provide special
handling when the field type is set.

See also: TField.DataType (308)

10.27.16 TField.Validate
Synopsis: Validate the data buffer

Declaration: procedure Validate (Buffer: Pointer)
Visibility: public

Description: Vvalidate is called by SetData prior to writing the data from Buf fer to the dataset buffer. It
will call the TField.OnValidate (320) event handler, if one is set, to allow the application programmer
to program additional checks.

See also: TField.SetData (302), TField.OnValidate (320)

10.27.17 TField.AsBCD

Synopsis: Access the field’s contents as a BCD (Binary coded Decimal)
Declaration: Property AsBCD : TBCD
Visibility: public
Access: Read,Write

Description: AsBCD can be used to read or write the contents of the field as a BCD value (Binary Coded Decimal).
If the native type of the field is not BCD, then an attempt will be made to convert the field value from
the native format to a BCD value when reading the field’s content. Likewise, when writing the
property, the value will be converted to the native type of the field (if the value allows it). Therefor,
when reading or writing a field value for a field whose native data type is not a BCD value, an
exception may be raised.

See also: TField.AsCurrency (304), TField.Value (312)

304

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.18 TField.AsBoolean

Synopsis: Access the field’s contents as a Boolean value.
Declaration: Property AsBoolean : Boolean
Visibility: public
Access: Read, Write

Description: AsBoolean can be used to read or write the contents of the field as a boolean value. If the native
type of the field is not Boolean, then an attempt will be made to convert the field value from the native
format to a boolean value when reading the field’s content. Likewise, when writing the property, the
value will be converted to the native type of the field (if the value allows it). Therefor, when reading
or writing a field value for a field whose native data type is not a Boolean value (for instance a string
value), an exception may be raised.

See also: TField.Value (312), TField.AsInteger (306)

10.27.19 TField.AsCurrency

Synopsis: Access the field’s contents as a Currency value.
Declaration: Property AsCurrency : Currency
Visibility: public
Access: Read,Write

Description: AsBoolean can be used to read or write the contents of the field as a currency value. If the native
type of the field is not Boolean, then an attempt will be made to convert the field value from the native
format to a currency value when reading the field’s content. Likewise, when writing the property, the
value will be converted to the native type of the field (if the value allows it). Therefor, when reading
or writing a field value for a field whose native data type is not a currency-compatible value (dates or
string values), an exception may be raised.

See also: TField.Value (312), TField.AsFloat (305)

10.27.20 TField.AsDateTime

Synopsis: Access the field’s contents as a TDateTime value.
Declaration: Property AsDateTime : TDateTime
Visibility: public
Access: Read,Write

Description: AsDateTime can be used to read or write the contents of the field as a TDateTime value (for both
date and time values). If the native type of the field is not a date or time value, then an attempt will be
made to convert the field value from the native format to a TDateTime value when reading the field’s
content. Likewise, when writing the property, the value will be converted to the native type of the
field (if the value allows it). Therefor, when reading or writing a field value for a field whose native
data type is not a TDateTime-compatible value (dates or string values), an exception may be raised.

See also: TField.Value (312), TField.AsString (306)

305

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.21 TField.AsFloat
Synopsis: Access the field’s contents as a floating-point (Double) value.
Declaration: Property AsFloat : Double
Visibility: public
Access: Read,Write

Description: AsFloat can be used to read or write the contents of the field as a floating-point value (of type
double, i.e. with double precision). If the native type of the field is not a floating-point value, then an
attempt will be made to convert the field value from the native format to a floating-point value when
reading the field’s content. Likewise, when writing the property, the value will be converted to the
native type of the field (if the value allows it). Therefor, when reading or writing a field value for a
field whose native data type is not a floating-point-compatible value (string values for instance), an
exception may be raised.

See also: TField.Value (312), TField.AsString (306), TField. AsCurrency (304)

10.27.22 TField.AsLongint

Synopsis: Access the field’s contents as a 32-bit signed integer (longint) value.
Declaration: Property AsLongint : LongInt
Visibility: public
Access: Read,Write

Description: AsLongint can be used to read or write the contents of the field as a 32-bit signed integer value
(of type longint). If the native type of the field is not a longint value, then an attempt will be made
to convert the field value from the native format to a longint value when reading the field’s content.
Likewise, when writing the property, the value will be converted to the native type of the field (if the
value allows it). Therefor, when reading or writing a field value for a field whose native data type is
not a 32-bit signed integer-compatible value (string values for instance), an exception may be raised.

This is an alias for the TField.AsInteger (306).

See also: TField.Value (312), TField.AsString (306), TField.AsInteger (306)

10.27.23 TField.AsLargelnt

Synopsis: Access the field’s contents as a 64-bit signed integer (longint) value.
Declaration: Property AsLargeInt : Largelnt
Visibility: public
Access: Read,Write

Description: AsLargeInt can be used to read or write the contents of the field as a 64-bit signed integer value
(of type Int64). If the native type of the field is not an Int64 value, then an attempt will be made
to convert the field value from the native format to an Int64 value when reading the field’s content.
Likewise, when writing the property, the value will be converted to the native type of the field (if the
value allows it). Therefor, when reading or writing a field value for a field whose native data type is
not a 64-bit signed integer-compatible value (string values for instance), an exception may be raised.

See also: TField.Value (312), TField.AsString (306), TField.AsInteger (306)

306

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.24 TField.AsInteger
Synopsis: Access the field’s contents as a 32-bit signed integer (longint) value.

Declaration: Property AsInteger : Integer
Visibility: public
Access: Read,Write

Description: AsInteger can be used to read or write the contents of the field as a 32-bit signed integer value
(of type Integer). If the native type of the field is not an integer value, then an attempt will be made
to convert the field value from the native format to a integer value when reading the field’s content.
Likewise, when writing the property, the value will be converted to the native type of the field (if the
value allows it). Therefor, when reading or writing a field value for a field whose native data type is
not a 32-bit signed integer-compatible value (string values for instance), an exception may be raised.

See also: TField.Value (312), TField.AsString (306), TField.AsLongint (305), TField.AsInt64 (296)

10.27.25 TField.AsString

Synopsis: Access the field’s contents as an AnsiString value.
Declaration: Property AsString : String
Visibility: public
Access: Read,Write

Description: AsString can be used to read or write the contents of the field as an AnsiString value. If the native
type of the field is not an ansistring value, then an attempt will be made to convert the field value from
the native format to a ansistring value when reading the field’s content. Likewise, when writing the
property, the value will be converted to the native type of the field (if the value allows it). Therefor,
when reading or writing a field value for a field whose native data type is not an ansistring-compatible
value, an exception may be raised.

See also: TField.Value (312), TField. AsWideString (306)

10.27.26 TField.AsWideString
Synopsis: Access the field’s contents as a WideString value.

Declaration: Property AsWideString : WideString
Visibility: public
Access: Read,Write

Description: AsWideString can be used to read or write the contents of the field as a WideString value. If
the native type of the field is not a widestring value, then an attempt will be made to convert the
field value from the native format to a widestring value when reading the field’s content. Likewise,
when writing the property, the value will be converted to the native type of the field (if the value
allows it). Therefor, when reading or writing a field value for a field whose native data type is not a
widestring-compatible value, an exception may be raised.

See also: TField.Value (312), TField.Astring (296)

307

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.27 TField.AsVariant

Synopsis: Access the field’s contents as a Variant value.
Declaration: Property AsVariant : variant
Visibility: public
Access: Read,Write

Description: AsvVariant can be used to read or write the contents of the field as a Variant value. If the native
type of the field is not a Variant value, then an attempt will be made to convert the field value from
the native format to a variant value when reading the field’s content. Likewise, when writing the
property, the value will be converted to the native type of the field (if the value allows it). Therefor,
when reading or writing a field value for a field whose native data type is not a variant-compatible
value, an exception may be raised.

See also: TField. Value (312), TField.Astring (296)

10.27.28 TField.AttributeSet
Synopsis:
Declaration: Property AttributeSet : String
Visibility: public
Access: Read,Write

Description:

10.27.29 TField.Calculated
Synopsis: Is the field a calculated field ?

Declaration: Property Calculated : Boolean
Visibility: public
Access: Read,Write

Description: Calculated is True if the FieldKind (314) is fkCalculated. Setting the property wil result
in FieldKind being set to fkCalculated (for a value of True) or fkData. This property
should be considered read-only.

See also: TField.FieldKind (314)

10.27.30 TField.CanModify

Synopsis: Can the field’s contents be modified.
Declaration: Property CanModify : Boolean
Visibility: public
Access: Read
Description: CanModi fy is True if the field is not read-only and the dataset allows modification.

See also: TField.ReadOnly (318), TDataset.CanModify (270)

308

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.31 TField.CurValue
Synopsis: Current value of the field

Declaration: Property CurValue : Variant
Visibility: public
Access: Read
Description: CurValue returns the current value of the field as a variant.

See also: TField.Value (312)

10.27.32 TField.DataSet
Synopsis: Dataset this field belongs to

Declaration: Property DataSet : TDataSet
Visibility: public
Access: Read,Write

Description: Dataset contains the dataset this field belongs to. Writing this property will add the field to
the list of fields of a dataset, after removing if from the list of fields of the dataset the field was
previously assigned to. It should under normal circumstnces never be necessary to set this property,
the TDataset code will take care of this.

See also: TDataset (248), TDataset.Fields (275)

10.27.33 TField.DataSize
Synopsis: Size of the field’s data

Declaration: Property DataSize : Integer
Visibility: public
Access: Read

Description: DatasSize is the memory size needed to store the field’s contents. This is different from the Size
(311) property which declares a logical size for datatypes that have a variable size (such as string
fields). For BLOB fields, use the TBlobField.BlobSize (227) property to get the size of the field’s
contents for the current record..

See also: TField.Size (311), TBlobField.BlobSize (227)

10.27.34 TField.DataType
Synopsis: The data type of the field.

Declaration: Property DataType : TFieldType
Visibility: public

Access: Read

309

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Datatype indicates the type of data the field has. This property is initialized when the dataset is
opened or when persistent fields are created for the dataset. Instead of checking the class type of the
field, it is better to check the Datatype, since the actual class of the TField instance may differ
depending on the dataset.

See also: TField.FieldKind (314)

10.27.35 TField.DisplayName

Synopsis: User-readable fieldname
Declaration: Property DisplayName : String
Visibility: public
Access: Read

Description: DisplayName is the name of the field as it will be displayed to the user e.g. in grid column
headers. By default it equals the FieldName (315) property, unless assigned another value.

The use of this property is deprecated. Use DisplayLabel (314) instead.
See also: Tfield.FieldName (315)

10.27.36 TField.DisplayText
Synopsis: Formatted field value

Declaration: Property DisplayText : String
Visibility: public
Access: Read

Description: DisplayText returns the field’s value as it should be displayed to the user, with all necessary
formatting applied. Controls that should display the value of the field should use DisplayText
instead of the TField.AsString (306) property, which does not take into account any formatting.

See also: TField.AsString (306)

10.27.37 TField.FieldNo
Synopsis: Number of the field in the record

Declaration: Property FieldNo : LongInt
Visibility: public
Access: Read

Description: FieldNo is the position of the field in the record. It is a 1-based index and is initialized when the
dataset is opened or when persistent fields are created for the dataset.

See also: TField.Index (315)

310

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.38 TField.IsIndexField
Synopsis: Is the field an indexed field ?

Declaration: Property IsIndexField : Boolean
Visibility: public
Access: Read

Description: IsIndexField is true if the field is an indexed field. By default this property is False, descen-
dents of TDataset (248) can change this to True.

See also: TField.Calculated (307)

10.27.39 TField.IsNull
Synopsis: Is the field empty

Declaration: Property IsNull : Boolean
Visibility: public
Access: Read

Description: IsNull is True if the field does not have a value. If the underlying data contained a value, or
a value is written to it, IsNull will return False. After TDataset.Insert (263) is called or Clear
(301) is called then IsNull will return True.

See also: TField.Clear (301), TDataset.Insert (263)

10.27.40 TField.Lookup
Synopsis: Is the field a lookup field

Declaration: Property Lookup : Boolean
Visibility: public
Access: Read,Write

Description: Lookup is True if the FieldKind (314) equals fkLookup, False otherwise. Setting the Lookup
property will switch the FieldKind between the fkLookup and fkData.

See also: TField.FieldKind (314)

10.27.41 TField.NewValue

Synopsis: The new value of the field
Declaration: Property NewValue : Variant
Visibility: public
Access: Read,Write

Description: NewValue returns the new value of the field. The FPC implementation of TDataset (248) does not
yet support this.

See also: TField.Value (312), TField.CurValue (308)

311

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.42 TField.Offset
Synopsis: Offset of the field’s value in the dataset buffer

Declaration: Property Offset : Word
Visibility: public
Access: Read

Description: 0Offset is the location of the field’s contents in the dataset memory buffer. It is read-only and
initialized by the dataset when it is opened.

See also: TField.FieldNo (309), TField.Index (315), TField.Datasize (308)

10.27.43 TField.Size
Synopsis: Logical size of the field

Declaration: Property Size : Integer
Visibility: public
Access: Read,Write

Description: size is the declared size of the field for datatypes that can have variable size, such as string types,
BCD types or array types. To get the size of the storage needed to store the field’s content, the
DataSize (308) should be used. For blob fields, the current size of the

10.27.44 TField.Text

Synopsis: Text representation of the field
Declaration: Property Text : String
Visibility: public
Access: Read,Write

Description: Text can be used to retrieve or set the value of the value as a string value for editing purposes. It will
trigger the TField.OnGetText (319) event handler if a handler was specified. For display purposes,
the TField.DisplayText (309) property should be used. Controls that should display the value in a
textual format should use text whenever they must display the text for editing purposes. Inversely,
when a control should save the value entered by the user, it should write the contents to the Text
property, not the AsString (306) property, this will invoke the Tfield.OnSetText (319) event handler,
if one is set.

See also: TField.AsString (306), TField.DisplayText (309), TField. Value (312)

10.27.45 TField.ValidChars

Synopsis: Characters that are valid input for the field’s content
Declaration: Property ValidChars : TFieldChars
Visibility: public

Access: Read

312

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: ValidChars is a property that is initialized by descendent classes to contain the set of characters
that can be entered in an edit control which is used to edit the field. Numerical fields will set this
to a set of numerical characters, string fields will set this to all possible characters. It is possible to
restrict the possible input by setting this property to a subset of all possible characters (for example,
set it to all uppercase letters to allow the user to enter only uppercase characters. TField itself does
not enforce the validity of the data when the content of the field is set, an edit control should check
the validity of the user input by means of the IsValidChar (302) function.

See also: TField.IsValidChar (302)

10.27.46 TField.Value
Synopsis: Value of the field as a variant value
Declaration: Property Value : variant
Visibility: public
Access: Read, Write

Description: Value can be used to read or write the value of the field as a Variant value. When setting the value,
the value will be converted to the actual type of the field as defined in the underlying data. Likewise,
when reading the value property, the actual field value will be converted to a variant value. If the
field does not contain a value (when IsNull (310) returns True), then Value will contain Null.

It is not recommended to use the Value property: it should only be used when the type of the field
is unknown. If the type of the field is known, it is better to use one of the AsXXX properties, which
will not only result in faster code, but will also avoid strange type conversions.

See also: TField.IsNull (310), TField.Text (311), TField.DisplayText (309)

10.27.47 TField.OldValue
Synopsis: Old value of the field
Declaration: Property 0ldvalue : variant
Visibility: public
Access: Read

Description: 01dvalue returns the value of the field prior to an edit operation. This feature is currently not
supported in FPC.

See also: TField.Value (312), TField.CurValue (308), TField.New Value (310)

10.27.48 TField.LookupList
Synopsis: List of lookup values
Declaration: Property LookupList : TLookupList
Visibility: public
Access: Read

Description: LookupList contains the list of key, value pairs used when caching the possible lookup values for
a lookup field. The list is only valid when the LookupCache (316) property is set to True. It can be
refreshed using the RefreshLookupList (302) method.

See also: TField.RefreshLookupList (302), TField.LookupCache (316)

313

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.49 TField.Alignment
Synopsis: Alignment for this field

Declaration: Property Alignment : TAlignment
Visibility: published
Access: Read,Write

Description: A1ignment contains the alignment that UI controls should observe when displaying the contents
of the field. Setting the property at the field level will make sure that all DB-Aware controls will
display the contents of the field with the same alignment.

See also: TField.DisplayText (309)

10.27.50 TField.CustomConstraint
Synopsis: Custom constraint for the field’s value

Declaration: Property CustomConstraint : String
Visibility: published
Access: Read,Write

Description: CustomConstraint may contain a constraint that will be enforced when the dataset posts it’s
data. It should be a SQL-like expression that results in a True or False value. Examples of valid
constraints are:

Salary < 10000
YearsEducation < Age

If the constraint is not satisfied when the record is posted, then an exception will be raised with the
value of ConstraintErrorMessage (313) as a message.

This feature is not yet implemented in FPC.

See also: TField.ConstraintErrorMessage (313), TField.ImportedConstraint (315)

10.27.51 TField.ConstraintErrorMessage

Synopsis: Message to display if the CustomConstraint constraint is violated.
Declaration: Property ConstraintErrorMessage : String
Visibility: published
Access: Read,Write

Description: ConstraintErrorMessage is the message that should be displayed when the dataset checks
the constraints and the constraint in TField.CustomConstraint (313) is violated.

This feature is not yet implemented in FPC.

See also: TField.CustomConstraint (313)

314

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.52 TField.DefaultExpression
Synopsis: Default value for the field
Declaration: Property DefaultExpression : String
Visibility: published
Access: Read,Write

Description: DefaultValue can be set to a value that should be entered in the field whenever the TDataset. Append
(254) or TDataset.Insert (263) methods are executed. It should contain a valid SQL expression that
results in the correct type for the field.

This feature is not yet implemented in FPC.

See also: TDataset.Insert (263), TDataset. Append (254), TDataset.CustomConstraint (248)

10.27.53 TField.DisplayLabel
Synopsis: Name of the field for display purposes
Declaration: Property DisplayLabel : String
Visibility: published
Access: Read,Write

Description: DisplayLabel is the name of the field as it will be displayed to the user e.g. in grid column
headers. By default it equals the FieldName (315) property, unless assigned another value.

See also: TField.FieldName (315)

10.27.54 TField.DisplayWidth
Synopsis: Width of the field in characters
Declaration: Property DisplayWidth : LongInt
Visibility: published
Access: Read,Write

Description: DisplayWidth is the width (in characters) that should be used by controls that display the con-
tents of the field (such as in grids or lookup lists). It is initialized to a default value for most fields
(e.g. it equals Size (311) for string fields) but can be modified to obtain a more appropriate value for
the field’s expected content.

See also: TField.Alignment (313), TField.DisplayText (309)

10.27.55 TField.FieldKind
Synopsis: The kind of field.
Declaration: Property FieldKind : TFieldKind
Visibility: published
Access: Read,Write

Description: FieldKind indicates the type of the TField instance. Besides TField instances that represent
fields present in the underlying data records, there can also be calculated or lookup fields. This
property determines what kind of field the TField instance is.

315

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.56 TField.FieldName
Synopsis: Name of the field

Declaration: Property FieldName : String
Visibility: published
Access: Read,Write

Description: FieldName is the name of the field as it is defined in the underlying data structures (for instance
the name of the field in a SQL table, DBAse file, or the alias of the field if it was aliased in a SQL
SELECT statement. It does not always equal the Name property, which is the name of the TField
component instance. The Name property will generally equal the name of the dataset appended with
the value of the FieldName property.

See also: TFieldDef.Name (320), TField.Size (311), TField.DataType (308)

10.27.57 TField.HasConstraints
Synopsis: Does the field have any constraints defined

Declaration: Property HasConstraints : Boolean
Visibility: published
Access: Read

Description: HasConstraints will contain True if one of the CustomConstraint (313) or ImportedConstraint
(315) properties is set to a non-empty value.

See also: TField.CustomConstraint (313), TField.ImportedConstraint (315)

10.27.58 TField.Index
Synopsis: Index of the field in the list of fields

Declaration: Property Index : LongInt
Visibility: published
Access: Read,Write

Description: Index is the name of the field in the list of fields of a dataset. It is, in general, the (0-based) position
of the field in the underlying datas structures, but this need not always be so. The TField.FieldNo
(309) property should be used for that.

See also: TField.FieldNo (309)

10.27.59 TField.ImportedConstraint
Synopsis: Constraint for the field value on the level of the underlying database

Declaration: Property ImportedConstraint : String
Visibility: published

Access: Read,Write

316

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: ImportedConstraint contains any constraints that the underlying data engine imposes on the
values of a field (usually in an SQL CONSTRAINT) clause. Whether this field is filled with appro-
priate data depends on the implementation of the TDataset (248) descendent.

See also: TField.CustomConstraint (313), TDataset (248), TField.ConstraintErrorMessage (313)

10.27.60 TField.KeyFields

Synopsis: Key fields to use when looking up a field value.
Declaration: Property KeyFields : String
Visibility: published
Access: Read,Write

Description: KeyFields should contain a semi-colon separated list of field names from the lookupfield’s dataset
which will be matched to the fields enumerated in LookupKeyFields (317) in the dataset pointed to
by the LookupDataset (316) property.

See also: TField.LookupKeyFields (317), Tfield.LookupDataset (316)

10.27.61 TField.LookupCache
Synopsis: Should lookup values be cached

Declaration: Property LookupCache : Boolean
Visibility: published
Access: Read,Write

Description: LookupCache is by default False. Ifitis set to True then a list of key, value pairs will be created
from the LookupKeyFields (317) in the dataset pointed to by the LookupDataset (316) property. The
list of key, value pairs is available through the TField.LookupList (312) property.

See also: TField.LookupKeyFields (317), Tfield.LookupDataset (316), TField.LookupList (312)

10.27.62 TField.LookupDataSet

Synopsis: Dataset with lookup values
Declaration: Property LookupDataSet : TDataSet
Visibility: published
Access: Read,Write

Description: LookupDataset is used by lookup fields to fetch the field’s value. The LookupKeyFields (317)
property is used as a list of fields to locate a record in this dataset, and the value of the LookupRe-
sultField (317) field is then used as the value of the lookup field.

See also: TField.KeyFields (316), TField.LookupKeyFields (317), TField.LookupResultField (317), TField.LookupCache
(316)

317

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.63 TField.LookupKeyFields

Synopsis: Names of fields on which to perform a locate
Declaration: Property LookupKeyFields : String
Visibility: published
Access: Read, Write

Description: LookupKeyFields should contain a semi-colon separated list of field names from the dataset
pointed to by the LookupDataset (316) property. These fields will be used when locating a record
corresponding to the values in the TField.KeyFields (316) property.

See also: TField.KeyFields (316), TField.LookupDataset (316), TField.LookupResultField (317), TField.LookupCache
(316)

10.27.64 TField.LookupResultField

Synopsis: Name of field to use as lookup value
Declaration: Property LookupResultField : String
Visibility: published
Access: Read,Write

Description: LookupResultField contains the field name from a field in the dataset pointed to by the
LookupDataset (316) property. The value of this field will be used as the lookup’s field value when
arecord is found in the lookup dataset as result for the lookup field value.

See also: TField.KeyFields (316), TField.LookupDataset (316), TField.LookupKeyFields (317), TField.LookupCache
(316)

10.27.65 TField.Origin
Synopsis: Original fieldname of the field.

Declaration: Property Origin : String
Visibility: published
Access: Read,Write

Description: Origin contains the origin of the field in the form TableName . fieldName. This property is
filled only if the TDataset (248) descendent or the database engine support retrieval of this property.
It can be used to autmatically create update statements, together with the TField.ProviderFlags (317)

property.
See also: TDataset (248), TField.ProviderFlags (317)

10.27.66 TField.ProviderFlags

Synopsis: Flags for provider or update support
Declaration: Property ProviderFlags : TProviderFlags

Visibility: published

318

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Access: Read,Write

Description: ProviderFlags contains a set of flags that can be used by engines that automatically generate
update SQL statements or update data packets. The various items in the set tell the engine whether
the key is a key field, should be used in the where clause of an update statement or whether - in fact
- it should be updated at all.

These properties should be set by the programmer so engines such as SQLDB can create correct
update SQL statements whenever they need to post changes to the database. Note that to be able to
set these properties in a designer, persistent fields must be created.

See also: TField.Origin (317)

10.27.67 TField.ReadOnly
Synopsis: Is the field read-only

Declaration: Property ReadOnly : Boolean
Visibility: published
Access: Read,Write

Description: ReadOnly can be set to True to prevent controls of writing data to the field, effectively making
it a read-only field. Setting this property to True does not prevent the field from getting a value
through code: it is just an indication for GUI controls that the field’s value is considered read-only.

See also: TFieldDef. Attributes (323)

10.27.68 TField.Required

Synopsis: Does the field require a value
Declaration: Property Required : Boolean
Visibility: published
Access: Read,Write

Description: Required determines whether the field needs a value when posting the data: when a dataset posts
the changed made to a record (new or existing), it will check whether all fields with the Required
property have a value assigned to them. If not, an exception will be raised. Descendents of TDataset
(248) will set the property to True when opening the dataset, depending on whether the field is
required in the underlying data engine. For fields that are not required by the database engine, the
programmer can still set the property to True if the business logic requires a field.

See also: TDataset.Open (266), TField.ReadOnly (318), TField.Visible (318)

10.27.69 TField.Visible
Synopsis: Should the field be shown in grids

Declaration: Property Visible : Boolean
Visibility: published

Access: Read,Write

319

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Visible can be used to hide fields from a grid when displaying data to the user. Invisible fields
will by default not be shown in the grid.

See also: TField.ReadOnly (318), TField.Required (318)

10.27.70 TField.OnChange

Synopsis: Event triggerd when the field’s value has changed
Declaration: Property OnChange : TFieldNotifyEvent
Visibility: published
Access: Read,Write

Description: OnChange is triggered whenever the field’s value has been changed. It is triggered only after the
new contents have been written to the dataset buffer, so it can be used to react to changes in the field’s
content. To prevent the writing of changes to the buffer, use the TField.OnValidate (320) event. It is
not allowed to change the state of the dataset or the contents of the field during the execution of this
event handler: doing so may lead to infinite loops and other unexpected results.

See also: TField.OnChange (319)

10.27.71 TField.OnGetText

Synopsis: Event to format the field’s content
Declaration: Property OnGetText : TFieldGetTextEvent
Visibility: published
Access: Read,Write

Description: onGet Text is triggered whenever the TField.Text (311) or TField.DisplayText (309) properties
are read. It can be used to return a custom formatted string in the AText parameter which will then
typically be used by a control to display the field’s contents to the user. It is not allowed to change
the state of the dataset or the contents of the field during the execution of this event handler.

See also: TField.Text (311), TField.DisplayText (309), TField.OnSetText (319), TFieldGetTextEvent (212)

10.27.72 TField.OnSetText

Synopsis: Event to set the field’s content based on a user-formatted string
Declaration: Property OnSetText : TFieldSetTextEvent
Visibility: published
Access: Read,Write

Description: OnSet Text is called whenever the TField.Text (311) property is written. It can be used to set the
actual value of the field based on the passed AText parameter. Typically, this event handler will
perform the inverse operation of the TField.OnGetText (319) handler, if it exists.

See also: TField.Text (311), TField.OnGetText (319), TFieldGetTextEvent (212)

320

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.27.73 TField.OnValidate

Synopsis: Event to validate the value of a field before it is written to the data buffer

Declaration: Property OnValidate

Visibility: published

Access: Read,Write

TFieldNotifyEvent

Description: Onvalidate is called prior to writing a new field value to the dataset’s data buffer. It can be used
to prevent writing the new value to the buffer by raising an exception in the event handler. Note that
this event handler is always called, irrespective of the way the value of the field is set.

See also: TField.Text (311), TField.OnGetText (319), TField.OnSetText (319), TField.OnChange (319)

10.28 TFieldDef

10.28.1

Description

TFieldDef is used to describe the fields that are present in the data underlying the dataset. For
each field in the underlying field, an TFieldDef instance is created when the dataset is opened.
This class offers almost no methods, it is mainly a storage class, to store all relevant properties of
fields in a record (name, data type, size, required or not, etc.)

10.28.2 Method overview

Page Property Description

321 Assign Assign the contents of one TFieldDef instance to another.

320 Create Constructor for TFieldDef.

321 CreateField Create TField instance based on definitions in current TFieldDef in-
stance.

321 Destroy Free the TFieldDef instance

10.28.3 Property overview

Page Property Access Description

323 Attributes W Additional attributes of the field.

323 DataType W Data type for the field

322 FieldClass r TField class used for this fielddef

322 FieldNo Field number

322 InternalCalcField 1w Is this a definition of an internally calculated field ?
323 Precision ™w Precision used in BCD (Binary Coded Decimal) fields
322 Required W Is the field required ?

324 Size w Size of the buffer needed to store the data of the field

10.28.4 TFieldDef.Create
Synopsis: Constructor for TFieldDef.

Declaration: constructor create (ACollection: TCollection); Override
constructor Create (AOwner: TFieldDefs;const AName: String;

ADataType: TFieldType;ASize: Integer;

ARequired: Boolean;AFieldNo: LongInt); Overload

321

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public
Description: Create is the constructor for the TFieldDef class.

If a simple call is used, with a single argument ACollection, the inherited Create is called and
the Field number is set to the incremented current index.

If the more complicated call is used, with multiple arguments, then after the inherited Create call,
the Name (320), datatype (323), size (324), precision (323), FieldNo (322) and the Required (322)
property are all set according to the passsed arguments.

Errors: If a duplicate name is passed, then an exception will occur.

See also: TFieldDef.name (320), TFieldDef.Datatype (323), TFieldDef.Size (324), TFieldDef.Precision (323),
TFieldDef .FieldNo (322), TFieldDef.Required (322)

10.28.5 TFieldDef.Destroy
Synopsis: Free the TFieldDef instance

Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy destroys the TFieldDef instance. It simply calls the inherited destructor.

See also: TFieldDef.Create (320)

10.28.6 TFieldDef.Assign
Synopsis: Assign the contents of one TFieldDef instance to another.
Declaration: procedure Assign (APersistent: TPersistent); Override
Visibility: public
Description: Assign assigns all published properties of APersistent to the current instance, if APersistent

is an instance of class TFieldDef.

Errors: If APersistent is not of class TFieldDef (320), then an exception will be raised.

10.28.7 TFieldDef.CreateField

Synopsis: Create TField instance based on definitions in current TFieldDef instance.
Declaration: function CreateField (AOwner: TComponent) : TField
Visibility: public

Description: CreateField determines, based on the DataType (323) what TField (296) descendent it should
create, and then returns a newly created instance of this class. It sets the appropriate defaults for the
Size (311), FieldName (315), FieldNo (309), Precision (296), ReadOnly (318) and Required (318)
properties of the newly created instance. It should nver be necessary to use this call in an end-user
program, only TDataset descendent classes should use this call.

The newly created field is owned by the component instance passed in the AOwner parameter.

The DefaultFieldClasses (206) array is used to determine which TField Descendent class should be
used when creating the TField instance, but descendents of TDataset may override the values in that
array.

322

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Errors:

See also: DefaultFieldClasses (206), TField (296)

10.28.8 TFieldDef.FieldClass
Synopsis: TField class used for this fielddef

Declaration: Property FieldClass : TFieldClass
Visibility: public
Access: Read

Description: FieldClass is the class of the TField instance that is created by the CreateField (321) class.
The return value is retrieved from the TDataset instance the TFieldDef instance is associated
with. If there is no TDataset instance available, the return value is Ni1

See also: TDataset (248), TFieldDef.CreateField (321), TField (296)

10.28.9 TFieldDef.FieldNo
Synopsis: Field number

Declaration: Property FieldNo : LongInt
Visibility: public
Access: Read

Description: FieldNo is the number of the field in the data structure where the dataset contents comes from, for
instance in a DBase file. If the underlying data layer does not support the concept of field number, a
sequential number is assigned.

10.28.10 TFieldDef.InternalCalcField
Synopsis: Is this a definition of an internally calculated field ?

Declaration: Property InternalCalcField : Boolean
Visibility: public
Access: Read,Write

Description: Internalcalc is True if the fielddef instance represents an internally calculated field: for inter-
nally calculated fields, storage must be rovided by the underlying data mechanism.

10.28.11 TFieldDef.Required
Synopsis: Is the field required ?

Declaration: Property Required : Boolean
Visibility: public

Access: Read,Write

323

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Required is set to True if the field requires a value when posting data to the dataset. If no value
was entered, the dataset will raise an excepion when the record is posted. The Required property
is usually initialized based on the definition of the field in the underlying database. For SQL-based
databases, a field declared as NOT NULL will result in a Required property of True.

10.28.12 TFieldDef.Attributes
Synopsis: Additional attributes of the field.

Declaration: Property Attributes : TFieldAttributes
Visibility: published
Access: Read,Write

Description: Attributes contain additional attributes of the field. It shares the faRequired attribute with
the Required property.

See also: TFieldDef.Required (322)

10.28.13 TFieldDef.DataType
Synopsis: Data type for the field

Declaration: Property DataType : TFieldType
Visibility: published
Access: Read,Write

Description: DataType contains the data type of the field’s contents. Based on this property, the FieldClass
property determines what kind of field class mustbe used to represent this field.

See also: TFieldDef FieldClass (322), TFieldDef.CreateField (321)

10.28.14 TFieldDef.Precision
Synopsis: Precision used in BCD (Binary Coded Decimal) fields

Declaration: Property Precision : LongInt
Visibility: published
Access: Read,Write

Description: Precision is the number of digits used in a BCD (Binary Coded Decimal) field. It is not the
number of digits after the decimal separator, but the total number of digits.

See also: TFieldDef.Size (324)

324

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.28.15 TFieldDef.Size
Synopsis: Size of the buffer needed to store the data of the field

Declaration: Property Size : Integer
Visibility: published
Access: Read,Write

Description: size indicates the size of the buffer needed to hold data for the field. For types with a fixed size
(such as integer, word or data/time) the size can be zero: the buffer mechaism reserves automatically
enough heap memory. For types which can have various sizes (blobs, string types, BCD types), the
Size property tells the buffer mechanism how many bytes are needed to hold the data for the field.

See also: TFieldDef.Precision (323), TFieldDef.DataType (323)

10.29 TFieldDefs

10.29.1 Description

TFieldDefs isused by each TDataset instance to keep a description of the data that it manages;
for each field in a record that makes up the underlying data, the TFieldDefs instance keeps an
instance of TFieldDef that describes the field’s contents. For any internally calculated fields of
the dataset, a TFieldDef instance is kept as well. This collection is filled by descendent classes
of TDataset as soon as the dataset is opened; it is cleared when the dataset closes. After the
collection was populated, the dataset creates TField instances based on all the definitions in the
collections. If persistent fields were used, the contents of the fielddefs collection is compared to the
field components that are present in the dataset. If the collection contains more field definitions than
Field components, these extra fields will not be available in the dataset.

10.29.2 Method overview

Page Property Description

325 Add Add a new field definition to the collection.

325 AddFieldDef Add new TFieldDef

325 Assign Copy all items from one dataset to another

324 Create Create a new instance of TFieldDefs

326 Find Find item by name

326 MakeNameUnique Create a unique field name starting from a base name
326 Update Force update of definitions

10.29.3 Property overview

Page Property Access Description
326 HiddenFields rw Should field instances be created for hidden fields
327 Items 'w Indexed access to the fielddef instances

10.29.4 TFieldDefs.Create

Synopsis: Create a new instance of TFieldDefs

Declaration: constructor Create (ADataSet: TDataSet)

325

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public

Description: Create is used to create a new instance of TFieldDefs. The ADataset argument contains the
dataset instance for which the collection contains the field definitions.

See also: TFieldDef (320), TDataset (248)

10.29.5 TFieldDefs.Add

Synopsis: Add a new field definition to the collection.

Declaration: procedure Add(const AName: String;ADataType: TFieldType;ASize: Word;
ARequired: Boolean); Overload
procedure Add(const AName: String;ADataType: TFieldType;ASize: Word)
; Overload
procedure Add (const AName: String;ADataType: TFieldType); Overload

Visibility: public

Description: Add adds a new item to the collection and fills in the Name, DataType, Size and Required
properties of the newly added item with the provided parameters.

Errors: If an item with name AName already exists in the collection, then an exception will be raised.

See also: TFieldDefs.AddFieldDef (325)

10.29.6 TFieldDefs.AddFieldDef
Synopsis: Add new TFieldDef

Declaration: function AddFieldDef : TFieldDef
Visibility: public
Description: AddFieldDef creates anew TFieldDef item and returns the instance.

See also: TFieldDefs.Add (325)

10.29.7 TFieldDefs.Assign

Synopsis: Copy all items from one dataset to another
Declaration: procedure Assign(FieldDefs: TFieldDefs); Overload
Visibility: public
Description: Assign simply calls inherited Assign with the FieldDefs argument.

See also: TFieldDef.Assign (321)

326

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.29.8 TFieldDefs.Find
Synopsis: Find item by name
Declaration: function Find(const AName: String) : TFieldDef
Visibility: public

Description: Find simply calls the inherited TDefCollection.Find (294) to find an item with name AName and
typecasts the result to TFieldDef.

Errors:

See also: TDefCollection.Find (294), TNamedItem.Name (351)

10.29.9 TFieldDefs.Update
Synopsis: Force update of definitions

Declaration: procedure Update; Overload
Visibility: public
Description: Update notifies the dataset that the field definitions are updated, if it was not yet notified.

See also: TDefCollection.Updated (295)

10.29.10 TFieldDefs.MakeNameUnique

Synopsis: Create a unique field name starting from a base name
Declaration: function MakeNameUnique (const AName: String) : String; Virtual
Visibility: public

Description: MakeNameUnique uses AName to construct a name of a field that is not yet in the collection. If
AName is not yet in the collection, then AName is returned. if a field definition with field name equal
to AName already exists, then a new name is constructed by appending a sequence number to AName
till the resulting name does not appear in the list of field definitions.

See also: TFieldDefs.Find (326), TFieldDef Name (320)

10.29.11 TFieldDefs.HiddenFields
Synopsis: Should field instances be created for hidden fields

Declaration: Property HiddenFields : Boolean
Visibility: public
Access: Read,Write

Description: HiddenFields determines whether a field is created for fielddefs that have the faHiddenCol
attribute set. If set to False (the default) then no TField instances will be created for hidden
fields. If it is set to True, then a TField instance will be created for hidden fields.

See also: TFieldDef. Attributes (323)

327

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.29.12 TFieldDefs.ltems

Synopsis: Indexed access to the fielddef instances
Declaration: Property Items[Index: LongInt]: TFieldDef; default
Visibility: public
Access: Read,Write

Description: Items provides zero-based indexed access to all TFieldDef instances in the collection. The
index must vary between 0 and Count -1, or an exception will be raised.

See also: TFieldDef (320)

10.30 Tfields

10.30.1 Description

TFields mimics a TCollection class for the Fields (275) property of TDataset (248) instance.
Since TField (296) is a descendent of TComponent, it cannot be an item of a collection, and must
be managed by another class.

10.30.2 Method overview

Page Property Description

328 Add Add a new field to the list

328 CheckFieldName Check field name for duplicate entries

328 CheckFieldNames Check a list of field names for duplicate entries

329 Clear Clear the list of fields

327 Create Create a new instance of TFields
328 Destroy Free the TFields instance

329 FieldByName Find a field based on its name

329 FieldByNumber Search field based on its fieldnumber
329 FindField Find a field based on its name

330 GetFieldNames Get the list of fieldnames

330 IndexOf Return the index of a field instance
330 Remove Remove an instance from the list

10.30.3 Property overview
Page Property Access Description

330 Count r Number of fields in the list
331 Dataset r Dataset the fields belong to
331 Fields ™w Indexed access to the fields in the list

10.30.4 Tfields.Create

Synopsis: Create a new instance of TFields
Declaration: constructor Create (ADataset: TDataSet)

Visibility: public

328

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Create initializes a new instance of TFields. It stores the ADataset parameter, so it can be
retrieved at any time in the TFields.Dataset (331) property, and initializes an internal list object to
store te list of fields.

See also: TDataset (248), TFields.Dataset (331), TField (296)

10.30.5 Tfields.Destroy

Synopsis: Free the TFields instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy frees the field instances that it manages on behalf of the Dataset (331). After that it cleans
up the internal structures and then calls the inherited destructor.

See also: TDataset (248), TField (296), TFields.Clear (329)

10.30.6 Tfields.Add
Synopsis: Add a new field to the list

Declaration: procedure Add(Field: TField)
Visibility: public

Description: 2Add must be used to add a new TField (296) instance to the list of fields. After a TField instance
is added to the list, the TF ie1ds instance will free the field instance if it is cleared.

See also: TField (296), TFields.Clear (329)

10.30.7 Tfields.CheckFieldName

Synopsis: Check field name for duplicate entries
Declaration: procedure CheckFieldName (const Value: String)
Visibility: public

Description: CheckFieldName checks whether a field with name equal to Value (case insensitive) already
appears in the list of fields (using TFields.Find (327)). If it does, then an EDatabaseError (218)
exception is raised.

See also: TField.FieldName (315), TFields.Find (327)

10.30.8 Tfields.CheckFieldNames

Synopsis: Check a list of field names for duplicate entries
Declaration: procedure CheckFieldNames (const Value: String)
Visibility: public

Description: CheckFieldNames splits Value in a list of fieldnames, using semicolon as a separator. For each
of the fieldnames obtained in this way, it calls CheckFieldName (328).

329

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Errors: Spaces are not discarded, so leaving a space after of before a fieldname will not find the fieldname,
and will yield a false negative result.

See also: TField.FieldName (315), TFields.CheckFieldName (328), TFields.Find (327)

10.30.9 Tfields.Clear
Synopsis: Clear the list of fields

Declaration: procedure Clear
Visibility: public

Description: Clear removes all TField (296) var instances from the list. All field instances are freed after they
have been removed from the list.

See also: TField (296)

10.30.10 Tfields.FindField

Synopsis: Find a field based on its name
Declaration: function FindField(const Value: String) : TField
Visibility: public

Description: FindField searches the list of fields and returns the field instance whose FieldName (315) prop-
erty matches Value. The search is performed case-insensitively. If no field instance is found, then
Nil is returned.

See also: TFields.FieldByName (329)

10.30.11 Tfields.FieldByName
Synopsis: Find a field based on its name

Declaration: function FieldByName (const Value: String) : TField
Visibility: public

Description: Fieldbyname searches the list of fields and returns the field instance whose FieldName (315)
property matches Value. The search is performed case-insensitively.

Errors: If no field instance is found, then an exception is raised. If this behaviour is undesired, use TField.FindField
(296), where N1i1 is returned if no match is found.

See also: TFields.FindField (329), TFields.FieldName (327), Tfields.FieldByNumber (329), TFields.IndexOf
(330)

10.30.12 Tfields.FieldByNumber

Synopsis: Search field based on its fieldnumber
Declaration: function FieldByNumber (FieldNo: Integer) : TField

Visibility: public

330

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: FieldByNumber searches for the field whose TField.FieldNo (309) property matches the FieldNo
parameter. If no such field is found, Ni1 is returned.

See also: TFields.FieldByName (329), TFields.FindField (329), TFields.IndexOf (330)

10.30.13 Tfields.GetFieldNames
Synopsis: Get the list of fieldnames

Declaration: procedure GetFieldNames (Values: TStrings)
Visibility: public

Description: GetFieldNames fills Values with the fieldnames of all the fields in the list, each item in the list
contains 1 fieldname. The list is cleared prior to filling it.

See also: TField.FieldName (315)

10.30.14 Tfields.IndexOf

Synopsis: Return the index of a field instance
Declaration: function IndexOf (Field: TField) : LongInt
Visibility: public

Description: IndexOf scans the list of fields and retuns the index of the field instance in the list (it compares
actual field instances, not field names). If the field does not appear in the list, -1 is returned.

See also: TFields.FieldByName (329), TFields.FieldByNumber (329), TFields.FindField (329)

10.30.15 Tfields.Remove

Synopsis: Remove an instance from the list
Declaration: procedure Remove (Value: TField)
Visibility: public

Description: Remove removes the field Value from the list. It does not free the field after it was removed. If
the field is not in the list, then nothing happens.

See also: Tields.Clear (206)

10.30.16 Tfields.Count

Synopsis: Number of fields in the list
Declaration: Property Count : Integer
Visibility: public
Access: Read

Description: Count is the number of fields in the fieldlist. The items in the Fields (331) property are numbered
from O to Count—-1.

See also: TFields.fields (331)

331

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.30.17 Tfields.Dataset
Synopsis: Dataset the fields belong to
Declaration: Property Dataset : TDataSet
Visibility: public
Access: Read

Description: Dataset is the dataset instance that owns the fieldlist. It is set when the TFields (327) instance is
created. This property is purely for informational purposes. When adding fields to the list, no check
is performed whether the field’s Dataset property matches this dataset.

See also: TFields.Create (327), TField.Dataset (308), TDataset (248)

10.30.18 Tfields.Fields

Synopsis: Indexed access to the fields in the list
Declaration: Property Fields[Index: Integer]: TField; default
Visibility: public
Access: Read,Write

Description: Fields is the default property of the TFields class. It provides indexed access to the fields in
the list: the index runs from 0 to Count—1.

Errors: Providing an index outside the allowed range will result in an EListError exception.

See also: TFields.FieldByName (329)

10.31 TFloatField

10.31.1 Description

TFloatField is the class created when a dataset must manage floating point values of double
precision. It exposes a few new properties such as Currency (332), MaxValue (333), MinValue (333)
and overrides some TField (296) methods to work with floating point data.

It should never be necessary to create an instance of TF loatField manually, a field of this class
will be instantiated automatically for each floating-point field when a dataset is opened.

10.31.2 Method overview

Page Property Description
332 CheckRange Check whether a value is in the allowed range of values for the field
332 Create Create a new instance of the TFloatField

10.31.3 Property overview
Page Property Access Description

332 Currency 1w Is the field a currency field.

333 MaxValue rw Maximum value for the field

333 MinValue 1w Minimum value for the field

333 Precision 1w Precision (number of digits) of the field in text representations
332 Value ™w Value of the field as a double type

332

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.31.4 TFloatField.Create

Synopsis: Create a new instance of the TFloatField
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of TFloatField. It calls the inherited constructor and then
initializes some properties.

10.31.5 TFloatField.CheckRange

Synopsis: Check whether a value is in the allowed range of values for the field
Declaration: function CheckRange (AValue: Double) : Boolean
Visibility: public

Description: CheckRange returns True if AValue lies within the range defined by the MinValue (333) and
MaxValue (333) properties. If the value lies outside of the allowed range, then False is returned.

See also: TFloatField.Max Value (333), TFloatField.MinValue (333)

10.31.6 TFloatField.Value
Synopsis: Value of the field as a double type

Declaration: Property Value : Double
Visibility: public
Access: Read,Write

Description: Value is redefined by TFloatField to return a value of type Double. It returns the same value
as TField.AsFloat (305)

See also: TField.AsFloat (305), TField.Value (312)

10.31.7 TFloatField.Currency
Synopsis: Is the field a currency field.
Declaration: Property Currency : Boolean
Visibility: published
Access: Read,Write

Description: Currency can be set to True to indicate that the field contains data representing an amount of
currency. This affects the way the TField.DisplayText (309) and TField.Text (311) properties format
the value of the field: if the Currency property is True, then these properties will format the
value as a currency value (generally appending the currency sign) and if the Currency property is
False, then they will format it as a normal floating-point value.

See also: TField.DisplayText (309), TField.Text (311), TNumericField.DisplayFormat (353), TNumericField.EditFormat
(353)

333

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.31.8 TFloatField.MaxValue
Synopsis: Maximum value for the field

Declaration: Property MaxValue : Double
Visibility: published
Access: Read,Write

Description: MaxValue can be set to a value different from zero, it is then the maximum value for the field if
set to any value different from zero. When setting the field’s value, the value may not be larger than
MaxValue. Any attempt to write a larger value as the field’s content will result in an exception. By
default MaxValue equals O, i.e. any floating-point value is allowed.

If MaxValue is set, MinField (206) should also be set, because it will also be checked.

See also: TFloatField.MinValue (333)

10.31.9 TFloatField.MinValue
Synopsis: Minimum value for the field

Declaration: Property MinValue : Double
Visibility: published
Access: Read,Write

Description: Minvalue can be set to a value different from zero, then it is the minimum value for the field.
When setting the field’s value, the value may not be less than MinValue. Any attempt to write a
smaller value as the field’s content will result in an exception. By default MinValue equals 0, i.e.
any floating-point value is allowed.

If MinValue is set, MaxField (206) should also be set, because it will also be checked.

See also: TFloatField.MaxValue (333), TFloatField.CheckRange (332)

10.31.10 TFloatField.Precision

Synopsis: Precision (number of digits) of the field in text representations
Declaration: Property Precision : LongInt
Visibility: published
Access: Read,Write

Description: Precision is the maximum number of digits that should be used when the field is converted to a
textual representation in TField.Displaytext (309) or TField.Text (311), it is used in the arguments to
FormatFloat (??).

See also: TField.Displaytext (309), TField. Text (311), #rtl.sysutils.FormatFloat (??)

334

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.32 TGraphicField

10.32.1 Description

TGraphicFieldis the class used when a dataset must manage graphical BLOB data. (TField.DataType
(308) equals ftGraphic). It initializes some of the properties of the TField (296) class. All meth-
ods to be able to work with graphical BLOB data have been implemented in the TBlobField (225)

parent class.

It should never be necessary to create an instance of TGraphicsField manually, a field of this
class will be instantiated automatically for each graphical BLOB field when a dataset is opened.

10.32.2 Method overview

Page Property Description
334 Create Create a new instance of the TGraphicField class

10.32.3 TGraphicField.Create

Synopsis: Create a new instance of the TGraphicField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TGraphicField class. It calls the inherited destructor,
and then sets some TField (296) properties to configure the instance for working with graphical
BLOB values.

See also: TField (296)

10.33 TGuidField

10.33.1 Description

TGUIDFieldis the class used when a dataset must manage native variant-typed data. (TField.DataType
(308) equals £tGUID). It initializes some of the properties of the TField (296) class and overrides
some of its methods to be able to work with variant data. It also adds a method to retrieve the field
value as a native TGUID type.

It should never be necessary to create an instance of TGUIDField manually, a field of this class
will be instantiated automatically for each GUID field when a dataset is opened.

10.33.2 Method overview

Page Property Description
335 Create Create a new instance of the TGUIDField class

10.33.3 Property overview

Page Property Access Description
335 AsGuid rw Field content as a GUID value

335

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.33.4 TGuidField.Create

Synopsis: Create a new instance of the TGUIDField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TGUIDField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with GUID values.

See also: TField (296)

10.33.5 TGuidField.AsGuid

Synopsis: Field content as a GUID value
Declaration: Property AsGuid : TGUID
Visibility: public
Access: Read,Write
Description: AsGUID can be used to get or set the field’s content as a value of type TGUID.

See also: TField.AsString (306)

10.34 TIndexDef

10.34.1 Description

TIndexDef describes one index in a set of indexes of a TDataset (248) instance. The collection of
indexes is descibed by the TIndexDefs (338) class. It just has the necessary properties to describe an
index, but does not implement any functionality to maintain an index.

10.34.2 Method overview

Page Property Description
336 Create Create a new index definition
336 Destroy Remove the index from memory

10.34.3 Property overview

Page Property Access Description

337 CaselnsFields rw Fields in field list that are ordered case-insensitively
337 DescFields w Fields in field list that are ordered descending

336 Expression ™w Expression that makes up the index values

336 Fields w Fields making up the index

337 Options rw Index options

338 Source w Source of the index

336

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.34.4 TindexDef.Create

Synopsis: Create a new index definition

Declaration: constructor Create (Owner: TIndexDefs;const AName: String;
const TheFields: String; TheOptions: TIndexOptions)
; Overload

Visibility: public

Description: Create initializes a new TIndexDef (335) instance with the AName value as the index name,
AField as the fields making up the index, and TheOptions as the options. Owner should be the
TIndexDefs (338) instance to which the new TIndexDef can be added.

Errors: If an index with name AName already exists in the collection, an exception will be raised.

See also: TIndexDefs (338), TIndexDef.Options (337), TIndexDef.Fields (336)

10.34.5 TIndexDef.Destroy

Synopsis: Remove the index from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy calls the inherited destructor, and removes the item from memory.

See also: TIndexDef.Create (336)

10.34.6 TindexDef.Expression
Synopsis: Expression that makes up the index values

Declaration: Property Expression : String
Visibility: public
Access: Read,Write

Description: Expression is an SQL expression based on which the index values are computed. It is only used
when ixExpression is in TIndexDef.Options (337)

See also: TIndexDef.Options (337), TindexDef.Fields (336)

10.34.7 TindexDef.Fields
Synopsis: Fields making up the index
Declaration: Property Fields : String
Visibility: public

Access: Read,Write

337

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Fields is a list of fieldnames, separated by semicolons: the fields that make up the index, in case
the index is not based on an expression. The list contains the names of all fields, regardless of whether
the sort order for a particular field is ascending or descending. The fields should be in the right order,
i.e. the first field is sorted on first, and so on.

