
MNG (Multiple-image Network Graphics) Format Version 0.998b

For list of authors, see Credits (Chapter 20).

Status of this Memo

This is aDRAFT proposal. Some version of this document will become version 1.00.

Comments on this document can be sent to the MNG specification maintainers at one of the following
addresses:

• mng-list@ccrc.wustl.edu

• png-group@w3.org

• png-info@uunet.uu.net

Distribution of this memo is unlimited.

At present, the latest version of this document is available on the World Wide Web from

ftp://swrinde.nde.swri.edu/pub/mng/documents/.

Changes from Version 0.998

• More consistent use of underscores in field names.

• Added hexadecimal and C notation versions of the signature.

• Added short introductory paragraphs in the sections on MNG image defining chunks and MNG image
displaying chunks.

• Relocated the description of the TERM chunk into the section on MNG control chunks.

• Added a separate section on IDAT, JDAT, and JDAA chunks in the Delta-PNG section.

• Deleted the useless and potentially confusing “Note” from the section on the IJNG chunk.

• Relocated the description of the Delta-PNG IEND chunk and clarified that a single IEND chunk
terminates both the Delta-PNG datastream and any PNG or JNG datastream within it.

• Revised the author list.

2

Abstract

This document defines the MNG (Multiple-image Network Graphics) format. It also defines the MNG-
LC (Low Complexity), MNG-VLC (Very Low Complexity), and JNG (JPEG Network Graphics) formats.
These are proper subsets of MNG.

MNG is a multiple-image member of the PNG (Portable Network Graphics) format family. It can contain
animations, slide shows, or complex still frames, comprised of multiple PNG or JNG single-image datas-
treams.

The MNG and JNG formats use the same chunk structure that is defined in the PNG specification, and
they share other features of the PNG format. Any MNG decoder must be able to decode PNG and JNG
datastreams.

The MNG format (but not MNG-LC or MNG-VLC) provides a mechanism for reusing image data without
having to retransmit it. Multiple images can be composed into a “frame” and a group of images can be used
as an animated “sprite” that moves from one location to another in subsequent frames. “Palette animations”
are also possible. MNG can also store images in a highly compressible “Delta-PNG” format, defined herein.

A MNG frame normally contains a two-dimensional image or a two-dimensional layout of smaller images.
It could also contain three-dimensional “voxel” data arranged as a series of two-dimensional planes (or
tomographic slices), each plane being represented by a PNG or Delta-PNG datastream.

A Delta-PNG datastream defines an image in terms of a parent PNG or Delta-PNG image and the differences
from that image. This provides a much more compact way of representing subsequent images than using a
complete PNG datastream for each.

This document includes examples that demonstrate various capabilities of MNG. These include simple
movies, composite frames, loops, fades, tiling, scrolling, storage of voxel data, and converting GIF anima-
tions to MNG format.

3

Contents

1 Introduction 7

2 Terminology 10

3 Objects 15
3.1 Embedded objects . 15
3.2 Object attributes . 15
3.3 Object buffers . 17
3.4 Object 0 . 19

4 MNG Chunks 19
4.1 Critical MNG control chunks . 19

4.1.1 MHDR MNG datastream header . 19
4.1.2 MEND End of MNG datastream . 24
4.1.3 LOOP, ENDL Define a loop . 24

4.2 Critical MNG image defining chunks . 26
4.2.1 DEFI Define an object . 27
4.2.2 PLTE and tRNS Global palette . 29
4.2.3 IHDR, PNG chunks, IEND . 29
4.2.4 JHDR, JNG chunks, IEND . 31
4.2.5 BASI, PNG chunks, IEND . 32
4.2.6 CLON Clone an object . 34
4.2.7 DHDR, Delta-PNG chunks, IEND . 35
4.2.8 PAST Paste an image into another . 36
4.2.9 MAGN Magnify objects . 38
4.2.10 DISC Discard objects . 42
4.2.11 TERM Termination action . 42

4.3 Critical MNG image displaying chunks . 44
4.3.1 BACK Background . 44
4.3.2 FRAM Frame definitions . 46
4.3.3 MOVE New image location . 54
4.3.4 CLIP Object clipping boundaries . 54
4.3.5 SHOW Show images . 55

4.4 SAVE and SEEK chunks . 58
4.4.1 SAVE Save information . 58
4.4.2 SEEK Seek point . 61

4.5 Ancillary MNG chunks . 62
4.5.1 eXPI Export image . 62
4.5.2 fPRI Frame priority . 63
4.5.3 nEED Resources needed . 64
4.5.4 pHYg Physical pixel size (global) . 64