The TIndexDef.DescFields (337) property can be used to determine the fields in the list that have
a descending sort order. The TIndexDef.CaselnsFields (337) property determines which fields are
sorted in a case-insensitive manner.

See also: TIndexDef.DescFields (337), TIndexDef.CaselnsFields (337), TIndexDef.Expression (336)

10.34.8 TindexDef.CaselnsFields

Synopsis: Fields in field list that are ordered case-insensitively
Declaration: Property CaseInsFields : String
Visibility: public
Access: Read,Write

Description: CaseInsFields is a list of fieldnames, separated by semicolons. It contains the names of the
fields in the Fields (336) property which are ordered in a case-insensitive manner. CaseInsFields
may not contain fieldnames that do not appear in Fields.

See also: TIndexDef.Fields (336), TIndexDef.Expression (336), TIndexDef.DescFields (337)

10.34.9 TindexDef.DescFields

Synopsis: Fields in field list that are ordered descending
Declaration: Property DescFields : String
Visibility: public
Access: Read,Write

Description: DescFields is a list of fieldnames, separated by semicolons. It contains the names of the fields in
the Fields (336) property which are ordered in a descending manner. DescFields may not contain
fieldnames that do not appear in Fields.

See also: TIndexDef.Fields (336), TIndexDef.Expression (336), TIndexDef.DescFields (337)

10.34.10 TIndexDef.Options
Synopsis: Index options
Declaration: Property Options : TIndexOptions
Visibility: public
Access: Read,Write

Description: Options describes the various properties of the index. This is usually filled by the dataset that
provides the index definitions. For datasets that provide In-memory indexes, this should be set prior
to creating the index: it cannot be changed once the index is created.

See the description of TindexOption (214) for more information on the various available options.

See also: TIndexOptions (214)

338

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.34.11 TIndexDef.Source
Synopsis: Source of the index

Declaration: Property Source : String
Visibility: public
Access: Read,Write

Description: Source describes where the index comes from. This is a property for the convenience of the various
datasets that provide indexes: they can use it to describe the source of the index.

10.35 TIndexDefs
10.35.1 Description

TIndexDefs is used to keep a collection of index (sort order) definitions. It can be used by classes
that provide in-memory or on-disk indexes to provide a list of available indexes.

10.35.2 Method overview

Page Property Description

339 Add Add a new index definition with given name and options
339 AddIndexDef Add a new, empty, index definition

338 Create Create a new TIndexDefs instance

339 Destroy Remove the indexdefs from memory.

339 Find Find an index by name

340 FindIndexForFields Find index definition based on field names
340 GetlndexForFields Get index definition based on field names
340 Update Called whenever one of the items changes

10.35.3 Property overview

Page Property Access Description
340 Items ™w Indexed access to the index definitions

10.35.4 TindexDefs.Create

Synopsis: Create a new TIndexDefs instance
Declaration: constructor Create (ADataSet: TDataSet); Virtual; Overload
Visibility: public

Description: Create initializes a new instance of the TIndexDefs class. It simply calls the inherited destruc-
tor with the appropriate item class, TIndexDef (335).

See also: TIndexDef (335), TIndexDefs.Destroy (339)

339

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.35.5 TIndexDefs.Destroy

Synopsis: Remove the indexdefs from memory.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy removes the indexdefs from memory. If the TIndexDefs instance is created by a
TDataset (248) instance, the dataset instance will also destroy it.

See also: TIndexDefs.Create (338)

10.35.6 TIndexDefs.Add

Synopsis: Add a new index definition with given name and options

Declaration: procedure Add(const Name: String;const Fields: String;
Options: TIndexOptions)

Visibility: public

Description: 2dd adds a new TIndexDef (335) instance to the list of indexes. It initializes the index definition
properties Name, Fields and Options with the values given in the parameters with the same
names.

Errors: If an index with the same Name already exists in the list of indexes, an exception will be raised.

See also: TIndexDef (335), TNamedItem.Name (351), TIndexDef.Fields (336), TIndexDef.Options (337),
TIndexDefs.AddIndexDef (339)

10.35.7 TindexDefs.AddIndexDef

Synopsis: Add a new, empty, index definition
Declaration: function AddIndexDef : TIndexDef
Visibility: public

Description: AddIndexDef adds a new TIndexDef (335) instance to the list of indexes, and returns the newly
created instance. It does not initialize any of the properties of the new index definition.

See also: TIndexDefs.Add (339)

10.35.8 TindexDefs.Find
Synopsis: Find an index by name

Declaration: function Find(const IndexName: String) : TIndexDef
Visibility: public

Description: Find overloads the TDefCollection.Find (294) method to search and return a TIndexDef (335)
instance based on the name. The search is case-insensitive and returns Ni1 if no matching index
definition was found.

Errors:

See also: TIndexDef (335), TDefCollection.Find (294), TIndexDefs.FindIndexForFields (340)

340

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.35.9 TIndexDefs.FindindexForFields

Synopsis: Find index definition based on field names
Declaration: function FindIndexForFields (const Fields: String) : TIndexDef
Visibility: public

Description: FindIndexForFields searches in the list of indexes for an index whose TIndexDef.Fields (336)
property matches the list of fields in Fields. If it finds an index definition, then it returns the found
instance.

Errors: If no matching definition is found, an exception is raised. This is different from other Find function-
ality, where Find usually returns Nil if nothing is found.

See also: TIndexDef (335), TIndexDefs.Find (339), TIndexDefs.GetindexForFields (340)

10.35.10 TIndexDefs.GetindexForFields

Synopsis: Get index definition based on field names

Declaration: function GetIndexForFields (const Fields: String;
CaseInsensitive: Boolean) : TIndexDef

Visibility: public

Description: Get IndexForFields searches in the list of indexes for an index whose TIndexDef.Fields (336)
property matches the list of fields in Fields. If CaseInsenstitive is True it only searches
for case-sensitive indexes. If it finds an index definition, then it returns the found instance. If it does
not find a matching definition, Nil is returned.

See also: TIndexDef (335), TIndexDefs.Find (339), TIndexDefs.FindIndexForFields (340)

10.35.11 TIndexDefs.Update

Synopsis: Called whenever one of the items changes
Declaration: procedure Update; Virtual; Overload
Visibility: public

Description: Update can be called to have the dataset update its index definitions.

10.35.12 TIndexDefs.ltems

Synopsis: Indexed access to the index definitions
Declaration: Property Items[Index: Integer]: TIndexDef; default
Visibility: public
Access: Read,Write

Description: Items is redefined by TIndexDefs using TIndexDef as the type for the elements. It is the
default property of the TIndexDefs class.

See also: TIndexDef (335)

341

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.36 TLargeintField

10.36.1 Description

TLargeIntField is instantiated when a dataset must manage a field with 64-bit signed data:
the data type ftLargeInt. It overrides some methods of TField (296) to handle int64 data, and
sets some of the properties to values for int64 data. It also introduces some methods and properties
specific to 64-bit integer data such as MinValue (342) and Max Value (206).

It should never be necessary to create an instance of TLargeIntField manually, a field of this
class will be instantiated automatically for each int64 field when a dataset is opened.

10.36.2 Method overview

Page Property Description
341 CheckRange Check whether a values falls within the allowed range
341 Create Create a new instance of the TLargeintField class

10.36.3 Property overview

Page Property Access Description

342 MaxValue rw Maximum value for the field
342 MinValue 1w Minimum value for the field
342 Value rw Field contents as a 64-bit integer value

10.36.4 TLargeintField.Create

Synopsis: Create a new instance of the TLargeintField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TLargeIntField class: it calls the inherited constructor
and then initializes the various properties of Tfield (296) and MinValue (342) and MaxValue (206).

See also: TField (296), TLargeIntField.MinValue (342), TLargeInField.Max Value (206)

10.36.5 TLargeintField.CheckRange

Synopsis: Check whether a values falls within the allowed range
Declaration: function CheckRange (AValue: LargelInt) : Boolean
Visibility: public

Description: CheckRange returns True if AValue lies within the range defined by the MinValue (342) and
Max Value (342) properties. If the value lies outside of the allowed range, then False is returned.

See also: TLargelntField.MaxValue (342), TLargeIntField.MinValue (342)

342

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.36.6 TLargeintField.Value
Synopsis: Field contents as a 64-bit integer value

Declaration: Property Value : Largelnt
Visibility: public
Access: Read,Write

Description: Value is redefined by TLargeIntField as a 64-bit integer value. It returns the same value as
TField.AsLargeInt (305).

See also: TField.Value (312), TField.AsLargelnt (305)

10.36.7 TLargeintField.MaxValue
Synopsis: Maximum value for the field

Declaration: Property MaxValue : Largelnt
Visibility: published
Access: Read,Write

Description: MaxValue is the maximum value for the field if set to any value different from zero. When setting
the field’s value, the value may not be larger than MaxValue. Any attempt to write a larger value as
the field’s content will result in an exception. By default MaxValue equals 0, i.e. any integer value
is allowed.

If MaxValue is set, MinField (206) should also be set, because it will also be checked.

See also: TLargelntField.MinValue (342)

10.36.8 TLargeintField.MinValue

Synopsis: Minimum value for the field
Declaration: Property MinValue : Largelnt
Visibility: published
Access: Read,Write

Description: Minvalue is the minimum value for the field. When setting the field’s value, the value may not
be less than MinValue. Any attempt to write a smaller value as the field’s content will result in an
exception. By default MinValue equals 0, i.e. any integer value is allowed.

If MinValue is set, MaxField (206) should also be set, because it will also be checked.

See also: TLargeIntField.Max Value (342)

343

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.37 TLongintField

10.37.1 Description

TLongintField is instantiated when a dataset must manage a field with 32-bit signed data: the
data type ft Integer. It overrides some methods of TField (296) to handle integer data, and sets
some of the properties to values for integer data. It also introduces some methods and properties
specific to integer data such as MinValue (344) and MaxValue (344).

It should never be necessary to create an instance of TLongintField manually, a field of this class
will be instantiated automatically for each integer field when a dataset is opened.

10.37.2 Method overview

Page Property Description
343 CheckRange Check whether a valid is in the allowed range of values for the field
343 Create Create a new instance of TLongintField

10.37.3 Property overview

Page Property Access Description

344 MaxValue rw Maximum value for the field
344 MinValue rw Minimum value for the field
344 Value ™wW Value of the field as longint

10.37.4 TLongintField.Create

Synopsis: Create a new instance of TLongintField
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of TLongintField. After calling the inherited constructor, it
initializes the MinValue (344) and MaxValue (344) properties.

See also: TField (296), TLongintField.Max Value (344), TLongintField.MinValue (344)

10.37.5 TLongintField.CheckRange
Synopsis: Check whether a valid is in the allowed range of values for the field

Declaration: function CheckRange (AValue: LongInt) : Boolean
Visibility: public

Description: CheckRange returns True if AValue lies within the range defined by the MinValue (344) and
Max Value (344) properties. If the value lies outside of the allowed range, then False is returned.

See also: TLongintField.Max Value (344), TLongintField.MinValue (344)

344

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.37.6 TLongintField.Value
Synopsis: Value of the field as longint

Declaration: Property Value : LonglInt
Visibility: public
Access: Read,Write

Description: Value is redefined by TLongintField as a 32-bit signed integer value. It returns the same value
as the TField.AsInteger (306) property.

See also: TField.Value (312)

10.37.7 TLongintField.MaxValue
Synopsis: Maximum value for the field

Declaration: Property MaxValue : LongInt
Visibility: published
Access: Read,Write

Description: MaxValue is the maximum value for the field. When setting the field’s value, the value may not
be larger than MaxValue. Any attempt to write a larger value as the field’s content will result in an
exception. By default MaxValue equals MaxInt,i.e. any integer value is allowed.

See also: TLongintField.MinValue (344)

10.37.8 TLongintField.MinValue
Synopsis: Minimum value for the field

Declaration: Property MinvValue : LongInt
Visibility: published
Access: Read,Write

Description: Minvalue is the minimum value for the field. When setting the field’s value, the value may not
be less than MinValue. Any attempt to write a smaller value as the field’s content will result in an
exception. By default Minvalue equals ~-MaxInt, i.e. any integer value is allowed.

See also: TLongintField.Max Value (344)

10.38 TLookupList

10.38.1 Description

TLookupList is a list object used for storing values of lookup operations by lookup fields. There
should be no need to create an instance of TLookupList manually, the TField instance will
create an instance of T1ookupList on demand.

345

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.38.2 Method overview

Page Property Description

345 Add Add a key, value pair to the list

345 Clear Remove all key, value pairs from the list

345 Create Create a new instance of TLookupList.

345 Destroy Free a TLookupList instance from memory
346 FirstKeyByValue Find the first key that matches a value

346 ValueOfKey Look up value based on a key

346 ValuesToStrings Convert values to stringlist

10.38.3 TLookupList.Create
Synopsis: Create a new instance of TLookupList.
Declaration: constructor Create
Visibility: public
Description: Create sets up the necessary structures to manage a list of lookup values for a lookup field.

See also: TLookupList.Destroy (345)

10.38.4 TLookupList.Destroy
Synopsis: Free a TLookupList instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy frees all resources (mostly memory) allocated by the lookup list, and calls then the inher-
ited destructor.

See also: TLookpList.Create (206)

10.38.5 TLookuplList.Add
Synopsis: Add a key, value pair to the list
Declaration: procedure Add(const AKey: Variant;const AValue: Variant)
Visibility: public

Description: 2dd will add the value AValue to the list and associate it with key AKey. The same key cannot be
added twice.

See also: TLookupList.Clear (345)

10.38.6 TLookuplList.Clear

Synopsis: Remove all key, value pairs from the list
Declaration: procedure Clear
Visibility: public
Description: Clear removes all keys and associated values from the list.

See also: TLookupList.Add (345)

346

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.38.7 TLookuplList.FirstkeyByValue

Synopsis: Find the first key that matches a value
Declaration: function FirstKeyByValue (const AValue: Variant) : Variant
Visibility: public

Description: FirstKeyByValue does a reverse lookup: it returns the first key value in the list that matches the
AValue value. If none is found, Null is returned. This mechanism is quite slow, as a linear search
is performed.

Errors: If no key is found, Nul1 is returned.

See also: TLookupList.ValueOfKey (346)

10.38.8 TLookupList.ValueOfKey
Synopsis: Look up value based on a key

Declaration: function ValueOfKey (const AKey: Variant) : Variant
Visibility: public

Description: VvalueOfKey does a value lookup based on a key: it returns the value in the list that matches the
AKey key. If none is found, Null is returned. This mechanism is quite slow, as a linear search is
performed.

See also: TLookupList.FirstKeyByValue (346), TLookupList.Add (345)

10.38.9 TLookupList.ValuesToStrings

Synopsis: Convert values to stringlist
Declaration: procedure ValuesToStrings (AStrings: TStrings)
Visibility: public

Description: ValuesToStrings converts the list of values to a stringlist, so they can be used e.g. in a drop-
down list.

See also: TLookupList.ValueOfKey (346)

10.39 TMasterDatalink

10.39.1 Description

TMasterDataLink is a TDatalink descendent which handles master-detail relations. It can
be used in TDataset (248) descendents that must have master-detail functionality: the detail dataset
creates an instance of TMasterDatalLink to point to the master dataset, which is subsequently
available through the TDataLink.Dataset (247) property.

The class also provides functionailty for keeping a list of fields that make up the master-detail func-
tionality, in the TMasterDatalink.FieldNames (347) and TMasterDataLink.Fields (348) properties.

This class should never be used in application code.

347

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.39.2 Method overview

Page Property Description
347 Create Create a new instance of TMasterDataLink
347 Destroy Free the datalink instance from memory

10.39.3 Property overview

Page Property Access Description

347 FieldNames rw List of fieldnames that make up the master-detail relation-
ship

348 Fields r List of fields as specified in FieldNames

348 OnMasterChange rw Called whenever the master dataset data changes

348 OnMasterDisable rw Called whenever the master dataset is disabled

10.39.4 TMasterDataLink.Create

Synopsis: Create a new instance of TMasterDatalLink
Declaration: constructor Create (ADataSet: TDataSet); Virtual
Visibility: public

Description: Create initializes a new instance of TMasterDataLink. The ADataset parameter is the
detail dataset in the master-detail relation: it is saved in the DetailDataset (296) property. The master
dataset must be set through the DataSource (247) property, and is usually set by the applictaion
programmer.

See also: TDetailDataLink.DetailDataset (296), TDatalink.Datasource (247)

10.39.5 TMasterDataLink.Destroy

Synopsis: Free the datalink instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up the resources used by TMasterDatalink and then calls the inherited de-
structor.

See also: TMasterDatalink.Create (347)

10.39.6 TMasterDataLink.FieldNames
Synopsis: List of fieldnames that make up the master-detail relationship

Declaration: Property FieldNames : String
Visibility: public
Access: Read,Write

Description: FieldNames is a semicolon-separated list of fieldnames in the master dataset (TDatalink.Dataset
(247)) on which the master-detail relationship is based. Setting this property will fill the TMaster-
DataLink.Fields (348) property with the field instances of the master dataset.

See also: TMasterDataLink.Fields (348), TDatalink.Dataset (247), TDataset.GetFieldList (262)

348

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.39.7 TMasterDataLink.Fields

Synopsis: List of fields as specified in FieldNames
Declaration: Property Fields : TList
Visibility: public
Access: Read

Description: Fields is filled with the TField (296) instances from the master dataset (TDatalink.Dataset (247))
when the FieldNames (347) property is set, and when the master dataset opens.

See also: TField (296), TMasterDatalink.FieldNames (347)

10.39.8 TMasterDataLink.OnMasterChange

Synopsis: Called whenever the master dataset data changes
Declaration: Property OnMasterChange : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnMasterChange is called whenever the field values in the master dataset changes, i.e. when
it becomes active, or when the current record changes. If the TMasterDataLink.Fields (348) list is
empty, TMasterDataLink.OnMasterDisable (348) is called instead.

See also: TMasterDataLink.OnMasterDisable (348)

10.39.9 TMasterDataLink.OnMasterDisable

Synopsis: Called whenever the master dataset is disabled
Declaration: Property OnMasterDisable : TNotifyEvent
Visibility: public
Access: Read,Write

Description: OnMasterDisable is called whenever the master dataset is disabled, or when it is active and the
field list is empty.

See also: TMasterDataLink.OnMasterChange (348)

10.40 TMasterParamsDatalink

10.40.1 Description

TMasterParamsDatalLink is a TDataLink (243) descendent that can be used to establish a
master-detail relationship between 2 TDataset instances where the detail dataset is parametrized
using a TParams instance. It takes care of closing and opening the detail dataset and copying the
parameter values from the master dataset whenever the data in the master dataset changes.

349

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.40.2 Method overview

Page Property Description

349 CopyParamsFromMaster ~Copy parameter values from master dataset.

349 Create Initialize a new TMasterParamsDataLink instance
349 RefreshParamNames Refresh the list of parameter names

10.40.3 Property overview

Page Property Access Description
350 Params ™w Parameters of detail dataset.

10.40.4 TMasterParamsDatalLink.Create

Synopsis: Initialize a new TMasterParamsDatalink instance
Declaration: constructor Create (ADataSet: TDataSet); Override
Visibility: public

Description: Create first calls the inherited constructor using ADataset, and then looks for a property named
Params of type TParams (365) in the published properties of ADataset and assigns it to the
Params (350) property.

See also: TDataset (248), TParams (365), TMasterParamsDataLink. Params (350)

10.40.5 TMasterParamsDataLink.RefreshParamNames

Synopsis: Refresh the list of parameter names
Declaration: procedure RefreshParamNames; Virtual
Visibility: public

Description: RefreshParamNames scans the Params (350) property and sets the FieldNames (347) property
to the list of parameter names.

See also: TMasterParamsDataLink.Params (350), TMasterDataLink. FieldNames (347)

10.40.6 TMasterParamsDataLink.CopyParamsFromMaster

Synopsis: Copy parameter values from master dataset.
Declaration: procedure CopyParamsFromMaster (CopyBound: Boolean); Virtual
Visibility: public

Description: CopyParamsFromMaster calls TParams.CopyParamValuesFromDataset (368), passing it the
master dataset: it provides the parameters of the detail dataset with their new values. If CopyBound
is false, then only parameters with their Bound (361) property set to False are copied. If it is
True then the value is set for all parameters.

Errors: If the master dataset does not have a corresponding field for each parameter, then an exception will
be raised.

See also: TParams.CopyParamValuesFromDataset (368), TParam.Bound (361)

350

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.40.7 TMasterParamsDataLink.Params

Synopsis: Parameters of detail dataset.
Declaration: Property Params : TParams
Visibility: public
Access: Read,Write

Description: Params is the TParams instance of the detail dataset. If the detail dataset contains a property
named Params of type TParams, then it will be set when the TMasterParamsDataLink in-
stance was created. If the property is not published, or has another name, then the Params property
must be set in code.

See also: Tparams (365), TMasterParamsDataLink.Create (349)

10.41 TMemoField

10.41.1 Description

TMemoFieldis the class used when a dataset must manage memo (Text BLOB) data. (TField.DataType
(308) equals ftMemo). It initializes some of the properties of the TField (296) class. All methods to
be able to work with memo fields have been implemented in the TBlobField (225) parent class.

It should never be necessary to create an instance of TMemoField manually, a field of this class
will be instantiated automatically for each memo field when a dataset is opened.

10.41.2 Method overview

Page Property Description
350 Create Create a new instance of the TMemoField class

10.41.3 Property overview

Page Property Access Description
351 Transliterate Should the contents of the field be transliterated

10.41.4 TMemoField.Create

Synopsis: Create a new instance of the TMemoField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TMemoFie1d class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with memo values.

See also: TField (296)

351

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.41.5 TMemoField.Transliterate

Synopsis: Should the contents of the field be transliterated
Declaration: Property Transliterate
Visibility: published
Access:
Description: Transliterate is redefined from TBlobField.Transliterate (228) with a default value of t rue.

See also: TBlobField.Transliterate (228), TStringField. Transliterate (371), TDataset. Translate (268)

10.42 TNamedItem
10.42.1 Description

NamedItem is a TCollectionltem (??) descendent which introduces a Name (351) property. It
automatically returns the value of the Name property as the value of the DisplayName (351) property.

10.42.2 Property overview

Page Property Access Description
351 DisplayName rw Display name
351 Name W Name of the item

10.42.3 TNamedIltem.DisplayName
Synopsis: Display name
Declaration: Property DisplayName : String
Visibility: public
Access: Read,Write

Description: DisplayName is declared in TCollectionltem (??), and is made public in TNamedItem. The
value equals the value of the Name (351) property.

See also: TNamedItem.Name (351)

10.42.4 TNamedltem.Name
Synopsis: Name of the item

Declaration: Property Name : String
Visibility: published
Access: Read,Write

Description: Name is the name of the item in the collection. This property is also used as the vaulue for the Dis-
playName (351) property. If the TNamedItem item is owned by a TDefCollection (294) collection,
then the name must be unique, i.e. each Name value may appear only once in the collection.

See also: TNamedItem.DisplayName (351), TDefCollection (294)

352

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.43 TNumericField

10.43.1 Description

TNumericField is an abstract class which overrides some of the methods of TField (296) to
handle numerical data. It also introduces or publishes a couple of properties that are only rele-
vant in the case of numerical data, such as TNumericalField.DisplayFormat (206) and TNumerical-
Field.EditFormat (206).

Since TNumericalField is an abstract class, it must never be instantiated directly. Instead one
of the descendent classes should be created.

10.43.2 Method overview

Page Property Description
352 Create Create a new instance of TNumericField

10.43.3 Property overview

Page Property Access Description

352 Alignment Alignment of the field

353 DisplayFormat 1w Format string for display of numerical data
353 EditFormat ™ Format string for editing of numerical data

10.43.4 TNumericField.Create

Synopsis: Create a new instance of TNumericField
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create calls the inherited constructor and then initializes the TField.Alignment (313) property
with

See also: TField.Alignment (313)

10.43.5 TNumericField.Alignment
Synopsis: Alignment of the field

Declaration: Property Alignment
Visibility: published
Access:
Description: Alignment is published by TNumericalField with taRightJustify as a default value.

See also: TField.Alignment (313)

353

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.43.6 TNumericField.DisplayFormat
Synopsis: Format string for display of numerical data
Declaration: Property DisplayFormat : String
Visibility: published
Access: Read, Write

Description: DisplayFormat specifies a format string (such as used by the Format (??) and FormatFloat
(??) functions) for display purposes: the TField.DisplayText (309) property will use this property to
format the field’s value. Which formatting function (and, consequently, which format can be entered)
is used depends on the descendent of the TNumericField class.

See also: #rtl.sysutils.Format (??), #rtl.sysutils.FormatFloat (??), TField.DisplayText (309), TNumericField. EditFormat
(353)

10.43.7 TNumericField.EditFormat
Synopsis: Format string for editing of numerical data
Declaration: Property EditFormat : String
Visibility: published
Access: Read,Write

Description: EditFormat specifies a format string (such as used by the Format (??) and FormatFloat (??)
functions) for editing purposes: the TField.Text (311) property will use this property to format the
field’s value. Which formatting function (and, consequently, which format can be entered) is used
depends on the descendent of the TNumericField class.

See also: #rtl.sysutils.Format (??), #rtl.sysutils.FormatFloat (??), TField.Text (311), TNumericField.DisplayFormat
(353)

10.44 TParam

10.44.1 Description

TParam is one item in a TParams (365) collection. It describes the name (TParam.Name (363)),
type (ParamType (364)) and value (TParam.Value (362)) of a parameter in a parametrized query or
stored procedure. Under normal circumstances, it should never be necessary to create a TParam
instance manually; the TDataset (248) descendent that owns the parameters should have created all
necessary TParam instances.

354

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.2 Method overview

Page Property Description
355 Assign Assign one parameter instance to another
355 AssignField Copy value from field instance

356 AssignFieldValue Assign field value to the parameter.
356 AssignFromField Copy field type and value
355 AssignToField Assign parameter value to field

356 Clear Clear the parameter value

354 Create Create a new parameter value

356 GetData Get the parameter value from a memory buffer
357 GetDataSize Return the size of the data.

357 LoadFromFile Load a parameter value from file

357 LoadFromStream Load a parameter value from stream

357 SetBlobData Set BLOB data

358 SetData Set the parameter value from a buffer

10.44.3 Property overview

Page Property Access Description

358 AsBlob ™w Return parameter value as a blob

358 AsBoolean w Get/Set parameter value as a boolean value

358 AsCurrency w Get/Set parameter value as a currency value

359 AsDate ™w Get/Set parameter value as a date (TDateTime) value
359 AsDateTime ™w Get/Set parameter value as a date/time (TDateTime) value
359 AsFloat rw Get/Set parameter value as a floating-point value

359 Aslnteger rw Get/Set parameter value as an integer (32-bit) value
360 AsLargelnt w Get/Set parameter value as a 64-bit integer value

360 AsMemo ™w Get/Set parameter value as a memo (string) value
360 AsSmalllnt ™w Get/Set parameter value as a smallint value

360 AsString rw Get/Set parameter value as a string value

361 AsTime ™w Get/Set parameter value as a time (TDateTime) value
363 AsWideString rw Get/Set the value as a widestring

361 AsWord w Get/Set parameter value as a word value

361 Bound ™w Is the parameter value bound (set to fixed value)

361 Dataset r Dataset to which this parameter belongs

363 DataType ™w Data type of the parameter

362 IsNull r Is the parameter empty

363 Name w Name of the parameter

362 NativeStr w No description available

363 NumericScale rw Numeric scale

364 ParamType ™w Type of parameter

364 Precision w Precision of the BCD value

364 Size w Size of the parameter

362 Text w Read or write the value of the parameter as a string
362 Value rws Value as a variant

10.44.4 TParam.Create

Synopsis: Create a new parameter value

Declaration: constructor Create (ACollection: TCollection); Override; Overload
constructor Create (AParams: TParams;AParamType: TParamType); Overload
; Reintroduce

355

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Visibility: public

Description: Create first calls the inherited create, and then initializes the parameter properties. The first form
creates a default parameter, the second form is a convenience function and initializes a parameter of
a certain kind (AParamType), in which case the owning TParams collection must be specified in
AParams

See also: TParams (365)

10.44.5 TParam.Assign

Synopsis: Assign one parameter instance to another
Declaration: procedure Assign (Source: TPersistent); Override
Visibility: public

Description: Assign copies the Name, ParamType, Bound, Value, SizePrecisionand NumericScale
properties from ASource if it is of type TParam. If Source is of type TField (296), then it
is passed to TParam.AssignField (355). If Source is of type TStrings, then it is assigned to
TParams.AsMemo (365).

Errors: If Source is not of type TParam, TField or TStrings, an exception will be raised.

See also: TField (296), TParam.Name (363), TParam.Bound (361), TParam.NumericScale (363), TParam.ParamType
(364), TParam.value (362), TParam.Size (364), TParam.AssignField (355), Tparam.AsMemo (360)

10.44.6 TParam.AssignField

Synopsis: Copy value from field instance
Declaration: procedure AssignField (Field: TField)
Visibility: public

Description: AssignField copies the Field, FieldName (315) and Value (312) to the parameter instance.
The parameter is bound after this operation. If Field is Nil then the parameter name and value are
cleared.

See also: TParam.assign (355), TParam.AssignToField (355), TParam.AssignFieldValue (356)

10.44.7 TParam.AssignToField

Synopsis: Assign parameter value to field
Declaration: procedure AssignToField (Field: TField)
Visibility: public

Description: AssignToField copies the parameter value (362) to the field instance. If Field is Nil,
nothing happens.

Errors: An EDatabaseError (218) exception is raised if the field has an unsupported field type (for types
ftCursor, ftArray, ftDataset,ftReference).

See also: TParam.Assign (355), TParam.AssignField (355), TParam.AssignFromField (356)

356

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.8 TParam.AssignFieldValue

Synopsis: Assign field value to the parameter.
Declaration: procedure AssignFieldValue (Field: TField;const AValue: Variant)
Visibility: public

Description: AssignFieldValue copies only the field type from Field and the value from the Avalue
parameter. It sets the TParam.Bound (361) bound parameter to True. This method is called from
TParam.AssignField (355).

See also: TField (296), TParam.AssignField (355), TParam.Bound (361)

10.44.9 TParam.AssignFromField
Synopsis: Copy field type and value

Declaration: procedure AssignFromField (Field: TField)
Visibility: public

Description: AssignFromField copies the field value (312) and data type (TField.DataType (308)) to the pa-
rameter instance. [f Fieldis Nil, nothing happens. This is the reverse operation of TParam.AssignToField
(355).

Errors: An EDatabaseError (218) exception is raised if the field has an unsupported field type (for types
ftCursor, ftArray, ftDataset,ftReference).

See also: TParam.Assign (355), TParam.AssignField (355), TParam.AssignToField (355)

10.44.10 TParam.Clear

Synopsis: Clear the parameter value
Declaration: procedure Clear
Visibility: public

Description: Clear clears the parameter value, it is set to UnAssigned. The Datatype, parameter type or name
are not touched.

See also: TParam.Value (362), TParam.Name (363), TParam.ParamType (364), TParam.DataType (363)

10.44.11 TParam.GetData

Synopsis: Get the parameter value from a memory buffer
Declaration: procedure GetData (Buffer: Pointer)
Visibility: public

Description: GetData retrieves the parameter value and stores it in buffer It uses the same data layout as
TField (296), and can be used to copy the parameter value to a record buffer.

Errors: Only basic field types are supported. Using an unsupported field type will result in an EdatabaseError
(218) exception.

See also: TParam.SetData (358), TField (296)

357

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.12 TParam.GetDataSize
Synopsis: Return the size of the data.
Declaration: function GetDataSize : Integer
Visibility: public
Description: GetDataSize returns the size (in bytes) needed to store the current value of the parameter.

Errors: For an unsupported data type, an EDatabaseError (218) exception is raised when this function is
called.

See also: TParam.GetData (356), TParam.SetData (358)

10.44.13 TParam.LoadFromFile
Synopsis: Load a parameter value from file
Declaration: procedure LoadFromFile (const FileName: String;BlobType: TBlobType)
Visibility: public
Description: LoadFromFile can be used to load a BLOB-type parameter from a file named FileName. The
BlobType parameter can be used to set the exact data type of the parameter: it must be one of

the BLOB data types. This function simply creates a TFileStream instance and passes it to
TParam.LoadFromStream (357).

Errors: If the specified Fi 1eName is not a valid file, or the file is not readable, an exception will occur.

See also: TParam.LoadFromStream (357), TBlobType (208), TParam.SaveToFile (353)

10.44.14 TParam.LoadFromStream
Synopsis: Load a parameter value from stream
Declaration: procedure LoadFromStream (Stream: TStream;BlobType: TBlobType)
Visibility: public
Description: LoadFromStream can be used to load a BLOB-type parameter from a stream. The BlobType
parameter can be used to set the exact data type of the parameter: it must be one of the BLOB data

types.

Errors: If the stream does not support taking the Size of the stream, an exception will be raised.

See also: TParam.LoadFromFile (357), TParam.SaveToStream (353)

10.44.15 TParam.SetBlobData
Synopsis: Set BLOB data
Declaration: procedure SetBlobData (Buffer: Pointer;ASize: Integer)
Visibility: public
Description: setBlobData reads the value of a BLOB type parameter from a memory buffer: the data is read
from the memory buffer Buf fer and is assumed to be Size bytes long.

Errors: No checking is performed on the validity of the data buffer. If the data buffer is invalid or the size is
wrong, an exception may occur.

See also: TParam.LoadFromStream (357)

358

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.16 TParam.SetData
Synopsis: Set the parameter value from a buffer
Declaration: procedure SetData (Buffer: Pointer)
Visibility: public
Description: setData performs the rever operation of TParam.GetData (356): it reads the parameter value from
the memory area pointed to by Buf fer. The size of the data read is determined by TParam.GetDataSize

(357) and the type of data by TParam.DataType (363) : it is the same storage mechanism used by
TField (296), and so can be used to copy the value from a TDataset (248) record buffer.

Errors: Not all field types are supported. If an unsupported field type is encountered, an EDatabaseError
(218) exception is raised.

See also: TDataset (248), TParam.GetData (356), TParam.DataType (363), TParam.GetDataSize (357)

10.44.17 TParam.AsBlob
Synopsis: Return parameter value as a blob
Declaration: Property AsBlob : TBlobData
Visibility: public
Access: Read,Write

Description: AsBlob returns the parameter value as a blob: currently this is a string. It can be set to set the
parameter value.

See also: TParam.AsString (360)

10.44.18 TParam.AsBoolean

Synopsis: Get/Set parameter value as a boolean value
Declaration: Property AsBoolean : Boolean
Visibility: public
Access: Read,Write

Description: AsBoolean will return the parameter value as a boolean value. If it is written, the value is set to
the specified value and the data type is set to ftBoolean.

See also: TParam.DataType (363), TParam.Value (362)

10.44.19 TParam.AsCurrency

Synopsis: Get/Set parameter value as a currency value
Declaration: Property AsCurrency : Currency
Visibility: public
Access: Read,Write

Description: AsCurrency will return the parameter value as a currency value. If it is written, the value is set to
the specified value and the data type is set to ftCurrency.

See also: TParam.AsFloat (359), TParam.DataType (363), TParam.Value (362)

359

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.20 TParam.AsDate

Synopsis: Get/Set parameter value as a date (TDateTime) value
Declaration: Property AsDate : TDateTime
Visibility: public
Access: Read,Write

Description: AsDate will return the parameter value as a date value. If it is written, the value is set to the
specified value and the data type is set to ftDate.

See also: TParam.AsDateTime (359), TParam.AsTime (361), TParam.DataType (363), TParam.Value (362)

10.44.21 TParam.AsDateTime

Synopsis: Get/Set parameter value as a date/time (TDateTime) value
Declaration: Property AsDateTime : TDateTime
Visibility: public
Access: Read,Write

Description: AsDateTime will return the parameter value as a TDateTime value. If it is written, the value is set
to the specified value and the data type is set to ftDateTime.

See also: TParam.AsDate (359), TParam.asTime (361), TParam.DataType (363), TParam.Value (362)

10.44.22 TParam.AsFloat

Synopsis: Get/Set parameter value as a floating-point value
Declaration: Property AsFloat : Double
Visibility: public
Access: Read,Write

Description: AsFLoat will return the parameter value as a double floating-point value. If it is written, the value
is set to the specified value and the data type is set to ftFloat.

See also: TParam.AsCurrency (358), TParam.DataType (363), TParam.Value (362)

10.44.23 TParam.Aslnteger

Synopsis: Get/Set parameter value as an integer (32-bit) value
Declaration: Property AsInteger : LongInt
Visibility: public
Access: Read,Write

Description: AsInteger will return the parameter value as a 32-bit signed integer value. If it is written, the
value is set to the specified value and the data type is set to ft Integer.

See also: TParam.AsLargelnt (360), TParam.AsSmalllnt (360), TParam.AsWord (361), TParam.DataType
(363), TParam.Value (362)

360

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.24 TParam.AslLargelnt
Synopsis: Get/Set parameter value as a 64-bit integer value
Declaration: Property AslLargelInt : Largelnt
Visibility: public
Access: Read,Write

Description: AsLargeInt will return the parameter value as a 64-bit signed integer value. If it is written, the
value is set to the specified value and the data type is set to ftLargeInt.

See also: TParam.asInteger (359), TParam.asSmallint (360), TParam.AsWord (361), TParam.DataType (363),
TParam.Value (362)

10.44.25 TParam.AsMemo
Synopsis: Get/Set parameter value as a memo (string) value
Declaration: Property AsMemo : String
Visibility: public
Access: Read,Write

Description: AsMemo will return the parameter value as a memo (string) value. If it is written, the value is set to
the specified value and the data type is set to ftMemo.

See also: TParam.asString (360), TParam.LoadFromStream (357), TParam.SaveToStream (353), TParam.DataType
(363), TParam.Value (362)

10.44.26 TParam.AsSmallint
Synopsis: Get/Set parameter value as a smallint value
Declaration: Property AsSmallInt : LongInt
Visibility: public
Access: Read,Write

Description: AsSmallint will return the parameter value as a 16-bit signed integer value. If it is written, the
value is set to the specified value and the data type is set to ftSmallint.

See also: TParam.AsInteger (359), TParam.AsLargelnt (360), TParam.AsWord (361), TParam.DataType (363),
TParam.Value (362)

10.44.27 TParam.AsString
Synopsis: Get/Set parameter value as a string value
Declaration: Property AsString : String
Visibility: public
Access: Read,Write

Description: AsString will return the parameter value as a string value. If it is written, the value is set to the
specified value and the data type is set to ftString.

See also: TParam.DataType (363), TParam.Value (362)

361

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.28 TParam.AsTime
Synopsis: Get/Set parameter value as a time (TDateTime) value
Declaration: Property AsTime : TDateTime
Visibility: public
Access: Read,Write

Description: AsTime will return the parameter value as a time (TDateTime) value. If it is written, the value is
set to the specified value and the data type is set to ft Time.

See also: TParam.AsDate (359), TParam.AsDateTime (359), TParam.DataType (363), TParam.Value (362)

10.44.29 TParam.AsWord

Synopsis: Get/Set parameter value as a word value
Declaration: Property AsWord : LongInt
Visibility: public
Access: Read,Write

Description: AsWord will return the parameter value as an integer. If it is written, the value is set to the specified
value and the data type is set to ftWord.

See also: TParam.AsInteger (359), TParam.AsLargelnt (360), TParam.AsSmallint (360), TParam.DataType
(363), TParam.Value (362)

10.44.30 TParam.Bound

Synopsis: Is the parameter value bound (set to fixed value)
Declaration: Property Bound : Boolean
Visibility: public
Access: Read,Write

Description: Bound indicates whether a parameter has received a fixed value: setting the parameter value will set
Bound to True. When creating master-detail relationships, parameters with their Bound property
set to True will not receive a value from the master dataset: their value will be kept. Only parameters
where Bound is False will receive a new value from the master dataset.

See also: TParam.DataType (363), TParam.Value (362)

10.44.31 TParam.Dataset
Synopsis: Dataset to which this parameter belongs

Declaration: Property Dataset : TDataSet
Visibility: public
Access: Read

Description: Dataset is the dataset that owns the TParams (365) instance of which this TParam instance is a
part. It is Ni1 if the collection is not set, or is not a TParams instance.

See also: TDataset (248), TParams (365)

362

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.32 TParam.IsNull

Synopsis: Is the parameter empty
Declaration: Property IsNull : Boolean
Visibility: public
Access: Read
Description: IsNull is True is the value is empty or not set (Null or UnAssigned).

See also: TParam.Clear (356), TParam.Value (362)

10.44.33 TParam.NativeStr

Synopsis: No description available
Declaration: Property NativeStr : String
Visibility: public
Access: Read,Write

Description: No description available

10.44.34 TParam.Text

Synopsis: Read or write the value of the parameter as a string
Declaration: Property Text : String
Visibility: public
Access: Read,Write

Description: AsText returns the same value as TParam.AsString (360), but, when written, does not set the data
type: instead, it attempts to convert the value to the type specified in TParam.Datatype (363).

See also: TParam.AsString (360), TParam.DataType (363)

10.44.35 TParam.Value

Synopsis: Value as a variant
Declaration: Property Value : Variant
Visibility: public
Access: Read,Write
Description: Value returns (or sets) the value as a variant value.

See also: TParam.DataType (363)

363

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.36 TParam.AsWideString

Synopsis: Get/Set the value as a widestring
Declaration: Property AsWideString : WideString
Visibility: public
Access: Read,Write

Description: AsWideString returns the parameter value as a widestring value. Setting the property will set the
value of the parameter and will also set the DataType (363) to ftWideString.

See also: TParam.AsString (360), TParam.Value (362), TParam.DataType (363)

10.44.37 TParam.DataType
Synopsis: Data type of the parameter

Declaration: Property DataType : TFieldType
Visibility: published
Access: Read,Write

Description: DataType is the current data type of the parameter value. It is set automatically when one of the
various AsXYZ properties is written, or when the value is copied from a field value.

See also: TParam.IsNull (362), TParam.Value (362), TParam.AssignField (355)

10.44.38 TParam.Name

Synopsis: Name of the parameter
Declaration: Property Name : String
Visibility: published
Access: Read,Write

Description: Name is the name of the parameter. The name is usually determined automatically from the SQL
statement the parameter is part of. Each parameter name should appear only once in the collection.

See also: TParam.DataType (363), TParam.Value (362), TParams.ParamByName (367)

10.44.39 TParam.NumericScale

Synopsis: Numeric scale
Declaration: Property NumericScale : Integer
Visibility: published
Access: Read,Write
Description: NumericScale can be used to store the numerical scale for BCD values. It is currently unused.

See also: TParam.Precision (364), TParam.Size (364)

364

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.44.40 TParam.ParamType
Synopsis: Type of parameter

Declaration: Property ParamType : TParamType
Visibility: published
Access: Read,Write

Description: ParamTyp specifies the type of parameter: is the parameter value written to the database engine,
or is it received from the database engine, or both ? It can have the following value:

ptUnknownUnknown type

ptInputlnput parameter

ptOutputOutput paramete, filled on result
ptInputOutputInput/output parameter

ptResultResult parameter

The ParamType property is usually set by the database engine that creates the parameter instances.

See also: TParam.DataType (363), TParam.DataSize (353), TParam.Name (363)

10.44.41 TParam.Precision
Synopsis: Precision of the BCD value

Declaration: Property Precision : Integer
Visibility: published
Access: Read,Write
Description: Precision can be used to store the numerical precision for BCD values. It is currently unused.

See also: TParam.NumericScale (363), TParam.Size (364)

10.44.42 TParam.Size

Synopsis: Size of the parameter
Declaration: Property Size : Integer
Visibility: published
Access: Read,Write

Description: size is the declared size of the parameter. In the current implementation, this parameter is ignored
other than copying it from TField.DataSize (308) in the TParam.AssignFieldValue (356) method.
The actual size can be retrieved through the TParam.Datasize (353) property.

See also: TParam.Datasize (353), TField.DataSize (308), TParam.AssignFieldValue (356)

365

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.45 TParams

10.45.1 Description

TParams is a collection of TParam (353) values. It is used to specify parameter values for parametrized
SQL statemens, but is also used to specify parameter values for stored procedures. Its default property

is an array of TParam (353) values. The class also offers a method to scan a SQL statement for param-
eter names and replace them with placeholders understood by the SQL engine: TParams.ParseSQL
(367).

TDataset (248) itself does not use TParams. The class is provided in the DB unit, so all TDataset
descendents that need some kind of parametrization make use of the same interface. The TMaster-
ParamsDatalLink (348) class can be used to establish a master-detail relationship between a parameter-
aware TDataset instance and another dataset; it will automatically refresh parameter values when
the fields in the master dataset change. To this end, the TParams.CopyParamValuesFromDataset
(368) method exists.

10.45.2 Method overview

Page Property Description

366 AddParam Add a parameter to the collection

366 AssignValues Copy values from another collection

368 CopyParamValuesFromDataset Copy parameter values from a the fields in a dataset.

365 Create Create a new instance of TParams

366 CreateParam Create and add a new parameter to the collection

366 FindParam Find a parameter with given name

367 GetParamList Fetch a list of TParam instances

367 IsEqual Is the list of parameters equal

367 ParamByName Return a parameter by name

367 ParseSQL Parse SQL statement, replacing parameter names with
SQL parameter placeholders

368 RemoveParam Remove a parameter from the collection

10.45.3 Property overview

Page Property Access Description

369 Dataset r Dataset that owns the TParams instance

369 Items ™™ Indexed access to TParams instances in the collection
369 ParamValues rw Named access to the parameter values.

10.45.4 TParams.Create

Synopsis: Create a new instance of TParams

Overload

Declaration: constructor Create (AOwner: TPersistent);
constructor Create; Overload

Visibility: public

Description: Create initializes a new instance of TParams. It calls the inherited constructor with TParam (353)
as the collection’s item class, and sets AOwner as the owner of the collection. Usually, AOwner will
be the dataset that needs parameters.

See also: #rtl.classes.collection.create (??), TParam (353)

366

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.45.5 TParams.AddParam

Synopsis: Add a parameter to the collection
Declaration: procedure AddParam(Value: TParam)
Visibility: public
Description: AddParam adds Value to the collection.
Errors: No checks are done on the TParam instance. If it is Ni 1, an exception will be raised.

See also: TParam (353), #rtl.classes.tcollection.add (??)

10.45.6 TParams.AssignValues

Synopsis: Copy values from another collection
Declaration: procedure AssignValues (Value: TParams)
Visibility: public

Description: AssignValues examines all TParam (353) instances in Value, and looks in its own items for a
TParam instance with the same name. If it is found, then the value and type of the parameter are
copied (using TParam.Assign (355)). If it is not found, nothing is done.

See also: TParam (353), TParam.Assign (355)

10.45.7 TParams.CreateParam

Synopsis: Create and add a new parameter to the collection

Declaration: function CreateParam (F1dType: TFieldType;const ParamName: String;
ParamType: TParamType) : TParam

Visibility: public

Description: CreateParam creates a new TParam (353) instance with datatype equal to £1dType, Name equal
to ParamName and sets its ParamType property to ParamType. The parameter is then added to
the collection.

See also: TParam (353), TParam.Name (363), TParam.Datatype (363), TParam.Paramtype (364)

10.45.8 TParams.FindParam

Synopsis: Find a parameter with given name
Declaration: function FindParam(const Value: String) : TParam
Visibility: public

Description: FindParam searches the collection for the TParam (353) instance with property Name equal to
Value. It will return the last instance with the given name, and will only return one instance. If no
match is found, Ni1 is returned.

Remark: A TParams collection can have 2 TParam instances with the same name: no checking for dupli-
cates is done.

See also: TParam.Name (363), TParams.ParamByName (367), TParams.GetParamList (367)

367

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.45.9 TParams.GetParamList
Synopsis: Fetch a list of TParam instances
Declaration: procedure GetParamList (List: TList;const ParamNames: String)
Visibility: public
Description: GetParamList examines the parameter names in the semicolon-separated list ParamNames. It

searches each TParam instance from the names in the list and adds it to List.

Errors: If the ParamNames list contains an unknown parameter name, then an exception is raised. Whites-
pace is not discarded.

See also: TParam (353), TParam.Name (363), TParams.ParamByName (367)

10.45.10 TParams.IsEqual

Synopsis: Is the list of parameters equal
Declaration: function IsEqual (Value: TParams) : Boolean
Visibility: public

Description: IsEqual compares the parameter count of Value and if it matches, it compares all TParam items
of Value with the items it owns. If all items are equal (all properties match), then True is returned.
The items are compared on index, so the order is important.

See also: TParam (353)

10.45.11 TParams.ParamByName

Synopsis: Return a parameter by name
Declaration: function ParamByName (const Value: String) : TParam
Visibility: public

Description: ParamByName searches the collection for the TParam (353) instance with property Name equal to
Value. It will return the last instance with the given name, and will only return one instance. If no
match is found, an exception is raised.

Remark: A TParams collection can have 2 TParam instances with the same name: no checking for dupli-
cates is done.

See also: TParam.Name (363), TParams.FindParam (366), TParams.GetParamList (367)

10.45.12 TParams.ParseSQL

Synopsis: Parse SQL statement, replacing parameter names with SQL parameter placeholders

Declaration: function ParseSQL(SQL: String;DoCreate: Boolean) : String; Overload
function ParseSQL (SQL: String;DoCreate: Boolean;EscapeSlash: Boolean;
EscapeRepeat: Boolean;ParameterStyle: TParamStyle)
String; Overload
function ParseSQL (SQL: String;DoCreate: Boolean;EscapeSlash: Boolean;
EscapeRepeat: Boolean;ParameterStyle: TParamStyle;
var ParamBinding: TParamBinding) : String; Overload

368

CHAPTER 10. REFERENCE FOR UNIT 'DB’

function ParseSQL (SQL: String;DoCreate: Boolean;EscapeSlash: Boolean;
EscapeRepeat: Boolean;ParameterStyle: TParamStyle;
var ParamBinding: TParamBinding;
var ReplaceString: String) : String; Overload
Visibility: public

Description: ParseSQ1 parses the SQL statement for parameter names in the form : ParamName. It replaces
them with a SQL parameter placeholder. If DoCreate is True then a TParam instance is added
to the collection with the found parameter name.

The parameter placeholder is determined by the ParameterStyle property, which can have the
following values:

psInterbaseParameters are specified by a ? character

psPostgreSQLParameters are specified by a $N character.

psSimulatedParameters are specified by a $N character.

psInterbase is the default.

If the EscapeSlash parameter is True, then backslash characters are used to quote the next
character in the SQL statement. If it is False, the backslash character is regarded as a normal
character.

If the EscapeRepeat parameter is True (the default) then embedded quotes in string literals are
escaped by repeating themselves. If it is false then they should be quoted with backslashes.

ParamBinding, if specified, is filled with the indexes of the parameter instances in the parameter
collection: for each SQL parameter placeholder, the index of the corresponding TParam instance is
returned in the array.

ReplaceString, if specified, contains the placeholder used for the parameter names (by default,
$). It has effect only when ParameterStyle equals psSimulated.

The function returns the SQL statement with the parameter names replaced by placeholders.

See also: TParam (353), TParam.Name (363), TParamStyle (215)

10.45.13 TParams.RemoveParam

Synopsis: Remove a parameter from the collection
Declaration: procedure RemoveParam(Value: TParam)
Visibility: public
Description: RemoveParam removes the parameter Value from the collection, but does not free the instance.
Errors: Value must be a valid instance, or an exception will be raised.

See also: TParam (353)

10.45.14 TParams.CopyParamValuesFromDataset
Synopsis: Copy parameter values from a the fields in a dataset.

Declaration: procedure CopyParamValuesFromDataset (ADataset: TDataSet;
CopyBound: Boolean)

Visibility: public

369

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: CopyParamValuesFromDataset assigns values to all parameters in the collection by search-
ing in ADataset for fields with the same name, and assigning the value of the field to the Tparam
instances using TParam.AssignField (355). By default, this operation is only performed on TParam
instances with their Bound (361) property set to False. If CopyBound is true, then the operation
is performed on all TParam instances in the collection.

Errors: If, for some TParaminstance, ADat aset misses a field with the same name, an EDatabaseError
exception will be raised.

See also: TParam (353), TParam.Bound (361), TParam.AssignField (355), TDataset (248), TDataset.FieldByName
(259)

10.45.15 TParams.Dataset

Synopsis: Dataset that owns the TParams instance
Declaration: Property Dataset : TDataSet
Visibility: public
Access: Read

Description: Dataset is the TDataset (248) instance that was specified when the TParams instance was cre-
ated.

See also: TParams.Create (365), TDataset (248)

10.45.16 TParams.ltems

Synopsis: Indexed access to TParams instances in the collection
Declaration: Property Items[Index: Integer]: TParam; default
Visibility: public
Access: Read,Write

Description: Ttems is overridden by TParams so it has the proper type (TParam). The Index runs from 0 to
Count-1.

See also: TParame (206)

10.45.17 TParams.ParamValues

Synopsis: Named access to the parameter values.
Declaration: Property ParamValues[ParamName: String]: Variant
Visibility: public
Access: Read,Write

Description: ParamValues provides access to the parameter values (TParam.Value (362)) by name. It is equiv-
alent to reading and writing

ParamByName (ParamName) .Value

See also: TParam.Value (362), TParams.ParamByName (367)

370

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.46 TSmallintField

10.46.1 Description

TSmallIntField is the class created when a dataset must manage 16-bit signed integer data, of
datatype £t SmallInt. Itexposes no new properties, but simply overrides some methods to manage
16-bit signed integer data.

It should never be necessary to create an instance of TSmallIntField manually, a field of this
class will be instantiated automatically for each smallint field when a dataset is opened.

10.46.2 Method overview

Page Property Description
370 Create Create a new instance of the TSmallintField class.

10.46.3 TSmallintField.Create
Synopsis: Create a new instance of the TSmallintField class.

Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TSmallintField (370) class. It calls the inherited con-
structor and then simply sets some of the TField (296) properties to work with 16-bit signed integer
data.

See also: TField (296)

10.47 TStringField

10.47.1 Description

TStringField is the class used whenever a dataset has to handle a string field type (data type
ftString). This class overrides some of the standard TField (296) methods to handle string data,
and introduces some properties that are only pertinent for data fields of string type. It should never be
necessary to create an instance of TSt ringField manually, a field of this class will be instantiated
automatically for each string field when a dataset is opened.

10.47.2 Method overview

Page Property Description
371 Create Create a new instance of the TStringField class
371 SetFieldType

10.47.3 Property overview

Page Property Access Description

371 FixedChar w Is the string declared with a fixed length ?

372 Size Maximum size of the string

371 Transliterate 1w Should the field value be transliterated when reading or writing
371 Value W Value of the field as a string

371

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.47.4 TStringField.Create

Synopsis: Create a new instance of the TStringField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create is used to create a new instance of the TStringField class. It initializes some TField
(296) properties after having called the inherited constructor.

10.47.5 TStringField.SetFieldType

Declaration: procedure SetFieldType (AValue: TFieldType); Override

Visibility: public

10.47.6 TStringField.FixedChar
Synopsis: Is the string declared with a fixed length ?

Declaration: Property FixedChar : Boolean
Visibility: public
Access: Read,Write

Description: FixedChar is True if the underlying data engine has declared the field with a fixed length, as
in a SQL CHARC() declaration: the field’s value will then always be padded with as many spaces as
needed to obain the declared length of the field. If it is False then the declared length is simply the
maximum length for the field, and no padding with spaces is performed.

10.47.7 TStringField.Transliterate

Synopsis: Should the field value be transliterated when reading or writing
Declaration: Property Transliterate : Boolean
Visibility: public
Access: Read,Write

Description: Transliterate canbe set to True if the field’s contents should be transliterated prior to copying
it from or to the field’s buffer. Transliteration is done by a method of TDataset: TDataset. Translate
(268).

See also: TDataset. Translate (268)

10.47.8 TStringField.Value
Synopsis: Value of the field as a string

Declaration: Property Value : String
Visibility: public

Access: Read,Write

372

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Description: Value is overridden in TFie1d to return the value of the field as a string. It returns the contents of
TField.AsString (306) when read, or sets the AsSt ring property when written to.

See also: TField.AsString (306), TField. Value (312)

10.47.9 TStringField.Size
Synopsis: Maximum size of the string
Declaration: Property Size
Visibility: published
Access:

Description: Size is made published by the TSt ringField class so it can be set in the IDE: it is the declared
maximum size of the string (in characters) and is used to calculate the size of the dataset buffer.

See also: TField.Size (311)

10.48 TTimeField

10.48.1 Description

TimeField is the class used when a dataset must manage data of type time. (TField.DataType
(308) equals £t Time). It initializes some of the properties of the TField (296) class to be able to
work with time fields.

It should never be necessary to create an instance of TTimeField manually, a field of this class
will be instantiated automatically for each time field when a dataset is opened.

10.48.2 Method overview

Page Property Description
372 Create Create a new instance of a TTimeField class.

10.48.3 TTimeField.Create
Synopsis: Create a new instance of a TTimeField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public
Description: Create initializes a new instance of the TTimeField class. It calls the inherited destructor, and
then sets some TField (296) properties to configure the instance for working with time values.

See also: TField (296)

10.49 TVarBytesField

10.49.1 Description

TVarBytesField is the class used when a dataset must manage data of variable-size binary type.
(TField.DataType (308) equals ftVarBytes). It initializes some of the properties of the TField
(296) class to be able to work with variable-size byte fields.

373

CHAPTER 10. REFERENCE FOR UNIT 'DB’

It should never be necessary to create an instance of TVarBytesField manually, a field of this
class will be instantiated automatically for each variable-sized binary data field when a dataset is
opened.

10.49.2 Method overview

Page Property Description
373 Create Create a new instance of a TVarBytesField class.

10.49.3 TVarBytesField.Create
Synopsis: Create a new instance of a TVarBytesField class.

Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TVarBytesField class. It calls the inherited destructor,
and then sets some TField (296) properties to configure the instance for working with variable-size
binary data values.

See also: TField (296)

10.50 TVariantField

10.50.1 Description

TVariantFieldis the class used when a dataset must manage native variant-typed data. (TField.DataType
(308) equals ftvariant). It initializes some of the properties of the TField (296) class and over-
rides some of its methods to be able to work with variant data.

It should never be necessary to create an instance of TVariantField manually, a field of this class
will be instantiated automatically for each variant field when a dataset is opened.

10.50.2 Method overview

Page Property Description
373 Create Create a new instance of the TVariantField class

10.50.3 TVariantField.Create

Synopsis: Create a new instance of the TVariantField class
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TVariantField class. It calls the inherited destructor,
and then sets some TField (296) properties to configure the instance for working with variant values.

See also: TField (296)

374

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.51 TWideMemoField

10.51.1 Description

TWideMemoFieldis the class used when a dataset must manage memo (Text BLOB) data. (TField.DataType
(308) equals ftWideMemo). It initializes some of the properties of the TField (296) class. All meth-

ods to be able to work with widestring memo fields have been implemented in the TBlobField (225)

parent class.

It should never be necessary to create an instance of TWideMemoField manually, a field of this
class will be instantiated automatically for each widestring memo field when a dataset is opened.

10.51.2 Method overview

Page Property Description
374 Create Create a new instance of the TWideMemoField class

10.51.3 Property overview

Page Property Access Description
374 Value w Value of the field’s contents as a widestring

10.51.4 TWideMemoField.Create
Synopsis: Create a new instance of the TWideMemoField class

Declaration: constructor Create (aOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TWideMemoField class. It calls the inherited destructor,
and then sets some TField (296) properties to configure the instance for working with widestring
memo values.

See also: TField (296)

10.51.5 TWideMemoField.Value

Synopsis: Value of the field’s contents as a widestring
Declaration: Property Value : WideString
Visibility: public
Access: Read,Write

Description: Value is redefined by TWideMemoField as a WideString value. Reading and writing this prop-
erty is equivalent to reading and writing the TField. AsWideString (306) property.

See also: TField.Value (312), Tfield. AsWideString (306)

375

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.52 TWideStringField

10.52.1 Description

TWideStringFieldis the string field class instantiated for fields of data type ftWideString.
This class overrides some of the standard TField (296) methods to handle widestring data, and in-
troduces some properties that are only pertinent for data fields of widestring type. It should never
be necessary to create an instance of TWideStringField manually, a field of this class will be
instantiated automatically for each widestring field when a dataset is opened.

10.52.2 Method overview

Page Property Description
375 Create Create a new instance of the TWideStringField class.

10.52.3 Property overview

Page Property Access Description
375 Value w Value of the field as a widestring

10.52.4 TWideStringField.Create
Synopsis: Create a new instance of the TWideStringField class.
Declaration: constructor Create (aOwner: TComponent); Override
Visibility: public
Description: Create is used to create a new instance of the TWideStringField class. It initializes some
TField (296) properties after having called the inherited constructor.

10.52.5 TWideStringField.Value
Synopsis: Value of the field as a widestring
Declaration: Property Value : WideString
Visibility: public
Access: Read,Write

Description: Value is overridden by the TWideStringField to return a WideString value. It is the same
value as the TField. AsWideString (306) property.

See also: TField. AsWideString (306), TField.Value (312)

10.53 TWordField

10.53.1 Description

TWordField is the class created when a dataset must manage 16-bit unsigned integer data, of
datatype ftWord. It exposes no new properties, but simply overrides some methods to manage
16-bit unsigned integer data.

It should never be necessary to create an instance of TWordField manually, a field of this class
will be instantiated automatically for each word field when a dataset is opened.

376

CHAPTER 10. REFERENCE FOR UNIT 'DB’

10.53.2 Method overview

Page Property Description
376 Create Create a new instance of the TWordField class.

10.53.3 TWordField.Create

Synopsis: Create a new instance of the TWordField class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create initializes a new instance of the TWordField (375) class. It calls the inherited constructor
and then simply sets some of the TField (296) properties to work with 16-bit unsigned integer data.

See also: TField (296)

377

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.9: Enumeration values for type TFieldType

Value Explanation
ftADT ADT value
ftArray Array data
ftAutolnc Auto-increment integer value (4 bytes)
ftBCD Binary Coded Decimal value (DECIMAL and NUMERIC SQL types)
ftBlob Binary data value (no type, no size)
ftBoolean Boolean value
ftBytes Array of bytes value, fixed size (unytped)
ftCurrency Currency value (4 decimal points)
ftCursor Cursor data value (no size)
ftDataSet Dataset data (blob)
ftDate Date value
ftDateTime Date/Time (timestamp) value
ftDBaseOle Paradox OLE field data
ftFixedChar Fixed character array (string)
ftFixedWideChar Fixed wide character date (2 bytes per character)
ftFloat Floating point value (double)
ftFMTBcd Formatted BCD (Binary Coded Decimal) value.
ftFmtMemo Formatted memo ata value (no size)
ftGraphic Graphical data value (no size)
ftGuid GUID data value
ftIDispatch Dispatch data value
ftInteger Regular integer value (4 bytes, signed)
ftInterface interface data value
ftLargeint Large integer value (8-byte)
ftMemo Binary text data (no size)
ftOraBlob Oracle BLOB data
ftOraClob Oracle CLOB data
ftParadoxOle Paradox OLE field data (no size)
ftReference Reference data
ftSmallint Small integer value(1 byte, signed)
ftString String data value (ansistring)
ftTime Time value
ftTimeStamp Timestamp data value
ftTypedBinary Binary typed data (no size)
ftUnknown Unknown data type
ftVarBytes Array of bytes value, variable size (untyped)
ftVariant Variant data value
ftWideMemo Widestring memo data
ftWideString Widestring (2 bytes per character)
ftWord Word-sized value(2 bytes, unsigned)
Table 10.10: Enumeration values for type TFilterOption
Value Explanation
foCaselnsensitive Filter case insensitively.
foNoPartialCompare Do not compare values partially, always compare completely.

378

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.11: Enumeration values for type TGetMode

Value Explanation

gmCurrent Retrieve the current record
gmNext Retrieve the next record.
gmPrior Retrieve the previous record.

Table 10.12: Enumeration values for type TGetResult

Value Explanation

grBOF The beginning of the recordset is reached
grEOF The end of the recordset is reached.
grError An error occurred

grOK The operation was completed succesfully

Table 10.13: Enumeration values for type TIndexOption

Value Explanation

ixCaselnsensitive The values in the index are sorted case-insensitively

ixDescending The values in the index are sorted descending.

ixExpression The values in the index are based on a calculated expression.
ixNonMaintained The index is non-maintained, i.e. changing the data will not update the index.
ixPrimary The index is the primary index for the data

ixUnique The index is a unique index, i.e. each index value can occur only once

Table 10.14: Enumeration values for type TLocateOption

Value Explanation
loCaselnsensitive Perform a case-insensitive search
loPartialKey Accept partial key matches

Table 10.15: Enumeration values for type TParamStyle

Value Explanation

psinterbase Parameters are specified by a ? character
psPostgreSQL Parameters are specified by a $N character.
psSimulated Parameters are specified by a $N character.

Table 10.16: Enumeration values for type TParamType

Value Explanation

ptlnput Input parameter

ptlnputOutput Input/output parameter
ptOutput Output paramete, filled on result
ptResult Result parameter

ptUnknown Unknown type

379

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.17: Enumeration values for type TProviderFlag

Value Explanation

pfHidden

pfInKey Field is a key field and used in the WHERE clause of an update statement

pfInUpdate Changes to the field should be propagated to the database.

pfInWhere Field should be used in the WHERE clause of an update statement in case of upWhereChanged.

Table 10.18: Enumeration values for type TResolverResponse

Value Explanation

rrAbort Abor the whole update process

rrApply Replace the update with new values applied by the event handler
rrlgnore Ignore the error and remove update from change log

rrtMerge Merge the update with existing changes on the server

rrSkip Skip the current update, leave it in the change log

Table 10.19: Enumeration values for type TUpdateAction

Value Explanation
uaAbort The whole update operation should abort
uaApplied Consider the update as applied

uaFail Update operation should fail
uaRetry Retry the update operation
uaSkip The update of the current record should be skipped. (but not discarded)

Table 10.20: Enumeration values for type TUpdateKind

Value Explanation
ukDelete Delete a record in the database.
ukInsert insert a new record in the database.

ukModify Modify an existing record in the database.

Table 10.21: Enumeration values for type TUpdateMode

Value Explanation

upWhereAll Use all old field values

upWhereChanged Use only old field values of modified fields
upWhereKeyOnly Only use key fields in the where clause.

380

CHAPTER 10. REFERENCE FOR UNIT 'DB’

Table 10.22: Enumeration values for type TUpdateStatus

Value Explanation

usDeleted Record exists in the database, but is locally deleted.

uslnserted Record does not yet exist in the database, but is locally inserted
usModified Record exists in the database but is locally modified

usUnmodified Record is unmodified

381

Chapter 11

Reference for unit ’dbugintf’

11.1 Writing a debug server

Writing a debug server is relatively easy. It should instantiate a TSimpleIPCServer class from
the SimpleIPC (381) unit, and use the DebugServerID as ServerID identification. This con-
stant, as well as the record containing the message which is sent between client and server is defined
in the msgintf unit.

The dbugintf unit relies on the SimpleIPC (381) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (381) unit should also be functional.

11.2 Overview

Use dbugintf to add debug messages to your application. The messages are not sent to standard
output, but are sent to a debug server process which collects messages from various clients and
displays them somehow on screen.

The unit is transparant in its use: it does not need initialization, it will start the debug server by itself
if it can find it: the program should be called debugserver and should be in the PATH. When the
first debug message is sent, the unit will initialize itself.

The FCL contains a sample debug server (dbugsvr) which can be started in advance, and which
writes debug message to the console (both on Windows and Linux). The Lazarus project contains a
visual application which displays the messages in a GUIL

The dbugintf unit relies on the SimpleIPC (381) mechanism to communicate with the debug server,
hence it works on all platforms that have a functional version of that unit. It also uses TProcess to
start the debug server if needed, so the process (381) unit should also be functional.

11.3 Constants, types and variables

11.3.1 Resource strings

SEntering = ’'> Entering ’
String used when sending method enter message.

SExiting = < Exiting '

382

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

String used when sending method exit message.

SProcessID = 'Process %s’

String used when sending identification message to the server.

SSeparator = '>-=-=-=-=-=-=-=-=-=-=-=-=-=—=-<'

String used when sending a separator line.

SServerStartFailed = 'Failed to start debugserver. (%s)’

String used to display an error message when the start of the debug server failed

11.3.2 Constants

SendError : String = '’

Whenever a call encounteres an exception, the exception message is stored in this variable.

11.3.3 Types

TDebugLevel = (dlInformation,dlWarning,dlError)

Table 11.1: Enumeration values for type TDebugLevel

Value Explanation

dlError Error message
dlInformation Informational message
dIWarning Warning message

TDebugLevel indicates the severity level of the debug message to be sent. By default, an informa-
tional message is sent.

11.4 Procedures and functions

11.4.1 GetDebuggingEnabled

Synopsis: Check if sending of debug messages is enabled.
Declaration: function GetDebuggingEnabled : Boolean
Visibility: default

Description: GetDebuggingEnabled returns the value set by the last call to SetDebuggingEnabled. It
is True by default.

See also: SetDebuggingEnabled (386), SendDebug (383)

383

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

11.4.2 InitDebugClient

Synopsis: Initialize the debug client.
Declaration: function InitDebugClient : Boolean
Visibility: default

Description: InitDebugClient starts the debug server and then performs all necessary initialization of the
debug IPC communication channel.

Normally this function should not be called. The SendDebug (383) call will initialize the debug client
when it is first called.

Errors: None.

See also: SendDebug (383), StartDebugServer (386)

11.4.3 SendBoolean

Synopsis: Send the value of a boolean variable
Declaration: procedure SendBoolean (const Identifier: String;const Value: Boolean)
Visibility: default

Description: SendBoolean is a simple wrapper around SendDebug (383) which sends the name and value of a
boolean value as an informational message.

Errors: None.

See also: SendDebug (383), SendDateTime (383), SendInteger (385), SendPointer (386)

11.4.4 SendDateTime

Synopsis: Send the value of a TDateTime variable.
Declaration: procedure SendDateTime (const Identifier: String;const Value: TDateTime)
Visibility: default

Description: SendDateTime is a simple wrapper around SendDebug (383) which sends the name and value of
an integer value as an informational message. The value is converted to a string using the DateTime-
ToStr (2?) call.

Errors: None.

See also: SendDebug (383), SendBoolean (383), SendInteger (385), SendPointer (386)

11.4.5 SendDebug

Synopsis: Send a message to the debug server.
Declaration: procedure SendDebug (const Msg: String)

Visibility: default

384

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

Description: SendDebug sends the message Msg to the debug server as an informational message (debug level
dlInformation). If no debug server is running, then an attempt will be made to start the server

first.

The binary that is started is called debugserver and should be somewhere on the PATH. A sample
binary which writes received messages to standard output is included in the FCL, it is called dbugsrv.
This binary can be renamed to debugserver or can be started before the program is started.

Errors: Errors are silently ignored, any exception messages are stored in SendError (382).

See also: SendDebugEx (384), SendDebugFmt (384), SendDebugFmtEx (384)

11.4.6 SendDebugEx

Synopsis: Send debug message other than informational messages
Declaration: procedure SendDebugEx (const Msg: String;MType: TDebugLevel)
Visibility: default

Description: SendDebugEx allows to specify the debug level of the message to be sent in MType. By default,
SendDebug (383) uses informational messages.

Other than that the function of SendDebugEx is equal to that of SendDebug
Errors: None.
See also: SendDebug (383), SendDebugFmt (384), SendDebugFmtEx (384)

11.4.7 SendDebugFmt
Synopsis: Format and send a debug message
Declaration: procedure SendDebugFmt (const Msg: String;const Args: Array of const)
Visibility: default

Description: SendDebugFmt is a utility routine which formats a message by passing Msg and Args to Format
(??) and sends the result to the debug server using SendDebug (383). It exists mainly to avoid the

Format call in calling code.

Errors: None.

See also: SendDebug (383), SendDebugEx (384), SendDebugFmtEx (384), #rtl.sysutils.format (??)

11.4.8 SendDebugFmtEx
Synopsis: Format and send message with alternate type

Declaration: procedure SendDebugFmtEx (const Msg: String;const Args: Array of const;
MType: TDebugLevel)

Visibility: default

Description: SendDebugFmtEx is a utility routine which formats a message by passing Msg and Args to
Format (??) and sends the result to the debug server using SendDebugEx (384) with Debug level
MType. It exists mainly to avoid the Format call in calling code.

Errors: None.
See also: SendDebug (383), SendDebugEx (384), SendDebugFmt (384), #rtl.sysutils.format (??)

385

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

11.4.9 Sendinteger

Synopsis: Send the value of an integer variable.

Declaration: procedure SendInteger (const Identifier: String;const Value: Integer;
HexNotation: Boolean)

Visibility: default

Description: SendInteger is a simple wrapper around SendDebug (383) which sends the name and value of
an integer value as an informational message. If HexNotation is True, then the value will be
displayed using hexadecimal notation.

Errors: None.

See also: SendDebug (383), SendBoolean (383), SendDateTime (383), SendPointer (386)

11.4.10 SendMethodEnter
Synopsis: Send method enter message
Declaration: procedure SendMethodEnter (const MethodName: String)
Visibility: default

Description: SendMethodEnter sends a "Entering MethodName" message to the debug server. After that it
increases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odExit (385), the indentation of messages can be decreased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Errors: None.

See also: SendDebug (383), SendMethodExit (385), SendSeparator (386)

11.4.11 SendMethodEXxit
Synopsis: Send method exit message
Declaration: procedure SendMethodExit (const MethodName: String)
Visibility: default

Description: sendMethodExit sends a "Exiting MethodName" message to the debug server. After that it
decreases the message indentation (currently 2 characters). By sending a corresponding SendMeth-
odEnter (385), the indentation of messages can be increased again.

By using the SendMethodEnter and SendMethodExit methods at the beginning and end of a
procedure/method, it is possible to visually trace program execution.

Note that the indentation level will not be made negative.
Errors: None.

See also: SendDebug (383), SendMethodEnter (385), SendSeparator (386)

386

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

11.4.12 SendPointer

Synopsis: Send the value of a pointer variable.
Declaration: procedure SendPointer (const Identifier: String;const Value: Pointer)
Visibility: default

Description: SsendInteger is a simple wrapper around SendDebug (383) which sends the name and value
of a pointer value as an informational message. The pointer value is displayed using hexadecimal
notation.

Errors: None.

See also: SendDebug (383), SendBoolean (383), SendDateTime (383), SendInteger (385)

11.4.13 SendSeparator

Synopsis: Send a separator message
Declaration: procedure SendSeparator
Visibility: default

Description: sendSeparator is a simple wrapper around SendDebug (383) which sends a short horizontal
line to the debug server. It can be used to visually separate execution of blocks of code or blocks of
values.

Errors: None.

See also: SendDebug (383), SendMethodEnter (385), SendMethodExit (385)

11.4.14 SetDebuggingEnabled
Synopsis: Temporary enables or disables debugging

Declaration: procedure SetDebuggingEnabled (const AValue: Boolean)
Visibility: default

Description: setDebuggingEnabled can be used to temporarily enable or disable sending of debug mes-
sages: this allows to control the amount of messages sent to the debug server without having to
remove the SendDebug (383) statements. By default, debugging is enabled. If set to false, debug
messages are simply discarded till debugging is enabled again.

A value of True enables sending of debug messages. A value of False disables sending.
Errors: None.

See also: GetDebuggingEnabled (382), SendDebug (383)

11.4.15 StartDebugServer
Synopsis: Start the debug server

Declaration: function StartDebugServer : Integer

Visibility: default

387

CHAPTER 11. REFERENCE FOR UNIT 'DBUGINTF’

Description: startDebugServer attempts to start the debug server. The process started is called debugserver
and should be located in the PATH.

Normally this function should not be called. The SendDebug (383) call will attempt to start the server
by itself if it is not yet running.

Errors: On error, False is returned.

See also: SendDebug (383), InitDebugClient (383)

388

Chapter 12

Reference for unit ’dbugmsg’

12.1 Used units

Table 12.1: Used units by unit ’dbugmsg’

Name Page
Classes 2?

12.2 Overview

dbugmsg is an auxialiary unit used in the dbugintf (381) unit. It defines the message protocol used
between the debug unit and the debug server.

12.3 Constants, types and variables

12.3.1 Constants

DebugServerID : String = ' fpcdebugserver’

DebugServerID is a string which is used when creating the message protocol, it is used when
identifying the server in the (platform dependent) client-server protocol.

lctError = 2
lctError is the identification of error messages.
lctIdentify = 3

lctIdentify is sent by the client to a server when it first connects. It’s the first message, and
contains the name of client application.

lctInformation = 0

389

CHAPTER 12. REFERENCE FOR UNIT 'DBUGMSG’

lctInformation is the identification of informational messages.
lctStop = -1

lctStop is sent by the client to a server when it disconnects.
lctWarning = 1

lctWarning is the identification of warning messages.

12.3.2 Types

TDebugMessage = record
MsgType : Integer;
MsgTimeStamp : TDateTime;
Msg : String;

end

TDebugMessage is a record that describes the message passed from the client to the server. It
should not be passed directly in shared memory, as the string containing the message is allocated
on the heap. Instead, the WriteDebugMessageToStream (390) and ReadDebugMessageFromStream
(389) can be used to read or write the message from/to a stream.

12.4 Procedures and functions

12.4.1 DebugMessageName
Synopsis: Return the name of the debug message
Declaration: function DebugMessageName (msgType: Integer) : String
Visibility: default

Description: DebugMessageName returns the name of the message type. It can be used to examine the
MsgType field of a TDebugMessage (389) record, and if msgType contains a known type, it returns
a string describing this type.

Errors: If MsgType contains an unknown type, ' Unknown’ is returned.

12.4.2 ReadDebugMessageFromStream
Synopsis: Read a message from stream

Declaration: procedure ReadDebugMessageFromStream (AStream: TStream;
var Msg: TDebugMessage)

Visibility: default

Description: ReadDebugMessageFromSt ream reads a TDebugMessage (389) record (Msg) from the stream
AStream.

The record is not read in a byte-ordering safe way, i.e. it cannot be exchanged between little- and
big-endian systems.

Errors: If the stream contains not enough bytes or is malformed, then an exception may be raised.

See also: TDebugMessage (389), WriteDebugMessageToStream (390)

390

CHAPTER 12. REFERENCE FOR UNIT 'DBUGMSG’

12.4.3 WriteDebugMessageToStream

Synopsis: Write a message to stream

Declaration: procedure WriteDebugMessageToStream(AStream: TStream;
const Msg: TDebugMessage)

Visibility: default

Description: WriteDebugMessageFromSt ream writes a TDebugMessage (389) record (Msg) to the stream
AStream.

The record is not written in a byte-ordering safe way, i.e. it cannot be exchanged between little- and
big-endian systems.

Errors: A stream write error may occur if the stream cannot be written to.

See also: TDebugMessage (389), ReadDebugMessageToStream (388)

391

Chapter 13

Reference for unit ’eventlog’

13.1 Used units

il

Table 13.1: Used units by unit eventlog

Name Page
Classes 2?
sysutils 7?

13.2 Overview

The EventLog unit implements the TEventLog (393) component, which is a component that can be
used to send log messages to the system log (if it is available) or to a file.

13.3 Constants, types and variables

13.3.1 Resource strings

SErrLogFailedMsg = 'Failed to log entry (Error: %s)’
Message used to format an error when an error exception is raised.
SLogCustom = ’Custom (%d)’

Custom message formatting string

SLogDebug = ’'Debug’

Debug message name

SLogError = "Error’

Error message name

392

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

SLogInfo = "Info’
Informational message name
SLogWarning = ’'Warning’

Warning message name

13.3.2 Types
TEventType =

(etCustom, etInfo,etWarning,etError, etDebug)

Table 13.2: Enumeration values for type TEventType

Value

Explanation

etCustom
etDebug
etError
etInfo
etWarning

Custom event type.
Debug event

Error event
Informational event
Warning event

TEventType determines the type of event. Depending on the system logger, the log event may
end up in different places, or may be displayed in a different manner. A suitable mapping is shown
for each system. In the case of Windows, the formatting of the message is done differently, and a
different icon is shown for each type of message.

TLogCategoryEvent = procedure (Sender: TObject;var Code: Word) of object

TLogCategoryEvent is the event type for the TEventLog.OnGetCustomCategory (399) event
handler. It should return a OS event catagory code for the et Custom log event type in the Code
parameter.

TLogCodeEvent = procedure (Sender: TObject;var Code: DWord) of object

TLogCodeEvent is the event type for the OnGetCustomEvent (400) and OnGetCustomEventID
(399) event handlers. It should return a OS system log code for the et Custom log event or event
ID type in the Code parameter.

TLogType = (ltSystem,ltFile)

Table 13.3: Enumeration values for type TLogType

Value Explanation
ItFile Write to file
ItSystem Use the system log

TLogType determines where the log messages are written. It is the type of the TEventLog.LogType
(397) property. It can have 2 values:

393

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

ItFile This is used to write all messages to file. if no system logging mechanism exists, this is used
as a fallback mechanism.

ItSystem This is used to send all messages to the system log mechanism. Which log mechanism this
is, depends on the operating system.

13.4 ELogError

13.4.1 Description

ELogError is the exception used in the TEventLog (393) component to indicate errors.

13.5 TEventLog

13.5.1 Description

TEventLog is a component which can be used to send messages to the system log. In case no
system log exists (such as on Windows 95/98 or DOS), the messages are written to a file. Messages
can be logged using the general Log (395) call, or the specialized Warning (395), Error (396), Info
(396) or Debug (396) calls, which have the event type predefined.

13.5.2 Method overview

Page Property Description

396 Debug Log a debug message

394 Destroy Clean up TEventLog instance

396 Error Log an error message to

394 EventTypeToString Create a string representation of an event type
396 Info Log an informational message

395 Log Log a message to the system log.

394 RegisterMessageFile Register message file

395 Warning Log a warning message.

13.5.3 Property overview

Page Property Access Description

397 Active rw Activate the log mechanism

398 CustomLogType w Custom log type ID

397 DefaultEventType w Default event type for the Log (395) call.

399 EventIDOffset w Offset for event ID messages identifiers

398 FileName rw File name for log file

396 Identification w Identification string for messages

397 LogType w Log type

399 OnGetCustomCategory 1w Event to retrieve custom message category

400 OnGetCustomEvent w Event to retrieve custom event Code

399 OnGetCustomEventID rw Event to retrieve custom event ID

397 RaiseExceptionOnError 1w Determines whether logging errors are reported or
ignored

398 TimeStampFormat w Format for the timestamp string

394

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

13.5.4 TEventLog.Destroy
Synopsis: Clean up TEventLog instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy cleans up the TEvent Log instance. It cleans any log structures that might have been set

up to perform logging, by setting the Active (397) property to False.

See also: TEventLog.Active (397)

13.5.5 TEventLog.EventTypeToString

Synopsis: Create a string representation of an event type
Declaration: function EventTypeToString(E: TEventType) : String
Visibility: public

Description: Event TypeToString converts the event type E to a suitable string representation for logging
purposes. It’s mainly used when writing messages to file, as the system log usually has it’s own
mechanisms for displaying the various event types.

See also: TEventType (392)

13.5.6 TEventLog.RegisterMessageFile

Synopsis: Register message file
Declaration: function RegisterMessageFile (AFileName: String) : Boolean; Virtual
Visibility: public

Description: RegisterMessageFile is used on Windows to register the file AFileName containing the
formatting strings for the system messages. This should be a file containing resource strings. If
AFileName is empty, the filename of the application binary is substituted.

When a message is logged to the windows system log, Windows looks for a formatting string in the
file registered with this call.

There are 2 kinds of formatting strings:

Category strings these should be numbered from 1 to 4

1Should contain the description of the et Info event type.
2Should contain the description of the etWarning event type.
4Should contain the description of the et Error event type.

4Should contain the description of the et Debug event type.

None of these strings should have a string substitution placeholder.

The second type of strings are the message definitions. Their number starts at EventIDOffset (399)
(default is 1000) and each string should have 1 placeholder.

Free Pascal comes with a fclel.res resource file which contains default values for the 8 strings, in
english. It can be linked in the application binary with the statement

{SR fclel.res}

395

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

This file is generated from the fclel.mc and fclel.rc files that are distributed with the Free Pascal
sources.

If the strings are not registered, windows will still display the event messages, but they will not be
formatted nicely.

Note that while any messages logged with the event logger are displayed in the event viewern Win-
dows locks the file registered here. This usually means that the binary is locked.

On non-windows operating systems, this call is ignored.

Errors: If AFileName is invalid, false is returned.

13.5.7 TEventLog.Log

Synopsis: Log a message to the system log.

Declaration: procedure Log(EventType: TEventType;Msg: String); Overload
procedure Log (EventType: TEventType;Fmt: String;Args: Array of const)
; Overload
procedure Log (Msg: String); Overload
procedure Log(Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Log sends a log message to the system log. The message is either the parameter Msg as is, or is
formatted from the Fmt and Args parameters. If EventType is specified, then it is used as the
message event type. If EventType is omitted, then the event type is determined from Default-
EventType (397).

If Event Type is et Custom, then the OnGetCustomEvent (400), OnGetCustomEventID (399) and
OnGetCustomCategory (399).

The other logging calls: Info (396), Warning (395), Error (396) and Debug (396) use the Log call to
do the actual work.

See also: TEventLog.Info (396), TEventLog.Warning (395), TEventLog.Error (396), TEventLog.Debug (396),
TEventLog.OnGetCustomEvent (400), TEventLog.OnGetCustomEventID (399), TEventLog.OnGetCustomCategory
(399)

13.5.8 TEventLog.Warning

Synopsis: Log a warning message.

Declaration: procedure Warning(Msg: String); Overload
procedure Warning (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Warning is a utility function which logs a message with the etWarning type. The message is
either the parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (395), TEventLog.Info (396), TEventLog.Error (396), TEventLog.Debug (396)

396

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

13.5.9 TEventLog.Error

Synopsis: Log an error message to

Declaration: procedure Error (Msg: String); Overload
procedure Error (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Error is a utility function which logs a message with the et Error type. The message is either
the parameter Msg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (395), TEventLog.Info (396), TEventLog.Warning (395), TEventLog.Debug (396)

13.5.10 TEventLog.Debug
Synopsis: Log a debug message

Declaration: procedure Debug (Msg: String); Overload
procedure Debug (Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Debug is a utility function which logs a message with the etDebug type. The message is either
the parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (395), TEventLog.Info (396), TEventLog.Warning (395), TEventLog.Error (396)

13.5.11 TEventLog.Info

Synopsis: Log an informational message

Declaration: procedure Info (Msg: String); Overload
procedure Info(Fmt: String;Args: Array of const); Overload

Visibility: public

Description: Info is a utility function which logs a message with the et Info type. The message is either the
parameter Msqg as is, or is formatted from the Fmt and Args parameters.

See also: TEventLog.Log (395), TEventLog.Warning (395), TEventLog.Error (396), TEventLog.Debug (396)

13.5.12 TEventLog.ldentification

Synopsis: Identification string for messages
Declaration: Property Identification : String
Visibility: published
Access: Read,Write

Description: Identification is used as a string identifying the source of the messages in the system log. If
it is empty, the filename part of the application binary is used.

See also: TEventLog.Active (397), TEventLog. TimeStampFormat (398)

397

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

13.5.13 TEventLog.LogType
Synopsis: Log type
Declaration: Property LogType : TLogType
Visibility: published
Access: Read,Write

Description: LogType is the type of the log: if it is 1t System, then the system log is used, if it is available.
Ifitis 1tFile or there is no system log available, then the log messages are written to a file. The
name for the log file is taken from the FileName (398) property.

See also: TEventLog.FileName (398)

13.5.14 TEventLog.Active
Synopsis: Activate the log mechanism

Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive determines whether the log mechanism is active: if set to True, the component connects
to the system log mechanism, or opens the log file if needed. Any attempt to log a message while the
log is not active will try to set this property to True. Disconnecting from the system log or closing
the log file is done by setting the Act ive property to False.

If the connection to the system logger fails, or the log file cannot be opened, then setting this property
may result in an exception.

See also: TEventLog.Log (395)

13.5.15 TEventLog.RaiseExceptionOnError

Synopsis: Determines whether logging errors are reported or ignored
Declaration: Property RaiseExceptionOnError : Boolean
Visibility: published
Access: Read,Write

Description: RaiseExceptionOnError determines whether an error during a logging operation will be sig-
naled with an exception or not. If set to False, errors will be silently ignored, thus not disturbing
normal operation of the program.

13.5.16 TEventLog.DefaultEventType
Synopsis: Default event type for the Log (395) call.

Declaration: Property DefaultEventType : TEventType
Visibility: published

Access: Read,Write

398

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

Description: DefaultEvent Type is the event type used by the Log (395) call if it’s Event Type parameter
is omitted.

See also: TEventLog.Log (395)

13.5.17 TEventLog.FileName
Synopsis: File name for log file

Declaration: Property FileName : String
Visibility: published
Access: Read,Write

Description: FileName is the name of the log file used to log messages if no system logger is available or the
LogType (392) is 1tFile. If none is specified, then the name of the application binary is used, with
the extension replaced by .log. The file is then located in the /tmp directory on unix-like systems, or
in the application directory for Dos/Windows like systems.

See also: TEventType.LogType (392)

13.5.18 TEventLog.TimeStampFormat

Synopsis: Format for the timestamp string
Declaration: Property TimeStampFormat : String
Visibility: published
Access: Read,Write

Description: TimeStampFormat is the formatting string used to create a timestamp string when writing log
messages to file. It should have a format suitable for the FormatDateTime (??) call. If it is left empty,
then yyyy-mm-dd hh:nn:ss.zzz is used.

See also: TEventLog.Identification (396)

13.5.19 TEventLog.CustomLogType
Synopsis: Custom log type ID

Declaration: Property CustomLogType : Word
Visibility: published
Access: Read,Write

Description: CustomLogType is used in the EventTypeToString (394) to format the custom log event type
string.

See also: TEventLog.EventTypeToString (394)

399

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

13.5.20 TEventLog.EventiDOffset
Synopsis: Offset for event ID messages identifiers
Declaration: Property EventIDOffset : DWord
Visibility: published
Access: Read,Write

Description: Event IDOf fset is the offset for the message formatting strings in the windows resource file.
This property is ignored on other platforms.

The message strings in the file registered with the RegisterMessageFile (394) call are windows re-
source strings. They each have a unique ID, which must be communicated to windows. In the
resource file distributed by Free Pascal, the resource strings are numbered from 1000 to 1004. The
actual number communicated to windows is formed by adding the ordinal value of the message’s
eventtype to Event IDOf fset (which is by default 1000), which means that by default, the string
numbers are:

1000Custom event types
1001Information event type
1002Warning event type
1003Error event type
1004Debug event type

See also: TEventLog.RegisterMessageFile (394)

13.5.21 TEventLog.OnGetCustomCategory

Synopsis: Event to retrieve custom message category
Declaration: Property OnGetCustomCategory : TLogCategoryEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomCategory is called on the windows platform to determine the category of a custom
event type. It should return an ID which will be used by windows to look up the string which
describes the message category in the file containing the resource strings.

See also: TEventLog.OnGetCustomEventID (399), TEventLog.OnGetCustomEvent (400)

13.5.22 TEventLog.OnGetCustomEventID

Synopsis: Event to retrieve custom event ID
Declaration: Property OnGetCustomEventID : TLogCodeEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomEvent ID is called on the windows platform to determine the category of a custom
event type. It should return an ID which will be used by windows to look up the string which formats
the message, in the file containing the resource strings.

See also: TEventLog.OnGetCustomCategory (399), TEventLog.OnGetCustomEvent (400)

400

CHAPTER 13. REFERENCE FOR UNIT ’EVENTLOG’

13.5.23 TEventLog.OnGetCustomEvent

Synopsis: Event to retrieve custom event Code
Declaration: Property OnGetCustomEvent : TLogCodeEvent
Visibility: published
Access: Read,Write

Description: OnGetCustomEvent is called on the windows platform to determine the event code of a custom
event type. It should return an ID.

See also: TEventLog.OnGetCustomCategory (399), TEventLog.OnGetCustomEventID (399)

401

Chapter 14

Reference for unit ’ezcgi’

14.1 Used units

Table 14.1: Used units by unit "ezcgi’

Name Page

Classes ??
strings 401
sysutils 2?

14.2 Overview

ezcgi, written by Michael Hess, provides a single class which offers simple access to the CGI en-
vironment which a CGI program operates under. It supports both GET and POST methods. It’s
intended for simple CGI programs which do not need full-blown CGI support. File uploads are not
supported by this component.

To use the unit, a descendent of the TEZCGTI class should be created and the DoPost (404) or DoGet
(404) methods should be overidden.

14.3 Constants, types and variables

14.3.1 Constants
hexTable = "0123456789ABCDEF’

String constant used to convert a number to a hexadecimal code or back.

14.4 ECGIException

14.4.1 Description
Exception raised by TEZcgi (402)

402

CHAPTER 14. REFERENCE FOR UNIT "EZCGI’

14.5 TEZcgi

14.5.1 Description

TEZcgi implements all functionality to analyze the CGI environment and query the variables present
in it. It’s main use is the exposed variables.

Programs wishing to use this class should make a descendent class of this class and override the
DoPost (404) or DoGet (404) methods. To run the program, an instance of this class must be created,
and it’s Run (403) method should be invoked. This will analyze the environment and call the DoPost
or DoGet method, depending on what HTTP method was used to invoke the program.

14.5.2 Method overview

Page Property Description

402 Create Creates a new instance of the TEZCGI component
402 Destroy Removes the TEZCGI component from memory
404 DoGet Method to handle GET requests

404 DoPost Method to handle POST requests

404 GetValue Return the value of a request variable.

403 PutLine Send a line of output to the web-client

403 Run Run the CGI application.

403 WriteContent ~ Writes the content type to standard output

14.5.3 Property overview

Page Property Access Description

406 Email w Email of the server administrator

406 Name ™w Name of the server administrator

405 Names r Indexed array with available variable names.

404 Values r Variables passed to the CGI script

406 VariableCount r Number of available variables.

405 Variables r Indexed array with variables as name=value pairs.

14.5.4 TEZcgi.Create

Synopsis: Creates a new instance of the TEZCGI component
Declaration: constructor Create
Visibility: public

Description: Create initializes the CGI program’s environment: it reads the environment variables passed to
the CGI program and stores them in the Variable (401) property.

See also: TZECGI. Variables (401), TZECGI.Names (401), TZECGI. Values (401)

14.5.5 TEZcgi.Destroy
Synopsis: Removes the TEZCGI component from memory

Declaration: destructor Destroy; Override

Visibility: public

403

CHAPTER 14. REFERENCE FOR UNIT "EZCGI’

Description: Destroy removes all variables from memory and then calls the inherited destroy, removing the
TEZCGI instance from memory.

Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TEZcgi.Create (402)

14.5.6 TEZcgi.Run
Synopsis: Run the CGI application.

Declaration: procedure Run
Visibility: public

Description: Run analyses the variables passed to the application, processes the request variables (it stores them
in the Variables (401) property) and calls the DoPost (404) or DoGet (404) methods, depending on
the method passed to the web server.

After creating the instance of TEZCGI, the Run method is the only method that should be called
when using this component.

See also: TZECGI. Variables (401), TEZCGIL.DoPost (404), TEZCGLDoGet (404)

14.5.7 TEZcgi.WriteContent

Synopsis: Writes the content type to standard output
Declaration: procedure WriteContent (ctype: String)
Visibility: public

Description: WriteContent writes the content type cType to standard output, followed by an empty line.
After this method was called, no more HTTP headers may be written to standard output. Any HTTP
headers should be written before WriteContent is called. It should be called from the DoPost
(404) or DoGet (404) methods.

See also: TEZCGI.DoPost (404), TEZCGIL.DoGet (404), TEZcgi.PutLine (403)

14.5.8 TEZcgi.PutLine

Synopsis: Send a line of output to the web-client
Declaration: procedure PutLine (sOut: String)
Visibility: public

Description: Put Line writes a line of text (sOut) to the web client (currently, to standard output). It should
be called only after WriteContent (403) was called with a content type of text. The sent text is not
processed in any way, i.e. no HTML entities or so are inserted instead of special HTML characters.
This should be done by the user.

Errors: No check is performed whether the content type is right.

See also: TEZcgi.WriteContent (403)

404

CHAPTER 14. REFERENCE FOR UNIT "EZCGI’

14.5.9 TEZcgi.GetValue

Synopsis: Return the value of a request variable.
Declaration: function GetValue (Index: String;defaultValue: String) : String
Visibility: public

Description: GetValue returns the value of the variable named Index, and returns DefaultValue if it is
empty or does not exist.

See also: TEZCGI. Values (404)

14.5.10 TEZcgi.DoPost
Synopsis: Method to handle POST requests

Declaration: procedure DoPost; Virtual
Visibility: public

Description: DoPost is called by the Run (403) method the POST method was used to invoke the CGI applica-
tion. It should be overridden in descendents of TEZcgi to actually handle the request.

See also: TEZcgi.Run (403), TEZcgi.DoGet (404)

14.5.11 TEZcgi.DoGet

Synopsis: Method to handle GET requests
Declaration: procedure DoGet; Virtual
Visibility: public

Description: DoGet is called by the Run (403) method the GET method was used to invoke the CGI application.
It should be overridden in descendents of TEZcgi to actually handle the request.

See also: TEZcgi.Run (403), TEZcgi.DoPost (404)

14.5.12 TEZcgi.Values
Synopsis: Variables passed to the CGI script

Declaration: Property Values[Index: String]: String
Visibility: public
Access: Read

Description: values is a name-based array of variables that were passed to the script by the web server or the
HTTP request. The Index variable is the name of the variable whose value should be retrieved. The
following standard values are available:

AUTH_TYPEAuthorization type
CONTENT_LENGTHContent length
CONTENT_TYPEContent type

405

CHAPTER 14. REFERENCE FOR UNIT "EZCGI’

GATEWAY_INTERFACEUsed gateway interface
PATH_INFORequested URL
PATH_TRANSLATEDTransformed URL
QUERY_STRINGClient query string
REMOTE_ADDRAddress of remote client
REMOTE_HOSTDNS name of remote client
REMOTE_IDENTRemote identity.
REMOTE_USERRemote user
REQUEST_METHODRequest methods (POST or GET)
SCRIPT_NAMEScript name
SERVER_NAMEServer host name
SERVER_PORTServer port
SERVER_PROTOCOLServer protocol
SERVER_SOFTWAREWEeb server software
HTTP_ACCEPT Accepted responses
HTTP_ACCEPT_CHARSET Accepted character sets
HTTP_ACCEPT_ENCODINGAccepted encodings
HTTP_IF_MODIFIED_SINCEProxy information
HTTP_REFERERReferring page
HTTP_USER_AGENTC Client software name

Other than the standard list, any variables that were passed by the web-client request, are also avail-
able. Note that the variables are case insensitive.

See also: TEZCGI. Variables (405), TEZCGI.Names (405), TEZCGI.GetValue (404), TEZcgi.VariableCount
(406)

14.5.13 TEZcgi.Names

Synopsis: Indexed array with available variable names.
Declaration: Property Names[Index: Integer]: String
Visibility: public
Access: Read

Description: Names provides indexed access to the available variable names. The Index may run from O to
VariableCount (406). Any other value will result in an exception being raised.

See also: TEZcgi.Variables (405), TEZcgi.Values (404), TEZcgi.GetValue (404), TEZcgi. VariableCount (406)

14.5.14 TEZcgi.Variables

Synopsis: Indexed array with variables as name=value pairs.
Declaration: Property Variables[Index: Integer]: String

Visibility: public

406

CHAPTER 14. REFERENCE FOR UNIT "EZCGI’

Access: Read

Description: Variables provides indexed access to the available variable names and values. The variables are
returned as Name=Value pairs. The Index may run from 0 to VariableCount (406). Any other
value will result in an exception being raised.

See also: TEZcgi.Names (405), TEZcgi.Values (404), TEZcgi.GetValue (404), TEZcgi.VariableCount (406)

14.5.15 TEZcgi.VariableCount

Synopsis: Number of available variables.
Declaration: Property VariableCount : Integer
Visibility: public
Access: Read

Description: TEZcgi . VariableCount returns the number of available CGI variables. This includes both the
standard CGI environment variables and the request variables. The actual names and values can be
retrieved with the Names (405) and Variables (405) properties.

See also: TEZcgi.Names (405), TEZcgi. Variables (405), TEZcgi.Values (404), TEZcgi.GetValue (404)

14.5.16 TEZcgi.Name

Synopsis: Name of the server administrator
Declaration: Property Name : String
Visibility: public
Access: Read,Write

Description: Name is used when displaying an error message to the user. This should set prior to calling the
TEZcgi.Run (403) method.

See also: TEZcgi.Run (403), TEZcgi.Email (406)

14.5.17 TEZcgi.Email

Synopsis: Email of the server administrator
Declaration: Property Email : String
Visibility: public
Access: Read,Write

Description: Email is used when displaying an error message to the user. This should set prior to calling the
TEZcgi.Run (403) method.

See also: TEZcgi.Run (403), TEZcgi.Name (406)

407

Chapter 15

Reference for unit ’fpTimer’

15.1 Used units

Table 15.1: Used units by unit *fpTimer’

Name Page
Classes 2?

15.2 Overview

The fpTimer unit implements a timer class TFPTimer (409) which can be used on all supported
platforms. The timer class uses a driver class TFPTimerDriver (410) which does the actual work.

A default timer driver class is implemented on all platforms. It will work in GUI and non-gui appli-
cations, but only in the application’s main thread.

An alternative driver class can be used by setting the DefaultTimerDriverClass (407) variable to the
class pointer of the driver class. The driver class should descend from TFPTimerDriver (410).

15.3 Constants, types and variables

15.3.1 Types

TFPTimerDriverClass = Class of TFPTimerDriver

TFPTimerDriverClass is the class pointer of TFPTimerDriver (410) it exists mainly for the
purpose of being able to set DefaultTimerDriverClass (407), so a custom timer driver can be used for
the timer instances.

15.3.2 Variables

DefaultTimerDriverClass : TFPTimerDriverClass = nil

408

CHAPTER 15. REFERENCE FOR UNIT 'FPTIMER’

DefaultTimerDriverClass contains the TFPTimerDriver (410) class pointer that should be
used when a new instance of TFPCustomTimer (408) is created. It is by default set to the system
timer class.

Setting this class pointer to another descendent of TFPTimerDriver allows to customize the de-
fault timer implementation used in the entire application.

15.4 TFPCustomTimer

15.4.1 Description

TFPCustomTimer is the timer class containing the timer’s implementation. It relies on an extra
driver instance (of type TFPTimerDriver (410)) to do the actual work.

TFPCustomTimer publishes no events or properties, so it is unsuitable for handling in an IDE.
The TFPTimer (409) descendent class publishes all needed events of TFPCustomTimer.

15.4.2 Method overview

Page Property Description

408 Create Create a new timer

408 Destroy Release a timer instance from memory
409 StartTimer Start the timer

409 StopTimer Stop the timer

15.4.3 TFPCustomTimer.Create

Synopsis: Create a new timer
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create instantiates a new TFPCustomTimer instance. It creates the timer driver instance from
the DefaultTimerDriverClass class pointer.

See also: TFPCustomTimer.Destroy (408)

15.4.4 TFPCustomTimer.Destroy

Synopsis: Release a timer instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy releases the timer driver component from memory, and then calls Inherited to clean
the TFPCustomTimer instance from memory.

See also: TFPCustomTimer.Create (408)

409

CHAPTER 15. REFERENCE FOR UNIT 'FPTIMER’

15.4.5 TFPCustomTimer.StartTimer
Synopsis: Start the timer
Declaration: procedure StartTimer; Virtual
Visibility: public
Description: StartTimer starts the timer. After a call to StartTimer, the timer will start producing timer
ticks.

The timer stops producing ticks only when the StopTimer (409) event is called.

See also: TFPCustomTimer.StopTimer (409), TFPTimer.Enabled (409), TFPTimer.OnTimer (410)

15.4.6 TFPCustomTimer.StopTimer
Synopsis: Stop the timer
Declaration: procedure StopTimer; Virtual
Visibility: public
Description: Stopt imer stops a started timer. After a call to StopTimer, the timer no longer produces timer
ticks.

See also: TFPCustomTimer.StartTimer (409), TFPTimer.Enabled (409), TFPTimer.OnTimer (410)

15.5 TFPTimer

15.5.1 Description

TFPTimer implements no new events or properties, but merely publishes events and properties
already implemented in TFPCustomTimer (408): Enabled (409), OnTimer (410) and Interval (410).

The TFPTimer class is suitable for use in an IDE.

15.5.2 Property overview
Page Property Access Description

409 Enabled Start or stop the timer
410 Interval Timer tick interval in milliseconds.
410 OnTimer Event called on each timer tick.

15.5.3 TFPTimer.Enabled
Synopsis: Start or stop the timer
Declaration: Property Enabled :
Visibility: published
Access:

Description: Enabled controls whether the timer is active. Setting Enabled to True will start the timer
(calling StartTimer (409)), setting it to False will stop the timer (calling StopTimer (409)).

See also: TFPCustomTimer.StartTimer (409), TFPCustomTimer.StopTimer (409), TFPTimer.OnTimer (410),
TFPTimer.Interval (410)

410

CHAPTER 15. REFERENCE FOR UNIT 'FPTIMER’

15.5.4 TFPTimer.Interval
Synopsis: Timer tick interval in milliseconds.
Declaration: Property Interval
Visibility: published
Access:

Description: Interval specifies the timer interval in milliseconds. Every Interval milliseconds, the On-
Timer (410) event handler will be called.

Note that the milliseconds interval is a minimum interval. Under high system load, the timer tick
may arrive later.

See also: TFPTimer.OnTimer (410), TFPTimer.Enabled (409)

15.5.5 TFPTimer.OnTimer

Synopsis: Event called on each timer tick.
Declaration: Property OnTimer
Visibility: published
Access:

Description: OnTimer is called on each timer tick. The event handler must be assigned to a method that will do
the actual work that should occur when the timer fires.

See also: TFPTimer.Interval (410), TFPTimer.Enabled (409)

15.6 TFPTimerDriver

15.6.1 Description

TFPTimerDriver is the abstract timer driver class: it simply provides an interface for the TFP-
CustomTimer (408) class to use.