4.6 Ancillary PNG chunks . 65

4

5 The JPEG Network Graphics (JNG) Format 66
5.1 Critical JNG chunks . 67

5.1.1 JHDR JNG header . 67
5.1.2 JDAT JNG image data . 68
5.1.3 IDAT JNG PNG-encoded alpha data . 71
5.1.4 JDAA JNG JPEG-encoded alpha data . 71
5.1.5 IEND End of JNG datastream . 72
5.1.6 JSEP 8-bit/12-bit image separator . 72

5.2 Ancillary JNG chunks . 72

6 The Delta-PNG Format 73
6.1 Delta-PNG critical chunks . 73

6.1.1 DHDR Delta-PNG datastream header . 73
6.1.2 IDAT, JDAT, and JDAA New pixel data . 78
6.1.3 PROM Promotion of parent object . 78
6.1.4 IHDR PNG image header . 80
6.1.5 IPNG Incomplete PNG . 81
6.1.6 PLTE and tRNS . 81
6.1.7 PPLT Partial palette . 81
6.1.8 JHDR JNG image header . 82
6.1.9 IJNG Incomplete JNG . 83
6.1.10 DROP Drop chunks . 83
6.1.11 DBYK Drop chunks by keyword . 83
6.1.12 ORDR Ordering restrictions . 84

6.2 Ancillary Delta-PNG chunks . 84
6.2.1 gAMA, cHRM, iCCP, sRGB Color space chunks 85
6.2.2 oFFs and pHYs . 85
6.2.3 Other ancillary PNG chunks . 85
6.2.4 IEND End of Delta-PNG datastream . 85

6.3 Chunk ordering requirements . 85

7 Extension and Registration 86

8 Chunk Copying Rules 86

9 Minimum Requirements for MNG-Compliant Viewers 87
9.1 Required MNG chunk support . 89
9.2 Required PNG chunk support . 90
9.3 Required JNG chunk support . 90
9.4 Required Delta-PNG chunk support . 91

5

10 Recommendations for Encoders 92
10.1 Use a common color space . 92
10.2 Use the right framing mode . 92
10.3 Immediate frame sync point . 92
10.4 Embedded images in LOOPs . 92
10.5 Including optional index in SAVE chunk . 93
10.6 Interleaving JDAT, JDAA, and IDAT chunks . 93
10.7 Use of the JDAA chunk . 93

11 Recommendations for Decoders 93
11.1 Using the simplicity profile . 93
11.2 ENDL without matching LOOP . 94
11.3 Note on compositing . 94
11.4 Retaining object data . 95
11.5 Decoder handling of fatal errors . 95
11.6 Decoder handling of interlaced images . 96
11.7 Decoder handling of palettes . 96
11.8 Behavior of single-frame viewers . 96
11.9 Clipping . 96

12 Recommendations for Editors 98
12.1 Editing datastreams with optional index . 98
12.2 Handling LOOP and TERM chunks . 98

13 Miscellaneous Topics 98
13.1 File name extension . 98
13.2 Internet media type . 99
13.3 Uniform Resource Identifier (URI) . 99

14 Rationale 101

15 Revision History 103
15.1 Version 0.998b . 103
15.2 Version 0.998a . 103
15.3 Version 0.998 . 103
15.4 Version 0.997 . 103
15.5 Version 0.995a . 104
15.6 Version 0.99 . 104
15.7 Version 0.98 . 105
15.8 Version 0.97 . 106
15.9 Version 0.96 . 106
15.10 Version 0.95 . 107

16 References 107

6

17 Security Considerations 108

18 Appendix: EBNF Grammar for MNG, PNG, and JNG 110

19 Appendix: Examples 110
19.1 Example 1: A single image . 110
19.2 Example 2: A very simple movie . 110
19.3 Example 3: A simple slideshow . 112
19.4 Example 4: A more storage-efficient slideshow . 112
19.5 Example 5: A simple movie . 113
19.6 Example 6: A single composite frame . 114
19.7 Example 7: A movie with sprites . 115
19.8 Example 8: A movie with an animated sprite . 116
19.9 Example 9: “Fading in” a transparent image . 117
19.10 Example 10: Storing three-dimensional images . 118
19.11 Example 11: Tiling . 119
19.12 Example 12: Scrolling . 120
19.13 Example 13: Cycling animations . 121
19.14 Example 14: Converting a GIF animation . 122
19.15 Example 15: Converting a simple GIF animation . 123
19.16 Example 16: Counting layers and frames . 124
19.17 Example 17: Storing an icon library . 125
19.18 Example 18: MAGN methods . 126
19.19 Example 19: MAGN chunks and ROI . 127

20 Credits 128

1. INTRODUCTION 7

1 Introduction

This specification defines the format of a MNG (Multiple-image Network Graphics) format. It also de-
fines low-complexity and very-low-complexity versions (MNG-LC and MNG-VLC), and the JNG (JPEG
Network Graphics) format, which are proper subsets of MNG.