The fpTimer unit implements a descendent of this class which implements the default timer mech-
anism.

15.6.2 Method overview

Page Property Description

411 Create Create new driver instance
411 StartTimer Start the timer

411 StopTimer Stop the timer

15.6.3 Property overview

Page Property Access Description
411 Timer r Timer tick

411

CHAPTER 15. REFERENCE FOR UNIT 'FPTIMER’

15.6.4 TFPTimerDriver.Create

Synopsis: Create new driver instance
Declaration: constructor Create (ATimer: TFPCustomTimer); Virtual
Visibility: public

Description: Create should be overridden by descendents of TFPTimerDriver to do additional initialization
of the timer driver. Create just stores (in Timer (411)) a reference to the ATimer instance which
created the driver instance.

See also: TFPTimerDriver.Timer (411), TFPTimer (409)

15.6.5 TFPTimerDriver.StartTimer
Synopsis: Start the timer

Declaration: procedure StartTimer; Virtual; Abstract
Visibility: public

Description: startTimer is called by TFPCustomTimer.StartTimer (409). It should be overridden by descen-
dents of TFPTimerDriver to actually start the timer.

See also: TFPCustomTimer.StartTimer (409), TEPTimerDriver.StopTimer (411)

15.6.6 TFPTimerDriver.StopTimer
Synopsis: Stop the timer
Declaration: procedure StopTimer; Virtual; Abstract
Visibility: public

Description: StopTimer is called by TFPCustomTimer.StopTimer (409). It should be overridden by descen-
dents of TFPTimerDriver to actually stop the timer.

See also: TFPCustomTimer.StopTimer (409), TFPTimerDriver.StartTimer (411)

15.6.7 TFPTimerDriver.Timer
Synopsis: Timer tick
Declaration: Property Timer : TFPCustomTimer
Visibility: public
Access: Read

Description: Timer calls the TFPCustomTimer (408) timer event. Descendents of TFPTimerDriver should
call Timer whenever a timer tick occurs.

See also: TFPTimer.OnTimer (410), TFPTimerDriver.StartTimer (411), TEPTimerDriver.StopTimer (411)

412

Chapter 16

Reference for unit ’gettext’

16.1 Used units

Table 16.1: Used units by unit *gettext’

Name Page
Classes 2?
sysutils 7?

16.2 Overview

The gettext unit can be used to hook into the resource string mechanism of Free Pascal to provide
translations of the resource strings, based on the GNU gettext mechanism. The unit provides a class
(TMOFile (414)) to read the .mo files with localizations for various languages. It also provides a
couple of calls to translate all resource strings in an application based on the translations in a .mo
file.

16.3 Constants, types and variables

16.3.1 Constants
MOFileHeaderMagic = $950412de

This constant is found as the first integer in a .mo
16.3.2 Types

PLongWordArray = "“TLongWordArray
Pointer to a TLongWordArray (413) array.

PMOStringTable = ~TMOStringTable

413

CHAPTER 16. REFERENCE FOR UNIT 'GETTEXT’

Pointer to a TMOStringTable (413) array.

PPCharArray = "TPCharArray

Pointer to a TPCharArray (413) array.

TLongWordArray = Array[0..(1shl30)divSizeOf (LongWord)] of LongWord

TLongWordArray is an array used to define the PLongWordArray (412) pointer. A variable of
type TLongWordArray should never be directly declared, as it would occupy too much memory.
The PLongWordArray type can be used to allocate a dynamic number of elements.

TMOFileHeader = packed record

magic : LongWord;
revision : LongWord;
nstrings : LongWord;

OrigTabOffset : LongWord;

TransTabOffset : LongWord;

HashTabSize : LongWord;

HashTabOffset : LongWord;
end

This structure describes the structure of a .mo file with string localizations.

TMOStringInfo = packed record
length : LongWord;
offset : LongWord;

end

This record is one element in the string tables describing the original and translated strings. It de-
scribes the position and length of the string. The location of these tables is stored in the TMOFile-
Header (413) record at the start of the file.

TMOStringTable = Array[0..(1shl130)divSizeOf (IMOStringInfo)] of TMOStringInfo

TMOStringTable is an array type containing TMOStringInfo (413) records. It should never be
used directly, as it would occupy too much memory.

TPCharArray = Array[0..(1shl30)divSizeOf (PChar)] of PChar

TLongWordArray is an array used to define the PPCharArray (413) pointer. A variable of type
TPCharArray should never be directly declared, as it would occupy too much memory. The
PPCharArray type can be used to allocate a dynamic number of elements.

16.4 Procedures and functions

16.4.1 GetLanguagelDs

Synopsis: Return the current language IDs

414

CHAPTER 16. REFERENCE FOR UNIT 'GETTEXT’

Declaration: procedure GetLanguagelIDs (var Lang: String;var FallbackLang: String)
Visibility: default

Description: GetLanguageIDs returns the current language IDs (an ISO string) as returned by the operating
system. On windows, the GetUserDefaultLCID and GetLocaleInfo calls are used. On
other operating systems, the LC_ALL, LC_MESSAGES or LANG environment variables are exam-
ined.

16.4.2 TranslateResourceStrings

Synopsis: Translate the resource strings of the application.

Declaration: procedure TranslateResourceStrings (AFile: TMOFile)
procedure TranslateResourceStrings (const AFilename: String)

Visibility: default

Description: TranslateResourceStrings translates all the resource strings in the application based on the
values in the .mo file AFileName or AFile. The procedure creates an TMOFile (414) instance to
read the .mo file if a filename is given.

Errors: If the file does not exist or is an invalid .mo file.

See also: TranslateUnitResourceStrings (414), TMOFile (414)

16.4.3 TranslateUnitResourceStrings

Synopsis: Translate the resource strings of a unit.

Declaration: procedure TranslateUnitResourceStrings (const AUnitName: String;
AFile: TMOFile)
procedure TranslateUnitResourceStrings (const AUnitName: String;
const AFilename: String)

Visibility: default

Description: TranslateUnitResourceStrings is identical in function to TranslateResourceStrings (414),
but translates the strings of a single unit (AUnitName) which was used to compile the application.
This can be more convenient, since the resource string files are created on a unit basis.

See also: TranslateResourceStrings (414), TMOFile (414)

16.5 EMOFileError

16.5.1 Description

EMOFileError israised in case an TMOFile (414) instance is created with an invalid .mo.

16.6 TMOFile
16.6.1 Description

TMOFile is a class providing easy access to a .mo file. It can be used to translate any of the strings
that reside in the .mo file. The internal structure of the .mo is completely hidden.

415

CHAPTER 16. REFERENCE FOR UNIT 'GETTEXT’

16.6.2 Method overview

Page Property Description

415 Create Create a new instance of the TMOF1 le class.
415 Destroy = Removes the TMOF1ile instance from memory
415 Translate Translate a string

16.6.3 TMOFile.Create

Synopsis: Create a new instance of the TMOF i le class.

Declaration: constructor Create (const AFilename: String)
constructor Create (AStream: TStream)

Visibility: public

Description: Create creates a new instance of the MOFile class. It opens the file AFileName or the stream
AStream. If a stream is provided, it should be seekable.

The whole contents of the file is read into memory during the Create call. This means that the
stream is no longer needed after the Create call.

Errors: If the named file does not exist, then an exception may be raised. If the file does not contain a valid
TMOFileHeader (413) structure, then an EMOFileError (414) exception is raised.

See also: TMOFile.Destroy (415)

16.6.4 TMOFile.Destroy

Synopsis: Removes the TMOF i 1 e instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans the internal structures with the contents of the .mo. After this the TMOFile
instance is removed from memory.

See also: TMOFile.Create (415)

16.6.5 TMOFile.Translate

Synopsis: Translate a string

Declaration: function Translate (AOrig: PChar;ALen: Integer;AHash: LongWord) : String
function Translate (AOrig: String;AHash: LongWord) : String
function Translate (AOrig: String) : String
Visibility: public

Description: Translate translates the string AOrig. The string should be in the .mo file as-is. The string can
be given as a plain string, as a PChar (with length ALen). If the hash value (AHash) of the string
is not given, it is calculated.

If the string is in the . mo file, the translated string is returned. If the string is not in the file, an empty
string is returned.

Errors: None.

416

Chapter 17

Reference for unit ’idea’

17.1 Used units

Table 17.1: Used units by unit ’idea’

Name Page
Classes 2?
sysutils 7

17.2 Overview

Besides some low level IDEA encryption routines, the IDEA unit also offers 2 streams which offer
on-the-fly encryption or decryption: there are 2 stream objects: A write-only encryption stream
which encrypts anything that is written to it, and a decription stream which decrypts anything that is
read from it.

17.3 Constants, types and variables
17.3.1 Constants

IDEABLOCKSIZE = 8

IDEA block size

IDEAKEYSIZE = 16

IDEA Key size constant.

KEYLEN = (6 = ROUNDS + 4)

Key length

ROUNDS = 8

Number of rounds to encrypt

417

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

17.3.2 Types
IdeaCryptData = TIdeaCryptData

Provided for backward functionality.

IdeaCryptKey = TIdeaCryptKey

Provided for backward functionality.

IDEAkey = TIDEAKey

Provided for backward functionality.

TIdeaCryptData = Array[0..3] of Word

TIdeaCryptData is an internal type, defined to hold data for encryption/decryption.
TIdeaCryptKey = Array[0..7] of Word

The actual encryption or decryption key for IDEA is 64-bit long. This type is used to hold such a
key. It can be generated with the EnKeyIDEA (418) or DeKeyIDEA (417) algorithms depending on
whether an encryption or decryption key is needed.

TIDEAKey = Array[0..keylen-1] of Word

The IDEA key should be filled by the user with some random data (say, a passphrase). This key is

used to generate the actual encryption/decryption keys.

17.4 Procedures and functions

17.4.1 Cipherldea
Synopsis: Encrypt or decrypt a buffer.

Declaration: procedure CipherIdea (Input: TIdeaCryptData;var outdata: TIdeaCryptData;
z: TIDEAKey)

Visibility: default

Description: CipherIdea encrypts or decrypts a buffer with data (Input) using key z. The resulting encrypted
or decrypted data is returned in Output.

Errors: None.

See also: EnKeyldea (418), DeKeyldea (417), TIDEAEncryptStream (419), TIDEADecryptStream (418)

17.4.2 DeKeyldea

Synopsis: Create a decryption key from an encryption key.
Declaration: procedure DeKeyIdea(z: TIDEAKey;var dk: TIDEAKey)

Visibility: default

418

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

Description: DeKeyIdea creates a decryption key based on the encryption key z. The decryption key is returned
in dk. Note that only a decryption key generated from the encryption key that was used to encrypt
the data can be used to decrypt the data.

Errors: None.

See also: EnKeyldea (418), Cipherldea (417)

17.4.3 EnKeyldea
Synopsis: Create an IDEA encryption key from a user key.
Declaration: procedure EnKeyIdea (UserKey: TIdeaCryptKey;var z: TIDEAKey)
Visibility: default

Description: EnKeyIdea creates an IDEA encryption key from user-supplied data in UserKey. The Encryp-
tion key is stored in z.

Errors: None.

See also: DeKeyldea (417), Cipherldea (417)

17.5 EIDEAError

17.5.1 Description

EIDEAError is used to signal errors in the IDEA encryption decryption streams.

17.6 TIDEADeCryptStream

17.6.1 Description

TIDEADecryptStream is a stream which decrypts anything that is read from it using the IDEA
mechanism. It reads the encrypted data from a source stream and decrypts it using the CipherIDEA
(417) algorithm. It is a read-only stream: it is not possible to write data to this stream.

When creating a TIDEADecryptStream instance, an IDEA decryption key should be passed to
the constructor, as well as the stream from which encrypted data should be read written.

The encrypted data can be created with a TIDEAEncryptStream (419) encryption stream.

17.6.2 Method overview
Page Property Description

418 Create Constructor to create a new TIDEADecrypt St ream instance
419 Read Reads data from the stream, decrypting it as needed
419 Seek Set position on the stream

17.6.3 TIDEADeCryptStream.Create

Synopsis: Constructor to create a new TIDEADecryptStream instance

Declaration: constructor Create (const AKey: String;Dest: TStream); Overload

419

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

Visibility: public
Description: Create creates a new TIDEADecryptStream instance using the the string AKey to compute

the encryption key (417), which is then passed on to the inherited constructor TIDEAStream.Create
(422). It is an easy-access function which introduces no new functionality.

The string is truncated at the maximum length of the TIdeaCryptKey (417) structure, so it makes no
sense to provide a string with length longer than this structure.

See also: TIdeaCryptKey (417), TIDEAStream.Create (422), TIDEAEnCryptStream.Create (420)

17.6.4 TIDEADeCryptStream.Read
Synopsis: Reads data from the stream, decrypting it as needed
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read attempts to read Count bytes from the stream, placing them in Buf fer the bytes are read

from the source stream and decrypted as they are read. (bytes are read from the source stream in
blocks of 8 bytes. The function returns the number of bytes actually read.

Errors: If an error occurs when reading data from the source stream, an exception may be raised.

See also: TIDEADecryptStream. Write (418), TIDEADecryptStream.Seek (419), TIDEAEncryptStream (419)

17.6.5 TIDEADeCryptStream.Seek

Synopsis: Set position on the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: seek will only work on a forward seek. It emulates a forward seek by reading and discarding bytes

from the input stream. The TIDEADecryptStream stream tries to provide seek capabilities for
the following limited number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them.

Errors: An EIDEAError (418) exception is raised if the stream does not allow the requested seek operation.

See also: TIDEADeCryptStream.Read (419)

17.7 TIDEAEncryptStream

17.7.1 Description

TIDEAEncryptStream is a stream which encrypts anything that is written to it using the IDEA
mechanism, and then writes the encrypted data to the destination stream using the CipherIDEA (417)
algorithm. It is a write-only stream: it is not possible to read data from this stream.

When creating a TIDEAEncryptStream instance, an IDEA encryption key should be passed to
the constructor, as well as the stream to which encrypted data should be written.

The resulting encrypted data can be read again with a TIDEADecryptStream (418) decryption stream.

420

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

17.7.2 Method overview
Page Property Description

420 Create Constructor to create a new TIDEAEncrypt St ream instance
420 Destroy Flush data buffers and free the stream instance.

421 Flush Write remaining bytes from the stream

421 Seek Set stream position

420 Write Write bytes to the stream to be encrypted

17.7.3 TIDEAEncryptStream.Create

Synopsis: Constructor to create a new TIDEAEncrypt St ream instance
Declaration: constructor Create (const AKey: String;Dest: TStream); Overload
Visibility: public

Description: Create creates a new TIDEAEncryptStream instance using the the string AKey to compute
the encryption key (417), which is then passed on to the inherited constructor TIDEAStream.Create
(422). It is an easy-access function which introduces no new functionality.

The string is truncated at the maximum length of the TIdeaCryptKey (417) structure, so it makes no
sense to provide a string with length longer than this structure.

See also: TIdeaCryptKey (417), TIDEAStream.Create (422), TIDEADeCryptStream.Create (418)

17.7.4 TIDEAEncryptStream.Destroy

Synopsis: Flush data buffers and free the stream instance.
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy flushes any data still remaining in the internal encryption buffer, and then calls the inher-
ited Destroy

By default, the destination stream is not freed when the encryption stream is freed.
Errors: None.

See also: TIDEAStream.Create (422)

17.7.5 TIDEAEnNcryptStream.Write

Synopsis: Write bytes to the stream to be encrypted
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write writes Count bytes from Buffer to the stream, encrypting the bytes as they are written
(encryption in blocks of 8 bytes).

Errors: If an error occurs writing to the destination stream, an error may occur.

See also: TIDEADecryptStream.Read (419)

421

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

17.7.6 TIDEAEncryptStream.Seek

Synopsis: Set stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seek return the current position if called with 0 and soFromCurrent as arguments. With all
other values, it will always raise an exception, since it is impossible to set the position on an encryp-
tion stream.

Errors: An EIDEAError (418) will be raised unless called with 0 and soF romCurrent as arguments.

See also: TIDEAEncryptStream.Write (420), EIDEAError (418)

17.7.7 TIDEAEncryptStream.Flush
Synopsis: Write remaining bytes from the stream
Declaration: procedure Flush
Visibility: public

Description: F1ush writes the current encryption buffer to the stream. Encryption always happens in blocks of 8
bytes, so if the buffer is not completely filled at the end of the writing operations, it must be flushed.
It should never be called directly, unless at the end of all writing operations. It is called automatically
when the stream is destroyed.

Errors: None.

See also: TIDEAEncryptStream. Write (420)

17.8 TIDEAStream

17.8.1 Description

Do not create instances of TIDEASt ream directly. It implements no useful functionality: it serves
as a common ancestor of the TIDEAEncryptStream (419) and TIDEADeCryptStream (418), and
simply provides some fields that these descendent classes use when encrypting/decrypting. One of
these classes should be created, depending on whether one wishes to encrypt or to decrypt.

17.8.2 Method overview

Page Property Description
422 Create Creates a new instance of the TIDEASt ream class

17.8.3 Property overview

Page Property Access Description
422 Key r Key used when encrypting/decrypting

422

CHAPTER 17. REFERENCE FOR UNIT ’IDEA’

17.8.4 TIDEAStream.Create

Synopsis: Creates a new instance of the TIDEASt ream class
Declaration: constructor Create (AKey: TIDEAKey;Dest: TStream); Overload
Visibility: public

Description: Create stores the encryption/decryption key and then calls the inherited Create to store the
Dest stream.

Errors: None.

See also: TIDEAEncryptStream (419), TIDEADeCryptStream (418)

17.8.5 TIDEAStream.Key
Synopsis: Key used when encrypting/decrypting

Declaration: Property Key : TIDEAKey
Visibility: public
Access: Read

Description: Key is the key as it was passed to the constructor of the stream. It cannot be changed while data is
read or written. It is the key as it is used when encrypting/decrypting.

See also: Cipherldea (417)

423

Chapter 18

Reference for unit ’inicol’

18.1 Used units

Table 18.1: Used units by unit ’inicol’

Name Page
Classes 2?
Inifiles 423
sysutils ??

18.2 Overview
inicol contains an implementation of TCollection and TCollectionItem descendents which

cooperate to read and write the collection from and to a .ini file. It uses the TCustomlIniFile (433)
class for this.

18.3 Constants, types and variables

18.3.1 Constants
KeyCount = ’Count’

KeyCount is used as a key name when reading or writing the number of items in the collection
from the global section.

SGlobal = ’"Global’

SGlobal is used as the default name of the global section when reading or writing the collection.

424

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.4 EIniCol

18.4.1 Description

EIniCol is used to report error conditions in the load and save methods of TIniCollection (424).

18.5 TIniCollection

18.5.1 Description

TIniCollection is a collection (??) descendent which has the capability to write itself to an
.ini file. It introduces some load and save mechanisms, which can be used to write all items in the
collection to disk. The items should be descendents of the type TIniCollectionltem (427).

All methods work using a TCustomInifile class, making it possible to save to alternate file
formats, or even databases.

An instance of TIniCollection should never be used directly. Instead, a descendent should be
used, which sets the FPrefix and FSectionPrefix protected variables.

18.5.2 Method overview
Page Property Description
424 Load Loads the collection from the default filename.
426 LoadFromFile Load collection from file.
426 LoadFromlIni Load collection from a file in .ini file format.

425 Save Save the collection to the default filename.
425 SaveToFile Save collection to a file in .ini file format
425 SaveTolni Save the collection to a TCustomIniFile descendent

18.5.3 Property overview

Page Property Access Description

427 FileName w Filename of the collection
427 GlobalSection rw Name of the global section
426 Prefix r Prefix used in global section
427 SectionPrefix r Prefix string for section names

18.5.4 TIniCollection.Load

Synopsis: Loads the collection from the default filename.
Declaration: procedure Load
Visibility: public

Description: Load loads the collection from the file as specified in the FileName (427) property. It calls the
LoadFromPFile (426) method to do this.

Errors: If the collection was not loaded or saved to file before this call, an EIniCol exception will be
raised.

See also: TIniCollection.LoadFromFile (426), TIniCollection.LoadFromlIni (426), TIniCollection.Save (425),
TIniCollection.FileName (427)

425

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.5.5 TIniCollection.Save

Synopsis: Save the collection to the default filename.
Declaration: procedure Save
Visibility: public

Description: save writes the collection to the file as specified in the FileName (427) property, using GlobalSec-
tion (427) as the section. It calls the SaveToFile (425) method to do this.

Errors: If the collection was not loaded or saved to file before this call, an EIniCol exception will be
raised.

See also: TIniCollection.SaveToFile (425), TIniCollection.SaveTolni (425), TIniCollection.Load (424), TIni-
Collection.FileName (427)

18.5.6 TIniCollection.SaveTolni

Synopsis: Save the collection to a TCustomIniFile descendent
Declaration: procedure SaveToIni (Ini: TCustomInifile;Section: String); Virtual
Visibility: public

Description: SaveToIni does the actual writing. It writes the number of elements in the global section (as
specified by the Sect ion argument), as well as the section name for each item in the list. The item
names are written using the Prefix (426) property for the key. After this it calls the SaveTolni (428)
method of all TIniCollectionItem (427) instances.

This means that the global section of the .ini file will look something like this:

[globalsection]

Count=3
Prefixl=SectionPrefixFirstItemName
Prefix2=SectionPrefixSecondItemName
Prefix3=SectionPrefixThirdItemName

This construct allows to re-use an ini file for multiple collections.

After this method is called, the GlobalSection (427) property contains the value of Section, it will
be used in the Save (427) method.

See also: TIniCollectionItem.SaveTolni (428)

18.5.7 TIniCollection.SaveToFile

Synopsis: Save collection to a file in .ini file format
Declaration: procedure SaveToFile (AFileName: String;Section: String)
Visibility: public

Description: saveToFile will create a TMemIniFile instance with the AFi1eName argument as a filename.
This instance is passed on to the SaveTolni (425) method, together with the Sect ion argument, to
do the actual saving.

Errors: An exception may be raised if the path in AFi leName does not exist.

See also: TIniCollection.SaveTolni (425), TIniCollection.LoadFromFile (426)

426

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.5.8 TIniCollection.LoadFromlni

Synopsis: Load collection from a file in .ini file format.
Declaration: procedure LoadFromIni (Ini: TCustomInifile;Section: String); Virtual
Visibility: public

Description: LoadFromIni will load the collection from the Ini instance. It first clears the collection, and
reads the number of items from the global section with the name as passed through the Section
argument. After this, an item is created and added to the collection, and its data is read by calling
the TIniCollectionltem.LoadFromlIni (428) method, passing the appropriate section name as found
in the global section.

The description of the global section can be found in the TIniCollection.SaveTolni (425) method
description.

See also: TIniCollection.LoadFromFile (426), TIniCollectionltem.LoadFromlIni (428), TIniCollection.SaveTolni
(425)

18.5.9 TIniCollection.LoadFromFile
Synopsis: Load collection from file.

Declaration: procedure LoadFromFile (AFileName: String;Section: String)
Visibility: public

Description: LoadFromFile creates a TMemIniFile instance using AFileName as the filename. It calls
LoadFromlni (426) using this instance and Section as the parameters.

See also: TIniCollection.LoadFromIni (426), TIniCollection.Load (424), TIniCollection.SaveTolni (425), TIni-
Collection.SaveToFile (425)

18.5.10 TIniCollection.Prefix
Synopsis: Prefix used in global section

Declaration: Property Prefix : String
Visibility: public
Access: Read

Description: Prefix is used when writing the section names of the items in the collection to the global section,
or when reading the names from the global section. If the prefix is set to It em then the global section
might look something like this:

[MyCollection]
Count=2
Iteml=FirstItem
Item2=SecondItem

A descendent of TIniCollection should set the value of this property, it cannot be empty.

See also: TIniCollection.SectionPrefix (427), TIniCollection.GlobalSection (427)

427

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.5.11 TIniCollection.SectionPrefix

Synopsis: Prefix string for section names
Declaration: Property SectionPrefix : String
Visibility: public
Access: Read

Description: SsectionPrefix is a string that is prepended to the section name as returned by the TIniCollec-
tionltem.SectionName (429) property to return the exact section name. It can be empty.

See also: TIniCollection.Section (424), TIniCollection.GlobalSection (427)

18.5.12 TiniCollection.FileName

Synopsis: Filename of the collection
Declaration: Property FileName : String
Visibility: public
Access: Read,Write

Description: FileName is the filename as used in the last LoadFromFile (426) or SaveToFile (425) operation.
It is used in the Load (424) or Save (425) calls.

See also: TIniCollection.Save (425), TIniCollection.LoadFromFile (426), TIniCollection.SaveToFile (425),
TIniCollection.Load (424)

18.5.13 TIniCollection.GlobalSection
Synopsis: Name of the global section

Declaration: Property GlobalSection : String
Visibility: public
Access: Read,Write

Description: G1lobalSect ion contains the value of the Sect i on argument in the LoadFromlIni (426) or Save-
Tolni (425) calls. It’s used in the Load (424) or Save (425) calls.

See also: TIniCollection.Save (425), TIniCollection.LoadFromFile (426), TIniCollection.SaveToFile (425),
TIniCollection.Load (424)

18.6 TIniCollectionltem

18.6.1 Description

TIniCollectionItem is a #rtl.classes.tcollectionitem (??) descendent which has some extra
methods for saving/loading the item to or from an .ini file.

To use this class, a descendent should be made, and the SaveTolni (428) and LoadFromlni (428)
methods should be overridden. They should implement the actual loading and saving. The loading
and saving is always initiated by the methods in TIniCollection (424), TIniCollection.LoadFromIni
(426) and TIniCollection.SaveTolni (425) respectively.

428

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.6.2 Method overview

Page Property Description

429 LoadFromFile Load item from a file

428 LoadFromlni = Method called when the item must be loaded
428 SaveToFile Save item to a file

428 SaveTolni Method called when the item must be saved

18.6.3 Property overview

Page Property Access Description
429 SectionName rw Default section name

18.6.4 TIniCollectionltem.SaveTolni
Synopsis: Method called when the item must be saved

Declaration: procedure SaveToIni (Ini: TCustomInifile;Section: String); Virtual
; Abstract

Visibility: public

Description: saveToIni is called by TIniCollection.SaveTolni (425) when it saves this item. Descendent
classes should override this method to save the data they need to save. All write methods of the
TCustomIniFile instance passed in Ini can be used, as long as the writing happens in the sec-
tion passed in Section.

Errors: No checking is done to see whether the values are actually written to the correct section.

See also: TIniCollection.SaveTolni (425), TIniCollectionItem.LoadFromlIni (428), TIniCollectionltem.SaveToFile
(428), TIniCollectionltem.LoadFromFile (429)

18.6.5 TIniCollectionltem.LoadFromlini
Synopsis: Method called when the item must be loaded

Declaration: procedure LoadFromIni (Ini: TCustomInifile;Section: String); Virtual
; Abstract

Visibility: public

Description: LoadFromIni is called by TIniCollection.LoadFromlni (426) when it saves this item. Descendent
classes should override this method to load the data they need to load. All read methods of the
TCustomIniFile instance passed in Ini can be used, as long as the reading happens in the
section passed in Section.

Errors: No checking is done to see whether the values are actually read from the correct section.

See also: TIniCollection.LoadFromIni (426), TIniCollectionItem.SaveTolni (428), TIniCollectionltem.LoadFromFile
(429), TIniCollectionltem.SaveToFile (428)

18.6.6 TIniCollectionltem.SaveToFile
Synopsis: Save item to a file

Declaration: procedure SaveToFile (FileName: String;Section: String)

429

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

Visibility: public

Description: SaveToFile creates an instance of TIniFile with the indicated FileName calls SaveTolni
(428) to save the item to the indicated file in .ini format under the section Section

Errors: An exception can occur if the file is not writeable.

See also: TIniCollectionltem.SaveTolni (428), TIniCollectionltem.LoadFromFile (429)

18.6.7 TIniCollectionltem.LoadFromFile
Synopsis: Load item from a file

Declaration: procedure LoadFromFile (FileName: String;Section: String)
Visibility: public

Description: LoadFromFile creates an instance of TMemIniFile and calls LoadFromlIni (428) to load the
item from the indicated file in .ini format from the section Section.

Errors: None.

See also: TIniCollectionltem.SaveToFile (428), TIniCollectionltem.LoadFromIni (428)

18.6.8 TIniCollectionltem.SectionName

Synopsis: Default section name
Declaration: Property SectionName : String
Visibility: public
Access: Read,Write

Description: sectionName is the section name under which the item will be saved or from which it should be
read. The read/write functions should be overridden in descendents to determine a unique section
name within the .ini file.

See also: TIniCollectionltem.SaveToFile (428), TIniCollectionltem.LoadFromIni (428)

18.7 TNamedIniCollection

18.7.1 Description

TNamedIniCollection is the collection to go with the TNamedIniCollectionltem (431) item
class. it provides some functions to look for items based on the UserData (430) or based on the
Name (430).

18.7.2 Method overview

Page Property Description

430 FindByName Return the item based on its name

431 FindByUserData Return the item based on its UserData

430 IndexOfName Search for an item, based on its name, and return its position

430 IndexOfUserData Search for an item based on it’s UserData property

430

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.7.3 Property overview

Page Property Access Description
431 NamedItems rw Indexed access to the TNamedIniCollectionItem items

18.7.4 TNamediniCollection.IndexOfUserData
Synopsis: Search for an item based on it’s UserData property

Declaration: function IndexOfUserData (UserData: TObject) : Integer
Visibility: public

Description: Index0OfUserData searches the list of items and returns the index of the item which has UserData
in its UserData (430) property. If no such item exists, -1 is returned.

Note that the (linear) search starts at the last element and works it’s way back to the first.
Errors: If no item exists, -1 is returned.

See also: TNamedIniCollection.IndexOfName (430), TNamedIniCollectionltem.UserData (431)

18.7.5 TNamedIniCollection.IndexOfName

Synopsis: Search for an item, based on its name, and return its position
Declaration: function IndexOfName (const AName: String) : Integer
Visibility: public

Description: IndexOfName searches the list of items and returns the index of the item which has name equal to
AName (case insentitive). If no such item exists, -1 is returned.

Note that the (linear) search starts at the last element and works it’s way back to the first.
Errors: If no item exists, -1 is returned.

See also: TNamedIniCollection.IndexOfUserData (430), TNamedIniCollectionltem.Name (432)

18.7.6 TNamedIniCollection.FindByName

Synopsis: Return the item based on its name
Declaration: function FindByName (const AName: String) : TNamedIniCollectionItem
Visibility: public

Description: FindByName returns the collection item whose name matches AName (case insensitive match).
It calls IndexOfName (430) and returns the item at the found position. If no item is found, Ni1 is
returned.

Errors: If no item is found, Ni1l is returned.

See also: TNamedIniCollection.IndexOfName (430), TNamedIniCollection.FindByUserData (431)

431

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.7.7 TNamedIniCollection.FindByUserData

Synopsis: Return the item based on its UserData
Declaration: function FindByUserData (UserData: TObject) : TNamedIniCollectionItem
Visibility: public

Description: FindByName returns the collection item whose UserData (43 1) property value matches the UserData
parameter. If no item is found, Ni1 is returned.

Errors: If no item is found, Ni1l is returned.

18.7.8 TNamediIniCollection.Namedltems
Synopsis: Indexed access to the TNamedIniCollectionItem items

Declaration: Property NamedItems|[Index: Integer]: TNamedIniCollectionItem; default
Visibility: public
Access: Read,Write

Description: NamedItemis the default property of the TNamedIniCollection collection. It allows indexed
access to the TNamedIniCollectionltem (431) items. The index is zero based.

See also: TNamedIniCollectionltem (431)

18.8 TNamedIniCollectionltem

18.8.1 Description

TNamedIniCollectionItemisa TIniCollectionltem (427) descent with a published name prop-
erty. The name is used as the section name when saving the item to the ini file.

18.8.2 Property overview

Page Property Access Description
432 Name ™w Name of the item
431 UserData rw User-defined data

18.8.3 TNamedIniCollectionltem.UserData
Synopsis: User-defined data

Declaration: Property UserData : TObject
Visibility: public
Access: Read,Write

Description: UserData can be used to associate an arbitrary object with the item - much like the Objects
property of a TStrings.

432

CHAPTER 18. REFERENCE FOR UNIT ’INICOL’

18.8.4 TNamedIniCollectionltem.Name

Synopsis: Name of the item
Declaration: Property Name : String
Visibility: published
Access: Read,Write

Description: Name is the name of this item. It is also used as the section name when writing the collection item
to the .ini file.

See also: TNamedIniCollectionltem.UserData (431)

433

Chapter 19

Reference for unit ’IniFiles’

19.1 Used units

Table 19.1: Used units by unit ’IniFiles’

Name Page
Classes 7
contnrs 97
sysutils ??

19.2 Overview

IniFiles provides support for handling .ini files. It contains an implementation completely indepen-
dent of the Windows API for handling such files. The basic (abstract) functionality is defined in
TCustomlInifile (433) and is implemented in TIniFile (445) and TMemlniFile (453). The API pre-
sented by these components is Delphi compatible.

19.3 TCustomlIniFile

19.3.1 Description

TCustomIniFile implements all calls for manipulating a .ini. It does not implement any of this
behaviour, the behaviour must be implemented in a descendent class like TIniFile (445) or TMeml-
niFile (453).

Since TCustomIniFile is an abstract class, it should never be created directly. Instead, one of
the TIniFile or TMemIniFile classes should be created.

434

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.3.2 Method overview

Page Property Description

434 Create Instantiate a new instance of TCustomIniFile.
441 DeleteKey Delete a key from a section

435 Destroy Remove the TCustomIniFile instance from memory
441 EraseSection Clear a section

438 ReadBinaryStream Read binary data

436 ReadBool

437 ReadDate Read a date value

437 ReadDateTime Read a Date/Time value

438 ReadFloat Read a floating point value

436 ReadInteger Read an integer value from the file
440 ReadSection Read the key names in a section
441 ReadSections Read the list of sections

441 ReadSectionValues Read names and values of a section
435 ReadString Read a string valued key

438 ReadTime Read a time value

435 SectionExists Check if a section exists.

442 UpdateFile Update the file on disk

442 ValueExists Check if a value exists

440 WriteBinaryStream Write binary data

437 WriteBool Write boolean value

439 WriteDate Write date value

439 WriteDateTime Write date/time value

439 WriteFloat Write a floating-point value

436 Writelnteger Write an integer value

436 WriteString Write a string value

440 WriteTime Write time value

19.3.3 Property overview

Page Property Access Description

443 CaseSensitive W Are key and section names case sensitive
443 EscapeLineFeeds r Should linefeeds be escaped ?

442 FileName r Name of the .ini file

443 StripQuotes ™ Should quotes be stripped from string values

19.3.4 TCustomliniFile.Create

Synopsis: Instantiate a new instance of TCustomIniFile.

Declaration: constructor Create (const AFileName:

Visibility: public

4

String; AEscapelLineFeeds: Boolean)

Virtual

Description: Create creates a new instance of TCustomIniFile and loads it with the data from AF i 1eName,
if this file exists. If the AEscapeLineFeeds parameter is True, then lines which have their end-
of-line markers escaped with a backslash, will be concatenated. This means that the following 2

lines

Description=This is a \
line with a long text

435

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

is equivalent to
Description=This is a line with a long text

By default, not escaping of linefeeds is performed (for Delphi compatibility)
Errors: If the file cannot be read, an exception may be raised.

See also: TCustomIniFile.Destroy (435)

19.3.5 TCustomlniFile.Destroy

Synopsis: Remove the TCustomIniFile instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy cleans up all internal structures and then calls the inherited Dest roy.

See also: TCustomIniFile (433)

19.3.6 TCustominiFile.SectionExists
Synopsis: Check if a section exists.

Declaration: function SectionExists (const Section: String) : Boolean; Virtual
Visibility: public

Description: SectionExists returns True if a section with name Sect ion exists, and contains keys. (com-
ments are not considered keys)

See also: TCustomlIniFile.ValueExists (442)

19.3.7 TCustominiFile.ReadString

Synopsis: Read a string valued key

Declaration: function ReadString(const Section: String;const Ident: String;
const Default: String) : String; Virtual; Abstract
Visibility: public

Description: ReadString reads the key Ident in section Section, and returns the value as a string. If the
specified key or section do not exist, then the value in Default is returned. Note that if the key
exists, but is empty, an empty string will be returned.

See also: TCustomIniFile.WriteString (436), TCustomIniFile.ReadInteger (436), TCustomlIniFile.ReadBool
(436), TCustomlIniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

436

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.3.8 TCustominiFile.WriteString

Synopsis: Write a string value

Declaration: procedure WriteString(const Section: String;const Ident: String;
const Value: String); Virtual; Abstract

Visibility: public

Description: WriteString writes the string Value with the name Ident to the section Sect ion, overwrit-
ing any previous value that may exist there. The section will be created if it does not exist.

See also: TCustomIniFile.ReadString (435), TCustomIniFile.WriteInteger (436), TCustomIniFile.WriteBool
(437), TCustomlIniFile.WriteDate (439), TCustomlIniFile.WriteDateTime (439), TCustomIniFile.WriteTime
(440), TCustomlIniFile.WriteFloat (439), TCustomIniFile. WriteBinaryStream (440)

19.3.9 TCustominiFile.Readinteger

Synopsis: Read an integer value from the file

Declaration: function ReadInteger (const Section: String;const Ident: String;
Default: LongInt) : LongInt; Virtual

Visibility: public

Description: ReadInteger reads the key Tdent in section Section, and returns the value as an integer. If
the specified key or section do not exist, then the value in Default is returned. If the key exists,
but contains an invalid integer value, Default is also returned.

See also: TCustomlIniFile.WriteInteger (436), TCustomlIniFile.ReadString (435), TCustomIniFile.ReadBool
(436), TCustomlniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomlIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

19.3.10 TCustomlIniFile.Writelnteger

Synopsis: Write an integer value

Declaration: procedure WriteInteger (const Section: String;const Ident: String;
Value: LongInt); Virtual

Visibility: public

Description: WriteInteger writes the integer Value with the name Ident to the section Section, over-
writing any previous value that may exist there. The section will be created if it does not exist.

See also: TCustomlIniFile.ReadInteger (436), TCustomIniFile.WriteString (436), TCustomIniFile.WriteBool
(437), TCustomlIniFile.WriteDate (439), TCustomIniFile. WriteDateTime (439), TCustomlIniFile. WriteTime
(440), TCustomlIniFile.WriteFloat (439), TCustomlIniFile.WriteBinaryStream (440)

19.3.11 TCustomlIniFile.ReadBool
Synopsis:

Declaration: function ReadBool (const Section: String;const Ident: String;
Default: Boolean) : Boolean; Virtual

Visibility: public

437

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: ReadSt ring reads the key Ident in section Section, and returns the value as a boolean (valid
values are 0 and 1). If the specified key or section do not exist, then the value in Default is
returned. If the key exists, but contains an invalid integer value, False is also returned.

Errors:

See also: TCustomIniFile.WriteBool (437), TCustomIniFile.ReadInteger (436), TCustomIniFile.ReadString
(435), TCustomlniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

19.3.12 TCustomlniFile.WriteBool

Synopsis: Write boolean value

Declaration: procedure WriteBool (const Section: String;const Ident: String;
Value: Boolean); Virtual

Visibility: public

Description: WriteBool writes the boolean Value with the name Tdent to the section Sect ion, overwrit-
ing any previous value that may exist there. The section will be created if it does not exist.

See also: TCustomIniFile.ReadBool (436), TCustomIniFile.WriteInteger (436), TCustomIniFile.WriteString
(436), TCustomlIniFile.WriteDate (439), TCustomIniFile. WriteDateTime (439), TCustomlIniFile. WriteTime
(440), TCustomlIniFile.WriteFloat (439), TCustomlIniFile.WriteBinaryStream (440)

19.3.13 TCustominiFile.ReadDate
Synopsis: Read a date value

Declaration: function ReadDate (const Section: String;const Ident: String;
Default: TDateTime) : TDateTime; Virtual

Visibility: public

Description: ReadDat e reads the key Tdent in section Section, and returns the value as a date (TDateTime).
If the specified key or section do not exist, then the value in Default is returned. If the key ex-
ists, but contains an invalid date value, Default is also returned. The international settings of the
SysUtils are taken into account when deciding if the read value is a correct date.

Errors:

See also: TCustomIniFile.WriteDate (439), TCustomIniFile.ReadInteger (436), TCustomIniFile.ReadBool (436),
TCustomlIniFile.ReadString (435), TCustomlIniFile.ReadDateTime (437), TCustomIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

19.3.14 TCustominiFile.ReadDateTime
Synopsis: Read a Date/Time value

Declaration: function ReadDateTime (const Section: String;const Ident: String;
Default: TDateTime) : TDateTime; Virtual

Visibility: public

438

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: ReadDateTime reads the key Ident in section Section, and returns the value as a date/time
(ThateTime). If the specified key or section do not exist, then the value in Default is returned. If
the key exists, but contains an invalid date/time value, Default is also returned. The international
settings of the SysUtils are taken into account when deciding if the read value is a correct date/time.

See also: TCustomIniFile.WriteDateTime (439), TCustomlIniFile.ReadInteger (436), TCustomIniFile.ReadBool
(436), TCustomlIniFile.ReadDate (437), TCustomIniFile.ReadString (435), TCustomlIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

19.3.15 TCustomlniFile.ReadFloat
Synopsis: Read a floating point value

Declaration: function ReadFloat (const Section: String;const Ident: String;
Default: Double) : Double; Virtual

Visibility: public

Description: ReadF1oat reads the key Ident in section Section, and returns the value as a float (Double).
If the specified key or section do not exist, then the value in Default is returned. If the key exists,
but contains an invalid float value, Default is also returned. The international settings of the
SysULtils are taken into account when deciding if the read value is a correct float.

See also: TCustomIniFile.WriteFloat (439), TCustomlIniFile.ReadInteger (436), TCustomlIniFile.ReadBool
(436), TCustomlniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomIniFile.ReadTime
(438), TCustomlIniFile.ReadString (435), TCustomIniFile.ReadBinaryStream (438)

19.3.16 TCustomliniFile.ReadTime
Synopsis: Read a time value

Declaration: function ReadTime (const Section: String;const Ident: String;
Default: TDateTime) : TDateTime; Virtual

Visibility: public

Description: ReadTime reads the key Ident in section Sect ion, and returns the value as a time (TDateTime).
If the specified key or section do not exist, then the value in Default is returned. If the key ex-
ists, but contains an invalid time value, Default is also returned. The international settings of the
SysUstils are taken into account when deciding if the read value is a correct time.

Errors:

See also: TCustomIniFile.WriteTime (440), TCustomIniFile.ReadInteger (436), TCustomIniFile.ReadBool
(436), TCustomlIniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomlIniFile.ReadString
(435), TCustomlIniFile.ReadFloat (438), TCustomlIniFile.ReadBinaryStream (438)

19.3.17 TCustomlIniFile.ReadBinaryStream
Synopsis: Read binary data

Declaration: function ReadBinaryStream(const Section: String;const Name: String;
Value: TStream) : Integer; Virtual

Visibility: public

439

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: ReadBinarySt reamreads the key Name in section Sect ion, and returns the value in the stream
Value. If the specified key or section do not exist, then the contents of Value are left untouched.
The stream is not cleared prior to adding data to it.

The data is interpreted as a series of 2-byte hexadecimal values, each representing a byte in the data
stream, i.e, it should always be an even number of hexadecimal characters.

See also: TCustomIniFile.WriteBinaryStream (440), TCustomIniFile.ReadInteger (436), TCustomIniFile.ReadBool
(436), TCustomlniFile.ReadDate (437), TCustomIniFile.ReadDateTime (437), TCustomIniFile.ReadTime
(438), TCustomlIniFile.ReadFloat (438), TCustomIniFile.ReadString (435)

19.3.18 TCustomlniFile.WriteDate
Synopsis: Write date value

Declaration: procedure WriteDate (const Section: String;const Ident: String;
Value: TDateTime); Virtual
Visibility: public
Description: WriteDate writes the date Value with the name Ident to the section Section, overwriting

any previous value that may exist there. The section will be created if it does not exist. The date is
written using the internationalization settings in the SysUTils unit.

Errors:

See also: TCustomIniFile.ReadDate (437), TCustomlIniFile.WriteInteger (436), TCustomIniFile.WriteBool
(437), TCustomlIniFile.WriteString (436), TCustomlIniFile.WriteDateTime (439), TCustomIniFile. WriteTime
(440), TCustomlIniFile.WriteFloat (439), TCustomlIniFile.WriteBinaryStream (440)

19.3.19 TCustomlniFile.WriteDateTime
Synopsis: Write date/time value

Declaration: procedure WriteDateTime (const Section: String;const Ident: String;
Value: TDateTime); Virtual

Visibility: public
Description: WriteDateTime writes the date/time Value with the name Ident to the section Section,

overwriting any previous value that may exist there. The section will be created if it does not exist.
The date/time is written using the internationalization settings in the SysUtils unit.

See also: TCustomIniFile.ReadDateTime (437), TCustomIniFile.WriteInteger (436), TCustomIniFile. WriteBool
(437), TCustomlIniFile.WriteDate (439), TCustomlIniFile.WriteString (436), TCustomIniFile. WriteTime
(440), TCustomIniFile.WriteFloat (439), TCustomIniFile. WriteBinaryStream (440)

19.3.20 TCustomlniFile.WriteFloat

Synopsis: Write a floating-point value

Declaration: procedure WriteFloat (const Section: String;const Ident: String;
Value: Double); Virtual

Visibility: public

440

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: WriteFloat writes the time Value with the name Ident to the section Section, overwriting
any previous value that may exist there. The section will be created if it does not exist. The floating
point value is written using the internationalization settings in the SysULils unit.

See also: TCustomIniFile.ReadFloat (438), TCustomIniFile.WriteInteger (436), TCustomIniFile.WriteBool
(437), TCustomlIniFile.WriteDate (439), TCustomIniFile. WriteDateTime (439), TCustomlIniFile. WriteTime
(440), TCustomIniFile.WriteString (436), TCustomlIniFile.WriteBinaryStream (440)

19.3.21 TCustomlniFile.WriteTime
Synopsis: Write time value

Declaration: procedure WriteTime (const Section: String;const Ident: String;
Value: TDateTime); Virtual
Visibility: public

Description: WriteTime writes the time Value with the name Ident to the section Section, overwriting
any previous value that may exist there. The section will be created if it does not exist. The time is
written using the internationalization settings in the SysUTils unit.

See also: TCustomlIniFile.ReadTime (438), TCustomIniFile.WriteInteger (436), TCustomIniFile.WriteBool
(437), TCustomlIniFile.WriteDate (439), TCustomlIniFile.WriteDateTime (439), TCustomIniFile. WriteString
(436), TCustomIniFile.WriteFloat (439), TCustomlIniFile.WriteBinaryStream (440)

19.3.22 TCustomlIniFile.WriteBinaryStream
Synopsis: Write binary data

Declaration: procedure WriteBinaryStream(const Section: String;const Name: String;
Value: TStream); Virtual

Visibility: public
Description: WriteBinaryStream writes the binary data in Value with the name Ident to the section
Section, overwriting any previous value that may exist there. The section will be created if it does
not exist.
The binary data is encoded using a 2-byte hexadecimal value per byte in the data stream. The data
stream must be seekable, so it’s size can be determined. The data stream is not repositioned, it must
be at the correct position.

See also: TCustomIniFile.ReadBinaryStream (438), TCustomIniFile.WriteInteger (436), TCustomIniFile.WriteBool
(437), TCustomlniFile.WriteDate (439), TCustomlIniFile. WriteDateTime (439), TCustomIniFile. WriteTime
(440), TCustomlIniFile.WriteFloat (439), TCustomIniFile.WriteString (436)

19.3.23 TCustomlniFile.ReadSection
Synopsis: Read the key names in a section

Declaration: procedure ReadSection(const Section: String;Strings: TStrings); Virtual
; Abstract

Visibility: public

Description: ReadSect ion will return the names of the keys in section Section in Strings, one string per
key. If a non-existing section is specified, the list is cleared. To return the values of the keys as well,
the ReadSectionValues (441) method should be used.

441

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

See also: TCustomlIniFile.ReadSections (441), TCustomIniFile.SectionExists (435), TCustomIniFile.ReadSectionValues
(441)

19.3.24 TCustominiFile.ReadSections
Synopsis: Read the list of sections

Declaration: procedure ReadSections (Strings: TStrings); Virtual; Abstract
Visibility: public

Description: ReadSections returns the names of existing sections in Strings. It also returns names of
empty sections.

See also: TCustomlIniFile.SectionExists (435), TCustomIniFile.ReadSectionValues (441), TCustomIniFile.ReadSection
(440)

19.3.25 TCustomlIniFile.ReadSectionValues

Synopsis: Read names and values of a section

Declaration: procedure ReadSectionValues (const Section: String;Strings: TStrings)
; Virtual; Abstract

Visibility: public

Description: ReadSectionValues returns the keys and their values in the section Section in Strings.
They are returned as Key=Value strings, one per key, so the Values property of the stringlist can
be used to read the values. To retrieve just the names of the available keys, ReadSection (440) can be
used.

See also: TCustomlIniFile.SectionExists (435), TCustomIniFile.ReadSections (44 1), TCustomIniFile.ReadSection
(440)

19.3.26 TCustominiFile.EraseSection
Synopsis: Clear a section

Declaration: procedure EraseSection (const Section: String); Virtual; Abstract
Visibility: public

Description: EraseSection deletes all values from the section named Sect ion and removes the section from
the ini file. If the section didn’t exist prior to a call to EraseSect ion, nothing happens.

See also: TCustomIniFile.SectionExists (435), TCustomlIniFile.ReadSections (441), TCustomIniFile.DeleteKey
(441)

19.3.27 TCustomlniFile.DeleteKey

Synopsis: Delete a key from a section

Declaration: procedure DeleteKey (const Section: String;const Ident: String); Virtual
; Abstract

Visibility: public

442

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: DeleteKey deletes the key Ident from section Section. If the key or section didn’t exist prior
to the DeleteKey call, nothing happens.

See also: TCustomlIniFile.EraseSection (441)

19.3.28 TCustominiFile.UpdateFile
Synopsis: Update the file on disk

Declaration: procedure UpdateFile; Virtual; Abstract
Visibility: public

Description: UpdateFile writes the in-memory image of the ini-file to disk. To speed up operation of the
inifile class, the whole ini-file is read into memory when the class is created, and all operations are
performed in-memory. If CacheUpdates is set to True, any changes to the inifile are only in
memory, until they are committed to disk with a call to UpdateFile. If CacheUpdates is set
to False, then all operations which cause a change in the .ini file will immediatly be committed
to disk with a call to UpdateFile. Since the whole file is written to disk, this may have serious
impact on performance.

See also: TIniFile.CacheUpdates (448)

19.3.29 TCustomlniFile.ValueExists
Synopsis: Check if a value exists

Declaration: function ValueExists (const Section: String;const Ident: String)
Boolean; Virtual

Visibility: public

Description: ValueExists checks whether the key Tdent exists in section Section. It returns True if a
key was found, or False if not. The key may be empty.

See also: TCustomIniFile.SectionExists (435)

19.3.30 TCustomlniFile.FileName
Synopsis: Name of the .ini file

Declaration: Property FileName : String
Visibility: public
Access: Read

Description: FileName is the name of the ini file on disk. It should be specified when the TCustomIniFile
instance is created. Contrary to the Delphi implementation, if no path component is present in the
filename, the filename is not searched in the windows directory.

See also: TCustomlIniFile.Create (434)

443

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.3.31 TCustomlIniFile.EscapelLineFeeds
Synopsis: Should linefeeds be escaped ?

Declaration: Property EscapelLineFeeds : Boolean
Visibility: public
Access: Read

Description: EscapeLineFeeds determines whether escaping of linefeeds is enabled: For a description of this
feature, see Create (434), as the value of this property must be specified when the TCustomIniFile
instance is created.

By default, EscapeLineFeeds is False.

See also: TCustomlIniFile.Create (434), TCustomIniFile.CaseSensitive (443)

19.3.32 TCustomlniFile.CaseSensitive

Synopsis: Are key and section names case sensitive
Declaration: Property CaseSensitive : Boolean
Visibility: public
Access: Read,Write

Description: CaseSensitive determines whether searches for sections and keys are performed case-sensitive
or not. By default, they are not case sensitive.

See also: TCustomIniFile.EscapeLineFeeds (443)

19.3.33 TCustomlniFile.StripQuotes
Synopsis: Should quotes be stripped from string values

Declaration: Property StripQuotes : Boolean
Visibility: public
Access: Read,Write

Description: stripQuotes determines whether quotes around string values are stripped from the value when
reading the values from file. By default, quotes are not stripped (this is Delphi and Windows com-
patible).

19.4 THashedStringList

19.4.1 Description

THashedStringList is a TStringList (??) descendent which creates has values for the strings
and names (in the case of a name-value pair) stored in it. The IndexOf (444) and IndexOfName (444)
functions make use of these hash values to quicklier locate a value.

444

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.4.2 Method overview

Page Property Description

444 Create Instantiates a new instance of THashedStringList
444 Destroy Clean up instance

444 IndexOf Returns the index of a string in the list of strings

444 IndexOfName Return the index of a name in the list of name=value pairs

19.4.3 THashedStringList.Create

Synopsis: Instantiates a new instance of THashedStringList
Declaration: constructor Create
Visibility: public
Description: Create calls the inherited Create, and then instantiates the hash tables.
Errors: If no enough memory is available, an exception may be raised.

See also: THashedStringList.Destroy (444)

19.4.4 THashedStringList.Destroy

Synopsis: Clean up instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy cleans up the hash tables and then calls the inherited Destroy.

See also: THashedStringList.Create (444)

19.4.5 THashedStringList.IndexOf

Synopsis: Returns the index of a string in the list of strings
Declaration: function IndexOf (const S: String) : Integer; Override
Visibility: public

Description: IndexOf overrides the TStringList.IndexOf (433) method and uses the hash values to look for the
location of S.

See also: TStringList.IndexOf (433), THashedStringList.IndexOfName (444)

19.4.6 THashedStringList.IndexOfName

Synopsis: Return the index of a name in the list of name=value pairs
Declaration: function IndexOfName (const Name: String) : Integer; Override
Visibility: public

Description: IndexOfName overrides the TStrings.IndexOfName (433) method and uses the hash values of the
names to look for the location of Name.

See also: TStrings.IndexOfName (433), THashedStringList.IndexOf (444)

445

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.5 TIniFile

19.5.1 Description

TIniFile is an implementation of TCustomlIniFile (433) which does the same as TMemlIniFile
(453), namely it reads the whole file into memory. Unlike TMemIniF1ile it does not cache updates
in memory, but immediatly writes any changes to disk.

TIniFile introduces no new methods, it just implements the abstract methods introduced in TCustomIniFile

19.5.2 Method overview

Page Property Description

445 Create Create a new instance of TIniFile
447 DeleteKey Delete key

445 Destroy Remove the TIniFile instance from memory
447 EraseSection

446 ReadSection Read the key names in a section

446 ReadSectionRaw Read raw section

447 ReadSections Read section names

447 ReadSectionValues

446 ReadString Read a string

448 UpdateFile Update the file on disk

446 WriteString Write string to file

19.5.3 Property overview

Page Property Access Description
448 CacheUpdates 1w Should changes be kept in memory
448 Stream r Stream from which ini file was read

19.5.4 TIniFile.Create

Synopsis: Create a new instance of TIniFile

Declaration: constructor Create (const AFileName: String;AEscapelLineFeeds: Boolean)
; Override
constructor Create (AStream: TStream;AEscapelineFeeds: Boolean)

Visibility: public

Description: Create creates a new instance of TIniFile and initializes the class by reading the file from disk
if the filename AFileName is specified, or from stream in case ASt ream is specified. It also sets
most variables to their initial values, i.e. AEscapeLineFeeds is saved prior to reading the file,
and Cacheupdatesissetto False.

See also: TCustomIniFile (433), TMemlIniFile (453)

19.5.5 TIniFile.Destroy

Synopsis: Remove the TIniFile instance from memory
Declaration: destructor Destroy; Override

Visibility: public

446

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: Destroy writes any pending changes to disk, and cleans up the TIniFile structures, and then
calls the inherited De st roy, effectively removing the instance from memory.

Errors: If an error happens when the file is written to disk, an exception will be raised.

See also: TCustomIniFile.UpdateFile (442), TIniFile.CacheUpdates (448)

19.5.6 TIniFile.ReadString
Synopsis: Read a string

Declaration: function ReadString(const Section: String;const Ident: String;
const Default: String) : String; Override

Visibility: public

Description: ReadSt ring implements the TCustomIniFile.ReadString (435) abstract method by looking at the
in-memory copy of the ini file and returning the string found there.

See also: TCustomIniFile.ReadString (435)

19.5.7 TIniFile.WriteString
Synopsis: Write string to file

Declaration: procedure WriteString(const Section: String;const Ident: String;
const Value: String); Override

Visibility: public

Description: WriteString implements the TCustomIniFile.WriteString (436) abstract method by writing the
string to the in-memory copy of the ini file. If CacheUpdates (448) property is False, then the
whole file is immediatly written to disk as well.

Errors: If an error happens when the file is written to disk, an exception will be raised.

19.5.8 TIniFile.ReadSection

Synopsis: Read the key names in a section

Declaration: procedure ReadSection (const Section: String;Strings: TStrings)
; Override

Visibility: public

Description: ReadSection reads the key names from Section into Strings, taking the in-memory copy
of the ini file. This is the implementation for the abstract TCustomlIniFile.ReadSection (440)

See also: TCustomlIniFile.ReadSection (440), TIniFile.ReadSectionRaw (446)

19.5.9 TIniFile.ReadSectionRaw

Synopsis: Read raw section
Declaration: procedure ReadSectionRaw (const Section: String;Strings: TStrings)

Visibility: public

447

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: ReadSectionRaw returns the contents of the section Section as it is: this includes the com-
ments in the section. (these are also stored in memory)

See also: TIniFile.ReadSection (446), TCustomIniFile.ReadSection (440)

19.5.10 TiniFile.ReadSections

Synopsis: Read section names
Declaration: procedure ReadSections (Strings: TStrings); Override
Visibility: public

Description: ReadSections is the implementation of TCustomIniFile.ReadSections (441). It operates on the
in-memory copy of the inifile, and places all section names in St rings.

See also: TIniFile.ReadSection (446), TCustomIniFile.ReadSections (441), TIniFile.ReadSectionValues (447)

19.5.11 TiniFile.ReadSectionValues
Synopsis:

Declaration: procedure ReadSectionValues (const Section: String;Strings: TStrings)
; Override

Visibility: public

Description: ReadSectionValues is the implementation of TCustomlIniFile.ReadSectionValues (441). It op-
erates on the in-memory copy of the inifile, and places all key names from Sect ion together with
their values in Strings.

See also: TIniFile.ReadSection (446), TCustomIniFile.ReadSectionValues (441), TIniFile. ReadSections (447)

19.5.12 TiniFile.EraseSection
Synopsis:
Declaration: procedure EraseSection(const Section: String); Override
Visibility: public

Description: Erasesection deletes the section Section from memory, if CacheUpdates (448) is False,
then the file is immediatly updated on disk. This method is the implementation of the abstract TCus-
tomlniFile.EraseSection (441) method.

See also: TCustomlIniFile.EraseSection (441), TIniFile.ReadSection (446), TIniFile.ReadSections (447)

19.5.13 TIniFile.DeleteKey
Synopsis: Delete key

Declaration: procedure DeleteKey (const Section: String;const Ident: String)
; Override

Visibility: public

448

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: DeleteKey deletes the Tdent from the section Section. This operation is performed on the
in-memory copy of the ini file. if CacheUpdates (448) is False, then the file is immediatly updated
on disk.

See also: TIniFile.CacheUpdates (448)

19.5.14 TiniFile.UpdateFile
Synopsis: Update the file on disk

Declaration: procedure UpdateFile; Override
Visibility: public

Description: UpdateFile writes the in-memory data for the ini file to disk. The whole file is written. If the ini
file was instantiated from a stream, then the stream is updated. Note that the stream must be seekable
for this to work correctly. The ini file is marked as ’clean’ after a call to UpdateFile (i.e. not in
need of writing to disk).

Errors: If an error occurs when writing to stream or disk, an exception may be raised.

See also: TIniFile.CacheUpdates (448)

19.5.15 TIniFile.Stream

Synopsis: Stream from which ini file was read
Declaration: Property Stream : TStream
Visibility: public
Access: Read

Description: St ream is the stream which was used to create the IniFile. The UpdateFile (448) method will
use this stream to write changes to.

See also: TIniFile.Create (445), TIniFile.UpdateFile (448)

19.5.16 TIniFile.CacheUpdates

Synopsis: Should changes be kept in memory
Declaration: Property CacheUpdates : Boolean
Visibility: public
Access: Read,Write

Description: CacheUpdates determines how to deal with changes to the ini-file data: if set to True then
changes are kept in memory till the file is written to disk with a call to UpdateFile (448). If it is set to
False then each call that changes the data of the ini-file will result in a call to UpdateFile. This
is the default behaviour, but it may aversely affect performance.

See also: TIniFile.UpdateFile (448)

449

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.6 TIniFileKey

19.6.1 Description

TIniFileKey isused to keep the key/value pairs in the ini file in memory. It is an internal structure,
used internally by the TIniFile (445) class.

19.6.2 Method overview

Page Property Description
449 Create Create a new instance of TIniFileKey

19.6.3 Property overview

Page Property Access Description
449 Ident w Key name
449 Value w Key value

19.6.4 TIniFileKey.Create

Synopsis: Create a new instance of TIniFileKey
Declaration: constructor Create (AIdent: String;AValue: String)
Visibility: public

Description: Create instantiates a new instance of TIniFileKey on the heap. It fills Ident (449) with
ATIdent and Value (449) with AvValue.

See also: TIniFileKey.Ident (449), TIniFileKey. Value (449)

19.6.5 TIniFileKey.ldent
Synopsis: Key name
Declaration: Property Ident : String
Visibility: public
Access: Read,Write
Description: Ident is the key value part of the key/value pair.

See also: TIniFileKey.Value (449)

19.6.6 TIniFileKey.Value
Synopsis: Key value
Declaration: Property Value : String
Visibility: public
Access: Read,Write
Description: Value is the value part of the key/value pair.

See also: TIniFileKey.Ident (449)

450

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.7 TIniFileKeyList

19.7.1 Description

TIniFileKeyList maintains a list of TIniFileKey (449) instances on behalf of the TIniFileSec-
tion (451) class. It stores they keys of one section of the .ini files.

19.7.2 Method overview

Page Property Description
450 Clear Clear the list
450 Destroy Free the instance

19.7.3 Property overview

Page Property Access Description
450 Items r Indexed access to TIniFileKey items in the list

19.7.4 TiniFileKeyList.Destroy

Synopsis: Free the instance
Declaration: destructor Destroy; Override
Visibility: public
Description: Dest roy clears up the list using Clear (450) and then calls the inherited destroy.

See also: TIniFileKeyList.Clear (450)

19.7.5 TiniFileKeyList.Clear
Synopsis: Clear the list

Declaration: procedure Clear; Override
Visibility: public
Description: Clear removes all TIniFileKey (449) instances from the list, and frees the instances.

See also: TIniFileKey (449)

19.7.6 TIniFileKeyList.ltems

Synopsis: Indexed access to TIniFileKey items in the list
Declaration: Property ITtems|[Index: Integer]: TIniFileKey; default
Visibility: public
Access: Read

Description: Items provides indexed access to the TIniFileKey (449) items in the list. The index is zero-based
and runs from 0 to Count—-1.

See also: TIniFileKey (449)

451

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.8 TIniFileSection

19.8.1 Description

TIniFileSection is a class which represents a section in the .ini, and is used internally by the
TIniFile (445) class (one instance of TIniFileSection is created for each section in the file by
the TIniFileSectionList (452) list). The name of the section is stored in the Name (452) property, and
the key/value pairs in this section are available in the KeyList (452) property.

19.8.2 Method overview

Page Property Description

451 Create Create a new section object

451 Destroy Free the section object from memory
451 Empty Is the section empty

19.8.3 Property overview

Page Property Access Description
452 KeyList r List of key/value pairs in this section
452 Name r Name of the section

19.8.4 TiniFileSection.Empty

Synopsis: Is the section empty
Declaration: function Empty : Boolean
Visibility: public

Description: Empty returns True if the section contains no key values (even if they are empty). It may contain
comments.

19.8.5 TIniFileSection.Create

Synopsis: Create a new section object
Declaration: constructor Create (AName: String)
Visibility: public

Description: Create instantiates a new TIniFileSection class, and sets the name to AName. It allocates a
TIniFileKeyList (450) instance to keep all the key/value pairs for this section.

See also: TIniFileKeyList (450)

19.8.6 TIniFileSection.Destroy

Synopsis: Free the section object from memory
Declaration: destructor Destroy; Override

Visibility: public

452

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

Description: Dest roy cleans up the key list, and then calls the inherited Dest roy, removing the TIniFileSection
instance from memory.

See also: TIniFileSection.Create (451), TIniFileKeyList (450)

19.8.7 TIniFileSection.Name

Synopsis: Name of the section
Declaration: Property Name : String
Visibility: public
Access: Read
Description: Name is the name of the section in the file.

See also: TIniFileSection.KeyList (452)

19.8.8 TIniFileSection.KeyList

Synopsis: List of key/value pairs in this section
Declaration: Property KeyList : TIniFileKeyList
Visibility: public
Access: Read

Description: KeyList is the TIniFileKeyList (450) instance that is used by the TIniFileSection to keep
the key/value pairs of the section.

See also: TIniFileSection.Name (452), TIniFileKeyList (450)

19.9 TIniFileSectionList

19.9.1 Description

TIniFileSectionList maintains a list of TIniFileSection (451) instances, one for each section
in an .ini file. TIniFileSectionList is used internally by the TIniFile (445) class to represent
the sections in the file.

19.9.2 Method overview

Page Property Description
453 Clear Clear the list
453 Destroy Free the object from memory

19.9.3 Property overview

Page Property Access Description
453 Items r Indexed access to all the section objects in the list

453

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.9.4 TiniFileSectionList.Destroy

Synopsis: Free the object from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy calls Clear (453) to clear the section list and the calls the inherited Destroy

See also: TIniFileSectionList.Clear (453)

19.9.5 TiniFileSectionList.Clear
Synopsis: Clear the list

Declaration: procedure Clear; Override
Visibility: public

Description: Clear removes all TIniFileSection (451) items from the list, and frees the items it removes from
the list.

See also: TIniFileSection (451), TIniFileSectionList.Items (453)

19.9.6 TIniFileSectionList.ltems
Synopsis: Indexed access to all the section objects in the list

Declaration: Property Items[Index: Integer]: TIniFileSection; default
Visibility: public
Access: Read

Description: Items provides indexed access to all the section objects in the list. Index should run from 0 to
Count-1.

See also: TIniFileSection (451), TIniFileSectionList.Clear (453)

19.10 TMemlniFile

19.10.1 Description

TMemIniFile is a simple descendent of TIniFile (445) which introduces some extra methods
to be compatible to the Delphi implementation of TMemIniFile. The FPC implementation of
TIniFile is implemented as a TMemIniFile, except that TIniFile does not cache its up-
dates, and TMemIniFile does.

19.10.2 Method overview
Page Property Description

454 Clear Clear the data

454 Create Create a new instance of TMemIniFile
454 GetStrings Get contents of ini file as stringlist

454 Rename Rename the ini file

455 SetStrings Set data from a stringlist

454

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.10.3 TMemlniFile.Create

Synopsis: Create a new instance of TMemIniFile

Declaration: constructor Create (const AFileName: String;AEscapelineFeeds: Boolean)
; Override

Visibility: public

Description: Create simply calls the inherited Create (445), and sets the CacheUpdates (448) to True so up-
dates will be kept in memory till they are explicitly written to disk.

See also: TIniFile.Create (445), TIniFile.CacheUpdates (448)

19.10.4 TMeminiFile.Clear
Synopsis: Clear the data

Declaration: procedure Clear
Visibility: public

Description: Clear removes all sections and key/value pairs from memory. If CacheUpdates (448) is set to
False then the file on disk will immediatly be emptied.

See also: TMemlniFile.SetStrings (455), TMemlIniFile.GetStrings (454)

19.10.5 TMeminiFile.GetStrings
Synopsis: Get contents of ini file as stringlist

Declaration: procedure GetStrings (List: TStrings)
Visibility: public

Description: Get St rings returns the whole contents of the ini file in a single stringlist, List. This includes
comments and empty sections.

The GetStrings call can be used to get data for a call to SetStrings (455), which can be used to
copy data between 2 in-memory ini files.

See also: TMemlniFile.SetStrings (455), TMemlIniFile.Clear (454)

19.10.6 TMeminiFile.Rename
Synopsis: Rename the ini file

Declaration: procedure Rename (const AFileName: String;Reload: Boolean)
Visibility: public

Description: Rename will rename the ini file with the new name AFileName. If Reload is True then the
in-memory contents will be cleared and replaced with the contents found in AF i 1eName, if it exists.
If Reloadis False, the next call to UpdateFile will replace the contents of AFileName with
the in-memory data.

See also: TIniFile.UpdateFile (448)

455

CHAPTER 19. REFERENCE FOR UNIT ’INIFILES’

19.10.7 TMeminiFile.SetStrings

Synopsis: Set data from a stringlist
Declaration: procedure SetStrings (List: TStrings)
Visibility: public
Description: Set Strings sets the in-memory data from the List stringlist. The data is first cleared.

The SetStrings call can be used to set the data of the ini file to a list of strings obtained with
GetStrings (454). The two calls combined can be used to copy data between 2 in-memory ini files.

See also: TMemlniFile.GetStrings (454), TMemlIniFile.Clear (454)

456

Chapter 20

Reference for unit ’iostream’

20.1 Used units

Table 20.1: Used units by unit ’iostream’

Name Page
Classes 2?

20.2 Overview

The iostream implements a descendent of THandleStream (??) streams that can be used to read from
standard input and write to standard output and standard diagnostic output (stderr).

20.3 Constants, types and variables

20.3.1 Types

TIOSType = (iosInput,iosOutPut,iosError)

Table 20.2: Enumeration values for type TIOSType

Value Explanation

iosError The stream can be used to write to standard diagnostic output
iosInput The stream can be used to read from standard input
iosOutPut The stream can be used to write to standard output

TIOSType is passed to the Create (457) constructor of TIOStream (457), it determines what kind
of stream is created.

457

CHAPTER 20. REFERENCE FOR UNIT 'IOSTREAM’

20.4 EIOStreamError

20.4.1 Description

Error thrown in case of an invalid operation on a TIOStream (457).

20.5 TIOStream

20.5.1 Description

TIOStream can be used to create a stream which reads from or writes to the standard input, output
or stderr file descriptors. It is a descendent of THandleStream. The type of stream that is created
is determined by the TIOSType (456) argument to the constructor. The handle of the standard input,
output or stderr file descriptors is determined automatically.

The TIOStream keeps an internal Position, and attempts to provide minimal Seek (458) be-
haviour based on this position.

20.5.2 Method overview

Page Property Description

457 Create Construct a new instance of TIOStream (457)
457 Read Read data from the stream.

458 Seek Set the stream position

458 SetSize Set the size of the stream

458 Write Write data to the stream

20.5.3 TIOStream.Create

Synopsis: Construct a new instance of TIOStream (457)
Declaration: constructor Create (aIOSType: TIOSType)
Visibility: public
Description: Create creates a new instance of TIOStream (457), which can subsequently be used

Errors: No checking is performed to see whether the requested file descriptor is actually open for read-
ing/writing. In that case, subsequent calls to Read or Write or seek will fail.

See also: TIOStream.Read (457), TIOStream. Write (458)

20.5.4 TIOStream.Read
Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read checks first whether the type of the stream allows reading (type is iosInput). If not, it
raises a EIOStreamError (457) exception. If the stream can be read, it calls the inherited Read to
actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow reading.

See also: TIOSType (456), TIOStream. Write (458)

458

CHAPTER 20. REFERENCE FOR UNIT 'IOSTREAM’

20.5.5 TIOStream.Write

Synopsis: Write data to the stream
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write checks first whether the type of the stream allows writing (type is 1osOutput or iosError).
If not, it raises a EIOStreamError (457) exception. If the stream can be written to, it calls the inherited
Write to actually read the data.

Errors: An EIOStreamError exception is raised if the stream does not allow writing.

See also: TIOSType (456), TIOStream.Read (457)

20.5.6 TIOStream.SetSize

Synopsis: Set the size of the stream
Declaration: procedure SetSize (NewSize: LongInt); Override
Visibility: public

Description: set Size overrides the standard Set Size implementation. It always raises an exception, because
the standard input, output and stderr files have no size.

Errors: An EIOStreamError exception is raised when this method is called.

See also: EIOStreamError (457)

20.5.7 TIOStream.Seek
Synopsis: Set the stream position
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public
Description: Seek overrides the standard Seek implementation. Normally, standard input, output and stderr are

not seekable. The TIOStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them, if the stream is of type
iosInput.

Origin=soFromCurrentlIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EIOSt reamError exception.

Errors: An EIOStreamError (457) exception is raised if the stream does not allow the requested seek opera-
tion.

See also: EIOStreamError (457)

459

Chapter 21

Reference for unit ’libtar’

21.1 Used units

Table 21.1: Used units by unit ’libtar’

Name Page
BaseUnix 459
Classes ?7?
sysutils ??
Unix 459

UnixType 459
Windows 459

21.2 Overview

The libtar units provides 2 classes to read and write .tar archives: TTarArchive (463) class can be
used to read a tar file, and the TTarWriter (465) class can be used to write a tar file. The unit was
implemented originally by Stefan Heymann.

21.3 Constants, types and variables

21.3.1 Constants
ALL_PERMISSIONS = [tpReadByOwner, tpWriteByOwner, tpExecuteByOwner, tpReadByGroup, tpWri

ALL_PERMISSIONS is a set constant containing all possible permissions (read/write/execute, for
all groups of users) for an archive entry.

EXECUTE_PERMISSIONS = [tpExecuteByOwner, tpExecuteByGroup, tpExecuteByOther]
WRITE_PERMISSIONS is a set constant containing all possible execute permissions set for an

archive entry.

460

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

FILETYPE_NAME : Array[TFileType] of String = (’'Regular’,’Link’,’Symbolic Link’,’Char

FILETYPE_NAME can be used to get a textual description for each of the possible entry file types.
READ_PERMISSIONS = [tpReadByOwner, tpReadByGroup, tpReadByOther]

READ_PERMISSIONS is a set constant containing all possible read permissions set for an archive
entry.

WRITE_PERMISSIONS = [tpWriteByOwner, tpWriteByGroup,tpWriteByOther]

WRITE_PERMISSIONS is a set constant containing all possible write permissions set for an archive
entry.

21.3.2 Types

TFileType = (ftNormal, ftLink, ftSymbolicLink, ftCharacter, ftBlock,
ftDirectory, ftFifo, ftContiguous, ftDumpDir, ftMultivVolume,
ftVolumeHeader)

Table 21.2: Enumeration values for type TFileType

Value Explanation

ftBlock Block device file
ftCharacter Character device file
ftContiguous Contiguous file
ftDirectory Directory

ftDumpDir List of files

ftFifo FIFO file

ftLink Hard link
ftMultiVolume Multi-volume file part
ftNormal Normal file

ftSymbolicLink Symbolic link
ftVolumeHeader = Volume header, can appear only as first entry in the archive

TFileType describes the file type of a file in the archive. It is used in the FileType field of the
TTarDirRec (461) record.

TTarDirRec = record
Name : String;
Size : Into64;
DateTime : TDateTime;
Permissions : TTarPermissions;
FileType : TFileType;
LinkName : String;

UID : Integer;

GID : Integer;
UserName : String;
GroupName : String;
ChecksumOK : Boolean;

461

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

Mode : TTarModes;
Magic : String;

MajorDevNo : Integer;
MinorDevNo : Integer;
FilePos : Into64;

end

TTarDirRec describes an entry in the tar archive. It is similar to a directory entry as in TSearchRec
(??), and is returned by the TTarArchive.FindNext (464) call.

TTarMode = (tmSetUid, tmSetGid, tmSaveText)

Table 21.3: Enumeration values for type TTarMode

Value Explanation
tmSaveText Bit $200 is set
tmSetGid File has SetGID bit set
tmSetUid File has SetUID bit set.

TTarMode describes extra file modes. It is used in the Mode field of the TTarDirRec (461) record.
TTarModes= Set of (tmSaveText,tmSetGid,tmSetUid)

TTarModes denotes the full set of permission bits for the file in the field Mode field of the TTarDirRec
(461) record.

TTarPermission

(tpReadByOwner, tpWriteByOwner, tpExecuteByOwner,
tpReadByGroup, tpWriteByGroup, tpExecuteByGroup,
tpReadByOther, tpWriteByOther, tpExecuteByOther)

Table 21.4: Enumeration values for type TTarPermission

Value Explanation

tpExecuteByGroup Group can execute the file
tpExecuteByOther Other people can execute the file
tpExecuteByOwner Owner can execute the file
tpReadByGroup Group can read the file
tpReadByOther Other people can read the file.
tpReadByOwner Owner can read the file
tpWriteByGroup Group can write the file
tpWriteByOther Other people can write the file
tpWriteByOwner Owner can write the file

TTarPermission denotes part of a files permission as it it stored in the .tar archive. Each of these
enumerated constants correspond with one of the permission bits from a unix file permission.

TTarPermissions= Set of (tpExecuteByGroup, tpExecuteByOther,
tpExecuteByOwner, tpReadByGroup, tpReadByOther,
tpReadByOwner, tpWriteByGroup, tpWriteByOther,
tpWriteByOwner)

462

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

TTarPermissions describes the complete set of permissions that a file has. It is used in the
Permissions field of the TTarDirRec (461) record.

21.4 Procedures and functions

21.4.1 ClearDirRec

Synopsis: Initialize tar archive entry
Declaration: procedure ClearDirRec (var DirRec: TTarDirRec)
Visibility: default
Description: ClearDirRec clears the Di rRec entry, it basically zeroes out all fields.

See also: TTarDirRec (461)

21.4.2 ConvertFilename
Synopsis: Convert filename to archive format
Declaration: function ConvertFilename (Filename: String) : String
Visibility: default

Description: ConvertFileName converts the file name FileName to a format allowed by the tar archive.
Basically, it converts directory specifiers to forward slashes.

21.4.3 FileTimeGMT

Synopsis: Extract filetime

Declaration: function FileTimeGMT (FileName: String) : TDateTime; Overload
function FileTimeGMT (SearchRec: TSearchRec) : TDateTime; Overload

Visibility: default

Description: Fi1eTimeGMT returns the timestamp of a filename (F 1 1eName must exist) or a search rec (TSearchRec)
to a GMT representation that can be used in a tar entry.

See also: TTarDirRec (461)

21.4.4 PermissionString

Synopsis: Convert a set of permissions to a string
Declaration: function PermissionString(Permissions: TTarPermissions) : String
Visibility: default

Description: PermissionString can be used to convert a set of Permissions to a string in the same
format as used by the unix ’1s’ command.

See also: TTarPermissions (462)

463

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

21.5 TTarArchive

21.5.1 Description

TTarArchive is the class used to read and examine .tar archives. It can be constructed from a
stream or from a filename. Creating an instance will not perform any operation on the stream yet.

21.5.2 Method overview

Page Property Description

463 Create Create a new instance of the archive
463 Destroy Destroy TTarArchive instance
464 FindNext Find next archive entry

464 GetFilePos Return current archive position

464 ReadFile Read a file from the archive

463 Reset Reset archive

465 SetFilePos Set position in archive

21.5.3 TTarArchive.Create

Synopsis: Create a new instance of the archive

Declaration: constructor Create (Stream: TStream); Overload
constructor Create(Filename: String;FileMode: Word); Overload

Visibility: public

Description: Create can be used to create a new instance of TTarArchive using either a St reamTStream
(??) descendent or using a name of a file to open: FileName. In case of the filename, an open mode
can be specified.

Errors: In case a filename is specified and the file cannot be opened, an exception will occur.

See also: TTarArchive.FindNext (464)

21.5.4 TTarArchive.Destroy

Synopsis: Destroy TTarArchive instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy closes the archive stream (if it created a stream) and cleans up the TTarArchive in-
stance.

See also: TTarArchive.Create (463)

21.5.5 TTarArchive.Reset
Synopsis: Reset archive

Declaration: procedure Reset

Visibility: public

464

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

Description: Reset sets the archive file position on the beginning of the archive.

See also: TTarArchive.Create (463)

21.5.6 TTarArchive.FindNext

Synopsis: Find next archive entry
Declaration: function FindNext (var DirRec: TTarDirRec) : Boolean
Visibility: public

Description: FindNext positions the file pointer on the next archive entry, and returns all information about the
entry in DirRec. It returns True if the operation was succeful, or False if not (for instance, when
the end of the archive was reached).

Errors: In case there are no more entries, False is returned.

See also: TTarArchive.ReadFile (464)

21.5.7 TTarArchive.ReadFile
Synopsis: Read a file from the archive

Declaration: procedure ReadFile (Buffer: POINTER); Overload
procedure ReadFile (Stream: TStream); Overload
procedure ReadFile (Filename: String); Overload
function ReadFile : String; Overload

Visibility: public

Description: ReadFile can be used to read the current file in the archive. It can be called after the archive was
succesfully positioned on an entry in the archive. The file can be read in various ways:

edirectly in a memory buffer. No checks are performed to see whether the buffer points to
enough memory.

eIt can be copied to a Stream.
oIt can be copied to a file with name FileName.

oThe file content can be copied to a string

Errors: An exception may occur if the buffer is not large enough, or when the file specified in £ilename
cannot be opened.

21.5.8 TTarArchive.GetFilePos

Synopsis: Return current archive position
Declaration: procedure GetFilePos (var Current: Int64;var Size: Int64)
Visibility: public

Description: GetFilePos returns the position in the tar archive in Current and the complete archive size in
Size.

See also: TTarArchive.SetFilePos (465), TTarArchive.Reset (463)

465

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

21.5.9 TTarArchive.SetFilePos
Synopsis: Set position in archive
Declaration: procedure SetFilePos (NewPos: Int64)
Visibility: public
Description: SetFilePos can be used to set the absolute position in the tar archive.

See also: TTarArchive.Reset (463), TTarArchive.GetFilePos (464)

21.6 TTarWriter

21.6.1 Description

TTarWriter can be used to create .tar archives. It can be created using a filename, in which case
the archive will be written to the filename, or it can be created using a stream, in which case the
archive will be written to the stream - for instance a compression stream.

21.6.2 Method overview

Page Property Description

467 AddDir Add directory to archive

466 AddFile Add a file to the archive

468 AddLink Add hard link to archive

466 AddStream Add stream contents to archive.
467 AddString Add string as file data

467 AddSymbolicLink Add a symbolic link to the archive
468 AddVolumeHeader Add volume header entry

465 Create Create a new archive
466 Destroy Close archive and clean up TTarWriter
468 Finalize Finalize the archive

21.6.3 Property overview

Page Property Access Description

469 GID W Archive entry group ID

469 GroupName rw Archive entry group name
470 Magic w Archive entry Magic constant
470 Mode ™w Archive entry mode

468 Permissions 1w Archive entry permissions
469 UID ™w Archive entry user ID

469 UserName w Archive entry user name

21.6.4 TTarWriter.Create

Synopsis: Create a new archive

Declaration: constructor Create (TargetStream: TStream); Overload
constructor Create(TargetFilename: String;Mode: Integer); Overload

Visibility: public

466

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

Description: Create creates a new TTarWriter instance. This will start a new .tar archive. The archive will
be written to the Target St ream stream or to a file with name TargetFileName, which will be
opened with filemode Mode.

Errors: In case TargetFileName cannot be opened, an exception will be raised.

See also: TTarWriter.Destroy (466)

21.6.5 TTarWriter.Destroy

Synopsis: Close archive and clean up TTarWriter
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy will close the archive (i.e. it writes the end-of-archive marker, if it was not yet written),
and then frees the TTarWriter instance.

See also: TTarWriter.Finalize (468)

21.6.6 TTarWriter.AddFile
Synopsis: Add a file to the archive
Declaration: procedure AddFile (Filename: String; TarFilename: String)
Visibility: public
Description: AddFi1e adds a file to the archive: the contents is read from Fi1eName. Optionally, an alternative

filename can be specified in TarFileName. This name should contain only forward slash path
separators. If it is not specified, the name will be computed from FileName.

The archive entry is written with the current owner data and permissions.
Errors: If Fi1eName cannot be opened, an exception will be raised.

See also: TTarWriter.AddStream (466), TTarWriter. AddString (467), TTarWriter.AddLink (468), TTarWriter. AddSymbolicLink
(467), TTarWriter.AddDir (467), TTarWriter. AddVolumeHeader (468)

21.6.7 TTarWriter.AddStream

Synopsis: Add stream contents to archive.

Declaration: procedure AddStream(Stream: TStream;TarFilename: String;
FileDateGmt: TDateTime)
Visibility: public

Description: AddsStream will add the contents of St ream to the archive. The Stream will not be reset: only
the contents of the stream from the current position will be written to the archive. The entry will be
written with file name TarFileName. This name should contain only forward slash path separators.
The entry will be written with timestamp FileDateGmnt.

The archive entry is written with the current owner data and permissions.

See also: TTarWriter.AddFile (466), TTarWriter. AddString (467), TTarWriter. AddLink (468), TTarWriter. AddSymbolicLink
(467), TTarWriter.AddDir (467), TTarWriter. AddVolumeHeader (468)

467

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

21.6.8 TTarWriter.AddString
Synopsis: Add string as file data

Declaration: procedure AddString(Contents: String;TarFilename: String;
FileDateGmt: TDateTime)

Visibility: public

Description: AddString adds the string Contents as the data of an entry with file name TarFileName.
This name should contain only forward slash path separators. The entry will be written with times-
tamp FileDateGmt.

The archive entry is written with the current owner data and permissions.

See also: TTarWriter. AddFile (466), TTarWriter.AddStream (466), TTarWriter. AddLink (468), TTarWriter. AddSymbolicLink
(467), TTarWriter.AddDir (467), TTarWriter. AddVolumeHeader (468)

21.6.9 TTarWriter.AddDir
Synopsis: Add directory to archive

Declaration: procedure AddDir (Dirname: String;DateGmt: TDateTime;MaxDirSize: Int64)
Visibility: public

Description: AddD1ir adds a directory entry to the archive. The entry is written with name DirName, maximum
directory size MaxDirSize (0 means unlimited) and timestamp DateGmt.

Note that this call only adds an entry for a directory to the archive: if DirName is an existing
directory, it does not write all files in the directory to the archive.

The directory entry is written with the current owner data and permissions.

See also: TTarWriter.AddFile (466), TTarWriter.AddStream (466), TTarWriter. AddLink (468), TTarWriter. AddSymbolicLink
(467), TTarWriter.AddString (467), TTarWriter. AddVolumeHeader (468)

21.6.10 TTarWriter.AddSymbolicLink
Synopsis: Add a symbolic link to the archive

Declaration: procedure AddSymbolicLink (Filename: String;Linkname: String;
DateGmt: TDateTime)

Visibility: public

Description: AddSymbolicLink adds a symbolic link entry to the archive, with name F i 1eName, pointing to
LinkName. The entry is written with timestamp Dat eGmt.

The link entry is written with the current owner data and permissions.
Errors:

See also: TTarWriter.AddFile (466), TTarWriter.AddStream (466), TTarWriter.AddLink (468), TTarWriter. AddDir
(467), TTarWriter.AddString (467), TTarWriter. Add VolumeHeader (468)

468

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

21.6.11 TTarWriter.AddLink
Synopsis: Add hard link to archive

Declaration: procedure AddLink (Filename: String;Linkname: String;DateGmt: TDateTime)
Visibility: public

Description: AddLink adds a hard link entry to the archive. The entry has name FileName, timestamp
DateGmt and points to LinkName.

The link entry is written with the current owner data and permissions.
Errors:

See also: TTarWriter.AddFile (466), TTarWriter. AddStream (466), TTarWriter. AddSymbolicLink (467), TTar-
Writer.AddDir (467), TTarWriter. AddString (467), TTarWriter. AddVolumeHeader (468)

21.6.12 TTarWriter.AddVolumeHeader

Synopsis: Add volume header entry
Declaration: procedure AddvolumeHeader (VolumeId: String;DateGmt: TDateTime)
Visibility: public

Description: AddvolumeHeader adds a volume header entry to the archive. The entry is written with name
VolumeID and timestamp DateGmnt.

The volume header entry is written with the current owner data and permissions.
Errors:

See also: TTarWriter.AddFile (466), TTarWriter.AddStream (466), TTarWriter. AddSymbolicLink (467), TTar-
Writer.AddDir (467), TTarWriter. AddString (467), TTarWriter. AddLink (468)

21.6.13 TTarWriter.Finalize

Synopsis: Finalize the archive
Declaration: procedure Finalize
Visibility: public

Description: Finalize writes the end-of-archive marker to the archive. No more entries can be added after
Finalize was called.

If the TTarWriter instance is destroyed, it will automatically call finalize if finalize was
not yet called.

See also: TTarWriter.Destroy (466)

21.6.14 TTarWriter.Permissions

Synopsis: Archive entry permissions
Declaration: Property Permissions : TTarPermissions
Visibility: public

Access: Read,Write

469

CHAPTER 21. REFERENCE FOR UNIT °LIBTAR’

Description: Permissions is used for the permissions field of the archive entries.

See also: TTarDirRec (461)

21.6.15 TTarWriter.UID

Synopsis: Archive entry user ID
Declaration: Property UID : Integer
Visibility: public
Access: Read,Write
Description: UID is used for the UID field of the archive entries.

See also: TTarDirRec (461)

21.6.16 TTarWriter.GID
Synopsis: Archive entry group ID

Declaration: Property GID : Integer
Visibility: public
Access: Read,Write
Description: GID is used for the GID field of the archive entries.

See also: TTarDirRec (461)

21.6.17 TTarWriter.UserName

Synopsis: Archive entry user name
Declaration: Property UserName : String
Visibility: public
Access: Read,Write
Description: UserName is used for the UserName field of the archive entries.

See also: TTarDirRec (461)

21.6.18 TTarWriter.GroupName

Synopsis: Archive entry group name
Declaration: Property GroupName : String
Visibility: public
Access: Read,Write
Description: GroupName is used for the GroupName field of the archive entries.

See also: TTarDirRec (461)

470

CHAPTER 21

. REFERENCE FOR UNIT "LIBTAR’

21.6.19 TTarWriter.Mode
Synopsis: Archive entry mode

Declaration: Property Mode : TTarModes
Visibility: public
Access: Read,Write
Description: Mode is used for the Mode field of the archive entries.

See also: TTarDirRec (461)

21.6.20 TTarWriter.Magic

Synopsis: Archive entry Magic constant
Declaration: Property Magic : String
Visibility: public
Access: Read,Write
Description: Magi c is used for the Magi c field of the archive entries.

See also: TTarDirRec (461)

471

Chapter 22

Reference for unit ’Pipes’

22.1 Used units

Table 22.1: Used units by unit ’Pipes’

Name Page
Classes 2?
sysutils 7?

22.2 Overview

The Pipes unit implements streams that are wrappers around the OS’s pipe functionality. It creates
a pair of streams, and what is written to one stream can be read from another.

22.3 Constants, types and variables

22.3.1 Constants

ENoSeekMsg = ’Cannot seek on pipes’
Constant used in EPipeSeek (472) exception.
EPipeMsg = ’'Failed to create pipe.’

Constant used in EPipeCreation (472) exception.

22.4 Procedures and functions

22.4.1 CreatePipeHandles

Synopsis: Function to create a set of pipe handles

472

CHAPTER 22. REFERENCE FOR UNIT "PIPES’

Declaration: function CreatePipeHandles (var Inhandle: THandle;var OutHandle: THandle)
Boolean

Visibility: default

Description: CreatePipeHandles provides an OS-independent way to create a set of pipe filehandles. These
handles are inheritable to child processes. The reading end of the pipe is returned in InHandle, the
writing end in OutHandle.

Errors: On error, False is returned.

See also: CreatePipeStreams (472)

22.4.2 CreatePipeStreams
Synopsis: Create a pair of pipe stream.

Declaration: procedure CreatePipeStreams (var InPipe: TInputPipeStream;
var OutPipe: TOutputPipeStream)

Visibility: default

Description: CreatePipeStreams creates a set of pipe file descriptors with CreatePipeHandles (471), and if
that call is succesfull, a pair of streams is created: InPipe and OutPipe.

Errors: If no pipe handles could be created, an EPipeCreation (472) exception is raised.

See also: CreatePipeHandles (471), TInputPipeStream (472), TOutputPipeStream (474)

22.5 EPipeCreation

22.5.1 Description

Exception raised when an error occurred during the creation of a pipe pair.

22.6 EPipeError

22.6.1 Description

Exception raised when an invalid operation is performed on a pipe stream.

22.7 EPipeSeek

22.7.1 Description

Exception raised when an invalid seek operation is attempted on a pipe.

22.8 TInputPipeStream

22.8.1 Description

TInputPipeStream is created by the CreatePipeStreams (472) call to represent the reading end
of a pipe. It is a TStream (??) descendent which does not allow writing, and which mimics the seek
operation.

473

CHAPTER 22. REFERENCE FOR UNIT "PIPES’

22.8.2 Method overview

Page Property Description

474 Read Read data from the stream to a buffer.
473 Seek Set the current position of the stream
473 Write Write data to the stream.

22.8.3 Property overview

Page Property Access Description
474 NumBytesAvailable r Number of bytes available for reading.

22.8.4 TinputPipeStream.Write

Synopsis: Write data to the stream.
Declaration: function Write (const Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Write overrides the parent implementation of Write. On a TInputPipeStream will always
raise an exception, as the pipe is read-only.

Errors: An ENoWritePipe (471) exception is raised when this function is called.

See also: TInputPipeStream.Read (474), TInputPipeStream.Seek (473)

22.8.5 TIinputPipeStream.Seek

Synopsis: Set the current position of the stream
Declaration: function Seek (Offset: LongInt;Origin: Word) : LongInt; Override
Visibility: public

Description: Seek overrides the standard Seek implementation. Normally, pipe streams stderr are not seek-
able. The TInputPipeStream stream tries to provide seek capabilities for the following limited
number of cases:

Origin=soFromBeginninglf Of fset is larger than the current position, then the remaining bytes
are skipped by reading them from the stream and discarding them.

Origin=soFromCurrentIf Of fset is zero, the current position is returned. If it is positive, then
Of fset bytes are skipped by reading them from the stream and discarding them, if the stream
is of type iosInput.

All other cases will result in a EPipeSeek exception.
Errors: An EPipeSeck (472) exception is raised if the stream does not allow the requested seek operation.

See also: EPipeSeek (472), #rtl.classes.tstream.seek (2?)

474

CHAPTER 22. REFERENCE FOR UNIT "PIPES’

22.8.6 TInputPipeStream.Read
Synopsis: Read data from the stream to a buffer.

Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public
Description: Read calls the inherited read and adjusts the internal position pointer of the stream.
Errors: None.

See also: TInputPipeStream.Write (473), TInputPipeStream.Seek (473)

22.8.7 TinputPipeStream.NumBytesAvailable
Synopsis: Number of bytes available for reading.
Declaration: Property NumBytesAvailable : DWord
Visibility: public
Access: Read

Description: NumBytesAvailable is the number of bytes available for reading. This is the number of bytes
in the OS buffer for the pipe. It is not a number of bytes in an internal buffer.

If this number is nonzero, then reading NumBytesAvailable bytes from the stream will not block
the process. Reading more than NumBytesAvailable bytes will block the process, while it waits
for the requested number of bytes to become available.

See also: TInputPipeStream.Read (474)

22.9 TOutputPipeStream

22.9.1 Description

TOutputPipeStreamis created by the CreatePipeStreams (472) call to represent the writing end
of a pipe. It is a TStream (??) descendent which does not allow reading.

22.9.2 Method overview

Page Property Description
475 Read Read data from the stream.
474 Seek Sets the position in the stream

22.9.3 TOutputPipeStream.Seek
Synopsis: Sets the position in the stream

Declaration: function Seek (Offset: LongInt;Origin: Word) : LonglInt; Override
Visibility: public

Description: Seek is overridden in TOutputPipeStream. Calling this method will always raise an exception:
an output pipe is not seekable.

Errors: An EPipeSeek (472) exception is raised if this method is called.

475

CHAPTER 22. REFERENCE FOR UNIT "PIPES’

22.9.4 TOutputPipeStream.Read

Synopsis: Read data from the stream.
Declaration: function Read(var Buffer;Count: LongInt) : LongInt; Override
Visibility: public

Description: Read overrides the parent Read implementation. It always raises an exception, because a output
pipe is write-only.

Errors: An ENoReadPipe (471) exception is raised when this function is called.

See also: TOutputPipeStream.Seek (474)

476

Chapter 23

Reference for unit ’pooledmm’

23.1 Used units

Table 23.1: Used units by unit ’pooledmm’

Name Page
Classes 2?

23.2 Overview

pooledmm is a memory manager class which uses pools of blocks. Since it is a higher-level im-
plementation of a memory manager which works on top of the FPC memory manager, It also offers
more debugging and analysis tools. It is used mainly in the LCL and Lazarus IDE.

23.3 Constants, types and variables

23.3.1 Types

PPooledMemManagerItem = “TPooledMemManagerItem

PPooledMemManagerItem is a pointer type, pointing to a TPooledMemManagerltem (477)
item, used in a linked list.

TEnumItemsMethod = procedure (Item: Pointer) of object

TEnumItemsMethodis a prototype for the callback used in the TNonFreePooledMemManager.Enumerateltems
(478) call. The parameter Item will be set to each of the pointers in the item list of TNonFreeP-
ooledMemManager (477).

TPooledMemManagerItem = record
Next : PPooledMemManagerItem;
end

4717

CHAPTER 23. REFERENCE FOR UNIT 'POOLEDMM’

TPooledMemManagerItem is used internally by the TPooledMemManager (479) class to main-
tain the free list block. It simply points to the next free block.

23.4 TNonFreePooledMemManager

23.4.1 Description

TNonFreePooledMemManager keeps a list of fixed-size memory blocks in memory. Each block
has the same size, making it suitable for storing a lot of records of the same type. It does not free the
items stored in it, except when the list is cleared as a whole.

It allocates memory for the blocks in a exponential way, i.e. each time a new block of memory must
be allocated, it’s size is the double of the last block. The first block will contain 8 items.

23.4.2 Method overview

Page Property Description

477 Clear Clears the memory

477 Create Creates a new instance of TNonFreePooledMemManager

478 Destroy Removes the TNonFreePooledMemManager instance from mem-
ory

478 Enumerateltems Enumerate all items in the list

478 Newltem Return a pointer to a new memory block

23.4.3 Property overview

Page Property Access Description
478 ItemSize r Size of an item in the list

23.4.4 TNonFreePooledMemManager.Clear
Synopsis: Clears the memory
Declaration: procedure Clear
Visibility: public
Description: Clear clears all blocks from memory, freeing the allocated memory blocks. None of the pointers
returned by Newltem (478) is valid after a call to Clear

See also: TNonFreePooledMemManager.NewItem (478)

23.4.5 TNonFreePooledMemManager.Create
Synopsis: Creates a new instance of TNonFreePooledMemManager
Declaration: constructor Create (TheltemSize: Integer)
Visibility: public

Description: Create creates a new instance of TNonFreePooledMemManager and sets the item size to
TheItemSize.

Errors: If not enough memory is available, an exception may be raised.

See also: TNonFreePooledMemManager.ItemSize (478)

478

CHAPTER 23. REFERENCE FOR UNIT 'POOLEDMM’

23.4.6 TNonFreePooledMemManager.Destroy

Synopsis: Removes the TNonFreePooledMemManager instance from memory
Declaration: destructor Destroy; Override
Visibility: public
Description: Destroy clears the list, clears the internal structures, and then calls the inherited Dest roy.
Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TNonFreePooledMemManager.Create (477), TNonFreePooledMemManager.Clear (477)

23.4.7 TNonFreePooledMemManager.Newltem

Synopsis: Return a pointer to a new memory block
Declaration: function NewItem : Pointer
Visibility: public

Description: NewItem returns a pointer to an unused memory block of size ItemSize (478). It will allocate new
memory on the heap if necessary.

Note that there is no way to mark the memory block as free, except by clearing the whole list.
Errors: If no more memory is available, an exception may be raised.

See also: TNonFreePooledMemManager.Clear (477)

23.4.8 TNonFreePooledMemManager.Enumerateltems

Synopsis: Enumerate all items in the list
Declaration: procedure Enumerateltems (const Method: TEnumItemsMethod)
Visibility: public

Description: EnumerateItems will enumerate over all items in the list, passing the items to Method. This
can be used to execute certain operations on all items in the list. (for example, simply list them)

23.4.9 TNonFreePooledMemManager.ltemSize

Synopsis: Size of an item in the list
Declaration: Property ItemSize : Integer
Visibility: public
Access: Read

Description: ItemSize is the size of a single block in the list. It’s a fixed size determined when the list is
created.

See also: TNonFreePooledMemManager.Create (477)

479

CHAPTER 23. REFERENCE FOR UNIT 'POOLEDMM’

23.5 TPooledMemManager

23.5.1 Description

TPooledMemManager is a class which maintains a linked list of blocks, represented by the TPooled-
MemManagerltem (477) record. It should not be used directly, but should be descended from and

the descendent should implement the actual memory manager.

23.5.2 Method overview
Page Property Description

479 Clear Clears the list
479 Create Creates a new instance of the TPooledMemManager class
479 Destroy Removes an instance of TPooledMemManager class from memory

23.5.3 Property overview

Page Property Access Description

481 AllocatedCount r Total number of allocated items in the list
480 Count r Number of items in the list

481 FreeCount r Number of free items in the list

481 FreedCount r Total number of freed items in the list.

480 MaximumFreeCountRatio 1w Maximum ratio of free items over total items
480 MinimumFreeCount ™w Minimum count of free items in the list

23.5.4 TPooledMemManager.Clear
Synopsis: Clears the list

Declaration: procedure Clear
Visibility: public
Description: Clear clears the list, it disposes all items in the list.

See also: TPooledMemManager.FreedCount (481)

23.5.5 TPooledMemManager.Create

Synopsis: Creates a new instance of the TPooledMemManager class
Declaration: constructor Create
Visibility: public
Description: Create initializes all necessary properties and then calls the inherited create.

See also: TPooledMemManager.Destroy (479)
23.5.6 TPooledMemManager.Destroy
Synopsis: Removes an instance of TPooledMemManager class from memory

Declaration: destructor Destroy; Override

480

CHAPTER 23. REFERENCE FOR UNIT 'POOLEDMM’

Visibility: public
Description: Destroy calls Clear (479) and then calls the inherited destroy.

Destroy should never be called directly. Instead Free should be used, or FreeAndNil

See also: TPooledMemManager.Create (479)

23.5.7 TPooledMemManager.MinimumFreeCount

Synopsis: Minimum count of free items in the list
Declaration: Property MinimumFreeCount : Integer
Visibility: public
Access: Read,Write

Description: MinimumFreeCount is the minimum number of free items in the linked list. When disposing
an item in the list, the number of items is checked, and only if the required number of free items is
present, the item is actually freed.

The default value is 100000

See also: TPooledMemManager.MaximumFreeCountRatio (480)

23.5.8 TPooledMemManager.MaximumFreeCountRatio

Synopsis: Maximum ratio of free items over total items
Declaration: Property MaximumFreeCountRatio : Integer
Visibility: public
Access: Read,Write

Description: MaximumFreeCountRatio is the maximum ratio (divided by 8) of free elements over the total
amount of elements: When disposing an item in the list, if the number of free items is higher than
this ratio, the item is freed.

The default value is 8.

See also: TPooledMemManager.MinimumFreeCount (480)

23.5.9 TPooledMemManager.Count
Synopsis: Number of items in the list

Declaration: Property Count : Integer
Visibility: public
Access: Read
Description: Count is the total number of items allocated from the list.

See also: TPooledMemManager.FreeCount (481), TPooledMemManager.AllocatedCount (481), TPooledMem-
Manager.FreedCount (481)

481

CHAPTER 23. REFERENCE FOR UNIT 'POOLEDMM’

23.5.10 TPooledMemManager.FreeCount

Synopsis: Number of free items in the list
Declaration: Property FreeCount : Integer
Visibility: public
Access: Read
Description: FreeCount is the current total number of free items in the list.

See also: TPooledMemManager.Count (480), TPooledMemManager.AllocatedCount (481), TPooledMem-
Manager.FreedCount (481)

23.5.11 TPooledMemManager.AllocatedCount
Synopsis: Total number of allocated items in the list

Declaration: Property AllocatedCount : Inté64
Visibility: public
Access: Read
Description: A11ocatedCount is the total number of newly allocated items on the list.

See also: TPooledMemManager.Count (480), TPooledMemManager.FreeCount (481), TPooledMemManager.FreedCount
(481)

23.5.12 TPooledMemManager.FreedCount

Synopsis: Total number of freed items in the list.
Declaration: Property FreedCount : Int64
Visibility: public
Access: Read
Description: FreedCount is the total number of elements actually freed in the list.

See also: TPooledMemManager.Count (480), TPooledMemManager.FreeCount (481), TPooledMemManager. AllocatedCount
(481)

482

Chapter 24

Reference for unit ’process’

24.1 Used units

Table 24.1: Used units by unit ’process’

Name Page
Classes 7
Pipes 471
sysutils 7

24.2 Overview

The Process unit contains the code for the TProcess (484) component, a cross-platform compo-
nent to start and control other programs, offering also access to standard input and output for these
programs.

TProcess does not handle wildcard expansion, does not support complex pipelines as in Unix.
If this behaviour is desired, the shell can be executed with the pipeline as the command it should
execute.

24.3 Constants, types and variables

24.3.1 Types

TProcessOption = (poRunSuspended,poWaitOnExit,poUsePipes,
poStderrToOutPut, poNoConsole, poNewConsole,
poDefaultErrorMode, poNewProcessGroup, poDebugProcess,
poDebugOnlyThisProcess)

When a new process is started using TProcess.Execute (486), these options control the way the
process is started. Note that not all options are supported on all platforms.