Note: This specification depends on the PNG (Portable Network Graphics) [PNG] and the JPEG (Joint
Photographic Experts Group) specifications. The PNG specification is available at the PNG web site,

http://www.libpng.org/pub/png/

MNG is a multiple-image member of the PNG format family that can contain

• animations,

• slide shows, or

• complex still frames,

comprised of multiple PNG or JNG single-image datastreams.

Like PNG, a MNG datastream consists of an 8-byte signature, followed by a series of chunks. It begins
with the MHDR chunk and ends with the MEND chunk. Each chunk consists of a 4-byte data length field,
a 4-byte chunk type code (e.g., “MHDR”), data (unless the length is zero), and a CRC (cyclical redundancy
check value).

A MNG datastream describes a sequence of zero or more single frames, each of which can be composed of
zero or more embedded images or directives to show previously defined images.

The embedded images can be PNG, JNG, or Delta-PNG datastreams. MNG-LC and MNG-VLC datastreams
do not contain JNG datastreams, but MNG-LC and MNG-VLC applications can be enhanced to recognize
and process those as well.

A typical MNG datastream consists of:

• The 8-byte MNG signature.

• The MHDR chunk.

• Frame definitions. A frame is one or more layers, the last of which has a nonzero interframe delay,
composited against whatever was already on the display.

• Layer definitions.

– An embedded potentially visible image, described by PNG or JNG datastreams or the MNG
BASI chunk (a foreground layer).

– An image that is generated from a stored object as directed by certain MNG chunks (a foreground
layer).

– The background (a background layer).

• LOOP-ENDL chunks.

8

• SEEK chunks that mark points in the datastream where processing can be restarted.

• Various chunks for creating and manipulating images and other objects.

• The MEND chunk.

MNG is fundamentally declarative; it describes the elements that go into an individual frame. It is up to
the decoder to work out an efficient way of making the screen match the desired composition whenever
a nonzero interframe delay occurs. Simple decoders can handle it as if it were procedural, compositing
the images into the frame buffer in the order that they appear, but efficient decoders might do something
different, as long as the final appearance of the frame is the same.

Images can be “concrete” or “abstract”. The distinction allows decoders to use more efficient ways of
manipulating images when it is not necessary to retain the image data in its original form or equivalent in
order to show it properly on the target display system.

MNG is pronounced “Ming.”

When a MNG datastream is stored in a file, it is recommended that “.mng” be used as the file suffix. In
network applications, the Media Type “video/x-mng” can be used. Registration of the media type “video/
mng” might be pursued at some future date.

The MNG datastream begins with an 8-byte signature containing

138 77 78 71 13 10 26 10 (decimal)
90 4d 4e 47 0d 0a 1a 0a (hexadecimal)

\212 M N G \r \n \32 \n (ASCII C notation)

which is similar to the PNG signature with “\ 212 M N G” instead of “\ 211 P N G” in bytes 0–3.

MNG does not yet accommodate sound or complex sequencing information, but these capabilities might
be added at a later date, in a backward-compatible manner. These issues are being discussed in the
mng-list@ccrc.wustl.edu mailing list.

Chunk structure (length, name, data, CRC) and the chunk-naming system are identical to those defined in
the PNG specification. As in PNG, all integers that require more than one byte must be in network byte
order.

The chunk copying rules for MNG employ the same mechanism as PNG, but with rules that are explained
more fully (see below, Chapter 8). A MNG editor is not permitted to move unknown chunks across the
SAVE and SEEK chunks, across any chunks that can cause images to be created or displayed, or into or out
of a IHDR-IEND or similar sequence.

Note that decoders are not required to follow any decoding models described in this specification nor to
follow the instructions in this specification, as long as they produce results identical to those that could be
produced by a decoder that did use this model and did follow the instructions.

Each chunk of the MNG datastream or of any embedded object is an independent entity, i.e., no chunk is
ever enclosed in the data segment of another chunk.

1. INTRODUCTION 9

MNG-compliant decoders are required to recognize and decode independent PNG or JNG datastreams.

Because the embedded objects making up a MNG are normally in PNG format, MNG shares the good
features of PNG:

• It is unencumbered by patents.

• It is streamable.

• It has excellent, lossless compression.

• It stores up to four channels (red, green, blue, alpha), with up to 16 bits per channel.

• It provides both binary and alpha-channel transparency.

• It provides platform-independent rendition of colors by inclusion of gamma and chromaticity infor-
mation.

• It provides early detection of common file transmission errors and robust detection of file corruption.

• Single-image GIF files can be losslessly converted to PNG.

• It is complementary to JPEG and does not attempt to replace JPEG for lossy storage of images (how-
ever, MNG can accommodate JPEG-encoded images that are encoded in the PNG-like JNG format
that is defined herein).

In addition:

• It provides animation with variable interframe delays.

• It allows composition of frames containing multiple images.

• Using JPEG compression together with a magnification factor, it can achieve 1000:1 and higher lossy
compression of Megapixel truecolor images. While some detail is lost, such highly-compressed im-
ages are useful as full-scale previews and for layout work.

• It facilitates the use of images as “sprites” or groups of images as “animated sprites” that can be reused
in subsequent frames.

• It capitalizes on frame-to-frame similarities to reduce the amount of data that must be included in a
datastream.

• It provides “restart” points at which processing can be safely resumed in case of data loss or corrup-
tion, or to which applications can jump if they have random access to the file.

• A “frame priority” chunk allows authors to indicate which frame should be displayed by single-image
viewers, and a subset of the frames that should be displayed by slow viewers.

• Images and frames can be given names, allowing authors to mark them for export outside the scope
of MNG, where they can be used for icons or similar purposes.

• A series of PNG and JNG images can be losslessly converted to MNG and back to a series of equiva-
lent PNG or JNG images, even when the delta format is used to store them in the MNG.

• JNG provides JPEG with alpha-channel transparency and color space information.

10

• Multiple-image GIF files can be losslessly converted to MNG, and, (except for those using the
“restore-to-previous” disposal method) can be losslessly converted to MNG-LC and (except for
those with a variable framing rate, and less efficiently, except also for those using the “restore-to-
background” disposal method) to MNG-VLC.

• Most JPEG files can be losslessly converted to JNG or MNG, and all JNG datastreams can be loss-
lessly converted to JPEG files.

• It is complementary to MPEG and does not attempt to replace MPEG for lossy storage of video. MNG
does, however, provide the capability of storing animations consisting of JPEG-encoded images that
have been wrapped in the JNG format.

2 Terminology

See also the glossary in the PNG specification.

requirement levels
The words “MUST”, “MUST NOT”, “REQUIRED”, “SHOULD”, “SHOULD NOT”, “REC-
OMMENDED”, and “OPTIONAL” in this document, which are to be interpreted as described
in RFC-2119. The word “CAN” is equivalent to the word “MAY” as described therein. “NOT
ALLOWED” and “NOT PERMITTED” describe conditions that “MUST NOT” occur. “ALLOWED”
and “PERMITTED” describe conditions that “CAN” occur.

abstract image or object
An image whose pixels have a private representation, and which does not necessarily carry
PNG or JNG chunk data. An image delta cannot be applied to an abstract image. All abstract objects
are viewable. Object 0 is always abstract, since it is never stored.

animation
A sequence of images meant to be played at a framing rate that will give the impression of
motion. We use the more generic term “sequence” to include any group of images meant to be played
at some specified framing rate or under user control, not necessarily an animation, such as a slide
show, as well as animations.

cheap transparency
Image transparency data conveyed via the PNG tRNS chunk rather than via a full alpha chan-
nel.

child, or child image
An image produced by applying an image delta to a parent object.

clipping boundaries
Limits within which a pixel must fall to be displayed. The left and top boundaries are inclu-
sive, while the right and bottom boundaries are exclusive.

2. TERMINOLOGY 11

color encoding
File gamma and chromaticity values, an sRGB rendering intent, an iCCP profile, or whatever
is involved in mapping between RGB values and colors.

concrete image or object
An image or object whose pixels have a publicly known representation, and which uses a pub-
licly known color encoding. A concrete PNG or JNG image also carries data from other known PNG
or JNG chunks that are present.

embedded object or image
A concrete object or image that appears in-line in a MNG datastream.

frame
A composition of zero or more layers that have zero interframe delay time followed by a layer
with a specified nonzero delay time or by the MEND chunk. A frame is to be displayed as a still
picture or as part of a sequence of still images or an animation. An animation would ideally appear to
a perfect observer (with an inhumanly fast visual system) as a sequence of still pictures.

In MNG-VLC datastreams, each frame (except for the first, which also includes the background layer)
contains a single layer, unless the framing rate (from the MHDRticks per second field) is zero.
When the framing rate is zero, the entire datastream describes a single frame.

When the layers of a frame do not cover the entire area defined by the width and height fields from
the MHDR chunk, the layers are composited over the previous frame to obtain the new frame.