TProcessOptions= Set of (poDebugOnlyThisProcess,poDebugProcess,
poDefaultErrorMode, poNewConsole,

483

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

Table 24.2: Enumeration values for type TProcessOption

Value Explanation

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)
poDefaultErrorMode Use default error handling.

poNewConsole Start a new console window for the process (Win32 only)
poNewProcessGroup Start the process in a new process group (Win32 only)
poNoConsole Do not allow access to the console window for the process (Win32 only)
poRunSuspended Start the process in suspended state.

poStderrToOutPut Redirect standard error to the standard output stream.
poUsePipes Use pipes to redirect standard input and output.
poWaitOnExit Wait for the process to terminate before returning.

poNewProcessGroup, poNoConsole, poRunSuspended,
poStderrToOutPut, poUsePipes, poWaitOnExit)

Set of TProcessOption (482).

TProcessPriority = (ppHigh,pplIdle,ppNormal,ppRealTime)

Table 24.3: Enumeration values for type TProcessPriority

Value Explanation

ppHigh The process runs at higher than normal priority.

ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

This enumerated type determines the priority of the newly started process. It translates to default
platform specific constants. If finer control is needed, then platform-dependent mechanism need to
be used to set the priority.

TShowWindowOptions = (swoNone, swoHIDE, swoMaximize, swoMinimize,
swoRestore, swoShow, swoShowDefault,
swoShowMaximized, swoShowMinimized,
swoshowMinNOActive, swoShowNA, swoShowNoActivate,
swoShowNormal)

This type describes what the new process’ main window should look like. Most of these have only
effect on Windows. They are ignored on other systems.

TStartupOption = (suoUseShowWindow, suoUseSize, suoUsePosition,
suoUseCountChars, suoUseFillAttribute)

These options are mainly for Win32, and determine what should be done with the application once
it’s started.

484

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

Table 24.4: Enumeration values for type TShowWindowOptions

Value Explanation

swoHIDE The main window is hidden.

swoMaximize The main window is maximized.

swoMinimize The main window is minimized.

swoNone Allow system to position the window.

swoRestore Restore the previous position.

swoShow Show the main window.

swoShowDefault When showing Show the main window on

swoShowMaximized The main window is shown maximized

swoShowMinimized The main window is shown minimized

swoshowMinNOActive The main window is shown minimized but not activated

swoShowNA The main window is shown but not activated

swoShowNoActivate The main window is shown but not activated

swoShowNormal The main window is shown normally

Table 24.5: Enumeration values for type TStartupOption

Value Explanation
suoUseCountChars Use the console character width as specified in TProcess (484).
suoUseFillAttribute Use the console fill attribute as specified in TProcess (484).
suoUsePosition Use the window sizes as specified in TProcess (484).
suoUseShowWindow Use the Show Window options specified in TShowWindowOption (483)
suoUseSize Use the window sizes as specified in TProcess (484)

TStartupOptions= Set of

Set of TStartUpOption (483).

24.4 EProcess

24.4.1 Description

(suoUseCountChars, suoUseFillAttribute,
suoUsePosition, suoUseShowWindow, suoUseSize)

Exception raised when an error occurs in a TProcess routine.

24.5 TProcess

24.5.1 Description

TProcess is a component that can be used to start and control other processes (programs/binaries).
It contains a lot of options that control how the process is started. Many of these are Win32 specific,
and have no effect on other platforms, so they should be used with care.

The simplest way to use this component is to create an instance, set the CommandLine (492) property
to the full pathname of the program that should be executed, and call Execute (486). To determine
whether the process is still running (i.e. has not stopped executing), the Running (496) property can

be checked.

485

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

More advanced techniques can be used with the Options (494) settings.

24.5.2 Method overview

Page Property Description

487 Closelnput Close the input stream of the process

487 CloseOutput Close the output stream of the process

487 CloseStderr Close the error stream of the process

486 Create Create a new instance of the TProcess class.
486 Destroy Destroy this instance of TProcess

486 Execute Execute the program with the given options
487 Resume Resume execution of a suspended process
488 Suspend Suspend a running process

488 Terminate Terminate a running process

488 WaitOnExit = Wait for the program to stop executing.

24.5.3 Property overview

Page Property Access Description

492 Active ™w Start or stop the process.

492 ApplicationName rw Name of the application to start

492 CommandLine ™w Command-line to execute

493 ConsoleTitle ™w Title of the console window

493 CurrentDirectory rw Working directory of the process.

493 Desktop w Desktop on which to start the process.

494 Environment ™ Environment variables for the new process

491 ExitStatus r Exit status of the process.

499 FillAttribute ™w Color attributes of the characters in the console window
(Windows only)

489 Handle r Handle of the process

492 InheritHandles ™w Should the created process inherit the open handles of the
current process.

490 Input r Stream connected to standard input of the process.

494 Options w Options to be used when starting the process.

491 Output r Stream connected to standard output of the process.

495 Priority w Priority at which the process is running.

489 ProcessHandle Alias for Handle (489)

490 ProcessID ID of the process.

496 Running Determines wheter the process is still running.

496 ShowWindow w Determines how the process main window is shown (Win-
dows only)

495 StartupOptions w Additional (Windows) startup options

491 Stderr r Stream connected to standard diagnostic output of the pro-
cess.

489 ThreadHandle Main process thread handle

490 ThreadID ID of the main process thread

497 WindowColumns rw Number of columns in console window (windows only)

497 WindowHeight ™ Height of the process main window

497 WindowLeft ™ X-coordinate of the initial window (Windows only)

489 WindowRect w Positions for the main program window.

498 WindowRows ™w Number of rows in console window (Windows only)

498 WindowTop ™w Y-coordinate of the initial window (Windows only)

498 WindowWidth ™ Height of the process main window (Windows only)

486

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.4 TProcess.Create
Synopsis: Create a new instance of the TProcess class.
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create creates a new instance of the TProcess class. After calling the inherited constructor, it
simply sets some default values.

24.5.5 TProcess.Destroy

Synopsis: Destroy this instance of TProcess
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up this instance of TProcess. Prior to calling the inherited destructor, it cleans
up any streams that may have been created. If a process was started and is still executed, it is not
stopped, but the standard input/output/stderr streams are no longer available, because they have been
destroyed.

Errors: None.

See also: TProcess.Create (486)

24.5.6 TProcess.Execute
Synopsis: Execute the program with the given options
Declaration: procedure Execute; Virtual
Visibility: public
Description: Execute actually executes the program as specified in CommandLine (492), applying as much as

of the specified options as supported on the current platform.

If the poWaitOnExit option is specified in Options (494), then the call will only return when the
program has finished executing (or if an error occured). If this option is not given, the call returns
immediatly, but the WaitOnExit (488) call can be used to wait for it to close, or the Running (496)
call can be used to check whether it is still running.

The TProcess.Terminate (488) call can be used to terminate the program if it is still running, or the
Suspend (488) call can be used to temporarily stop the program’s execution.

The ExitStatus (491) function can be used to check the program’s exit status, after it has stopped
executing.

Errors: On error a EProcess (484) exception is raised.

See also: TProcess.Running (496), TProcess. WaitOnExit (488), TProcess. Terminate (488), TProcess.Suspend
(488), TProcess.Resume (487), TProcess.ExitStatus (491)

487

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.7 TProcess.Closelnput

Synopsis: Close the input stream of the process
Declaration: procedure CloseInput; Virtual
Visibility: public

Description: CloseInput closes the input file descriptor of the process, that is, it closes the handle of the pipe
to standard input of the process.

See also: TProcess.Input (490), TProcess.StdErr (491), TProcess.Output (491), TProcess.CloseOutput (487),
TProcess.CloseStdErr (487)

24.5.8 TProcess.CloseOutput

Synopsis: Close the output stream of the process
Declaration: procedure CloseOutput; Virtual
Visibility: public

Description: CloseOutput closes the output file descriptor of the process, that is, it closes the handle of the
pipe to standard output of the process.

See also: TProcess.Output (491), TProcess.Input (490), TProcess.StdErr (491), TProcess.Closelnput (487),
TProcess.CloseStdErr (487)

24.5.9 TProcess.CloseStderr

Synopsis: Close the error stream of the process
Declaration: procedure CloseStderr; Virtual
Visibility: public

Description: CloseStdErr closes the standard error file descriptor of the process, that is, it closes the handle
of the pipe to standard error output of the process.

See also: TProcess.Output (491), TProcess.Input (490), TProcess.StdErr (491), TProcess.Closelnput (487),
TProcess.CloseStdErr (487)

24.5.10 TProcess.Resume

Synopsis: Resume execution of a suspended process
Declaration: function Resume : Integer; Virtual
Visibility: public

Description: Resume should be used to let a suspended process resume it’s execution. It should be called in
particular when the poRunSuspended flag is set in Options (494).

Errors: None.

See also: TProcess.Suspend (488), TProcess.Options (494), TProcess.Execute (486), TProcess.Terminate (488)

488

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.11 TProcess.Suspend

Synopsis: Suspend a running process

Declaration: function Suspend Integer; Virtual

Visibility: public
Description: Suspend suspends a running process. If the call is successful, the process is suspended: it stops

running, but can be made to execute again using the Resume (487) call.
Suspend is fundamentally different from TProcess.Terminate (488) which actually stops the pro-

Cess.

Errors: On error, a nonzero result is returned.
See also: TProcess.Options (494), TProcess.Resume (487), TProcess.Terminate (488), TProcess.Execute (486)

24.5.12 TProcess.Terminate

Synopsis: Terminate a running process
Boolean; Virtual

Declaration: function Terminate (AExitCode: Integer)
Visibility: public
Description: Terminate stops the execution of the running program. It effectively stops the program.
On Windows, the program will report an exit code of AExitCode, on other systems, this value is

ignored.
Errors: On error, a nonzero value is returned.

See also: TProcess.ExitStatus (491), TProcess.Suspend (488), TProcess.Execute (486), TProcess. WaitOnExit
(488)

24.5.13 TProcess.WaitOnExit

Synopsis: Wait for the program to stop executing.

Declaration: function WaitOnExit Boolean
Visibility: public
Description: WaitOnExit waits for the running program to exit. It returns True if the wait was succesful, or
False if there was some error waiting for the program to exit.
Note that the return value of this function has changed. The old return value was a DWord with a
platform dependent error code. To make things consistent and cross-platform, a boolean return type

was used.
Errors: On error, False is returned. No extended error information is available, as it is highly system

dependent.
See also: TProcess.ExitStatus (491), TProcess.Terminate (488), TProcess.Running (496)

489

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.14 TProcess.WindowRect

Synopsis: Positions for the main program window.
Declaration: Property WindowRect : Trect
Visibility: public
Access: Read,Write

Description: WindowRect can be used to specify the position of

24.5.15 TProcess.Handle
Synopsis: Handle of the process

Declaration: Property Handle : THandle
Visibility: public
Access: Read

Description: Handle identifies the process. In Unix systems, this is the process ID. On windows, this is the
process handle. It can be used to signal the process.

The handle is only valid after TProcess.Execute (486) has been called. It is not reset after the process
stopped.

See also: TProcess.ThreadHandle (489), TProcess.ProcessID (490), TProcess. ThreadID (490)

24.5.16 TProcess.ProcessHandle
Synopsis: Alias for Handle (489)

Declaration: Property ProcessHandle : THandle
Visibility: public
Access: Read
Description: ProcessHandle equals Handle (489) and is provided for completeness only.

See also: TProcess.Handle (489), TProcess. ThreadHandle (489), TProcess.ProcessID (490), TProcess. ThreadID
(490)

24.5.17 TProcess.ThreadHandle
Synopsis: Main process thread handle

Declaration: Property ThreadHandle : THandle
Visibility: public
Access: Read

Description: ThreadHandle is the main process thread handle. On Unix, this is the same as the process ID, on
Windows, this may be a different handle than the process handle.

The handle is only valid after TProcess.Execute (486) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (489), TProcess.ProcessID (490), TProcess.ThreadID (490)

490

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.18 TProcess.ProcessIiD
Synopsis: ID of the process.

Declaration: Property ProcessID : Integer
Visibility: public
Access: Read

Description: ProcessID is the ID of the process. It is the same as the handle of the process on Unix systems,
but on Windows it is different from the process Handle.

The ID is only valid after TProcess.Execute (486) has been called. It is not reset after the process
stopped.

See also: TProcess.Handle (489), TProcess. ThreadHandle (489), TProcess.ThreadID (490)

24.5.19 TProcess.ThreadIlD

Synopsis: ID of the main process thread
Declaration: Property ThreadID : Integer
Visibility: public
Access: Read

Description: ProcessID is the ID of the main process thread. It is the same as the handle of the main proces
thread (or the process itself) on Unix systems, but on Windows it is different from the thread Handle.

The ID is only valid after TProcess.Execute (486) has been called. It is not reset after the process
stopped.

See also: TProcess.ProcessID (490), TProcess.Handle (489), TProcess. ThreadHandle (489)

24.5.20 TProcess.Input

Synopsis: Stream connected to standard input of the process.
Declaration: Property Input : TOutputPipeStream
Visibility: public
Access: Read

Description: Input is a stream which is connected to the process’ standard input file handle. Anything written
to this stream can be read by the process.
The Input stream is only instantiated when the poUseP ipes flag is used in Options (494).
Note that writing to the stream may cause the calling process to be suspended when the created
process is not reading from it’s input, or to cause errors when the process has terminated.

See also: TProcess.OutPut (491), TProcess.StdErr (491), TProcess.Options (494), TProcessOption (482)

491

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.21 TProcess.Output

Synopsis: Stream connected to standard output of the process.
Declaration: Property Output : TInputPipeStream
Visibility: public
Access: Read

Description: Output is a stream which is connected to the process’ standard output file handle. Anything written
to standard output by the created process can be read from this stream.

The Output stream is only instantiated when the poUsePipes flag is used in Options (494).

The Output stream also contains any data written to standard diagnostic output (stderr) when
the poStdErrToOutPut flag is used in Options (494).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (490), TProcess.StdErr (491), TProcess.Options (494), TProcessOption (482)

24.5.22 TProcess.Stderr

Synopsis: Stream connected to standard diagnostic output of the process.
Declaration: Property Stderr : TInputPipeStream
Visibility: public
Access: Read

Description: StdErr is a stream which is connected to the process’ standard diagnostic output file handle
(StdErr). Anything written to standard diagnostic output by the created process can be read from
this stream.

The StdErr stream is only instantiated when the poUsePipes flag is used in Options (494).

The Output stream equals the Output (491) when the poStdErrToOutPut flag is used in Op-
tions (494).

Note that reading from the stream may cause the calling process to be suspended when the created
process is not writing anything to standard output, or to cause errors when the process has terminated.

See also: TProcess.InPut (490), TProcess.Output (491), TProcess.Options (494), TProcessOption (482)

24.5.23 TProcess.ExitStatus

Synopsis: Exit status of the process.
Declaration: Property ExitStatus : Integer
Visibility: public
Access: Read

Description: ExitStatus contains the exit status as reported by the process when it stopped executing. The
value of this property is only meaningful when the process is no longer running. If it is not running
then the value is zero.

See also: TProcess.Running (496), TProcess. Terminate (488)

492

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.24 TProcess.InheritHandles

Synopsis: Should the created process inherit the open handles of the current process.
Declaration: Property InheritHandles : Boolean
Visibility: public
Access: Read, Write

Description: InheritHandles determines whether the created process inherits the open handles of the current
process (value True) or not (False).

On Unix, setting this variable has no effect.

See also: TProcess.InPut (490), TProcess.Output (491), TProcess.StdErr (491)

24.5.25 TProcess.Active

Synopsis: Start or stop the process.
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive starts the process if it is set to True, or terminates the process if set to False. It’s mostly
intended for use in an IDE.

See also: TProcess.Execute (486), TProcess.Terminate (488)

24.5.26 TProcess.ApplicationName

Synopsis: Name of the application to start
Declaration: Property ApplicationName : String
Visibility: published
Access: Read,Write

Description: ApplicationName is an alias for TProcess.CommandLine (492). It’s mostly foruse in the Win-
dows CreateProcess call. If CommandLine is not set, then ApplicationName will be used
instead.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

See also: TProcess.CommandLine (492)

24.5.27 TProcess.CommandLine

Synopsis: Command-line to execute
Declaration: Property CommandLine : String
Visibility: published

Access: Read,Write

493

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

Description: CommandLine is the command-line to be executed: this is the name of the program to be executed,
followed by any options it should be passed.

If the command to be executed or any of the arguments contains whitespace (space, tab character,
linefeed character) it should be enclosed in single or double quotes.

If no absolute pathname is given for the command to be executed, it is searched for in the PATH
environment variable. On Windows, the current directory always will be searched first. On other
platforms, this is not so.

Note that either CommandLine or ApplicationName must be set prior to calling Execute.

See also: TProcess.ApplicationName (492)

24.5.28 TProcess.ConsoleTitle

Synopsis: Title of the console window
Declaration: Property ConsoleTitle : String
Visibility: published
Access: Read,Write

Description: ConsoleTit1le is used on Windows when executing a console application: it specifies the title
caption of the console window. On other platforms, this property is currently ignored.

Changing this property after the process was started has no effect.

See also: TProcess.WindowColumns (497), TProcess.WindowRows (498)

24.5.29 TProcess.CurrentDirectory
Synopsis: Working directory of the process.

Declaration: Property CurrentDirectory : String
Visibility: published
Access: Read,Write

Description: CurrentDirectory specifies the working directory of the newly started process.

Changing this property after the process was started has no effect.

See also: TProcess.Environment (494)

24.5.30 TProcess.Desktop
Synopsis: Desktop on which to start the process.

Declaration: Property Desktop : String
Visibility: published
Access: Read,Write

Description: DeskTop is used on Windows to determine on which desktop the process’ main window should be

shown. Leaving this empty means the process is started on the same desktop as the currently running
process.

Changing this property after the process was started has no effect.

On unix, this parameter is ignored.

494

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

See also: TProcess.Input (490), TProcess.Output (491), TProcess.StdErr (491)

24.5.31 TProcess.Environment

Synopsis: Environment variables for the new process
Declaration: Property Environment : TStrings
Visibility: published
Access: Read,Write

Description: Environment contains the environment for the new process; it’s a list of Name=Value pairs,
one per line.

If it is empty, the environment of the current process is passed on to the new process.

See also: TProcess.Options (494)

24.5.32 TProcess.Options

Synopsis: Options to be used when starting the process.
Declaration: Property Options : TProcessOptions
Visibility: published
Access: Read,Write

Description: Opt ions determine how the process is started. They should be set before the Execute (486) call is

made.
Table 24.6:

option Meaning
poRunSuspended Start the process in suspended state.
poWaitOnExit Wait for the process to terminate before returning.
poUsePipes Use pipes to redirect standard input and output.
poStderrToOutPut Redirect standard error to the standard output stream.
poNoConsole Do not allow access to the console window for the process (Win32 only)
poNewConsole Start a new console window for the process (Win32 only)
poDefaultErrorMode Use default error handling.
poNewProcessGroup Start the process in a new process group (Win32 only)
poDebugProcess Allow debugging of the process (Win32 only)

poDebugOnlyThisProcess Do not follow processes started by this process (Win32 only)

See also: TProcessOption (482), TProcessOptions (483), TProcess.Priority (495), TProcess.StartUpOptions
(495)

495

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.33 TProcess.Priority

Synopsis: Priority at which the process is running.
Declaration: Property Priority : TProcessPriority
Visibility: published
Access: Read,Write

Description: Priority determines the priority at which the process is running.

Table 24.7:
Priority Meaning
ppHigh The process runs at higher than normal priority.
ppldle The process only runs when the system is idle (i.e. has nothing else to do)
ppNormal The process runs at normal priority.

ppRealTime The process runs at real-time priority.

Note that not all priorities can be set by any user. Usually, only users witha dministrative rights (the
root user on Unix) can set a higher process priority.

On unix, the process priority is mapped on Nice values as follows:

Table 24.8:
Priority Nice value
ppHigh 20
ppldle 20
ppNormal 0

ppRealTime -20

See also: TProcessPriority (483)

24.5.34 TProcess.StartupOptions
Synopsis: Additional (Windows) startup options
Declaration: Property StartupOptions : TStartupOptions
Visibility: published
Access: Read,Write

Description: sStartUpOpt ions contains additional startup options, used mostly on Windows system. They de-
termine which other window layout properties are taken into account when starting the new process.

See also: TProcess.ShowWindow (496), TProcess.WindowHeight (497), TProcess.WindowWidth (498), TPro-
cess.WindowLeft (497), TProcess.WindowTop (498), TProcess. WindowColumns (497), TProcess. WindowRows
(498), TProcess.FillAttribute (499)

496

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

Table 24.9:
Priority Meaning
suoUseShowWindow Use the Show Window options specified in ShowWindow (496)
suoUseSize Use the specified window sizes
suoUsePosition Use the specified window sizes.

suoUseCountChars
suoUseFillAttribute

Use the specified console character width.
Use the console fill attribute specified in FillAttribute (499).

24.5.35 TProcess.Running
Synopsis: Determines wheter the process is still running.
Declaration: Property Running Boolean
Visibility: published
Access: Read

Description: Running can be read to determine whether the process is still running.

See also: TProcess.Terminate (488), TProcess.Active (492), TProcess.ExitStatus (491)

24.5.36 TProcess.ShowWindow

Synopsis: Determines how the process main window is shown (Windows only)
Declaration: Property ShowWindow TShowWindowOptions
Visibility: published

Access: Read,Write

Description: showWindow determines how the process’ main window is shown. It is useful only on Windows.

Table 24.10:
Option Meaning
swoNone Allow system to position the window.
SWOHIDE The main window is hidden.
swoMaximize The main window is maximized.
swoMinimize The main window is minimized.
swoRestore Restore the previous position.
swoShow Show the main window.
swoShowDefault When showing Show the main window on a default position

swoShowMaximized
swoShowMinimized

swoshowMinNOActive

The main window is shown maximized
The main window is shown minimized
The main window is shown minimized but not activated

swoShowNA The main window is shown but not activated
swoShowNoActivate The main window is shown but not activated
swoShowNormal The main window is shown normally

497

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.37 TProcess.WindowColumns

Synopsis: Number of columns in console window (windows only)
Declaration: Property WindowColumns : Cardinal
Visibility: published

Access: Read,Write

Description: WindowColumns is the number of columns in the console window, used to run the command in.
This property is only effective if suoUseCountChars is specified in StartupOptions (495)

See also: TProcess.WindowHeight (497), TProcess.WindowWidth (498), TProcess.WindowLeft (497), TPro-

cess.WindowTop (498), TProcess. WindowRows (498), TProcess.Fill Attribute (499), TProcess.StartupOptions
(495)

24.5.38 TProcess.WindowHeight

Synopsis: Height of the process main window
Declaration: Property WindowHeight : Cardinal
Visibility: published

Access: Read,Write

Description: WindowHeight is the initial height (in pixels) of the process’ main window. This property is only
effective if suoUseSize is specified in StartupOptions (495)

See also: TProcess.WindowWidth (498), TProcess.WindowLeft (497), TProcess.WindowTop (498), TPro-

cess.WindowColumns (497), TProcess. WindowRows (498), TProcess.Fill Attribute (499), TProcess.StartupOptions
(495)

24.5.39 TProcess.WindowLeft

Synopsis: X-coordinate of the initial window (Windows only)
Declaration: Property WindowLeft : Cardinal
Visibility: published

Access: Read,Write

Description: WindowLeft is the initial X coordinate (in pixels) of the process’ main window, relative to the

left border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (495)

See also: TProcess.WindowHeight (497), TProcess. WindowWidth (498), TProcess.WindowTop (498), TPro-

cess. WindowColumns (497), TProcess. WindowRows (498), TProcess.FillAttribute (499), TProcess.StartupOptions
(495)

498

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.40 TProcess.WindowRows

Synopsis: Number of rows in console window (Windows only)
Declaration: Property WindowRows : Cardinal
Visibility: published
Access: Read, Write

Description: WindowRows is the number of rows in the console window, used to run the command in. This
property is only effective if suoUseCountChars is specified in StartupOptions (495)

See also: TProcess.WindowHeight (497), TProcess.WindowWidth (498), TProcess.WindowLeft (497), TPro-
cess.WindowTop (498), TProcess. WindowColumns (497), TProcess.Fill Attribute (499), TProcess.StartupOptions
(495)

24.5.41 TProcess.WindowTop

Synopsis: Y-coordinate of the initial window (Windows only)
Declaration: Property WindowTop : Cardinal
Visibility: published
Access: Read,Write

Description: WindowTop is the initial Y coordinate (in pixels) of the process’ main window, relative to the
top border of the desktop. This property is only effective if suoUsePosition is specified in
StartupOptions (495)

See also: TProcess.WindowHeight (497), TProcess. WindowWidth (498), TProcess.WindowLeft (497), TPro-
cess.WindowColumns (497), TProcess.WindowRows (498), TProcess.Fill Attribute (499), TProcess.StartupOptions
(495)

24.5.42 TProcess.WindowWidth

Synopsis: Height of the process main window (Windows only)
Declaration: Property WindowWidth : Cardinal
Visibility: published
Access: Read,Write

Description: WindowWidth is the initial width (in pixels) of the process’ main window. This property is only
effective if suoUseSize is specified in StartupOptions (495)

See also: TProcess.WindowHeight (497), TProcess.WindowLeft (497), TProcess.WindowTop (498), TPro-
cess. WindowColumns (497), TProcess. WindowRows (498), TProcess.FillAttribute (499), TProcess.StartupOptions
(495)

499

CHAPTER 24. REFERENCE FOR UNIT 'PROCESS’

24.5.43 TProcess.FillAttribute

Synopsis: Color attributes of the characters in the console window (Windows only)
Declaration: Property FillAttribute : Cardinal
Visibility: published
Access: Read, Write

Description: Fil1Attribute is a WORD value which specifies the background and foreground colors of the
console window.

See also: TProcess.WindowHeight (497), TProcess. WindowWidth (498), TProcess.WindowLeft (497), TPro-
cess.WindowTop (498), TProcess. WindowColumns (497), TProcess. WindowRows (498), TProcess.StartupOptions
(495)

500

Chapter 25

Reference for unit ’rttiutils’

25.1 Used units

Table 25.1: Used units by unit ’rttiutils’

Name Page
Classes 2?
StrUtils 500
sysutils ??
typinfo ??

25.2 Overview

The rttiutils unit is a unit providing simplified access to the RTTI information from published prop-
erties using the TPropInfoList (502) class. This access can be used when saving or restoring form
properties at runtime, or for persisting other objects whose RTTI is available: the TPropsStorage
(505) class can be used for this. The implementation is based on the apputils unit from RXLib by
AO ROSNO and Master-Bank

25.3 Constants, types and variables

25.3.1 Constants

sPropNameDelimiter : String = '_'

Separator used when constructing section/key names

25.3.2 Types

TEraseSectEvent = procedure (const ASection: String) of object

501

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

TEraseSectEvent is used by TPropsStorage (505) to clear a storage section, in a .ini file like
fashion: The call should remove all keys in the section ASection, and remove the section from
storage.

TFindComponentEvent = function(const Name: String) : TComponent

TFindComponentEvent should return the component instance for the component with name
path Name. The name path should be relative to the global list of loaded components.

TReadStrEvent = function(const ASection: String;const Item: String;
const Default: String) : String of object

TReadStrEvent is used by TPropsStorage (505) to read strings from a storage mechanism, in a
.ini file like fashion: The call should read the string in ASect ion with key Item, and if it does not
exist, Default should be returned.

TWriteStrEvent = procedure (const ASection: String;const Item: String;
const Value: String) of object

TWriteStrEvent is used by TPropsStorage (505) to write strings to a storage mechanism, in a
.ini file like fashion: The call should write the string Value in ASection with key Item. The
section and key should be created if they didn’t exist yet.

25.3.3 Variables

FindGlobalComponentCallBack : TFindComponentEvent

FindGlobalComponentCallBack is called by UpdateStoredList (502) whenever it needs to
resolve component references. It should be set to a routine that locates a loaded component in the
global list of loaded components.

25.4 Procedures and functions

25.4.1 CreateStoredltem

Synopsis: Concatenates component and property name

Declaration: function CreateStoredItem(const CompName: String;const PropName: String)
String

Visibility: default

Description: CreateStoredItem concatenates CompName and PropName if they are both empty. The
names are separated by a dot (.) character. If either of the names is empty, an empty string is
returned.

This function can be used to create items for the list of properties such as used in UpdateStoredList
(502), TPropsStorage.StoreObjectsProps (507) or TPropsStorage.LoadObjectsProps (506).

See also: ParseStoredItem (502), UpdateStoredList (502), TPropsStorage.StoreObjectsProps (507), TPropsStor-
age.LoadObjectsProps (506)

502

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

25.4.2 ParseStoredltem
Synopsis: Split a property reference to component reference and property name

Declaration: function ParseStoredItem(const Item: String;var CompName: String;
var PropName: String) : Boolean

Visibility: default

Description: ParseStoredItem parses the property reference Item and splits it in a reference to a component
(returned in CompName) and a name of a property (returned in PropName). This function basically
does the opposite of CreateStoredItem (501). Note that both names should be non-empty, i.e., at least
1 dot character must appear in ITtem.

Errors: If an error occurred during parsing, False is returned.

See also: CreateStoredItem (501), UpdateStoredList (502), TPropsStorage.StoreObjectsProps (507), TPropsStor-
age.LoadObjectsProps (506)

25.4.3 UpdateStoredList

Synopsis: Update a stringlist with object references

Declaration: procedure UpdateStoredList (AComponent: TComponent;AStoredList: TStrings;
FromForm: Boolean)

Visibility: default

Description: UpdateStoredList will parse the strings in AStoredList using ParseStoredItem (502) and
will replace the Ob ject s properties with the instance of the object whose name each property path
in the list refers to. If FromFormis True, then all instances are searched relative to AComponent,
i.e. they must be owned by AComponent. If FromForm is False the instances are searched in
the global list of streamed components. (the FindGlobalComponentCallBack (501) callback must be
set for the search to work correctly in this case)

If a component cannot be found, the reference string to the property is removed from the stringlist.
Errors: If AComponent is Ni1, an exception may be raised.

See also: ParseStoredItem (502), TPropsStorage.StoreObjectsProps (507), TPropsStorage.LoadObjectsProps
(506), FindGlobalComponentCallBack (501)

25.5 TProplInfoList

25.5.1 Description

TPropInfolist is aclass which can be used to maintain a list with information about published
properties of a class (or an instance). It is used internally by TPropsStorage (505)

25.5.2 Method overview

Page Property Description

503 Contains Check whether a certain property is included

503 Create Create a new instance of TPropInfoList

504 Delete Delete property information from the list

503 Destroy Remove the TPropInfolist instance from memory
503 Find Retrieve property information based on name

504 Intersect Intersect 2 property lists

503

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

25.5.3 Property overview

Page Property Access Description
504 Count r Number of items in the list
504 Ttems r Indexed access to the property type pointers

25.5.4 TPropinfoList.Create
Synopsis: Create a new instance of TPropInfolList

Declaration: constructor Create (AObject: TObject;Filter: TTypeKinds)
Visibility: public

Description: Create allocates and initializes a new instance of TPropInfoList on the heap. It retrieves a
list of published properties from AOb ject: if Filter is empty, then all properties are retrieved. If
it is not empty, then only properties of the kind specified in the set are retrieved. Instance should
not be Nil

See also: TProplInfoList.Destroy (503)

25.5.5 TPropinfoList.Destroy

Synopsis: Remove the TPropInfolist instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy cleans up the internal structures maintained by TPropInfolList and then calls the
inherited Destroy.

See also: TProplnfoList.Create (503)

25.5.6 TPropinfoList.Contains
Synopsis: Check whether a certain property is included

Declaration: function Contains (P: PPropInfo) : Boolean
Visibility: public

Description: Contains checks whether P is included in the list of properties, and returns True if it does. If P
cannot be found, False is returned.

See also: TProplnfoList.Find (503), TPropInfoList.Intersect (504)

25.5.7 TPropinfolList.Find

Synopsis: Retrieve property information based on name
Declaration: function Find(const AName: String) : PPropInfo
Visibility: public

Description: Find returns a pointer to the type information of the property AName. If no such information is
available, the function returns Nil. The search is performed case insensitive.

See also: TProplnfoList.Intersect (504), TPropInfoList.Contains (503)

504

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

25.5.8 TPropinfolList.Delete

Synopsis: Delete property information from the list
Declaration: procedure Delete (Index: Integer)
Visibility: public

Description: Delete deletes the property information at position Index from the list. It’s mainly of use in the
Intersect (504) call.

Errors: No checking on the validity of Index is performed.

See also: TPropInfoList.Intersect (504)

25.5.9 TPropinfolList.Intersect
Synopsis: Intersect 2 property lists

Declaration: procedure Intersect (List: TPropInfolist)
Visibility: public

Description: Intersect reduces the list of properties to the ones also contained in List, i.e. all properties
which are not also present in List are removed.

See also: TProplnfoList.Delete (504), TPropInfoList.Contains (503)

25.5.10 TProplinfoList.Count

Synopsis: Number of items in the list
Declaration: Property Count : Integer
Visibility: public
Access: Read
Description: Count is the number of property type pointers in the list.

See also: TProplnfoList.Items (504)

25.5.11 TPropinfolList.ltems

Synopsis: Indexed access to the property type pointers
Declaration: Property Items[Index: Integer]: PPropInfo; default
Visibility: public
Access: Read

Description: Items provides access to the property type pointers stored in the list. Index runs from 0O to
Count-1.

See also: TPropInfoList.Count (504)

505

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

25.6 TPropsStorage

25.6.1 Description

TPropsStorage provides a mechanism to store properties from any class which has published
properties (usually a TPersistent descendent) in a storage mechanism.

TPropsStorage does not handle the storage by itself, instead, the storage is handled through a
series of callbacks to read and/or write strings. Conversion of property types to string is handled by
TPropsStorage itself: all that needs to be done is set the 3 handlers. The storage mechanism
is assumed to have the structure of an .ini file : sections with key/value pairs. The three callbacks
should take this into account, but they do not need to create an actual .ini file.

25.6.2 Method overview

Page Property

Description

505 LoadAnyProperty
506 LoadObjectsProps
506 LoadProperties
505 StoreAnyProperty
507 StoreObjectsProps
506 StoreProperties

Load a property value

Load a list of component properties
Load a list of properties

Store a property value

Store a list of component properties
Store a list of properties

25.6.3 Property overview

Page Property Access Description

508 AObject W Object to load or store properties from
509 OnEraseSection 1w Erase a section in storage

508 OnReadString ™wW Read a string value from storage

509 OnWriteString 1w Write a string value to storage

508 Prefix W Prefix to use in storage

508 Section ™w Section name for storage

25.6.4 TPropsStorage.StoreAnyProperty

Synopsis: Store a property value

Declaration: procedure StoreAnyProperty (PropInfo: PPropInfo)

Visibility: public

Description: StoreAnyProperty stores the property with information specified in PropInfo in the storage
mechanism. The property value is retrieved from the object instance specified in the AObject (508)

property of TPropsStorage.

Errors: If the property pointer is invalid or AOb ject is invalid, an exception will be raised.

See also: TPropsStorage.AObject (508), TPropsStorage.Load AnyProperty (505), TPropsStorage.LoadProperties
(506), TPropsStorage.StoreProperties (506)

25.6.5 TPropsStorage.LoadAnyProperty

Synopsis: Load a property value

Declaration: procedure LoadAnyProperty (PropInfo: PPropInfo)

506

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

Visibility: public

Description: LoadAnyProperty loads the property with information specified in PropInfo from the storage
mechanism. The value is then applied to the object instance specified in the AObject (508) property
of TPropsStorage.

Errors: If the property pointer is invalid or AOb ject is invalid, an exception will be raised.

See also: TPropsStorage.AObject (508), TPropsStorage.Store AnyProperty (505), TPropsStorage.LoadProperties
(506), TPropsStorage.StoreProperties (506)

25.6.6 TPropsStorage.StoreProperties
Synopsis: Store a list of properties

Declaration: procedure StoreProperties (PropList: TStrings)
Visibility: public

Description: StoreProperties stores the values of all properties in PropList in the storage mechanism.
The list should contain names of published properties of the AObject (508) object.

Errors: If an invalid property name is specified, an exception will be raised.

See also: TPropsStorage.AObject (508), TPropsStorage.Store AnyProperty (505), TPropsStorage.LoadProperties
(506), TPropsStorage.LLoad AnyProperty (505)

25.6.7 TPropsStorage.LoadProperties
Synopsis: Load a list of properties

Declaration: procedure LoadProperties (PropList: TStrings)
Visibility: public

Description: LoadProperties loads the values of all properties in PropList from the storage mechanism.
The list should contain names of published properties of the AObject (508) object.

Errors: If an invalid property name is specified, an exception will be raised.

See also: TPropsStorage.AObject (508), TPropsStorage.Store AnyProperty (505), TPropsStorage.StoreProperties
(506), TPropsStorage.LLoad AnyProperty (505)

25.6.8 TPropsStorage.LoadObjectsProps

Synopsis: Load a list of component properties
Declaration: procedure LoadObjectsProps (AComponent: TComponent; StoredList: TStrings)
Visibility: public

Description: L.LoadObjectsProps loads a list of component properties, relative to AComponent: the names
of the component properties to load are specified as follows:

ComponentNamel .PropertyName
ComponentName?2.Subcomponentl.PropertyName

507

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

The component instances will be located relative to AComponent, and must therefore be names
of components owned by AComponent, followed by a valid property of these components. If the
componentname is missing, the property name will be assumed to be a property of AComponent
itself.

The Objects property of the stringlist should be filled with the instances of the components the
property references refer to: they can be filled with the UpdateStoredList (502) call.

For example, to load the checked state of a checkbox named *CBCheckMe’ and the caption of a
button named *BPressMe’, both owned by a form, the following strings should be passed:

CBCheckMe.Checked
BPressMe.Caption

and the ACompontent should be the form component that owns the button and checkbox.

Note that this call removes the value of the AObject (508) property.
Errors: If an invalid component is specified, an exception will be raised.

See also: UpdateStoredList (502), TPropsStorage.StoreObjectsProps (507), TPropsStorage.LoadProperties (506),
TPropsStorage.LoadAnyProperty (505)

25.6.9 TPropsStorage.StoreObjectsProps

Synopsis: Store a list of component properties
Declaration: procedure StoreObjectsProps (AComponent: TComponent;StoredList: TStrings)
Visibility: public

Description: StoreObject sProps stores a list of component properties, relative to AComponent: the names
of the component properties to store are specified as follows:

ComponentNamel .PropertyName
ComponentName2.Subcomponentl.PropertyName

The component instances will be located relative to AComponent, and must therefore be names
of components owned by AComponent, followed by a valid property of these components. If the
componentname is missing, the property name will be assumed to be a property of AComponent
itself.

The Objects property of the stringlist should be filled with the instances of the components the
property references refer to: they can be filled with the UpdateStoredList (502) call.

For example, to store the checked state of a checkbox named ’CBCheckMe’ and the caption of a
button named *BPressMe’, both owned by a form, the following strings should be passed:

CBCheckMe.Checked
BPressMe.Caption

and the ACompontent should be the form component that owns the button and checkbox.

Note that this call removes the value of the AObject (508) property.

See also: UpdateStoredList (502), TPropsStorage.LoadObjectsProps (506), TPropsStorage.LoadProperties (506),
TPropsStorage.LoadAnyProperty (505)

508

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

25.6.10 TPropsStorage.AObject

Synopsis: Object to load or store properties from
Declaration: Property AObject : TObject
Visibility: public
Access: Read, Write

Description: A0b ject is the object instance whose properties will be loaded or stored with any of the methods in

the TPropsStorage class. Note that a call to StoreObjectProps (507) or LoadObjectProps (506)
will destroy any value that this property might have.

See also: TPropsStorage.LoadProperties (506), TPropsStorage.Load AnyProperty (505), TPropsStorage.StoreProperties

(506), TPropsStorage.Store AnyProperty (505), TPropsStorage.StoreObjectsProps (507), TPropsStor-
age.LoadObjectsProps (506)

25.6.11 TPropsStorage.Prefix

Synopsis: Prefix to use in storage
Declaration: Property Prefix : String
Visibility: public
Access: Read,Write

Description: Prefix is prepended to all property names to form the key name when writing a property to storage,
or when reading a value from storage. This is useful when storing properties of multiple forms in a
single section.

See also: TPropsStorage.Section (508)

25.6.12 TPropsStorage.Section

Synopsis: Section name for storage
Declaration: Property Section : String
Visibility: public
Access: Read,Write

Description: Section is used as the section name when writing values to storage. Note that when writing
properties of subcomponents, their names will be appended to the value specified here.

See also: TPropsStorage.Section (508)

25.6.13 TPropsStorage.OnReadString

Synopsis: Read a string value from storage
Declaration: Property OnReadString : TReadStrEvent
Visibility: public

Access: Read,Write

509

CHAPTER 25. REFERENCE FOR UNIT °RTTIUTILS’

Description: OnReadString is the event handler called whenever TPropsStorage needs to read a string
from storage. It should be set whenever properties need to be loaded, or an exception will be raised.

See also: TPropsStorage.OnWriteString (509), TPropsStorage.OnEraseSection (509), TReadStrEvent (501)

25.6.14 TPropsStorage.OnWriteString

Synopsis: Write a string value to storage
Declaration: Property OnWriteString : TWriteStrEvent
Visibility: public
Access: Read,Write

Description: OnWiriteString is the event handler called whenever TPropsStorage needs to write a string
to storage. It should be set whenever properties need to be stored, or an exception will be raised.

See also: TPropsStorage.OnReadString (508), TPropsStorage.OnEraseSection (509), TWriteStrEvent (501)

25.6.15 TPropsStorage.OnEraseSection

Synopsis: Erase a section in storage
Declaration: Property OnEraseSection : TEraseSectEvent
Visibility: public
Access: Read,Write

Description: OnEraseSection is the event handler called whenever TPropsStorage needs to clear a com-
plete storage section. It should be set whenever stringlist properties need to be stored, or an exception
will be raised.

See also: TPropsStorage.OnReadString (508), TPropsStorage.OnWriteString (509), TEraseSectEvent (500)

510

Chapter 26

Reference for unit ’simpleipc’

26.1 Used units

Table 26.1: Used units by unit ’simpleipc’

Name Page
Classes 2?
sysutils 7?

26.2 Overview

The SimplelPC unit provides classes to implement a simple, one-way IPC mechanism using string
messages. It provides a TSimpleIPCServer (520) component for the server, and a TSimpleIPCClient
(517) component for the client. The components are cross-platform, and should work both on Win-
dows and unix-like systems.

26.3 Constants, types and variables

26.3.1 Resource strings

SErrActive = 'This operation is illegal when the server is active.’
Error message if client/server is active.

SErrInActive = ’'This operation is illegal when the server is inactive.’
Error message if client/server is not active.

SErrServerNotActive = ’Server with ID %s is not active.’

Error message if server is not active

511

CHAPTER 26. REFERENCE FOR UNIT °SIMPLEIPC’

26.3.2 Constants

MsgVersion = 1

Current version of the messaging protocol
mtString = 1

String message type

mtUnknown = 0

Unknown message type

26.3.3 Types

TIPCClientCommClass = Class of TIPCClientComm

TIPCClientCommClass is used by TSimpleIPCClient (517) to decide which kind of communi-
cation channel to set up.

TIPCServerCommClass = Class of TIPCServerComm

TIPCServerCommClass is used by TSimpleIPCServer (520) to decide which kind of communi-
cation channel to set up.

TMessageType = LongInt
TMessageType is provided for backward compatibility with earlier versions of the simpleipc unit.

TMsgHeader = packed record
Version : Byte;
MsgType : TMessageType;
MsgLen : Integer;

end

TMsgHeader is used internally by the IPC client and server components to transmit data. The
Version field denotes the protocol version. The MsgType field denotes the type of data (mt St ring
for string messages), and MsgLen is the length of the message which will follow.

26.3.4 \Variables

DefaultIPCClientClass : TIPCClientCommClass = nil

DefaultIPCClientClass is filled with a class pointer indicating which kind of communication
protocol class should be instantiated by the TSimpleIPCClient (517) class. It is set to a default value
by the default implementation in the SimplelPC unit, but can be set to another class if another
method of transport is desired. (it should match the communication protocol used by the server,
obviously).

DefaultIPCServerClass : TIPCServerCommClass = nil

DefaultIPCServerClass is filled with a class pointer indicating which kind of communication
protocol class should be instantiated by the TSimpleIPCServer (520) class. It is set to a default
value by the default implementation in the SimplelPC unit, but can be set to another class if another
method of transport is desired.

512

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.4 EIPCError

26.4.1 Description

EIPCError is the exception used by the various classes in the SimplelPC unit to report errors.

26.5 TIPCClientComm

26.5.1 Description

TIPCClientComm is an abstract component which implements the client-side communication pro-
tocol. The behaviour expected of this class must be implemented in a platform-dependent descendent
class.

The TSimpleIPCClient (517) class does not implement the messaging protocol by itself. Instead, it
creates an instance of a (platform dependent) descendent of TTPCC1ientComm which handles the
internals of the commnication protocol.

The server side of the messaging protocol is handled by the TIPCServerComm (514) component.
The descenent components must always be implemented in pairs.

26.5.2 Method overview

Page Property Description

512 Connect Connect to the server

512 Create Create a new instance of the TTPCClientComm
513 Disconnect Disconnect from the server

513 SendMessage Send a message
513 ServerRunning Check if the server is running.

26.5.3 Property overview

Page Property Access Description

514 Owner r TSimpleIPCClient instance for which communication must be
handled.

26.5.4 TIPCClientComm.Create

Synopsis: Create a new instance of the TITPCClientComm
Declaration: constructor Create (AOwner: TSimpleIPCClient); Virtual
Visibility: public

Description: Create instantiates a new instance of the TTPCC1lientComm class, and stores the AOwner ref-
erence to the TSimple[PCClient (517) instance for which it will handle communitation. It can be
retrieved later using the Owner (514) property.

See also: TIPCClientComm.Owner (514), TSimpleIPCClient (517)

26.5.5 TIPCClientComm.Connect

Synopsis: Connect to the server

513

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

Declaration: procedure Connect; Virtual; Abstract
Visibility: public

Description: Connect must establish a communication channel with the server. The server endpoint must be
constructed from the ServerID (517) and ServerInstance (520) properties of the owning TSimpleIPC-
Client (517) instance.

Connect is called by the TSimpleIPCClient.Connect (518) call or when the Active (517) property
issetto True

Messages can be sent only after Connect was called succesfully.
Errors: If the connection setup fails, or the connection was already set up , then an exception may be raised.

See also: TSimpleIPCClient.Connect (518), TSimpleIPC.Active (517), TIPCClientComm.Disconnect (513)

26.5.6 TIPCClientComm.Disconnect

Synopsis: Disconnect from the server
Declaration: procedure Disconnect; Virtual; Abstract
Visibility: public

Description: Disconnect closes the communication channel with the server. Any calls to SendMessage are
invalid after Disconnect was called.

Disconnect is called by the TSimpleIPCClient.Disconnect (519) call or when the Active (517)
property is set to False.

Messages can no longer be sent after Di sconnect was called.

Errors: If the connection shutdown fails, or the connection was already shut down, then an exception may
be raised.

See also: TSimpleIPCClient.Disconnect (519), TSimpleIPC.Active (517), TIPCClientComm.Connect (512)

26.5.7 TIPCClientComm.ServerRunning

Synopsis: Check if the server is running.
Declaration: function ServerRunning : Boolean; Virtual; Abstract
Visibility: public

Description: SserverRunning returns True if the server endpoint of the communication channel can be found,
or False if not. The server endpoint should be obtained from the ServerID and InstanceID
properties of the owning TSimpleIPCClient (517) component.

See also: TSimpleIPCClient.InstancelD (517), TSimpleIPCClient.ServerID (517)

26.5.8 TIPCClientComm.SendMessage

Synopsis: Send a message

Declaration: procedure SendMessage (MsgType: TMessageType;Stream: TStream); Virtual
; Abstract

Visibility: public

514

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

Description: SsendMessage should deliver the message with type MsgType and data in St ream to the server.
It should not return until the message was delivered.

Errors: If the delivery of the message fails, an exception will be raised.

26.5.9 TIPCClientComm.Owner

Synopsis: TSimpleIPCClient instance for which communication must be handled.
Declaration: Property Owner : TSimpleIPCClient
Visibility: public
Access: Read

Description: Owner is the TSimpleIPCClient (517) instance for which the communication must be handled. It
cannot be changed, and must be specified when the TITPCC1ientComm instance is created.

See also: TSimpleIPCClient (517), TIPCClientComm.Create (512)

26.6 TIPCServerComm

26.6.1 Description

TIPCServerComm is an abstract component which implements the server-side communication
protocol. The behaviour expected of this class must be implemented in a platform-dependent de-
scendent class.

The TSimpleIPCServer (520) class does not implement the messaging protocol by itself. Instead, it
creates an instance of a (platform dependent) descendent of TIPCServerComm which handles the
internals of the commnication protocol.

The client side of the messaging protocol is handled by the TIPCClientComm (512) component. The
descenent components must always be implemented in pairs.

26.6.2 Method overview

Page Property Description

514 Create Create a new instance of the communication handler
515 PeekMessage See if a message is available.

516 ReadMessage Read message from the channel.

515 StartServer Start the server-side of the communication channel
515 StopServer Stop the server side of the communication channel.

26.6.3 Property overview

Page Property Access Description
516 InstancelD r Unique identifier for the communication channel.
516 Owner r TSimpleIPCServer instance for which to handle transport

26.6.4 TIPCServerComm.Create

Synopsis: Create a new instance of the communication handler

Declaration: constructor Create (AOwner: TSimpleIPCServer); Virtual

515

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

Visibility: public

Description: Create initializes a new instance of the communication handler. It simply saves the AOwner
parameter in the Owner (516) property.

See also: TIPCServerComm.Owner (516)

26.6.5 TIPCServerComm.StartServer

Synopsis: Start the server-side of the communication channel
Declaration: procedure StartServer; Virtual; Abstract
Visibility: public

Description: startServer sets up the server-side of the communication channel. After StartServer was
called, a client can connect to the communication channel, and send messages to the server.

It is called when the TSimpleIPC.Active (517) property of the TSimpleIPCServer (520) instance is
setto True.

Errors: In case of an error, an EIPCError (512) exception is raised.

See also: TSimpleIPCServer (520), TSimpleIPC.Active (517)

26.6.6 TIPCServerComm.StopServer

Synopsis: Stop the server side of the communication channel.
Declaration: procedure StopServer; Virtual; Abstract
Visibility: public

Description: StartServer closes down the server-side of the communication channel. After StartServer
was called, a client can no longer connect to the communication channel, or even send messages to
the server if it was previously connected (i.e. it will be disconnected).

It is called when the TSimpleIPC.Active (517) property of the TSimpleIPCServer (520) instance is
setto False.

Errors: In case of an error, an EIPCError (512) exception is raised.

See also: TSimpleIPCServer (520), TSimpleIPC.Active (517)

26.6.7 TIPCServerComm.PeekMessage

Synopsis: See if a message is available.
Declaration: function PeekMessage (TimeOut: Integer) : Boolean; Virtual; Abstract
Visibility: public

Description: PeekMessage can be used to see if a message is available: it returns True if a message is avail-
able. It will wait maximum TimeOut milliseconds for a message to arrive. If no message was
available after this time, it will return False.

If a message was available, it can be read with the ReadMessage (516) call.

See also: TIPCServerComm.ReadMessage (516)

516

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.6.8 TIPCServerComm.ReadMessage

Synopsis: Read message from the channel.
Declaration: procedure ReadMessage; Virtual; Abstract
Visibility: public

Description: ReadMe ssage reads the message for the channel, and stores the information in the data structures
in the Owner class.

ReadMessage is a blocking call: if no message is available, the program will wait till a message
arrives. Use PeekMessage (515) to see if a message is available.

See also: TSimpleIPCServer (520)

26.6.9 TIPCServerComm.Owner

Synopsis: TSimpleIPCServer instance for which to handle transport
Declaration: Property Owner : TSimpleIPCServer
Visibility: public
Access: Read

Description: Owner refers to the TSimpleIPCServer (520) instance for which this instance of TSimpleIPCServer
handles the transport. It is specified when the TIPCServerComm is created.

See also: TSimpleIPCServer (520)

26.6.10 TIPCServerComm.InstancelD

Synopsis: Unique identifier for the communication channel.
Declaration: Property InstanceID : String
Visibility: public
Access: Read

Description: InstanceID returns a textual representation which uniquely identifies the communication channel
on the server. The value is system dependent, and should be usable by the client-side to establish a
communication channel with this instance.

26.7 TSimplelPC

26.7.1 Description

TSimpleIPC isthe common ancestor for the TSimpleIPCServer (520) and TSimpleIPCClient (517)
classes. It implements some common properties between client and server.

26.7.2 Property overview

Page Property Access Description
517 Active ™w Communication channel active
517 ServerID 1w Unique server identification

517

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.7.3 TSimplelPC.Active

Synopsis: Communication channel active
Declaration: Property Active : Boolean
Visibility: published
Access: Read,Write

Description: Act ive can be set to True to set up the client or server end of the communication channel. For the
server this means that the server end is set up, for the client it means that the client tries to connect
to the server with ServerID (517) identification.

See also: TSimpleIPC.ServerID (517)

26.7.4 TSimplelPC.ServerlD

Synopsis: Unique server identification
Declaration: Property ServerID : String
Visibility: published
Access: Read,Write

Description: ServerID is the unique server identification: on the server, it determines how the server channel
is set up, on the client it determines the server with which to connect.

See also: TSimpleIPC.Active (517)

26.8 TSimpleIPCClient

26.8.1 Description

TSimpleIPCClient is the client side of the simple IPC communication protocol. The client
program should create a TSimpleIPCClient instance, set its ServerID (517) property to the
unique name for the server it wants to send messages to, and then set the Active (517) property to
True (or call Connect (517)).

After the connection with the server was established, messages can be sent to the server with the
SendMessage (519) or SendStringMessage (519) calls.

26.8.2 Method overview

Page Property Description

518 Connect Connect to the server

518 Create Create a new instance of TSimpleIPCClient

518 Destroy Remove the TSimpleIPCClient instance from memory
519 Disconnect Disconnect from the server

519 SendMessage Send a message to the server

519 SendStringMessage Send a string message to the server

520 SendStringMessageFmt Send a formatted string message

519 ServerRunning Check if the server is running.

518

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.8.3 Property overview

Page Property Access Description
520 ServerInstance rw Server instance identification

26.8.4 TSimplelPCClient.Create

Synopsis: Create a new instance of TSimpleIPCClient
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create instantiates a new instance of the TSimpleIPCClient class. It initializes the data
structures needed to handle the client side of the communication.

See also: TSimpleIPCClient.Destroy (518)

26.8.5 TSimplelPCClient.Destroy

Synopsis: Remove the TSimpleIPCClient instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: Dest roy disconnects the client from the server if need be, and cleans up the internal data structures
maintained by TSimpleIPCClient and then calls the inherited De st roy, which will remove the

instance from memory.
Never call Destroy directly, use the Free method instead or the FreeAndNil procedure in
SysUstils.

See also: TSimpleIPCClient.Create (518)

26.8.6 TSimplelPCClient.Connect
Synopsis: Connect to the server
Declaration: procedure Connect
Visibility: public

Description: Connect connects to the server indicated in the ServerID (517) and InstancelD (517) properties.
Connect is called automatically if the Active (517) property is set to True.

After a successful call to Connect, messages can be sent to the server using SendMessage (519) or
SendStringMessage (519).

Calling Connect if the connection is already open has no effect.
Errors: If creating the connection fails, an EIPCError (512) exception may be raised.

See also: TSimpleIPC.ServerID (517), TSimpleIPCClient.InstanceID (517), TSimpleIPC.Active (517), TSim-
pleIPCClient.SendMessage (519), TSimpleIPCClient.SendStringMessage (519), TSimpleIPCClient.Disconnect

(519)

519

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.8.7 TSimplelPCClient.Disconnect
Synopsis: Disconnect from the server
Declaration: procedure Disconnect
Visibility: public

Description: Disconnect shuts down the connection with the server as previously set up with Connect (518).
Disconnect is called automatically if the Active (517) property is set to False.

After a successful call to Disconnect, messages can no longer be sent to the server. Attempting
to do so will result in an exception.

Calling Disconnect if there is no connection has no effect.
Errors: If creating the connection fails, an EIPCError (512) exception may be raised.

See also: TSimpleIPC.Active (517), TSimpleIPCClient.Connect (518)

26.8.8 TSimplelPCClient.ServerRunning
Synopsis: Check if the server is running.
Declaration: function ServerRunning : Boolean
Visibility: public

Description: ServerRunning verifies if the server indicated in the ServerID (517) and InstanceID (517) prop-
erties is running. It returns True if the server communication endpoint can be reached, False

otherwise. This function can be called before a connection is made.

See also: TSimpleIPCClient.Connect (518)

26.8.9 TSimplelPCClient.SendMessage
Synopsis: Send a message to the server
Declaration: procedure SendMessage (MsgType: TMessageType; Stream: TStream)
Visibility: public

Description: sendMessage sends a message of type MsgType and data from st ream to the server. The client
must be connected for this call to work.

Errors: In case an error occurs, or there is no connection to the server, an EIPCError (512) exception is

raised.

See also: TSimpleIPCClient.Connect (518), TSimpleIPCClient.SendStringMessage (519)

26.8.10 TSimplelPCClient.SendStringMessage
Synopsis: Send a string message to the server

Declaration: procedure SendStringMessage (const Msg: String)

procedure SendStringMessage (MsgType: TMessageType;const Msg: String)

Visibility: public

520

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

Description: SendStringMessage sends a string message with type MsgTyp and data Msg to the server.
This is a convenience function: a small wrapper around the SendMessage (519) method

Errors: Same as for SendMessage.

See also: TSimpleIPCClient.SendMessage (519), TSimpleIPCClient.Connect (518), TSimpleIPCClient.SendStringMessageFmt
(520)

26.8.11 TSimplelPCClient.SendStringMessageFmt

Synopsis: Send a formatted string message

Declaration: procedure SendStringMessageFmt (const Msg: String;Args: Array of const)
procedure SendStringMessageFmt (MsgType: TMessageType;const Msg: String;
Args: Array of const)

Visibility: public

Description: sendStringMessageFmt sends a string message with type MsgTyp and message formatted
from Msg and Args to the server. This is a convenience function: a small wrapper around the
SendStringMessage (519) method

Errors: Same as for SendMessage.

See also: TSimpleIPCClient.SendMessage (519), TSimpleIPCClient.Connect (518), TSimpleIPCClient.SendStringMessage
(519)

26.8.12 TSimplelPCClient.Serverinstance

Synopsis: Server instance identification
Declaration: Property ServerInstance : String
Visibility: public
Access: Read,Write

Description: serverInstance should be used in case a particular instance of the server identified with ServerID
should be contacted. This must be used if the server has its GLobal (524) property set to False, and
should match the server’s InstancelD (523) property.

See also: TSimpleIPC.ServerID (517), TSimpleIPCServer.Global (524), TSimpleIPCServer.InstanceID (523)

26.9 TSimpleIPCServer

26.9.1 Description

TSimpleIPCServer is the server side of the simple IPC communication protocol. The server
program should create a TSimpleIPCServer instance, set its ServerID (517) property to a unique
name for the system, and then set the Active (517) property to True (or call StartServer (521)).

After the server was started, it can check for availability of messages with the PeekMessage (522)
call, and read the message with ReadMessage (520).

521

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.9.2 Method overview

Page Property Description

521 Create Create a new instance of TSimpleIPCServer

521 Destroy Remove the TSimpleIPCServer instance from memory
522 GetMessageData Read the data of the last message in a stream

522 PeekMessage Check if a client message is available.

521 StartServer Start the server

522 StopServer Stop the server

26.9.3 Property overview

Page Property Access Description

524 Global w Is the server reachable to all users or not
523 InstancelD r Instance ID

523 MsgData r Last message data

523 MsgType r Last message type

524 OnMessage ™w Event triggered when a pessage arrives
523 StringMessage r Last message as a string.

26.9.4 TSimplelPCServer.Create

Synopsis: Create a new instance of TSimpleIPCServer
Declaration: constructor Create (AOwner: TComponent); Override
Visibility: public

Description: Create instantiates a new instance of the TSimpleIPCServer class. It initializes the data
structures needed to handle the server side of the communication.

See also: TSimpleIPCServer.Destroy (521)

26.9.5 TSimplelPCServer.Destroy

Synopsis: Remove the TSimpleIPCServer instance from memory
Declaration: destructor Destroy; Override
Visibility: public

Description: De st roy stops the server, cleans up the internal data structures maintained by TSimpleIPCServer
and then calls the inherited De st roy, which will remove the instance from memory.

Never call Destroy directly, use the Free method instead or the FreeAndNil procedure in
SysUstils.

See also: TSimpleIPCServer.Create (521)

26.9.6 TSimplelPCServer.StartServer

Synopsis: Start the server
Declaration: procedure StartServer

Visibility: public

522

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

Description: Start Server starts the server side of the communication channel. It is called automatically when
the Active property is set to True. It creates the internal communication object (a TIPCServer-
Comm (514) descendent) and activates the communication channel.

After this method was called, clients can connect and send messages.

Prior to calling this method, the ServerID (517) property must be set.
Errors: If an error occurs a EIPCError (512) exception may be raised.

See also: TIPCServerComm (514), TSimpleIPC.Active (517), TSimpleIPC.ServerID (517), TSimpleIPCServer.StopServer
(522)

26.9.7 TSimplelPCServer.StopServer
Synopsis: Stop the server
Declaration: procedure StopServer
Visibility: public

Description: StopServer stops the server side of the communication channel. It is called automatically when
the Active property is set to False. It deactivates the communication channel and frees the
internal communication object (a TIPCServerComm (514) descendent).

See also: TIPCServerComm (514), TSimpleIPC.Active (517), TSimpleIPC.ServerID (517), TSimpleIPCServer.StartServer
(521)

26.9.8 TSimplelPCServer.PeekMessage
Synopsis: Check if a client message is available.
Declaration: function PeekMessage (TimeOut: Integer;DoReadMessage: Boolean) : Boolean
Visibility: public

Description: PeekMessage checks if a message from a client is available. It will return True if a message is
available. The call will wait for TimeOut milliseconds for a message to arrive: if after TimeOut
milliseconds, no message is available, the function will return False.

If DoReadMessage is True then PeekMessage will read the message. If it is False, it does
not read the message. The message should then be read manually with ReadMessage (520).

See also: TSimpleIPCServer.ReadMessage (520)

26.9.9 TSimplelPCServer.GetMessageData
Synopsis: Read the data of the last message in a stream
Declaration: procedure GetMessageData (Stream: TStream)
Visibility: public

Description: GetMessageData reads the data of the last message from TSimpleIPCServer.MsgData (523) and
stores it in stream St ream. If no data was available, the stream will be cleared.
This function will return valid data only after a succesful call to ReadMessage (520). It will also not
clear the data buffer.

See also: TSimpleIPCServer.StringMessage (523), TSimpleIPCServer.MsgData (523), TSimpleIPCServer.MsgType
(523)

523

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.9.10 TSimplelPCServer.StringMessage

Synopsis: Last message as a string.
Declaration: Property StringMessage : String
Visibility: public
Access: Read

Description: st ringMessage is the content of the last message as a string.
This property will contain valid data only after a succesful call to ReadMessage (520).

See also: TSimpleIPCServer.GetMessageData (522)

26.9.11 TSimplelPCServer.MsgType

Synopsis: Last message type
Declaration: Property MsgType : TMessageType
Visibility: public
Access: Read

Description: MsgType contains the message type of the last message.
This property will contain valid data only after a succesful call to ReadMessage (520).

See also: TSimpleIPCServer.ReadMessage (520)

26.9.12 TSimplelPCServer.MsgData
Synopsis: Last message data

Declaration: Property MsgData : TStream
Visibility: public
Access: Read

Description: MsgDat a contains the actual data from the last read message. If the data is a string, then StringMes-
sage (523) is better suited to read the data.

This property will contain valid data only after a succesful call to ReadMessage (520).

See also: TSimpleIPCServer.StringMessage (523), TSimpleIPCServer.ReadMessage (520)

26.9.13 TSimplelPCServer.InstancelD
Synopsis: Instance ID

Declaration: Property InstanceID : String
Visibility: public
Access: Read

Description: InstanceID is the unique identifier for this server communication channel endpoint, and will be
appended to the ServerID (520) property to form the unique server endpoint which a client should
use.

See also: TSimpleIPCServer.ServerID (520), TSimpleIPCServer.GlobalID (520)

524

CHAPTER 26. REFERENCE FOR UNIT ’SIMPLEIPC’

26.9.14 TSimplelPCServer.Global

Synopsis: Is the server reachable to all users or not
Declaration: Property Global : Boolean
Visibility: published
Access: Read, Write

Description: Global indicates whether the server is reachable to all users (True) or if it is private to the current
process (False). In the latter case, the unique channel endpoint identification may change: a unique
identification of the current process is appended to the ServerID name.

See also: TSimpleIPCServer.ServerID (520), TSimpleIPCServer.InstancelD (523)

26.9.15 TSimplelPCServer.OnMessage

Synopsis: Event triggered when a pessage arrives
Declaration: Property OnMessage : TNotifyEvent
Visibility: published
Access: Read,Write

Description: OnMessage is called by ReadMessage (520) when a message has been read. The actual mes-

sage data can be retrieved with one of the StringMessage (523), MsgData (523) or MsgType (523)
properties.

See also: TSimpleIPCServer.StringMessage (523), TSimpleIPCServer.MsgData (523), TSimpleIPCServer.MsgType
(523)

525

Chapter 27

Reference for unit ’streamcoll’

27.1 Used units

Table 27.1: Used units by unit ’streamcoll’

Name Page
Classes 2?
sysutils ??

27.2 Overview

The streamcoll unit contains the implentation of a collection (and corresponding collection item)
which implements routines for saving or loading the collection to/from a stream. The collection item
should implement 2 routines to implement the streaming; the streaming itself is not performed by the
TStreamCollection (528) collection item.

The streaming performed here is not compatible with the streaming implemented in the Classes
unit for components. It is independent of the latter and can be used without a component to hold the
collection.

The collection item introduces mostly protected methods, and the unit contains a lot of auxiliary
routines which aid in streaming.

27.3 Procedures and functions

27.3.1 ColReadBoolean

Synopsis: Read a boolean value from a stream
Declaration: function ColReadBoolean (S: TStream) : Boolean
Visibility: default

Description: ColReadBoolean reads a boolean from the stream S as it was written by ColWriteBoolean (527)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

526

CHAPTER 27. REFERENCE FOR UNIT 'STREAMCOLL’

See also: ColReadDateTime (526), ColWriteBoolean (527), ColReadString (527), ColReadInteger (526), Col-
ReadFloat (526), ColReadCurrency (526)

27.3.2 ColReadCurrency

Synopsis: Read a currency value from the stream
Declaration: function ColReadCurrency(S: TStream) : Currency
Visibility: default

Description: ColReadCurrency reads a currency value from the stream S as it was written by ColWriteCur-
rency (527) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColReadDateTime (526), ColReadBoolean (525), ColReadString (527), ColReadInteger (526), Col-
ReadFloat (526), ColWriteCurrency (527)

27.3.3 ColReadDateTime

Synopsis: Read a TDateTime value from a stream
Declaration: function ColReadDateTime (S: TStream) : TDateTime
Visibility: default

Description: ColReadDateTime reads a currency value from the stream S as it was written by ColWriteDate-
Time (527) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColWriteDateTime (527), ColReadBoolean (525), ColReadString (527), ColReadInteger (526), Col-
ReadFloat (526), ColReadCurrency (526)

27.3.4 ColReadFloat

Synopsis: Read a floating point value from a stream
Declaration: function ColReadFloat (S: TStream) : Double
Visibility: default

Description: Col1ReadFloat reads a double value from the stream S as it was written by ColWriteFloat (528)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

See also: ColReadDateTime (526), ColReadBoolean (525), ColReadString (527), ColReadInteger (526), Col-
WriteFloat (528), ColReadCurrency (526)

27.3.5 ColReadInteger

Synopsis: Read a 32-bit integer from a stream.
Declaration: function ColReadInteger (S: TStream) : Integer

Visibility: default

527

CHAPTER 27. REFERENCE FOR UNIT 'STREAMCOLL’

Description: ColReadInteger reads a 32-bit integer from the stream S as it was written by ColWriteInteger
(528) and returns the read value. The value cannot be read and written across systems that have
different endian values.

See also: ColReadDateTime (526), ColReadBoolean (525), ColReadString (527), ColWriteInteger (528), Col-
ReadFloat (526), ColReadCurrency (526)

27.3.6 ColReadString
Synopsis: Read a string from a stream
Declaration: function ColReadString(S: TStream) : String
Visibility: default

Description: Col1ReadSt ream reads a string value from the stream S as it was written by ColWriteString (528)
and returns the read value. The value cannot be read and written across systems that have different
endian values.

See also: ColReadDateTime (526), ColReadBoolean (525), ColWriteString (528), ColReadInteger (526), Col-
ReadFloat (526), ColReadCurrency (526)

27.3.7 ColWriteBoolean
Synopsis: Write a boolean to a stream
Declaration: procedure ColWriteBoolean (S: TStream;AValue: Boolean)
Visibility: default
Description: ColWriteBoolean writes the boolean AValue to the stream. S.

See also: ColReadBoolean (525), ColWriteString (528), ColWritelnteger (528), ColWriteCurrency (527),
ColWriteDateTime (527), ColWriteFloat (528)

27.3.8 ColWriteCurrency
Synopsis: Write a currency value to stream
Declaration: procedure ColWriteCurrency (S: TStream;AValue: Currency)
Visibility: default
Description: ColWriteCurrency writes the currency AValue to the stream S.

See also: ColWriteBoolean (527), ColWriteString (528), ColWriteInteger (528), ColWriteDateTime (527),
ColWriteFloat (528), ColReadCurrency (526)

27.3.9 ColWriteDateTime
Synopsis: Write a TDateTime value to stream
Declaration: procedure ColWriteDateTime (S: TStream;AValue: TDateTime)
Visibility: default
Description: ColWriteDateTime writes the TDateTimeAValue to the stream S.

See also: ColReadDateTime (526), ColWriteBoolean (527), ColWriteString (528), ColWritelnteger (528),
ColWriteFloat (528), ColWriteCurrency (527)

528

CHAPTER 27. REFERENCE FOR UNIT 'STREAMCOLL’

27.3.10 ColWriteFloat

Synopsis: Write floating point value to stream
Declaration: procedure ColWriteFloat (S: TStream;AValue: Double)
Visibility: default
Description: ColWriteFloat writes the double AValue to the stream S.

See also: ColWriteDateTime (527), ColWriteBoolean (527), ColWriteString (528), ColWriteInteger (528),
ColReadFloat (526), ColWriteCurrency (527)

27.3.11 ColWritelnteger
Synopsis: Write a 32-bit integer to a stream

Declaration: procedure ColWritelInteger (S: TStream;AValue: Integer)
Visibility: default
Description: ColWriteInteger writes the 32-bit integer AValue to the stream S. No endianness is observed.

See also: ColWriteBoolean (527), ColWriteString (528), ColReadInteger (526), ColWriteCurrency (527),
ColWriteDateTime (527)

27.3.12 ColWriteString

Synopsis: Write a string value to the stream
Declaration: procedure ColWriteString(S: TStream;AValue: String)
Visibility: default
Description: ColWriteString writes the string value AValue to the stream S.

See also: ColWriteBoolean (527), ColReadString (527), ColWriteInteger (528), ColWriteCurrency (527),
ColWriteDateTime (527), ColWriteFloat (528)

27.4 EStreamColl

27.4.1 Description

Exception raised when an error occurs when streaming the collection.

27.5 TStreamCollection

27.5.1 Description

TStreamCollection is a TCollection (??) descendent which implements 2 calls LoadFrom-
Stream (529) and SaveToStream (529) which load and save the contents of the collection to a stream.

The collection items must be descendents of the TStreamCollectionltem (530) class for the streaming
to work correctly.

Note that the stream must be used to load collections of the same type.

529

CHAPTER 27. REFERENCE FOR UNIT 'STREAMCOLL’

27.5.2 Method overview

Page Property Description
529 LoadFromStream Load the collection from a stream
529 SaveToStream Load the collection from the stream.

27.5.3 Property overview

Page Property Access Description

529 Streaming r Indicates whether the collection is currently being written to
stream

27.5.4 TStreamCollection.LoadFromStream

Synopsis: Load the collection from a stream
Declaration: procedure LoadFromStream(S: TStream)
Visibility: public

Description: LoadFromSt ream loads the collection from the stream S, if the collection was saved using Save-
ToStream (529). It reads the number of items in the collection, and then creates and loads the items
one by one from the stream.

Errors: An exception may be raised if the stream contains invalid data.

See also: TStreamCollection.SaveToStream (529)

27.5.5 TStreamCollection.SaveToStream

Synopsis: Load the collection from the stream.
Declaration: procedure SaveToStream(S: TStream)
Visibility: public

Description: saveToStream saves the collection to the stream S so it can be read from the stream with Load-
FromStream (529). It does this by writing the number of collection items to the stream, and then
streaming all items in the collection by calling their SaveToSt ream method.

Errors: None.

See also: TStreamCollection.LoadFromStream (529)

27.5.6 TStreamCollection.Streaming

Synopsis: Indicates whether the collection is currently being written to stream
Declaration: Property Streaming : Boolean
Visibility: public
Access: Read

Description: St reaming is set to True if the collection is written to or loaded from stream, and is set again to
False if the streaming process is finished.

See also: TStreamCollection.LoadFromStream (529), TStreamCollection.SaveToStream (529)

530

CHAPTER 27. REFERENCE FOR UNIT 'STREAMCOLL’

27.6 TStreamCollectionltem

27.6.1 Description

TStreamCollectionItem is a TCollectionltem (??) descendent which implements 2 abstract
routines: LoadFromStream and SaveToStream which must be overridden in a descendent
class.

These 2 routines will be called by the TStreamCollection (528) to save or load the item from the
stream.

531

Chapter 28

Reference for unit ’streamex’

28.1 Used units

Table 28.1: Used units by unit ’streamex’

Name Page
Classes 2?

28.2 Overview

streamex implements some extensions to be used together with streams from the classes unit.

28.3 TBidirBinaryObjectReader

28.3.1 Description

TBidirBinaryObjectReader is a class descendent from TBinaryObjectReader (??), which
implements the necessary support for BiDi data: the position in the stream (not available in the
standard streaming) is emulated.

28.3.2 Property overview

Page Property Access Description
531 Position 1w Position in the stream

28.3.3 TBidirBinaryObjectReader.Position
Synopsis: Position in the stream

Declaration: Property Position : LongInt

Visibility: public

532

CHAPTER 28. REFERENCE FOR UNIT 'STREAMEX’

Access: Read,Write

Description: Position exposes the position of the stream in the reader for use in the TDelphiReader (532)
class.

See also: TDelphiReader (532)

28.4 TBidirBinaryObjectWriter

28.4.1 Description

TBidirBinaryObjectReader is a class descendent from TBinaryObjectWriter (??), which
implements the necessary support for BiDi data.

28.4.2 Property overview

Page Property Access Description
532 Position rw Position in the stream

28.4.3 TBidirBinaryObjectWriter.Position

Synopsis: Position in the stream
Declaration: Property Position : LongInt
Visibility: public
Access: Read,Write
Description: Position exposes the position of the stream in the writer for use in the TDelphiWriter (533) class.

See also: TDelphiWriter (533)

28.5 TDelphiReader

28.5.1 Description

TDelphiReader is a descendent of TReader which has support for BiDi Streaming. It overrides
the stream reading methods for strings, and makes sure the stream can be positioned in the case of
strings. For this purpose, it makes use of the TBidirBinaryObjectReader (531) driver class.

28.5.2 Method overview

Page Property Description

533 GetDriver Return the driver class as a TBidirBinaryObjectReader (531) class
533 Read Read data from stream

533 ReadStr Overrides the standard ReadSt r method

28.5.3 Property overview

Page Property Access Description
533 Position rw Position in the stream

533

CHAPTER 28. REFERENCE FOR UNIT 'STREAMEX’

28.5.4 TDelphiReader.GetDriver
Synopsis: Return the driver class as a TBidirBinaryObjectReader (531) class

Declaration: function GetDriver : TBidirBinaryObjectReader
Visibility: public

Description: GetDriver simply returns the used driver and typecasts it as TBidirBinaryObjectReader (531)
class.

See also: TBidirBinaryObjectReader (531)

28.5.5 TDelphiReader.ReadStr

Synopsis: Overrides the standard ReadSt r method
Declaration: function ReadStr : String
Visibility: public

Description: ReadStr makes sure the TBidirBinaryObjectReader (531) methods are used, to store additional
information about the stream position when reading the strings.

See also: TBidirBinaryObjectReader (531)

28.5.6 TDelphiReader.Read

Synopsis: Read data from stream
Declaration: procedure Read (var Buf;Count: LongInt); Override
Visibility: public

Description: Read reads raw data from the stream. It reads Count bytes from the stream and places them in
Buf. It forces the use of the TBidirBinaryObjectReader (531) class when reading.

See also: TBidirBinaryObjectReader (531), TDelphiReader.Position (533)

28.5.7 TDelphiReader.Position
Synopsis: Position in the stream
Declaration: Property Position : LongInt
Visibility: public
Access: Read,Write
Description: Position in the stream.

See also: TDelphiReader.Read (533)

28.6 TDelphiWriter

28.6.1 Description

TDelphiWriter is a descendent of TWriter which has support for BiDi Streaming. It overrides
the stream writing methods for strings, and makes sure the stream can be positioned in the case of
strings. For this purpose, it makes use of the TBidirBinaryObjectWriter (532) driver class.

534

CHAPTER 28. REFERENCE FOR UNIT 'STREAMEX’

28.6.2 Method overview

Page Property Description

534 FlushBuffer Flushes the stream buffer

534 GetDriver Return the driver class as a TBidirBinaryObjectWriter (532) class
534 Write Write raw data to the stream

534 WriteStr Write a string to the stream

535 WriteValue Write value type

28.6.3 Property overview

Page Property Access Description
535 Position 1w Position in the stream

28.6.4 TDelphiWriter.GetDriver
Synopsis: Return the driver class as a TBidirBinaryObjectWriter (532) class

Declaration: function GetDriver : TBidirBinaryObjectWriter
Visibility: public

Description: GetDriver simply returns the used driver and typecasts it as TBidirBinaryObjectWriter (532)
class.

See also: TBidirBinaryObjectWriter (532)

28.6.5 TDelphiWriter.FlushBuffer

Synopsis: Flushes the stream buffer
Declaration: procedure FlushBuffer
Visibility: public

Description: FlushBuf fer flushes the internal buffer of the writer. It simply calls the F1ushBuf fer method
of the driver class.

28.6.6 TDelphiWriter.Write

Synopsis: Write raw data to the stream
Declaration: procedure Write (const Buf;Count: LongInt); Override
Visibility: public

Description: Write writes Count bytes from Buf to the buffer, updating the position as needed.

28.6.7 TDelphiWriter.WriteStr
Synopsis: Write a string to the stream

Declaration: procedure WriteStr (const Value: String)

Visibility: public

535

CHAPTER 28. REFERENCE FOR UNIT 'STREAMEX’

Description: WriteStr writes a string to the stream, forcing the use of the TBidirBinaryObjectWriter (532)
class methods, which update the position of the stream.

See also: TBidirBinaryObjectWriter (532)

28.6.8 TDelphiWriter.WriteValue
Synopsis: Write value type

Declaration: procedure WriteValue (Value: TValueType)
Visibility: public

Description: WriteValue overrides the same method in TWriter to force the use of the TBidirBinaryOb-
jectWriter (532) methods, which update the position of the stream.

See also: TBidirBinaryObjectWriter (532)

28.6.9 TDelphiWriter.Position

Synopsis: Position in the stream
Declaration: Property Position : LonglInt
Visibility: public
Access: Read,Write

Description: Position exposes the position in the stream as exposed by the TBidirBinaryObjectWriter (532)
instance used when streaming.

See also: TBidirBinaryObjectWriter (532)

536

Chapter 29

Reference for unit ’StreamlQ’

29.1 Used units

Table 29.1: Used units by unit ’StreamlIO’

Name Page
Classes 2?
sysutils 7?

29.2 Overview

The StreamIO unit implements a call to reroute the input or output of a text file to a descendents of
TStream (??).

This allows to use the standard pascal Read (??) and Write (??) functions (with all their possibilities),
on streams.

29.3 Procedures and functions

29.3.1 AssignStream

Synopsis: Assign a text file to a stream.
Declaration: procedure AssignStream(var F: Textfile;Stream: TStream)
Visibility: default

Description: AssignStream assigns the stream St ream to file F. The file can subsequently be used to write
to the stream, using the standard Write (??) calls.

Before writing, call Rewrite (??) on the stream. Before reading, call Reset (2?).
Errors: if St ream is Ni1, an exception will be raised.

See also: #rtl.classes. TStream (??), GetStream (537)

537

CHAPTER 29. REFERENCE FOR UNIT 'STREAMIO’

29.3.2 GetStream

Synopsis: Return the stream, associated with a file.
Declaration: function GetStream(var F: TTextRec) : TStream
Visibility: default

Description: Get St ream returns the instance of the stream that was associated with the file F using Assign-
Stream (536).

Errors: An invalid class reference will be returned if the file was not associated with a stream.

See also: AssignStream (536), #rtl.classes. TStream (??)

538

Chapter 30

Reference for unit ’syncobjs’

30.1 Used units

Table 30.1: Used units by unit ’syncobjs’

Name Page
sysutils 7

30.2 Overview

The syncobjs unit implements some classes which can be used when synchronizing threads in rou-
tines or classes that are used in multiple threads at once. The TCriticalSection (539) class is a wrapper
around low-level critical section routines (semaphores or mutexes). The TEventObject (541) class
can be used to send messages between threads (also known as conditional variables in Posix threads).

30.3 Constants, types and variables

30.3.1 Constants
INFINITE = Cardinal (- 1)

Constant denoting an infinite timeout.

30.3.2 Types

PSecurityAttributes = Pointer

PSecurityAttributes is a dummy type used in non-windows implementations, so the calls
remain Delphi compatible.

TEvent = TEventObject

TEvent is a simple alias for the TEventObject (541) class.

539

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

TEventHandle = Pointer
TEventHandle is an opaque type and should not be used in user code.

TWaitResult = (wrSignaled,wrTimeout,wrAbandoned,wrError)

Table 30.2: Enumeration values for type TWaitResult

Value Explanation

wrAbandoned Wait operation was abandoned.

wrError An error occurred during the wait operation.
wrSignaled Event was signaled (triggered)

wrTimeout Time-out period expired

TWaitResult is used to report the result of a wait operation.

30.4 TCriticalSection

30.4.1 Description

TCriticalSection is a class wrapper around the low-level TRTLCriticalSection rou-
tines. It simply calls the RTL routines in the system unit for critical section support.

A critical section is a resource which can be owned by only 1 caller: it can be used to make sure that
in a multithreaded application only 1 thread enters pieces of code protected by the critical section.

Typical usage is to protect a piece of code with the following code (MySectionisaTCriticalSection
instance):

// Previous code
MySection.Acquire;
Try

// Protected code
Finally
MySection.Release;
end;
// Other code.

The protected code can be executed by only 1 thread at a time. This is useful for instance for list
operations in multithreaded environments.

30.4.2 Method overview

Page Property Description
540 Acquire Enter the critical section

541 Create Create a new critical section.

541 Destroy Destroy the criticalsection instance
540 Enter Alias for Acquire

540 Leave Alias for Release

540 Release Leave the critical section

540

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

30.4.3 TCriticalSection.Acquire

Synopsis: Enter the critical section
Declaration: procedure Acquire; Override
Visibility: public

Description: Acquire attempts to enter the critical section. It will suspend the calling thread if the critical
section is in use by another thread, and will resume as soon as the other thread has released the
critical section.

See also: TCriticalSection.Release (540)

30.4.4 TCriticalSection.Release
Synopsis: Leave the critical section

Declaration: procedure Release; Override
Visibility: public

Description: Release leaves the critical section. It will free the critical section so another thread waiting to
enter the critical section will be awakened, and will enter the critical section. This call always returns
immediatly.

See also: TCriticalSection.Acquire (540)

30.4.5 TCriticalSection.Enter
Synopsis: Alias for Acquire

Declaration: procedure Enter
Visibility: public
Description: Enter just calls Acquire (540).

See also: TCriticalSection.Leave (540), TCriticalSection.Acquire (540)

30.4.6 TCriticalSection.Leave
Synopsis: Alias for Release

Declaration: procedure Leave
Visibility: public
Description: Leave just calls Release (540)

See also: TCriticalSection.Release (540), TCriticalSection.Enter (540)

541

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

30.4.7 TCriticalSection.Create

Synopsis: Create a new critical section.
Declaration: constructor Create
Visibility: public

Description: Create initializes a new critical section, and initializes the system objects for the critical section. It
should be created only once for all threads, all threads should use the same critical section instance.

See also: TCriticalSection.Destroy (541)

30.4.8 TCriticalSection.Destroy

Synopsis: Destroy the criticalsection instance
Declaration: destructor Destroy; Override
Visibility: public

Description: Destroy releases the system critical section resources, and removes the TCriticalSection
instance from memory.

Errors: Any threads trying to enter the critical section when it is destroyed, will start running with an error
(an exception should be raised).

See also: TCriticalSection.Create (541), TCriticalSection.Acquire (540)

30.5 TEventObject

30.5.1 Description

TEventObject encapsulates the BasicEvent implementation of the system unit in a class. The
event can be used to notify other threads of a change in conditions. (in POSIX terms, this is a condi-
tional variable). A thread that wishes to notify other threads creates an instance of TEventObject
with a certain name, and posts events to it. Other threads that wish to be notified of these events
should create their own instances of TEventOb ject with the same name, and wait for events to
arrive.

30.5.2 Method overview

Page Property Description

542 Create Create a new event object

542 destroy Clean up the event and release from memory
542 ResetEvent Reset the event

542 SetEvent Set the event

543 WaitFor Wait for the event to be set.

30.5.3 Property overview

Page Property Access Description
543 ManualReset r Should the event be reset manually

542

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

30.5.4 TEventObject.Create
Synopsis: Create a new event object

Declaration: constructor Create (EventAttributes: PSecurityAttributes;
AManualReset: Boolean;InitialState: Boolean;

const Name: String)
Visibility: public

Description: Create creates a new event object with unique name AName. The object will be created security
attributes EventAttributes (windows only).

The AManualReset indicates whether the event must be reset manually (if it is False, the event
is reset immediatly after the first thread waiting for it is notified). InitialState determines
whether the event is initially set or not.

See also: TEventObject.ManualReset (543), TEventObject.ResetEvent (542)

30.5.5 TEventObject.destroy

Synopsis: Clean up the event and release from memory
Declaration: destructor destroy; Override
Visibility: public
Description: Destroy cleans up the low-level resources allocated for this event and releases the event instance
from memory.

See also: TEventObject.Create (542)

30.5.6 TEventObject.ResetEvent
Synopsis: Reset the event
Declaration: procedure ResetEvent
Visibility: public
Description: ResetEvent turns off the event. Any WaitFor (543) operation will suspend the calling thread.

See also: TEventObject.SetEvent (542), TEventObject. WaitFor (543)

30.5.7 TEventObject.SetEvent
Synopsis: Set the event
Declaration: procedure SetEvent
Visibility: public

Description: SetEvent sets the event. If the ManualReset (543) is True any thread that was waiting for the
event to be set (using WaitFor (543)) will resume it’s operation. After the event was set, any thread
that executes WaitFor will return at once. If ManualReset is False, only one thread will be
notified that the event was set, and the event will be immediatly reset after that.

See also: TEventObject. WaitFor (543), TEventObject.ManualReset (543)

543

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

30.5.8 TEventObject.WaitFor
Synopsis: Wait for the event to be set.

Declaration: function WaitFor (Timeout: Cardinal) : TWaitResult
Visibility: public

Description: WaitFor should be used in threads that should be notified when the event is set. When WaitFor
is called, and the event is not set, the thread will be suspended. As soon as the event is set by some
other thread (using SetEvent (542)) or the timeout period (TimeOut) has expired, the WaitFor
function returns. The return value depends on the condition that caused the WaitFor function to
return.

The calling thread will wait indefinitely when the constant INFINITE is specified for the TimeOut
parameter.

See also: TEventObject.SetEvent (542)

30.5.9 TEventObject.ManualReset
Synopsis: Should the event be reset manually

Declaration: Property ManualReset : Boolean
Visibility: public
Access: Read

Description: Should the event be reset manually

30.6 THandleObject

30.6.1 Description

THandleObject is a parent class for synchronization classes that need to store an operating system
handle. It introduces a property Handle (544) which can be used to store the operating system handle.
The handle is in no way manipulated by THandleOb ject, only storage is provided.

30.6.2 Method overview

Page Property Description
543 destroy Free the instance

30.6.3 Property overview

Page Property Access Description
544 Handle r Handle for this object
544 LastError r Last operating system error

30.6.4 THandleObject.destroy

Synopsis: Free the instance

Declaration: destructor destroy; Override

544

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

Visibility: public

Description: Dest roy does nothing in the Free Pascal implementation of THandleObject.

30.6.5 THandleObject.Handle
Synopsis: Handle for this object

Declaration: Property Handle : TEventHandle
Visibility: public
Access: Read

Description: Handle provides read-only access to the operating system handle of this instance. The public ac-
cess is read-only, descendent classes should set the handle by accessing it’s protected field FHandle
directly.

30.6.6 THandleObject.LastError
Synopsis: Last operating system error
Declaration: Property LastError : Integer
Visibility: public
Access: Read

Description: LastError provides read-only access to the last operating system error code for operations on
Handle (544).

See also: THandleObject.Handle (544)

30.7 TSimpleEvent

30.7.1 Description

TSimpleEvent is a simple descendent of the TEventObject (541) class. It creates an event with
no name, which must be reset manually, and which is initially not set.

30.7.2 Method overview

Page Property Description
544 Create Creates anew TSimpleEvent instance

30.7.3 TSimpleEvent.Create
Synopsis: Creates a new TSimpleEvent instance
Declaration: constructor Create
Visibility: default

Description: Create instantiates a new TSimpleEvent instance. It simply calls the inherited Create (542)
with Ni1 for the security attributes, an empty name, AManualReset setto True,and InitialState
toFalse.

See also: TEventObject.Create (542)

545

CHAPTER 30. REFERENCE FOR UNIT 'SYNCOBJS’

30.8 TSynchroObject

30.8.1 Description

TSynchroObject is an abstract synchronization resource object. It implements 2 virtual methods
Acquire (545) which can be used to acquire the resource, and Release (545) to release the resource.

30.8.2 Method overview

Page Property Description
545 Acquire Acquire synchronization resource
545 Release Release previously acquired synchronization resource

30.8.3 TSynchroObject.Acquire

Synopsis: Acquire synchronization resource
Declaration: procedure Acquire; Virtual
Visibility: default

Description: Acquire does nothing in TSynchroObject. Descendent classes must override this method to
acquire the resource they manage.

See also: TSynchroObject.Release (545)

30.8.4 TSynchroObiject.Release

Synopsis: Release previously acquired synchronization resource
Declaration: procedure Release; Virtual
Visibility: default

Description: Release does nothing in TSynchroObject. Descendent classes must override this method to
release the resource they acquired through the Acquire (545) call.

See also: TSynchroObject.Acquire (545)

546

Chapter 31

Reference for unit ’URIParser’

31.1 Overview

The URIParser unit contains a basic type (TURI (546)) and some routines for the parsing (ParseURI
(547)) and construction (EncodeURI (546)) of Uniform Resource Indicators, commonly referred to as
URL: Uniform Resource Location. It is used in various other units, and in itself contains no classes.
It supports all protocols, username/password/port specification, query parameters and bookmarks
etc..

31.2 Constants, types and variables

31.2.1 Types

TURI = record
Protocol : String;
Username : String;
Password : String;
Host : String;
Port : Word;

Path : String;

Document : String;

Params : String;

Bookmark : String;

HasAuthority : Boolean;
end

TURI is the basic record that can be filled by the ParseURI (547) call. It contains the contents of a
URI, parsed out in it’s various pieces.

31.3 Procedures and functions

31.3.1 EncodeURI

Synopsis: Form a string representation of the URI

Declaration: function EncodeURI (const URI: TURI) : String

547

CHAPTER 31. REFERENCE FOR UNIT 'URIPARSER’

Visibility: default
Description: EncodeURI will return a valid text representation of the URI in the URT record.

See also: ParseURI (547)

31.3.2 FilenameToURI

Synopsis: Construct a URI from a filename
Declaration: function FilenameToURI (const Filename: String) : String
Visibility: default
Description: FilenameToURI takes Filename and constructs a £ile: protocol URI from it.
Errors: None.

See also: URIToFilename (548)

31.3.3 IsAbsoluteURI
Synopsis: Check whether a URI is absolute.

Declaration: function IsAbsoluteURI (const UriReference: String) : Boolean
Visibility: default

Description: TsAbsoluteURT returns True if the URlin UriRe ference is absolute, i.e. contains a protocol
part.

Errors: None.

See also: FilenameToURI (547), URIToFileName (548)

31.3.4 ParseURI

Synopsis: Parse a URI and split it into its constituent parts

Declaration: function ParseURI (const URI: String) : TURI; Overload
function ParseURI (const URI: String;const DefaultProtocol: String;
DefaultPort: Word) : TURI; Overload

Visibility: default

Description: ParseURI decodes URI and returns the various parts of the URI in the result record.

The function accepts the most general URI scheme:
proto://user:pwd@host :port/path/document ?params#bookmark

Missing (optional) parts in the URI will be left blank in the result record. If a default protocol and
port are specified, they will be used in the record if the corresponding part is not present in the URL

See also: EncodeURI (546)

548

CHAPTER 31. REFERENCE FOR UNIT 'URIPARSER’

31.3.5 ResolveRelativeURI

Synopsis: Return a relative link

Declaration: function ResolveRelativeURI (const BaseUri: WideString;
const RelUri: WideString;
out ResultUri: WideString) : Boolean
; Overload

function ResolveRelativeURI (const BaseUri: UTF8String;
const RelUri: UTF8String;
out ResultUri: UTF8String) : Boolean
; Overload
Visibility: default

Description: ResolveRelativeURI returns in ResultUri an absolute link constructed from a base URI
BaseURIT and a relative link Re 1URTI. One of the two URI names must have a protocol specified. If
the Re1URT argument contains a protocol, it is considered a complete (absolute) URI and is returned
as the result.

The function returns True if a link was succesfully returned.

Errors: If no protocols are specified, the function returns False

31.3.6 URIToFilename

Synopsis: Convert a URI to a filename
Declaration: function URIToFilename (const URI: String;out Filename: String) : Boolean
Visibility: default

Description: URIToFilename returns a filename (using the correct Path Delimiter character) from URI. The
URT must be of protocol File or have no protocol.

Errors: If the URI contains an unsupported protocol, False is returned.

See also: ResolveRelativeURI (548), FilenameToURI (547)

549

Chapter 32

Reference for unit ’zstream’

32.1 Used units

Table 32.1: Used units by unit ’zstream’

Name Page
Classes 7
gzio 549
zbase 549

32.2 Overview

The ZStream unit implements a TStream (??) descendent (TCompressionStream (550)) which uses
the deflate algorithm to compress everything that is written to it. The compressed data is written to
the output stream, which is specified when the compressor class is created.

Likewise, a TSt ream descendent is implemented which reads data from an input stream (TDecom-
pressionStream (553)) and decompresses it with the inflate algorithm.

32.3 Constants, types and variables

32.3.1 Types

Tcompressionlevel = (clnone,clfastest,cldefault,clmax)
Compression level for the deflate algorithm
Tgzopenmode = (gzopenread, gzopenwrite)

Open mode for gzip file.

550

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

Table 32.2: Enumeration values for type Tcompressionlevel

Value Explanation

cldefault Use default compression

clfastest ~ Use fast (but less) compression.

clmax Use maximum compression

clnone Do not use compression, just copy data.

Table 32.3: Enumeration values for type Tgzopenmode

Value Explanation
gzopenread Open file for reading
gzopenwrite Open file for writing

32.4 Ecompressionerror

32.4.1 Description

ECompressionError is the exception class used by the TCompressionStream (550) class.

32.5 Edecompressionerror

32.5.1 Description

EDecompressionError is the exception class used by the TDeCompressionStream (553) class.

32.6 Egzfileerror

32.6.1 Description

Egzfileerror is the exception class used to report errors by the Tgzfilestream (555) class.

32.7 Ezliberror
32.7.1 Description

Errors which occur in the zstream unit are signaled by raising an EZLibError exception descen-
dent.

32.8 Tcompressionstream

32.8.1 Description

TCompressionStream

551

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

32.8.2 Method overview

Page Property Description

551 create Create a new instance of the compression stream.

551 destroy Flushe data to the output stream and destroys the compression
stream.

552 flush Flush remaining data to the target stream

552 get_compressionrate Get the current compression rate

551 write Write data to the stream

32.8.3 Tcompressionstream.create

Synopsis: Create a new instance of the compression stream.

Declaration: constructor create (level: Tcompressionlevel;dest: TStream;
Askipheader: Boolean)

Visibility: public

Description: Create creates a new instance of the compression stream. It merely calls the inherited constructor
with the destination stream De st and stores the compression level.

If ASkipHeader is set to True, the method will not write the block header to the stream. This is
required for deflated data in a zip file.

Note that the compressed data is only completely written after the compression stream is destroyed.

See also: TCompressionStream.Destroy (551)

32.8.4 Tcompressionstream.destroy

Synopsis: Flushe data to the output stream and destroys the compression stream.
Declaration: destructor destroy; Override
Visibility: public

Description: Destroy flushes the output stream: any compressed data not yet written to the output stream are
written, and the deflate structures are cleaned up.

Errors: None.

See also: TCompressionStream.Create (551)

32.8.5 Tcompressionstream.write
Synopsis: Write data to the stream

Declaration: function write (const buffer;count: LongInt) : LongInt; Override
Visibility: public

Description: Write takes Count bytes from Buf fer and comresseses (deflates) them. The compressed result
is written to the output stream.

Errors: If an error occurs, an ECompressionError (550) exception is raised.

See also: TCompressionStream.Read (550), TCompressionStream.Seek (550)

552

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

32.8.6 Tcompressionstream.flush

Synopsis: Flush remaining data to the target stream
Declaration: procedure flush
Visibility: public

Description: £1ush writes any remaining data in the memory buffers to the target stream, and clears the memory
buffer.

32.8.7 Tcompressionstream.get_compressionrate
Synopsis: Get the current compression rate
Declaration: function get_compressionrate : single
Visibility: public

Description: get_compressionrate returns the percentage of the number of written compressed bytes rela-
tive to the number of written bytes.

Errors: If no bytes were written, an exception is raised.

32.9 Tcustomzlibstream

32.9.1 Description

TCustomZlibStream serves as the ancestor class for the TCompressionStream (550) and TDe-
CompressionStream (553) classes.

It introduces support for a progess handler, and stores the input or output stream.

32.9.2 Method overview

Page Property Description
552 create Create a new instance of TCustomZzlibStream
553 destroy Clear up instance

32.9.3 Tcustomzlibstream.create

Synopsis: Create a new instance of TCustomZlibStream
Declaration: constructor create(stream: TStream)
Visibility: public

Description: Create creates a new instance of TCustomZlibStream. It stores a reference to the input/output
stream, and initializes the deflate compression mechanism so they can be used by the descendents.

See also: TCompressionStream (550), TDecompressionStream (553)

553

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

32.9.4 Tcustomzlibstream.destroy
Synopsis: Clear up instance

Declaration: destructor destroy; Override
Visibility: public
Description: Destroy cleans up the internal memory buffer and calls the inherited destroy.

See also: Tcustomzlibstream.create (552)

32.10 Tdecompressionstream

32.10.1 Description

TDecompressionStream performs the inverse operation of TCompressionStream (550). A read
operation reads data from an input stream and decompresses (inflates) the data it as it goes along.

The decompression stream reads it’s compressed data from a stream with deflated data. This data
can be created e.g. with a TCompressionStream (550) compression stream.

32.10.2 Method overview

Page Property Description

553 create Creates a new instance of the TDecompressionStream
stream

553 destroy Destroys the TDecompressionStreamn instance

555 get_compressionrate Get the current compression rate

554 read Read data from the compressed stream

554 seek Move stream position to a certain location in the stream.

32.10.3 Tdecompressionstream.create

Synopsis: Creates a new instance of the TDecompressionStream stream
Declaration: constructor create (Asource: TStream;Askipheader: Boolean)
Visibility: public

Description: Create creates and initializes a new instance of the TDecompressionStream class. It calls
the inherited Create and passes it the Source stream. The source stream is the stream from which
the compressed (deflated) data is read.

If ASkipHeader is true, then the gzip data header is skipped, allowing TDecompressionStream
to read deflated data in a .zip file. (this data does not have the gzip header record prepended to it).

Note that the source stream is by default not owned by the decompression stream, and is not freed
when the decompression stream is destroyed.

See also: TDecompressionStream.Destroy (553)

32.10.4 Tdecompressionstream.destroy

Synopsis: Destroys the TDecompressionStream instance

Declaration: destructor destroy; Override

554

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

Visibility: public
Description: Destroy cleans up the inflate structure, and then simply calls the inherited destroy.
By default the source stream is not freed when calling Destroy.

See also: TDecompressionStream.Create (553)

32.10.5 Tdecompressionstream.read
Synopsis: Read data from the compressed stream
Declaration: function read(var buffer;count: LongInt) : LongInt; Override
Visibility: public
Description: Read will read data from the compressed stream until the decompressed data size is Count or there

is no more compressed data available. The decompressed data is written in Buf fer. The function
returns the number of bytes written in the buffer.

Errors: If an error occurs, an EDeCompressionError (550) exception is raised.

See also: TCompressionStream. Write (551)

32.10.6 Tdecompressionstream.seek

Synopsis: Move stream position to a certain location in the stream.
Declaration: function seek (offset: LongInt;origin: Word) : LongInt; Override
Visibility: public

Description: Seek overrides the standard Seek implementation. There are a few differences between the imple-
mentation of Seek in Free Pascal compared to Delphi:

oIn Free Pascal, you can perform any seek. In case of a forward seek, the Free Pascal imple-
mentation will read some bytes until the desired position is reached, in case of a backward
seek it will seek the source stream backwards to the position it had at the creation time of the
TDecompressionStream and then again read some bytes until the desired position has
been reached.

oIn Free Pascal, a seek with soFromBeginning will reset the source stream to the position it had
when the TDecompressionStream was created. In Delphi, the source stream is reset to
position 0. This means that at creation time the source stream must always be at the start of the
zstream, you cannot use TDecompressionStream. Seek to reset the source stream to the
begin of the file.

Errors: An EDecompressionError (550) exception is raised if the stream does not allow the requested seek
operation.

See also: TDecompressionStream.Read (554)

555

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

32.10.7 Tdecompressionstream.get _compressionrate

Synopsis: Get the current compression rate
Declaration: function get_compressionrate : single
Visibility: public

Description: get_compressionrate returns the percentage of the number of read compressed bytes relative
to the total number of read bytes.

Errors: If no bytes were written, an exception is raised.

32.11 TGZFileStream

32.11.1 Description

TGZFileStream can be used to read data from a gzip file, or to write data to a gzip file.

32.11.2 Method overview
Page Property Description

555 create Create a new instance of TGZFileStream
556 destroy Removes TGZFileStream instance

555 read Read data from the compressed file

556 seek Set the position in the compressed stream.
556 write Write data to be compressed

32.11.3 TGZFileStream.create

Synopsis: Create a new instance of TGZFileStream
Declaration: constructor create (filename: ansistring;filemode: Tgzopenmode)
Visibility: public

Description: Create creates a new instance of the TGZFileStream class. It opens FileName for reading
or writing, depending on the Fi1leMode parameter. It is not possible to open the file read-write. If
the file is opened for reading, it must exist.

If the file is opened for reading, the TGZFileStream.Read (555) method can be used for reading the
data in uncompressed form.

If the file is opened for writing, any data written using the TGZFileStream.Write (556) method will
be stored in the file in compressed (deflated) form.

Errors: If the file is not found, an EZIibError (550) exception is raised.

See also: TGZFileStream.Destroy (556), TGZOpenMode (549)

32.11.4 TGZFileStream.read

Synopsis: Read data from the compressed file
Declaration: function read(var buffer;count: LongInt) : LongInt; Override

Visibility: public

556

CHAPTER 32. REFERENCE FOR UNIT "ZSTREAM’

Description: Read overrides the Read method of TStream to read the data from the compressed file. The
Buf fer parameter indicates where the read data should be stored. The Count parameter specifies
the number of bytes (uncompressed) that should be read from the compressed file. Note that it is not
possible to read from the stream if it was opened in write mode.

The function returns the number of uncompressed bytes actually read.

Errors: If Buf fer points to an invalid location, or does not have enough room for Count bytes, an excep-
tion will be raised.

See also: TGZFileStream.Create (555), TGZFileStream. Write (556), TGZFileStream.Seek (556)

32.11.5 TGZFileStream.write

Synopsis: Write data to be compressed
Declaration: function write (const buffer;count: LongInt) : LongInt; Override
Visibility: public

Description: Write writes Count bytes from Buf fer to the compressed file. The data is compressed as it is
written, so ideally, less than Count bytes end up in the compressed file. Note that it is not possible
to write to the stream if it was opened in read mode.

The function returns the number of (uncompressed) bytes that were actually written.
Errors: In case of an error, an EZlibError (550) exception is raised.

See also: TGZFileStream.Create (555), TGZFileStream.Read (555), TGZFileStream.Seek (556)

32.11.6 TGZFileStream.seek

Synopsis: Set the position in the compressed stream.
Declaration: function seek (offset: LongInt;origin: Word) : LonglInt; Override
Visibility: public

Description: seek sets the position to Of £set bytes, starting from Origin. Not all combinations are possible,
see TDecompressionStream.Seek (554) for a list of possibilities.