When the frame includes the background layer, and the background layer is transparent, the trans-
parent background is composited against the outside world and the remaining layers are composited
against the result to obtain the new frame.

frame origin
The upper left corner of the output device (frame buffer, screen, window, page, etc.) where
the pixels are to be displayed. This is the{0,0} position for the purpose of defining frame clipping
boundaries, image locations, and image clipping boundaries. Note that in a windowing system, the
frame origin might be moved offscreen, but the locations in DEFI, MOVE, and CLIP chunks would
still be measured from this offscreen origin. In MNG-VLC, all images must be placed with the
image’s upper left corner at the frame origin.

framing rate
The rate, measured in frames per second, at which frames are displayed on the output device.
In a MNG datastream, the framing rate is the interframe delay, in ticks, divided by the number of
ticks per second, from the MHDR chunk. The FRAM chunk can be used to change the framing rate
for a portion of the datastream.

frozen object
An object whose set of object attributes and whose object buffer are not allowed to be discarded,
replaced, or modified.

image delta
An object that can be applied to a concrete image or object to produce another concrete im-

12

age. For any two concrete images, there exists an image delta that will produce one from the
other.

image N or object N
Shorthand for “the object with the set of object attributes pointed to by ‘objectid=N’”. In
MNG-LC and MNG-VLC, only image 0 is permitted.

interframe delay
The amount of time a layer should be visible when a sequence of frames or an animation is
played. A layer with a zero interframe delay is combined with the subsequent layer or layers to form
a frame; the frame is completed by a layer with a nonzero interframe delay or by the MEND chunk.
In reality, it takes a nonzero amount of time to display a frame. No matter which moment is picked
as the “start” of the frame, the interframe delay measures the time to the “start” of the next frame.
There is no interframe delay prior to the implicit background layer at the beginning of the sequence
nor after the final frame.

interpolate
To determine the color or alpha values for new pixels that have been created in the interval
between two pixels with known values. In this document, interpolation always means linear
interpolation (the new values are evenly spaced between the two known values).

iteration
One cycle of a loop. In this document, as is customary among computer programmers, the
number of iterations of a loop includes the first cycle. A loop can have zero iterations, which means
it is not executed at all.

layer
One of

• A visible embedded image, located with respect to the frame boundaries and clipped with respect
to the layer clipping boundaries and the image’s own clipping boundaries.

• A stored image that is displayed in response to a SHOW, CLON, or MAGN chunk directive,
located and clipped.

• The background that is displayed before the first image in the entire datastream is displayed. Its
contents can be defined by the application or by the BACK chunk.

• The background image, clipped, located, and displayed against a solid rectangle filled with the
background color and clipped to the subframe boundaries, that is used as a background when
the framing mode is 3 or 4.

Note that a layer can be completely empty if the image is entirely outside the clipping boundaries.

A layer can be thought of as a transparent rectangle with the same dimensions as the frame, with an
image composited into it, or it can be thought of as a rectangle having the same dimensions (possibly
zero) and location as those of the object after it has been located and clipped.

The layers in a MNG datastream are gathered into one or more subframes for convenience in applying
frame parameters to a subset of the layers (see the definition of “subframe” below).

2. TERMINOLOGY 13

An embedded visible PNG or JNG datastream generates a single layer, even though it might be
interlaced or progressive. If the background consists of both a background color and a background
image, these are combined into a single layer.

MNG-LC
A low-complexity subset of MNG that does not use stored object buffers or certain other com-
plex features. The “simplicity profile” in the MHDR chunk must meet certain requirements (see the
MHDR chunk specification below, Paragraph 4.1.1).

MNG-VLC
A very-low-complexity subset of MNG that does not use stored objects, variable framing rates,
location of images at positions other than (0,0), or other complex features. The “simplicity profile”
in the MHDR chunk must meet certain requirements (see the MHDR chunk specification below,
Paragraph 4.1.1).

nullify
To nullify a chunk is to undo its effect, restoring the datastream to the condition it would have
had if the chunk being nullified had never appeared.

object, object id
An image or a nonviewable basis object. Theobject id is an unsigned sixteen-bit number
that serves as the identifier of a set of object attributes. In MNG-LC and MNG-VLC only object 0 is
permitted.

object attributes
Properties of an object such as its existence, potential visibility, location, clipping boundaries,
and a pointer to an object buffer. See Object attributes, below.

object buffer
A 2D array of pixels or pixel deltas, each of which has color and transparency information.
More than one object can point to a given object buffer. See Object buffers, below.

parent, parent object, or parent image
An object to which a delta is applied.

pixel sample depth and alpha sample depth
The sample depth used for decoding IDAT data in Delta-PNG and JNG datastreams and JDAA data
in JNG datastreams. They are not necessarily the same as the sample depth of the object, which is
called “sample depth” or “object sample depth” in this document.

potentially visible image
One of

• a not-yet-defined object that is “marked”, by setting itsdo not show flag to zero, for on-the-fly
display while the embedded image that defines it is being cloned or decoded.
• an existing object that has been made potentially visible (i.e., it has been marked for being made

visible by subsequent SHOW chunks), by setting itsdo not show flag to zero.