Errors: In case an impossible combination is asked, an EZlibError (550) exception is raised.

See also: TDecompressionStream.Seek (554)

32.11.7 TGZFileStream.destroy

Synopsis: Removes TGZFileSt ream instance
Declaration: destructor destroy; Override
Visibility: public
Description: Destroy closes the file and releases the TGZFileSt ream instance from memory.

See also: TGZFileStream.Create (555)

557

	Overview
	Reference for unit 'ascii85'
	Used units
	Overview
	Constants, types and variables
	Types

	TASCII85DecoderStream
	Description
	Method overview
	Property overview
	TASCII85DecoderStream.Create
	TASCII85DecoderStream.Decode
	TASCII85DecoderStream.Close
	TASCII85DecoderStream.ClosedP
	TASCII85DecoderStream.Destroy
	TASCII85DecoderStream.Read
	TASCII85DecoderStream.Seek
	TASCII85DecoderStream.BExpectBoundary

	TASCII85EncoderStream
	Method overview
	Property overview
	TASCII85EncoderStream.Create
	TASCII85EncoderStream.Destroy
	TASCII85EncoderStream.Write
	TASCII85EncoderStream.Width
	TASCII85EncoderStream.Boundary

	TASCII85RingBuffer
	Description
	Method overview
	Property overview
	TASCII85RingBuffer.Write
	TASCII85RingBuffer.Read
	TASCII85RingBuffer.FillCount
	TASCII85RingBuffer.Size

	Reference for unit 'AVL_Tree'
	Used units
	Overview
	TAVLTree
	Description
	Method overview
	Property overview
	TAVLTree.Find
	TAVLTree.FindKey
	TAVLTree.FindSuccessor
	TAVLTree.FindPrecessor
	TAVLTree.FindLowest
	TAVLTree.FindHighest
	TAVLTree.FindNearest
	TAVLTree.FindPointer
	TAVLTree.FindLeftMost
	TAVLTree.FindRightMost
	TAVLTree.FindLeftMostKey
	TAVLTree.FindRightMostKey
	TAVLTree.FindLeftMostSameKey
	TAVLTree.FindRightMostSameKey
	TAVLTree.Add
	TAVLTree.Delete
	TAVLTree.Remove
	TAVLTree.RemovePointer
	TAVLTree.MoveDataLeftMost
	TAVLTree.MoveDataRightMost
	TAVLTree.Clear
	TAVLTree.FreeAndClear
	TAVLTree.FreeAndDelete
	TAVLTree.ConsistencyCheck
	TAVLTree.WriteReportToStream
	TAVLTree.ReportAsString
	TAVLTree.SetNodeManager
	TAVLTree.Create
	TAVLTree.Destroy
	TAVLTree.OnCompare
	TAVLTree.Count

	TAVLTreeNode
	Description
	Method overview
	TAVLTreeNode.Clear
	TAVLTreeNode.TreeDepth

	TAVLTreeNodeMemManager
	Description
	Method overview
	Property overview
	TAVLTreeNodeMemManager.DisposeNode
	TAVLTreeNodeMemManager.NewNode
	TAVLTreeNodeMemManager.Clear
	TAVLTreeNodeMemManager.Create
	TAVLTreeNodeMemManager.Destroy
	TAVLTreeNodeMemManager.MinimumFreeNode
	TAVLTreeNodeMemManager.MaximumFreeNodeRatio
	TAVLTreeNodeMemManager.Count

	TBaseAVLTreeNodeManager
	Method overview
	TBaseAVLTreeNodeManager.DisposeNode
	TBaseAVLTreeNodeManager.NewNode

	Reference for unit 'base64'
	Used units
	Overview
	Constants, types and variables
	Types

	EBase64DecodingException
	Description

	TBase64DecodingStream
	Description
	Method overview
	Property overview
	TBase64DecodingStream.Create
	TBase64DecodingStream.Reset
	TBase64DecodingStream.Read
	TBase64DecodingStream.Seek
	TBase64DecodingStream.EOF
	TBase64DecodingStream.Mode

	TBase64EncodingStream
	Description
	Method overview
	TBase64EncodingStream.Create
	TBase64EncodingStream.Destroy
	TBase64EncodingStream.Write
	TBase64EncodingStream.Seek

	Reference for unit 'BlowFish'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	EBlowFishError
	Description

	TBlowFish
	Description
	Method overview
	TBlowFish.Create
	TBlowFish.Encrypt
	TBlowFish.Decrypt

	TBlowFishDeCryptStream
	Description
	Method overview
	TBlowFishDeCryptStream.Read
	TBlowFishDeCryptStream.Seek

	TBlowFishEncryptStream
	Description
	Method overview
	TBlowFishEncryptStream.Destroy
	TBlowFishEncryptStream.Write
	TBlowFishEncryptStream.Seek
	TBlowFishEncryptStream.Flush

	TBlowFishStream
	Description
	Method overview
	Property overview
	TBlowFishStream.Create
	TBlowFishStream.Destroy
	TBlowFishStream.BlowFish

	Reference for unit 'bufstream'
	Used units
	Overview
	Constants, types and variables
	Constants

	TBufStream
	Description
	Method overview
	Property overview
	TBufStream.Create
	TBufStream.Destroy
	TBufStream.Buffer
	TBufStream.Capacity
	TBufStream.BufferPos
	TBufStream.BufferSize

	TReadBufStream
	Description
	Method overview
	TReadBufStream.Seek
	TReadBufStream.Read

	TWriteBufStream
	Description
	Method overview
	TWriteBufStream.Destroy
	TWriteBufStream.Seek
	TWriteBufStream.Write

	Reference for unit 'CacheCls'
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Types

	ECacheError
	Description

	TCache
	Description
	Method overview
	Property overview
	TCache.Create
	TCache.Destroy
	TCache.Add
	TCache.AddNew
	TCache.FindSlot
	TCache.IndexOf
	TCache.Remove
	TCache.Data
	TCache.MRUSlot
	TCache.LRUSlot
	TCache.SlotCount
	TCache.Slots
	TCache.OnIsDataEqual
	TCache.OnFreeSlot

	Reference for unit 'contnrs'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	RSHash

	EDuplicate
	Description

	EKeyNotFound
	Description

	TBucketList
	Description
	Method overview
	TBucketList.Create

	TClassList
	Description
	Method overview
	Property overview
	TClassList.Add
	TClassList.Extract
	TClassList.Remove
	TClassList.IndexOf
	TClassList.First
	TClassList.Last
	TClassList.Insert
	TClassList.Items

	TComponentList
	Description
	Method overview
	Property overview
	TComponentList.Destroy
	TComponentList.Add
	TComponentList.Extract
	TComponentList.Remove
	TComponentList.IndexOf
	TComponentList.First
	TComponentList.Last
	TComponentList.Insert
	TComponentList.Items

	TCustomBucketList
	Description
	Method overview
	Property overview
	TCustomBucketList.Destroy
	TCustomBucketList.Clear
	TCustomBucketList.Add
	TCustomBucketList.Assign
	TCustomBucketList.Exists
	TCustomBucketList.Find
	TCustomBucketList.ForEach
	TCustomBucketList.Remove
	TCustomBucketList.Data

	TFPCustomHashTable
	Description
	Method overview
	Property overview
	TFPCustomHashTable.Create
	TFPCustomHashTable.CreateWith
	TFPCustomHashTable.Destroy
	TFPCustomHashTable.ChangeTableSize
	TFPCustomHashTable.Clear
	TFPCustomHashTable.Delete
	TFPCustomHashTable.Find
	TFPCustomHashTable.IsEmpty
	TFPCustomHashTable.HashFunction
	TFPCustomHashTable.Count
	TFPCustomHashTable.HashTableSize
	TFPCustomHashTable.HashTable
	TFPCustomHashTable.VoidSlots
	TFPCustomHashTable.LoadFactor
	TFPCustomHashTable.AVGChainLen
	TFPCustomHashTable.MaxChainLength
	TFPCustomHashTable.NumberOfCollisions
	TFPCustomHashTable.Density

	TFPDataHashTable
	Description
	Method overview
	Property overview
	TFPDataHashTable.Add
	TFPDataHashTable.Items

	TFPHashList
	Description
	Method overview
	Property overview
	TFPHashList.Create
	TFPHashList.Destroy
	TFPHashList.Add
	TFPHashList.Clear
	TFPHashList.NameOfIndex
	TFPHashList.HashOfIndex
	TFPHashList.GetNextCollision
	TFPHashList.Delete
	TFPHashList.Error
	TFPHashList.Expand
	TFPHashList.Extract
	TFPHashList.IndexOf
	TFPHashList.Find
	TFPHashList.FindIndexOf
	TFPHashList.FindWithHash
	TFPHashList.Rename
	TFPHashList.Remove
	TFPHashList.Pack
	TFPHashList.ShowStatistics
	TFPHashList.ForEachCall
	TFPHashList.Capacity
	TFPHashList.Count
	TFPHashList.Items
	TFPHashList.List
	TFPHashList.Strs

	TFPHashObject
	Description
	Method overview
	Property overview
	TFPHashObject.CreateNotOwned
	TFPHashObject.Create
	TFPHashObject.ChangeOwner
	TFPHashObject.ChangeOwnerAndName
	TFPHashObject.Rename
	TFPHashObject.Name
	TFPHashObject.Hash

	TFPHashObjectList
	Method overview
	Property overview
	TFPHashObjectList.Create
	TFPHashObjectList.Destroy
	TFPHashObjectList.Clear
	TFPHashObjectList.Add
	TFPHashObjectList.NameOfIndex
	TFPHashObjectList.HashOfIndex
	TFPHashObjectList.GetNextCollision
	TFPHashObjectList.Delete
	TFPHashObjectList.Expand
	TFPHashObjectList.Extract
	TFPHashObjectList.Remove
	TFPHashObjectList.IndexOf
	TFPHashObjectList.Find
	TFPHashObjectList.FindIndexOf
	TFPHashObjectList.FindWithHash
	TFPHashObjectList.Rename
	TFPHashObjectList.FindInstanceOf
	TFPHashObjectList.Pack
	TFPHashObjectList.ShowStatistics
	TFPHashObjectList.ForEachCall
	TFPHashObjectList.Capacity
	TFPHashObjectList.Count
	TFPHashObjectList.OwnsObjects
	TFPHashObjectList.Items
	TFPHashObjectList.List

	TFPObjectHashTable
	Description
	Method overview
	Property overview
	TFPObjectHashTable.Create
	TFPObjectHashTable.CreateWith
	TFPObjectHashTable.Add
	TFPObjectHashTable.Items
	TFPObjectHashTable.OwnsObjects

	TFPObjectList
	Description
	Method overview
	Property overview
	TFPObjectList.Create
	TFPObjectList.Destroy
	TFPObjectList.Clear
	TFPObjectList.Add
	TFPObjectList.Delete
	TFPObjectList.Exchange
	TFPObjectList.Expand
	TFPObjectList.Extract
	TFPObjectList.Remove
	TFPObjectList.IndexOf
	TFPObjectList.FindInstanceOf
	TFPObjectList.Insert
	TFPObjectList.First
	TFPObjectList.Last
	TFPObjectList.Move
	TFPObjectList.Assign
	TFPObjectList.Pack
	TFPObjectList.Sort
	TFPObjectList.ForEachCall
	TFPObjectList.Capacity
	TFPObjectList.Count
	TFPObjectList.OwnsObjects
	TFPObjectList.Items
	TFPObjectList.List

	TFPStringHashTable
	Description
	Method overview
	Property overview
	TFPStringHashTable.Add
	TFPStringHashTable.Items

	THTCustomNode
	Description
	Method overview
	Property overview
	THTCustomNode.CreateWith
	THTCustomNode.HasKey
	THTCustomNode.Key

	THTDataNode
	Description
	Property overview
	THTDataNode.Data

	THTObjectNode
	Description
	Property overview
	THTObjectNode.Data

	THTOwnedObjectNode
	Description
	Method overview
	THTOwnedObjectNode.Destroy

	THTStringNode
	Description
	Property overview
	THTStringNode.Data

	TObjectBucketList
	Description
	Method overview
	Property overview
	TObjectBucketList.Add
	TObjectBucketList.Remove
	TObjectBucketList.Data

	TObjectList
	Description
	Method overview
	Property overview
	TObjectList.create
	TObjectList.Add
	TObjectList.Extract
	TObjectList.Remove
	TObjectList.IndexOf
	TObjectList.FindInstanceOf
	TObjectList.Insert
	TObjectList.First
	TObjectList.Last
	TObjectList.OwnsObjects
	TObjectList.Items

	TObjectQueue
	Method overview
	TObjectQueue.Push
	TObjectQueue.Pop
	TObjectQueue.Peek

	TObjectStack
	Description
	Method overview
	TObjectStack.Push
	TObjectStack.Pop
	TObjectStack.Peek

	TOrderedList
	Description
	Method overview
	TOrderedList.Create
	TOrderedList.Destroy
	TOrderedList.Count
	TOrderedList.AtLeast
	TOrderedList.Push
	TOrderedList.Pop
	TOrderedList.Peek

	TQueue
	Description

	TStack
	Description

	Reference for unit 'CustApp'
	Used units
	Overview
	Constants, types and variables
	Types

	TCustomApplication
	Description
	Method overview
	Property overview
	TCustomApplication.Create
	TCustomApplication.Destroy
	TCustomApplication.HandleException
	TCustomApplication.Initialize
	TCustomApplication.Run
	TCustomApplication.ShowException
	TCustomApplication.Terminate
	TCustomApplication.FindOptionIndex
	TCustomApplication.GetOptionValue
	TCustomApplication.HasOption
	TCustomApplication.CheckOptions
	TCustomApplication.GetEnvironmentList
	TCustomApplication.ExeName
	TCustomApplication.HelpFile
	TCustomApplication.Terminated
	TCustomApplication.Title
	TCustomApplication.OnException
	TCustomApplication.ConsoleApplication
	TCustomApplication.Location
	TCustomApplication.Params
	TCustomApplication.ParamCount
	TCustomApplication.EnvironmentVariable
	TCustomApplication.OptionChar
	TCustomApplication.CaseSensitiveOptions
	TCustomApplication.StopOnException

	Reference for unit 'daemonapp'
	Daemon application architecture
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Types
	Variables

	Procedures and functions
	Application
	DaemonError
	RegisterDaemonApplicationClass
	RegisterDaemonClass
	RegisterDaemonMapper

	EDaemon
	Description

	TCustomDaemon
	Description
	Method overview
	Property overview
	TCustomDaemon.LogMessage
	TCustomDaemon.ReportStatus
	TCustomDaemon.Definition
	TCustomDaemon.DaemonThread
	TCustomDaemon.Controller
	TCustomDaemon.Status
	TCustomDaemon.Logger

	TCustomDaemonApplication
	Description
	Method overview
	Property overview
	TCustomDaemonApplication.ShowException
	TCustomDaemonApplication.CreateDaemon
	TCustomDaemonApplication.StopDaemons
	TCustomDaemonApplication.InstallDaemons
	TCustomDaemonApplication.RunDaemons
	TCustomDaemonApplication.UnInstallDaemons
	TCustomDaemonApplication.CreateForm
	TCustomDaemonApplication.Logger
	TCustomDaemonApplication.GUIMainLoop
	TCustomDaemonApplication.GuiHandle
	TCustomDaemonApplication.RunMode

	TCustomDaemonMapper
	Description
	Method overview
	Property overview
	TCustomDaemonMapper.Create
	TCustomDaemonMapper.Destroy
	TCustomDaemonMapper.DaemonDefs
	TCustomDaemonMapper.OnCreate
	TCustomDaemonMapper.OnDestroy
	TCustomDaemonMapper.OnRun
	TCustomDaemonMapper.OnInstall
	TCustomDaemonMapper.OnUnInstall

	TDaemon
	Description
	Property overview
	TDaemon.Definition
	TDaemon.Status
	TDaemon.OnStart
	TDaemon.OnStop
	TDaemon.OnPause
	TDaemon.OnContinue
	TDaemon.OnShutDown
	TDaemon.OnExecute
	TDaemon.BeforeInstall
	TDaemon.AfterInstall
	TDaemon.BeforeUnInstall
	TDaemon.AfterUnInstall
	TDaemon.OnControlCode

	TDaemonApplication
	Description

	TDaemonController
	Description
	Method overview
	Property overview
	TDaemonController.Create
	TDaemonController.Destroy
	TDaemonController.StartService
	TDaemonController.Main
	TDaemonController.Controller
	TDaemonController.ReportStatus
	TDaemonController.Daemon
	TDaemonController.Params
	TDaemonController.LastStatus
	TDaemonController.CheckPoint

	TDaemonDef
	Description
	Method overview
	Property overview
	TDaemonDef.Create
	TDaemonDef.Destroy
	TDaemonDef.DaemonClass
	TDaemonDef.Instance
	TDaemonDef.DaemonClassName
	TDaemonDef.Name
	TDaemonDef.Description
	TDaemonDef.DisplayName
	TDaemonDef.RunArguments
	TDaemonDef.Options
	TDaemonDef.Enabled
	TDaemonDef.WinBindings
	TDaemonDef.OnCreateInstance
	TDaemonDef.LogStatusReport

	TDaemonDefs
	Description
	Method overview
	Property overview
	TDaemonDefs.Create
	TDaemonDefs.IndexOfDaemonDef
	TDaemonDefs.FindDaemonDef
	TDaemonDefs.DaemonDefByName
	TDaemonDefs.Daemons

	TDaemonMapper
	Description
	Method overview
	TDaemonMapper.Create
	TDaemonMapper.CreateNew

	TDaemonThread
	Description
	Method overview
	Property overview
	TDaemonThread.Create
	TDaemonThread.Execute
	TDaemonThread.CheckControlMessage
	TDaemonThread.StopDaemon
	TDaemonThread.PauseDaemon
	TDaemonThread.ContinueDaemon
	TDaemonThread.ShutDownDaemon
	TDaemonThread.InterrogateDaemon
	TDaemonThread.Daemon

	TDependencies
	Description
	Method overview
	Property overview
	TDependencies.Create
	TDependencies.Items

	TDependency
	Description
	Method overview
	Property overview
	TDependency.Assign
	TDependency.Name
	TDependency.IsGroup

	TWinBindings
	Description
	Method overview
	Property overview
	TWinBindings.Create
	TWinBindings.Destroy
	TWinBindings.Assign
	TWinBindings.ErrCode
	TWinBindings.Win32ErrCode
	TWinBindings.Dependencies
	TWinBindings.GroupName
	TWinBindings.Password
	TWinBindings.UserName
	TWinBindings.StartType
	TWinBindings.WaitHint
	TWinBindings.IDTag
	TWinBindings.ServiceType
	TWinBindings.ErrorSeverity

	Reference for unit 'db'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	BuffersEqual
	DatabaseError
	DatabaseErrorFmt
	DateTimeRecToDateTime
	DateTimeToDateTimeRec
	DisposeMem
	ExtractFieldName
	SkipComments

	EDatabaseError
	Description

	EUpdateError
	Description
	Method overview
	Property overview
	EUpdateError.Create
	EUpdateError.Destroy
	EUpdateError.Context
	EUpdateError.ErrorCode
	EUpdateError.OriginalExcaption
	EUpdateError.PreviousError

	TAutoIncField
	Description
	Method overview
	TAutoIncField.Create

	TBCDField
	Description
	Method overview
	Property overview
	TBCDField.Create
	TBCDField.CheckRange
	TBCDField.Value
	TBCDField.Precision
	TBCDField.Currency
	TBCDField.MaxValue
	TBCDField.MinValue
	TBCDField.Size

	TBinaryField
	Description
	Method overview
	Property overview
	TBinaryField.Create
	TBinaryField.Size

	TBlobField
	Description
	Method overview
	Property overview
	TBlobField.Create
	TBlobField.Clear
	TBlobField.IsBlob
	TBlobField.LoadFromFile
	TBlobField.LoadFromStream
	TBlobField.SaveToFile
	TBlobField.SaveToStream
	TBlobField.SetFieldType
	TBlobField.BlobSize
	TBlobField.Modified
	TBlobField.Value
	TBlobField.Transliterate
	TBlobField.BlobType
	TBlobField.Size

	TBooleanField
	Description
	Method overview
	Property overview
	TBooleanField.Create
	TBooleanField.Value
	TBooleanField.DisplayValues

	TBytesField
	Description
	Method overview
	TBytesField.Create

	TCheckConstraint
	Description
	Method overview
	Property overview
	TCheckConstraint.Assign
	TCheckConstraint.CustomConstraint
	TCheckConstraint.ErrorMessage
	TCheckConstraint.FromDictionary
	TCheckConstraint.ImportedConstraint

	TCheckConstraints
	Description
	Method overview
	Property overview
	TCheckConstraints.Create
	TCheckConstraints.Add
	TCheckConstraints.Items

	TCurrencyField
	Description
	Method overview
	Property overview
	TCurrencyField.Create
	TCurrencyField.Currency

	TCustomConnection
	Description
	Method overview
	Property overview
	TCustomConnection.Close
	TCustomConnection.Destroy
	TCustomConnection.Open
	TCustomConnection.DataSetCount
	TCustomConnection.DataSets
	TCustomConnection.Connected
	TCustomConnection.LoginPrompt
	TCustomConnection.AfterConnect
	TCustomConnection.AfterDisconnect
	TCustomConnection.BeforeConnect
	TCustomConnection.BeforeDisconnect
	TCustomConnection.OnLogin

	TDatabase
	Description
	Method overview
	Property overview
	TDatabase.Create
	TDatabase.Destroy
	TDatabase.CloseDataSets
	TDatabase.CloseTransactions
	TDatabase.StartTransaction
	TDatabase.EndTransaction
	TDatabase.TransactionCount
	TDatabase.Transactions
	TDatabase.Directory
	TDatabase.IsSQLBased
	TDatabase.Connected
	TDatabase.DatabaseName
	TDatabase.KeepConnection
	TDatabase.Params

	TDataLink
	Description
	Method overview
	Property overview
	TDataLink.Create
	TDataLink.Destroy
	TDataLink.Edit
	TDataLink.UpdateRecord
	TDataLink.ExecuteAction
	TDataLink.UpdateAction
	TDataLink.Active
	TDataLink.ActiveRecord
	TDataLink.BOF
	TDataLink.BufferCount
	TDataLink.DataSet
	TDataLink.DataSource
	TDataLink.DataSourceFixed
	TDataLink.Editing
	TDataLink.Eof
	TDataLink.ReadOnly
	TDataLink.RecordCount

	TDataSet
	Description
	Method overview
	Property overview
	TDataSet.Create
	TDataSet.Destroy
	TDataSet.ActiveBuffer
	TDataSet.GetFieldData
	TDataSet.SetFieldData
	TDataSet.Append
	TDataSet.AppendRecord
	TDataSet.BookmarkValid
	TDataSet.Cancel
	TDataSet.CheckBrowseMode
	TDataSet.ClearFields
	TDataSet.Close
	TDataSet.ControlsDisabled
	TDataSet.CompareBookmarks
	TDataSet.CreateBlobStream
	TDataSet.CursorPosChanged
	TDataSet.DataConvert
	TDataSet.Delete
	TDataSet.DisableControls
	TDataSet.Edit
	TDataSet.EnableControls
	TDataSet.FieldByName
	TDataSet.FindField
	TDataSet.FindFirst
	TDataSet.FindLast
	TDataSet.FindNext
	TDataSet.FindPrior
	TDataSet.First
	TDataSet.FreeBookmark
	TDataSet.GetBookmark
	TDataSet.GetCurrentRecord
	TDataSet.GetFieldList
	TDataSet.GetFieldNames
	TDataSet.GotoBookmark
	TDataSet.Insert
	TDataSet.InsertRecord
	TDataSet.IsEmpty
	TDataSet.IsLinkedTo
	TDataSet.IsSequenced
	TDataSet.Last
	TDataSet.Locate
	TDataSet.Lookup
	TDataSet.MoveBy
	TDataSet.Next
	TDataSet.Open
	TDataSet.Post
	TDataSet.Prior
	TDataSet.Refresh
	TDataSet.Resync
	TDataSet.SetFields
	TDataSet.Translate
	TDataSet.UpdateCursorPos
	TDataSet.UpdateRecord
	TDataSet.UpdateStatus
	TDataSet.BOF
	TDataSet.Bookmark
	TDataSet.CanModify
	TDataSet.DataSource
	TDataSet.DefaultFields
	TDataSet.EOF
	TDataSet.FieldCount
	TDataSet.FieldDefs
	TDataSet.Found
	TDataSet.Modified
	TDataSet.IsUniDirectional
	TDataSet.RecordCount
	TDataSet.RecNo
	TDataSet.RecordSize
	TDataSet.State
	TDataSet.Fields
	TDataSet.FieldValues
	TDataSet.Filter
	TDataSet.Filtered
	TDataSet.FilterOptions
	TDataSet.Active
	TDataSet.AutoCalcFields
	TDataSet.BeforeOpen
	TDataSet.AfterOpen
	TDataSet.BeforeClose
	TDataSet.AfterClose
	TDataSet.BeforeInsert
	TDataSet.AfterInsert
	TDataSet.BeforeEdit
	TDataSet.AfterEdit
	TDataSet.BeforePost
	TDataSet.AfterPost
	TDataSet.BeforeCancel
	TDataSet.AfterCancel
	TDataSet.BeforeDelete
	TDataSet.AfterDelete
	TDataSet.BeforeScroll
	TDataSet.AfterScroll
	TDataSet.BeforeRefresh
	TDataSet.AfterRefresh
	TDataSet.OnCalcFields
	TDataSet.OnDeleteError
	TDataSet.OnEditError
	TDataSet.OnFilterRecord
	TDataSet.OnNewRecord
	TDataSet.OnPostError

	TDataSource
	Description
	Method overview
	Property overview
	TDataSource.Create
	TDataSource.Destroy
	TDataSource.Edit
	TDataSource.IsLinkedTo
	TDataSource.State
	TDataSource.AutoEdit
	TDataSource.DataSet
	TDataSource.Enabled
	TDataSource.OnStateChange
	TDataSource.OnDataChange
	TDataSource.OnUpdateData

	TDateField
	Description
	Method overview
	TDateField.Create

	TDateTimeField
	Description
	Method overview
	Property overview
	TDateTimeField.Create
	TDateTimeField.Value
	TDateTimeField.DisplayFormat

	TDBDataset
	Description
	Method overview
	Property overview
	TDBDataset.destroy
	TDBDataset.DataBase
	TDBDataset.Transaction

	TDBTransaction
	Description
	Method overview
	Property overview
	TDBTransaction.Create
	TDBTransaction.destroy
	TDBTransaction.CloseDataSets
	TDBTransaction.DataBase
	TDBTransaction.Active

	TDefCollection
	Description
	Method overview
	Property overview
	TDefCollection.create
	TDefCollection.Find
	TDefCollection.GetItemNames
	TDefCollection.IndexOf
	TDefCollection.Dataset
	TDefCollection.Updated

	TDetailDataLink
	Description
	Property overview
	TDetailDataLink.DetailDataSet

	TField
	Description
	Method overview
	Property overview
	TField.Create
	TField.Destroy
	TField.Assign
	TField.AssignValue
	TField.Clear
	TField.FocusControl
	TField.GetData
	TField.IsBlob
	TField.IsValidChar
	TField.RefreshLookupList
	TField.SetData
	TField.SetFieldType
	TField.Validate
	TField.AsBCD
	TField.AsBoolean
	TField.AsCurrency
	TField.AsDateTime
	TField.AsFloat
	TField.AsLongint
	TField.AsLargeInt
	TField.AsInteger
	TField.AsString
	TField.AsWideString
	TField.AsVariant
	TField.AttributeSet
	TField.Calculated
	TField.CanModify
	TField.CurValue
	TField.DataSet
	TField.DataSize
	TField.DataType
	TField.DisplayName
	TField.DisplayText
	TField.FieldNo
	TField.IsIndexField
	TField.IsNull
	TField.Lookup
	TField.NewValue
	TField.Offset
	TField.Size
	TField.Text
	TField.ValidChars
	TField.Value
	TField.OldValue
	TField.LookupList
	TField.Alignment
	TField.CustomConstraint
	TField.ConstraintErrorMessage
	TField.DefaultExpression
	TField.DisplayLabel
	TField.DisplayWidth
	TField.FieldKind
	TField.FieldName
	TField.HasConstraints
	TField.Index
	TField.ImportedConstraint
	TField.KeyFields
	TField.LookupCache
	TField.LookupDataSet
	TField.LookupKeyFields
	TField.LookupResultField
	TField.Origin
	TField.ProviderFlags
	TField.ReadOnly
	TField.Required
	TField.Visible
	TField.OnChange
	TField.OnGetText
	TField.OnSetText
	TField.OnValidate

	TFieldDef
	Description
	Method overview
	Property overview
	TFieldDef.Create
	TFieldDef.Destroy
	TFieldDef.Assign
	TFieldDef.CreateField
	TFieldDef.FieldClass
	TFieldDef.FieldNo
	TFieldDef.InternalCalcField
	TFieldDef.Required
	TFieldDef.Attributes
	TFieldDef.DataType
	TFieldDef.Precision
	TFieldDef.Size

	TFieldDefs
	Description
	Method overview
	Property overview
	TFieldDefs.Create
	TFieldDefs.Add
	TFieldDefs.AddFieldDef
	TFieldDefs.Assign
	TFieldDefs.Find
	TFieldDefs.Update
	TFieldDefs.MakeNameUnique
	TFieldDefs.HiddenFields
	TFieldDefs.Items

	Tfields
	Description
	Method overview
	Property overview
	Tfields.Create
	Tfields.Destroy
	Tfields.Add
	Tfields.CheckFieldName
	Tfields.CheckFieldNames
	Tfields.Clear
	Tfields.FindField
	Tfields.FieldByName
	Tfields.FieldByNumber
	Tfields.GetFieldNames
	Tfields.IndexOf
	Tfields.Remove
	Tfields.Count
	Tfields.Dataset
	Tfields.Fields

	TFloatField
	Description
	Method overview
	Property overview
	TFloatField.Create
	TFloatField.CheckRange
	TFloatField.Value
	TFloatField.Currency
	TFloatField.MaxValue
	TFloatField.MinValue
	TFloatField.Precision

	TGraphicField
	Description
	Method overview
	TGraphicField.Create

	TGuidField
	Description
	Method overview
	Property overview
	TGuidField.Create
	TGuidField.AsGuid

	TIndexDef
	Description
	Method overview
	Property overview
	TIndexDef.Create
	TIndexDef.Destroy
	TIndexDef.Expression
	TIndexDef.Fields
	TIndexDef.CaseInsFields
	TIndexDef.DescFields
	TIndexDef.Options
	TIndexDef.Source

	TIndexDefs
	Description
	Method overview
	Property overview
	TIndexDefs.Create
	TIndexDefs.Destroy
	TIndexDefs.Add
	TIndexDefs.AddIndexDef
	TIndexDefs.Find
	TIndexDefs.FindIndexForFields
	TIndexDefs.GetIndexForFields
	TIndexDefs.Update
	TIndexDefs.Items

	TLargeintField
	Description
	Method overview
	Property overview
	TLargeintField.Create
	TLargeintField.CheckRange
	TLargeintField.Value
	TLargeintField.MaxValue
	TLargeintField.MinValue

	TLongintField
	Description
	Method overview
	Property overview
	TLongintField.Create
	TLongintField.CheckRange
	TLongintField.Value
	TLongintField.MaxValue
	TLongintField.MinValue

	TLookupList
	Description
	Method overview
	TLookupList.Create
	TLookupList.Destroy
	TLookupList.Add
	TLookupList.Clear
	TLookupList.FirstKeyByValue
	TLookupList.ValueOfKey
	TLookupList.ValuesToStrings

	TMasterDataLink
	Description
	Method overview
	Property overview
	TMasterDataLink.Create
	TMasterDataLink.Destroy
	TMasterDataLink.FieldNames
	TMasterDataLink.Fields
	TMasterDataLink.OnMasterChange
	TMasterDataLink.OnMasterDisable

	TMasterParamsDataLink
	Description
	Method overview
	Property overview
	TMasterParamsDataLink.Create
	TMasterParamsDataLink.RefreshParamNames
	TMasterParamsDataLink.CopyParamsFromMaster
	TMasterParamsDataLink.Params

	TMemoField
	Description
	Method overview
	Property overview
	TMemoField.Create
	TMemoField.Transliterate

	TNamedItem
	Description
	Property overview
	TNamedItem.DisplayName
	TNamedItem.Name

	TNumericField
	Description
	Method overview
	Property overview
	TNumericField.Create
	TNumericField.Alignment
	TNumericField.DisplayFormat
	TNumericField.EditFormat

	TParam
	Description
	Method overview
	Property overview
	TParam.Create
	TParam.Assign
	TParam.AssignField
	TParam.AssignToField
	TParam.AssignFieldValue
	TParam.AssignFromField
	TParam.Clear
	TParam.GetData
	TParam.GetDataSize
	TParam.LoadFromFile
	TParam.LoadFromStream
	TParam.SetBlobData
	TParam.SetData
	TParam.AsBlob
	TParam.AsBoolean
	TParam.AsCurrency
	TParam.AsDate
	TParam.AsDateTime
	TParam.AsFloat
	TParam.AsInteger
	TParam.AsLargeInt
	TParam.AsMemo
	TParam.AsSmallInt
	TParam.AsString
	TParam.AsTime
	TParam.AsWord
	TParam.Bound
	TParam.Dataset
	TParam.IsNull
	TParam.NativeStr
	TParam.Text
	TParam.Value
	TParam.AsWideString
	TParam.DataType
	TParam.Name
	TParam.NumericScale
	TParam.ParamType
	TParam.Precision
	TParam.Size

	TParams
	Description
	Method overview
	Property overview
	TParams.Create
	TParams.AddParam
	TParams.AssignValues
	TParams.CreateParam
	TParams.FindParam
	TParams.GetParamList
	TParams.IsEqual
	TParams.ParamByName
	TParams.ParseSQL
	TParams.RemoveParam
	TParams.CopyParamValuesFromDataset
	TParams.Dataset
	TParams.Items
	TParams.ParamValues

	TSmallintField
	Description
	Method overview
	TSmallintField.Create

	TStringField
	Description
	Method overview
	Property overview
	TStringField.Create
	TStringField.SetFieldType
	TStringField.FixedChar
	TStringField.Transliterate
	TStringField.Value
	TStringField.Size

	TTimeField
	Description
	Method overview
	TTimeField.Create

	TVarBytesField
	Description
	Method overview
	TVarBytesField.Create

	TVariantField
	Description
	Method overview
	TVariantField.Create

	TWideMemoField
	Description
	Method overview
	Property overview
	TWideMemoField.Create
	TWideMemoField.Value

	TWideStringField
	Description
	Method overview
	Property overview
	TWideStringField.Create
	TWideStringField.Value

	TWordField
	Description
	Method overview
	TWordField.Create

	Reference for unit 'dbugintf'
	Writing a debug server
	Overview
	Constants, types and variables
	Resource strings
	Constants
	Types

	Procedures and functions
	GetDebuggingEnabled
	InitDebugClient
	SendBoolean
	SendDateTime
	SendDebug
	SendDebugEx
	SendDebugFmt
	SendDebugFmtEx
	SendInteger
	SendMethodEnter
	SendMethodExit
	SendPointer
	SendSeparator
	SetDebuggingEnabled
	StartDebugServer

	Reference for unit 'dbugmsg'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	DebugMessageName
	ReadDebugMessageFromStream
	WriteDebugMessageToStream

	Reference for unit 'eventlog'
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Types

	ELogError
	Description

	TEventLog
	Description
	Method overview
	Property overview
	TEventLog.Destroy
	TEventLog.EventTypeToString
	TEventLog.RegisterMessageFile
	TEventLog.Log
	TEventLog.Warning
	TEventLog.Error
	TEventLog.Debug
	TEventLog.Info
	TEventLog.Identification
	TEventLog.LogType
	TEventLog.Active
	TEventLog.RaiseExceptionOnError
	TEventLog.DefaultEventType
	TEventLog.FileName
	TEventLog.TimeStampFormat
	TEventLog.CustomLogType
	TEventLog.EventIDOffset
	TEventLog.OnGetCustomCategory
	TEventLog.OnGetCustomEventID
	TEventLog.OnGetCustomEvent

	Reference for unit 'ezcgi'
	Used units
	Overview
	Constants, types and variables
	Constants

	ECGIException
	Description

	TEZcgi
	Description
	Method overview
	Property overview
	TEZcgi.Create
	TEZcgi.Destroy
	TEZcgi.Run
	TEZcgi.WriteContent
	TEZcgi.PutLine
	TEZcgi.GetValue
	TEZcgi.DoPost
	TEZcgi.DoGet
	TEZcgi.Values
	TEZcgi.Names
	TEZcgi.Variables
	TEZcgi.VariableCount
	TEZcgi.Name
	TEZcgi.Email

	Reference for unit 'fpTimer'
	Used units
	Overview
	Constants, types and variables
	Types
	Variables

	TFPCustomTimer
	Description
	Method overview
	TFPCustomTimer.Create
	TFPCustomTimer.Destroy
	TFPCustomTimer.StartTimer
	TFPCustomTimer.StopTimer

	TFPTimer
	Description
	Property overview
	TFPTimer.Enabled
	TFPTimer.Interval
	TFPTimer.OnTimer

	TFPTimerDriver
	Description
	Method overview
	Property overview
	TFPTimerDriver.Create
	TFPTimerDriver.StartTimer
	TFPTimerDriver.StopTimer
	TFPTimerDriver.Timer

	Reference for unit 'gettext'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	GetLanguageIDs
	TranslateResourceStrings
	TranslateUnitResourceStrings

	EMOFileError
	Description

	TMOFile
	Description
	Method overview
	TMOFile.Create
	TMOFile.Destroy
	TMOFile.Translate

	Reference for unit 'idea'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	CipherIdea
	DeKeyIdea
	EnKeyIdea

	EIDEAError
	Description

	TIDEADeCryptStream
	Description
	Method overview
	TIDEADeCryptStream.Create
	TIDEADeCryptStream.Read
	TIDEADeCryptStream.Seek

	TIDEAEncryptStream
	Description
	Method overview
	TIDEAEncryptStream.Create
	TIDEAEncryptStream.Destroy
	TIDEAEncryptStream.Write
	TIDEAEncryptStream.Seek
	TIDEAEncryptStream.Flush

	TIDEAStream
	Description
	Method overview
	Property overview
	TIDEAStream.Create
	TIDEAStream.Key

	Reference for unit 'inicol'
	Used units
	Overview
	Constants, types and variables
	Constants

	EIniCol
	Description

	TIniCollection
	Description
	Method overview
	Property overview
	TIniCollection.Load
	TIniCollection.Save
	TIniCollection.SaveToIni
	TIniCollection.SaveToFile
	TIniCollection.LoadFromIni
	TIniCollection.LoadFromFile
	TIniCollection.Prefix
	TIniCollection.SectionPrefix
	TIniCollection.FileName
	TIniCollection.GlobalSection

	TIniCollectionItem
	Description
	Method overview
	Property overview
	TIniCollectionItem.SaveToIni
	TIniCollectionItem.LoadFromIni
	TIniCollectionItem.SaveToFile
	TIniCollectionItem.LoadFromFile
	TIniCollectionItem.SectionName

	TNamedIniCollection
	Description
	Method overview
	Property overview
	TNamedIniCollection.IndexOfUserData
	TNamedIniCollection.IndexOfName
	TNamedIniCollection.FindByName
	TNamedIniCollection.FindByUserData
	TNamedIniCollection.NamedItems

	TNamedIniCollectionItem
	Description
	Property overview
	TNamedIniCollectionItem.UserData
	TNamedIniCollectionItem.Name

	Reference for unit 'IniFiles'
	Used units
	Overview
	TCustomIniFile
	Description
	Method overview
	Property overview
	TCustomIniFile.Create
	TCustomIniFile.Destroy
	TCustomIniFile.SectionExists
	TCustomIniFile.ReadString
	TCustomIniFile.WriteString
	TCustomIniFile.ReadInteger
	TCustomIniFile.WriteInteger
	TCustomIniFile.ReadBool
	TCustomIniFile.WriteBool
	TCustomIniFile.ReadDate
	TCustomIniFile.ReadDateTime
	TCustomIniFile.ReadFloat
	TCustomIniFile.ReadTime
	TCustomIniFile.ReadBinaryStream
	TCustomIniFile.WriteDate
	TCustomIniFile.WriteDateTime
	TCustomIniFile.WriteFloat
	TCustomIniFile.WriteTime
	TCustomIniFile.WriteBinaryStream
	TCustomIniFile.ReadSection
	TCustomIniFile.ReadSections
	TCustomIniFile.ReadSectionValues
	TCustomIniFile.EraseSection
	TCustomIniFile.DeleteKey
	TCustomIniFile.UpdateFile
	TCustomIniFile.ValueExists
	TCustomIniFile.FileName
	TCustomIniFile.EscapeLineFeeds
	TCustomIniFile.CaseSensitive
	TCustomIniFile.StripQuotes

	THashedStringList
	Description
	Method overview
	THashedStringList.Create
	THashedStringList.Destroy
	THashedStringList.IndexOf
	THashedStringList.IndexOfName

	TIniFile
	Description
	Method overview
	Property overview
	TIniFile.Create
	TIniFile.Destroy
	TIniFile.ReadString
	TIniFile.WriteString
	TIniFile.ReadSection
	TIniFile.ReadSectionRaw
	TIniFile.ReadSections
	TIniFile.ReadSectionValues
	TIniFile.EraseSection
	TIniFile.DeleteKey
	TIniFile.UpdateFile
	TIniFile.Stream
	TIniFile.CacheUpdates

	TIniFileKey
	Description
	Method overview
	Property overview
	TIniFileKey.Create
	TIniFileKey.Ident
	TIniFileKey.Value

	TIniFileKeyList
	Description
	Method overview
	Property overview
	TIniFileKeyList.Destroy
	TIniFileKeyList.Clear
	TIniFileKeyList.Items

	TIniFileSection
	Description
	Method overview
	Property overview
	TIniFileSection.Empty
	TIniFileSection.Create
	TIniFileSection.Destroy
	TIniFileSection.Name
	TIniFileSection.KeyList

	TIniFileSectionList
	Description
	Method overview
	Property overview
	TIniFileSectionList.Destroy
	TIniFileSectionList.Clear
	TIniFileSectionList.Items

	TMemIniFile
	Description
	Method overview
	TMemIniFile.Create
	TMemIniFile.Clear
	TMemIniFile.GetStrings
	TMemIniFile.Rename
	TMemIniFile.SetStrings

	Reference for unit 'iostream'
	Used units
	Overview
	Constants, types and variables
	Types

	EIOStreamError
	Description

	TIOStream
	Description
	Method overview
	TIOStream.Create
	TIOStream.Read
	TIOStream.Write
	TIOStream.SetSize
	TIOStream.Seek

	Reference for unit 'libtar'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	Procedures and functions
	ClearDirRec
	ConvertFilename
	FileTimeGMT
	PermissionString

	TTarArchive
	Description
	Method overview
	TTarArchive.Create
	TTarArchive.Destroy
	TTarArchive.Reset
	TTarArchive.FindNext
	TTarArchive.ReadFile
	TTarArchive.GetFilePos
	TTarArchive.SetFilePos

	TTarWriter
	Description
	Method overview
	Property overview
	TTarWriter.Create
	TTarWriter.Destroy
	TTarWriter.AddFile
	TTarWriter.AddStream
	TTarWriter.AddString
	TTarWriter.AddDir
	TTarWriter.AddSymbolicLink
	TTarWriter.AddLink
	TTarWriter.AddVolumeHeader
	TTarWriter.Finalize
	TTarWriter.Permissions
	TTarWriter.UID
	TTarWriter.GID
	TTarWriter.UserName
	TTarWriter.GroupName
	TTarWriter.Mode
	TTarWriter.Magic

	Reference for unit 'Pipes'
	Used units
	Overview
	Constants, types and variables
	Constants

	Procedures and functions
	CreatePipeHandles
	CreatePipeStreams

	EPipeCreation
	Description

	EPipeError
	Description

	EPipeSeek
	Description

	TInputPipeStream
	Description
	Method overview
	Property overview
	TInputPipeStream.Write
	TInputPipeStream.Seek
	TInputPipeStream.Read
	TInputPipeStream.NumBytesAvailable

	TOutputPipeStream
	Description
	Method overview
	TOutputPipeStream.Seek
	TOutputPipeStream.Read

	Reference for unit 'pooledmm'
	Used units
	Overview
	Constants, types and variables
	Types

	TNonFreePooledMemManager
	Description
	Method overview
	Property overview
	TNonFreePooledMemManager.Clear
	TNonFreePooledMemManager.Create
	TNonFreePooledMemManager.Destroy
	TNonFreePooledMemManager.NewItem
	TNonFreePooledMemManager.EnumerateItems
	TNonFreePooledMemManager.ItemSize

	TPooledMemManager
	Description
	Method overview
	Property overview
	TPooledMemManager.Clear
	TPooledMemManager.Create
	TPooledMemManager.Destroy
	TPooledMemManager.MinimumFreeCount
	TPooledMemManager.MaximumFreeCountRatio
	TPooledMemManager.Count
	TPooledMemManager.FreeCount
	TPooledMemManager.AllocatedCount
	TPooledMemManager.FreedCount

	Reference for unit 'process'
	Used units
	Overview
	Constants, types and variables
	Types

	EProcess
	Description

	TProcess
	Description
	Method overview
	Property overview
	TProcess.Create
	TProcess.Destroy
	TProcess.Execute
	TProcess.CloseInput
	TProcess.CloseOutput
	TProcess.CloseStderr
	TProcess.Resume
	TProcess.Suspend
	TProcess.Terminate
	TProcess.WaitOnExit
	TProcess.WindowRect
	TProcess.Handle
	TProcess.ProcessHandle
	TProcess.ThreadHandle
	TProcess.ProcessID
	TProcess.ThreadID
	TProcess.Input
	TProcess.Output
	TProcess.Stderr
	TProcess.ExitStatus
	TProcess.InheritHandles
	TProcess.Active
	TProcess.ApplicationName
	TProcess.CommandLine
	TProcess.ConsoleTitle
	TProcess.CurrentDirectory
	TProcess.Desktop
	TProcess.Environment
	TProcess.Options
	TProcess.Priority
	TProcess.StartupOptions
	TProcess.Running
	TProcess.ShowWindow
	TProcess.WindowColumns
	TProcess.WindowHeight
	TProcess.WindowLeft
	TProcess.WindowRows
	TProcess.WindowTop
	TProcess.WindowWidth
	TProcess.FillAttribute

	Reference for unit 'rttiutils'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types
	Variables

	Procedures and functions
	CreateStoredItem
	ParseStoredItem
	UpdateStoredList

	TPropInfoList
	Description
	Method overview
	Property overview
	TPropInfoList.Create
	TPropInfoList.Destroy
	TPropInfoList.Contains
	TPropInfoList.Find
	TPropInfoList.Delete
	TPropInfoList.Intersect
	TPropInfoList.Count
	TPropInfoList.Items

	TPropsStorage
	Description
	Method overview
	Property overview
	TPropsStorage.StoreAnyProperty
	TPropsStorage.LoadAnyProperty
	TPropsStorage.StoreProperties
	TPropsStorage.LoadProperties
	TPropsStorage.LoadObjectsProps
	TPropsStorage.StoreObjectsProps
	TPropsStorage.AObject
	TPropsStorage.Prefix
	TPropsStorage.Section
	TPropsStorage.OnReadString
	TPropsStorage.OnWriteString
	TPropsStorage.OnEraseSection

	Reference for unit 'simpleipc'
	Used units
	Overview
	Constants, types and variables
	Resource strings
	Constants
	Types
	Variables

	EIPCError
	Description

	TIPCClientComm
	Description
	Method overview
	Property overview
	TIPCClientComm.Create
	TIPCClientComm.Connect
	TIPCClientComm.Disconnect
	TIPCClientComm.ServerRunning
	TIPCClientComm.SendMessage
	TIPCClientComm.Owner

	TIPCServerComm
	Description
	Method overview
	Property overview
	TIPCServerComm.Create
	TIPCServerComm.StartServer
	TIPCServerComm.StopServer
	TIPCServerComm.PeekMessage
	TIPCServerComm.ReadMessage
	TIPCServerComm.Owner
	TIPCServerComm.InstanceID

	TSimpleIPC
	Description
	Property overview
	TSimpleIPC.Active
	TSimpleIPC.ServerID

	TSimpleIPCClient
	Description
	Method overview
	Property overview
	TSimpleIPCClient.Create
	TSimpleIPCClient.Destroy
	TSimpleIPCClient.Connect
	TSimpleIPCClient.Disconnect
	TSimpleIPCClient.ServerRunning
	TSimpleIPCClient.SendMessage
	TSimpleIPCClient.SendStringMessage
	TSimpleIPCClient.SendStringMessageFmt
	TSimpleIPCClient.ServerInstance

	TSimpleIPCServer
	Description
	Method overview
	Property overview
	TSimpleIPCServer.Create
	TSimpleIPCServer.Destroy
	TSimpleIPCServer.StartServer
	TSimpleIPCServer.StopServer
	TSimpleIPCServer.PeekMessage
	TSimpleIPCServer.GetMessageData
	TSimpleIPCServer.StringMessage
	TSimpleIPCServer.MsgType
	TSimpleIPCServer.MsgData
	TSimpleIPCServer.InstanceID
	TSimpleIPCServer.Global
	TSimpleIPCServer.OnMessage

	Reference for unit 'streamcoll'
	Used units
	Overview
	Procedures and functions
	ColReadBoolean
	ColReadCurrency
	ColReadDateTime
	ColReadFloat
	ColReadInteger
	ColReadString
	ColWriteBoolean
	ColWriteCurrency
	ColWriteDateTime
	ColWriteFloat
	ColWriteInteger
	ColWriteString

	EStreamColl
	Description

	TStreamCollection
	Description
	Method overview
	Property overview
	TStreamCollection.LoadFromStream
	TStreamCollection.SaveToStream
	TStreamCollection.Streaming

	TStreamCollectionItem
	Description

	Reference for unit 'streamex'
	Used units
	Overview
	TBidirBinaryObjectReader
	Description
	Property overview
	TBidirBinaryObjectReader.Position

	TBidirBinaryObjectWriter
	Description
	Property overview
	TBidirBinaryObjectWriter.Position

	TDelphiReader
	Description
	Method overview
	Property overview
	TDelphiReader.GetDriver
	TDelphiReader.ReadStr
	TDelphiReader.Read
	TDelphiReader.Position

	TDelphiWriter
	Description
	Method overview
	Property overview
	TDelphiWriter.GetDriver
	TDelphiWriter.FlushBuffer
	TDelphiWriter.Write
	TDelphiWriter.WriteStr
	TDelphiWriter.WriteValue
	TDelphiWriter.Position

	Reference for unit 'StreamIO'
	Used units
	Overview
	Procedures and functions
	AssignStream
	GetStream

	Reference for unit 'syncobjs'
	Used units
	Overview
	Constants, types and variables
	Constants
	Types

	TCriticalSection
	Description
	Method overview
	TCriticalSection.Acquire
	TCriticalSection.Release
	TCriticalSection.Enter
	TCriticalSection.Leave
	TCriticalSection.Create
	TCriticalSection.Destroy

	TEventObject
	Description
	Method overview
	Property overview
	TEventObject.Create
	TEventObject.destroy
	TEventObject.ResetEvent
	TEventObject.SetEvent
	TEventObject.WaitFor
	TEventObject.ManualReset

	THandleObject
	Description
	Method overview
	Property overview
	THandleObject.destroy
	THandleObject.Handle
	THandleObject.LastError

	TSimpleEvent
	Description
	Method overview
	TSimpleEvent.Create

	TSynchroObject
	Description
	Method overview
	TSynchroObject.Acquire
	TSynchroObject.Release

	Reference for unit 'URIParser'
	Overview
	Constants, types and variables
	Types

	Procedures and functions
	EncodeURI
	FilenameToURI
	IsAbsoluteURI
	ParseURI
	ResolveRelativeURI
	URIToFilename

	Reference for unit 'zstream'
	Used units
	Overview
	Constants, types and variables
	Types

	Ecompressionerror
	Description

	Edecompressionerror
	Description

	Egzfileerror
	Description

	Ezliberror
	Description

	Tcompressionstream
	Description
	Method overview
	Tcompressionstream.create
	Tcompressionstream.destroy
	Tcompressionstream.write
	Tcompressionstream.flush
	Tcompressionstream.get_compressionrate

	Tcustomzlibstream
	Description
	Method overview
	Tcustomzlibstream.create
	Tcustomzlibstream.destroy

	Tdecompressionstream
	Description
	Method overview
	Tdecompressionstream.create
	Tdecompressionstream.destroy
	Tdecompressionstream.read
	Tdecompressionstream.seek
	Tdecompressionstream.get_compressionrate

	TGZFileStream
	Description
	Method overview
	TGZFileStream.create
	TGZFileStream.read
	TGZFileStream.write
	TGZFileStream.seek
	TGZFileStream.destroy