14

prologue segment
The first segment, when there is more than one segment.

regular segment
Any segment other than the first (also the first segment, when there is only one).

replication
Making an additional copy. If you replicate something N times, you end up with N+1 of
them.

segment
A part of a MNG datastream starting with the MHDR chunk or with a SEEK chunk and ex-
tending to just before the next SEEK chunk (or the MEND chunk if there is no next SEEK chunk).
The MHDR, MEND, SAVE, SEEK, and TERM chunks are not considered to be a part of any
segment.

signal
An entity with a number that can arrive asynchronously at the decoder. More detailed seman-
tics, like whether multiple signals of the same number (or even different numbers) can be queued, are
beyond the scope of this specification.

subframe
A subset of the layers defined by a MNG datastream, gathered for convenience in applying
frame parameters (i.e., clipping information, interframe delay, timeout, termination condition, and a
name. See the definition of “frame” above). The extent of a subframe depends on the framing mode;
it can be

• a single layer,

• the set of layers appearing between FRAM chunks,

• a background layer and a single foreground layer, or

• a background layer plus the set of layers appearing between FRAM chunks.

See the FRAM chunk specification below (Paragraph 4.3.2).

viewable image
A stored object or embedded object that is capable of being made visible. An image is view-
able, while some objects resulting from decoding a BASI datastream are not viewable.

visible image
Actually drawn on a display. If an object is visible, a person looking at the display can see
it.

3. OBJECTS 15

3 Objects

An “object”, which is identified by anobject id , is an image or it is a nonviewable entity that is created
by the BASI chunk. Theobject id is an unsigned sixteen-bit number that serves as the identifier of a set
of object attributes.

An “image” is a viewable object.

Object 0 is a special object whose pixel data is not available for later use (see below).

3.1 Embedded objects

An embedded object is:

• A PNG datastream (IHDR, PNG chunks, IEND).

• A JNG datastream (JHDR, JNG chunks, IEND).

• A BASI datastream (BASI, PNG chunks, IEND).

3.2 Object attributes

Objects haveobject attributesthat can be defined and modified by the contents of various MNG chunks.
Decoders are responsible for keeping track of them. The simplest decoder might establish a 65,536-element
array for each attribute, but real applications will undoubtedly use a more memory-efficient method. Object
attributes include:

Existence
A nonzero object comes into existence when

• a DEFI chunk creates it.

• a CLON chunk creates it.

A nonzero object ceases to exist when it does not have the “frozen” attribute and

• it is the subject of a DISC chunk.

• an empty DISC chunk appears.

• a SEEK chunk appears.

• the MEND chunk appears (or the IEND chunk appears in a simple PNG or JNG file).

• a new embedded object with the sameobject id replaces it without an intervening DEFI
chunk. In this case, the new object inherits the set of object attributes from the previous object
with the sameobject id .

16

Object 0 always exists.

Pointer to an object buffer
Every object (except for object 0) has an object buffer. Multiple objects can point to the same
object buffer. The representation of a pointer is decided by the application; pointers never appear
explicitly in a MNG datastream. Decoders can also create an object buffer for object 0, if that is more
convenient, but the information in that buffer cannot be depended upon to exist after the image has
been displayed, nor can that buffer become “frozen”.

Frozen or not frozen
All objects are initially “not frozen”. Any objects in existence (except for object 0) when the
SAVE chunk is encountered become “frozen”, along with the object buffers that they point to.

Potential visibility
The “potential visibility” of an object is determined by thedo not show byte of the DEFI
or CLON chunk that introduced it. The “potential visibility” of viewable objects can be changed by
the SHOW chunk. When an embedded object is “potentially visible,” it can be displayed “on-the-fly”
as it is being decoded. Later, the SHOW chunk can direct that a “potentially visible” viewable object
be displayed. It is permitted to change the potential visibility of “frozen” objects; if this is done, the
potential visibility must be restored to its “saved” condition by the encoder prior to the end of the
segment.

Viewability.
An object is viewable if it has a viewable object buffer. It is nonviewable if it has a nonview-
able object buffer or if its object buffer has not yet been created or has been destroyed. Any attempt
to display a nonviewable object must be ignored and not treated as an error.

A nonviewable object becomes viewable immediately when the decoder receives a viewable object
buffer or when an image delta makes it viewable, and if the object is potentially visible it can be
displayed “on-the-fly” while the object buffer is being decoded or updated. Note that object 0 is only
viewable while its embedded image is being decoded and displayed on-the-fly, after which it becomes
nonviewable again because no object buffer is ever created for object 0.

Location
The X and Y location of an object is determined by the DEFI chunk that introduced it, and
can be changed by the MOVE chunk. It is permitted to change the location of “frozen” objects,
provided that the encoder includes a MOVE or DEFI chunk prior to the end of the segment that
restores their locations to their “saved” positions.

Clipping boundaries
The clipping boundaries of an object are determined by the DEFI chunk that introduced it,
and can be changed by means of the CLIP chunk. It is permitted to change the clipping boundaries
of “frozen” objects, provided that the encoder includes a CLIP chunk prior to the end of the segment
that restores the boundaries to their “saved” values.

Additional information

3. OBJECTS 17

While not required by this specification, applications may wish to store other information about
the object, such as whether it is eligible to be updated by block-alpha-addition, for error-checking
purposes.

3.3 Object buffers

An object buffer is created by the appearance of an embedded object in the datastream, with a nonzero
object id , or by the appearance of a CLON chunk that specifies a “full clone”. The contents of an object
buffer can be modified by processing an image delta or a PAST chunk.

Object buffers contain a 2D array of pixel data and can contain additional information. In addition, decoders
are responsible for keeping track of some properties of the data in the object buffer:

Object 0 conceptually never has an object buffer. Decoding applications can create one for their own con-
venience, but such an object buffer must never be made available to the rest of the MNG datastream or be
considered viewable after it has been processed.

When the “stored object buffers” flag (bit 9 of the simplicity profile) is 0 and valid (i.e., bit 6 is 1 and bit
9 is 0), an object buffer need not be created even when an embedded object with a nonzeroobject id
appears, since the flag promises that the object buffer will never be used again. There is no requirementnot
to create an object buffer; no harm will be done except for some unnecessary memory consumption.

Viewability of object buffer
Any object that points to a viewable object buffer can be displayed, but one that points to a
nonviewable one cannot. Any attempt to do so must be ignored.

• A PNG or JNG datastream always has the “viewable” attribute.

• The “viewable” attribute of a BASI datastream is defined in the BASI chunk. Only BASI datas-
treams that describe an object equivalent to one described by a legal PNG datastream can be
declared “viewable”.

• When a Delta-PNG is applied to a parent object, the resulting object buffer always has the
“viewable” attribute.

Format of data in the object buffer
The data format can be:

• A concrete PNG or JNG object. A concrete object must be stored by the decoder in a form that
retains the complete object description, sufficient to regenerate the original object description or
its equivalent without loss. Its pixels have a publicly known representation and it uses a publicly
known color encoding. PNG objects might contain deviations from what is allowed in legal
PNG datastreams, if they were created by a BASI datastream and are nonviewable.

– In the case of a PNG object, the object also carries data from other known PNG chunks
that are present. This means that the decoder must store sufficient information to make it
possible to restore exactly the original decoded and unfiltered pixel samples as they existed

18

prior to any gamma correction (but not the original compressed datastream or line-by-line
filter selections and “zlib” compression flags), and data from the IHDR and PLTE chunks
and any additional recognized PNG chunks such as gAMA, cHRM, and tRNS that the
application plans to use. The sample depth, color type, filter method, compression method,
and interlacing method of the image must be retained, and if the object has been modified
by a Delta-PNG, the “pixel sample depth” and “alpha sample depth” must also be retained
for use in decoding subsequent Delta-PNG datastreams.

– In the case of a JNG image, the object also carries data from other known JNG chunks
that are present. This means that the decoder must store sufficient information to make
it possible to restore exactly the original JPEG datastream and decoded alpha channel as
they existed in the original JNG file, and data from the JHDR chunk and any additional
recognized JNG chunks such as gAMA and cHRM that the application plans to use. As
with PNG objects, when the object has been modified by a Delta-PNG, the “alpha sample
depth” must also be retained for use in decoding subsequent Delta-PNG datastreams. The
“alpha compression method” must be retained as well.

– A decoder that recreates PNG or JNG files from a series of PNG, JNG, and Delta-PNG
datastreams will also have to store the contents of any unknown chunks that it finds, in case
they turn out to be safe to copy (see DROP (Paragraph 6.1.10), DBYK (Paragraph 6.1.11),
and ORDR (Paragraph 6.1.12), below).

• An abstract image. An abstract image can be stored by the decoder in any form that is conve-
nient, such as an X Window System “pixmap”, even though that form might not have sufficient
resolution for exact, lossless conversion. In the case of a PNG image, the pixels could be stored
after the gamma and chromaticity corrections have been made, and the sample depth could be the
same as the display hardware, even though it is smaller than the original sample depth. Similarly,
a JNG image could be stored in the same form, after the pixels have been decoded, converted
to RGB form, and gamma-corrected. It is always safe, however, to store an abstract image as
though it were concrete, if decoders do not wish to take advantage of the distinction between
abstract and concrete objects.

Frozen or not frozen
All object buffers are initially “not frozen”. Any object buffers in existence when the SAVE
chunk is encountered become “frozen”. Decoders do not actually have to store this flag except as a
sanity check, because they can depend on the fact that a “frozen” object buffer will always have at
least one “frozen” object whose “buffer pointer” points to it.

A reference count
When an object buffer is first created, its reference count is set to 1.

When a partial clone is made of an object via the CLON chunk, the reference count for the object
buffer is incremented, and no new object buffer is created.

When an object is discarded and it points to an object buffer that has a nonzero reference count, that
reference count is decremented and the object buffer is also discarded if the resulting reference count
is zero.

4. MNG CHUNKS 19

3.4 Object 0

Object 0 is a special object that has a set of object attributes that control its location, clipping, and visibility
properties, and also has a set of magnification factors and methods, but does not have an object buffer. The
object attributes and magnification data, which can be modified by the DEFI, MOVE, CLIP, and MAGN
chunks, are applied to subsequent embedded objects whoseobject id is zero. The pixel data for object
0 is available only for on-the-fly display and not available for later use. If at the end of any segment the
attribute values or magnification data are different from the default/saved values, they become undefined
when a SEEK chunk appears.

4 MNG Chunks

This chapter describes chunks that can appear at the top level of a MNG datastream. Unless otherwise
specified in the Delta-PNG chapter of this specification, they need not be recognized within a Delta-PNG
datastream.

Chunk structure (length, name, data, CRC) and the chunk-naming system are identical to those defined in
the PNG specification [PNG]. As in PNG, all integers that require more than one byte must be in network
byte order.

Unlike PNG, fields can be omitted from some MNG chunks with a default value if omitted. This is per-
mitted only when explicitly stated in the specification for the particular chunk. If a field is omitted, all the
subsequent fields in the chunk must also be omitted and the chunk length must be shortened accordingly.

4.1 Critical MNG control chunks

This section describes critical MNG control chunks that MNG-compliant decoders must recognize and
process. “Processing” a chunk sometimes can consist of simply recognizing it and ignoring it. Some chunks
have been declared to be critical only to prevent them from being relocated by MNG editors.

4.1.1 MHDR MNG datastream header

The MHDR chunk is always first in all MNG datastreams except for those that consist of a single PNG or
JNG datastream with a PNG or JNG signature.

The MHDR chunk contains exactly 28 bytes:

Frame width: 4 bytes (unsigned integer).
Frame height: 4 bytes (unsigned integer).
Ticks per second: 4 bytes (unsigned integer).
Nominal layer count: 4 bytes (unsigned integer).
Nominal frame count: 4 bytes (unsigned integer).
Nominal play time: 4 bytes (unsigned integer).

20

Simplicity profile: 4 bytes:(unsigned integer).
bit 0: Profile Validity

0: Absence of any features is unspecified.
All other bits of the simplicity profile
must be zero (i.e, all other even numbers
are invalid).

1: Absence of certain features is specified by
the remaining bits of the simplicity profile.

(must be 1 in MNG-LC and MNG-VLC
datastreams)

bit 1: Simple MNG features
0: Simple MNG features are absent.
1: Simple MNG features may be present.
(must be 0 in MNG-VLC datastreams)

bit 2: Complex MNG features
0: Complex MNG features are absent.
1: Complex MNG features may be present.
(must be 0 in MNG-LC and MNG-VLC datastreams)

bit 3: Internal transparency
0: Transparency is absent or can be ignored.

All
images in the datastream are opaque or can be
rendered as opaque without affecting the

final
appearance of any frame.

1: Transparency may be present.
bit 4: JNG

0: JNG and JDAA are absent.
1: JNG or JDAA may be present.
(must be 0 in MNG-LC and MNG-VLC
datastreams)

bit 5: Delta-PNG
0: Delta-PNG is absent.
1: Delta-PNG may be present.
(must be 0 in MNG-LC and MNG-VLC datastreams)

bit 6: Validity flag for bits 7, 8, and 9
0: The absence of background transparency,

semitransparency, and stored object buffers
is unspecified; bits 7, 8, and 9 have no
meaning and must be 0.

1: The absence or possible presence of
background transparency is expressed by bit

7,
of semitransparency by bit 8, and of stored
object buffers by bit 9.

bit 7: Background transparency
0: Background transparency is absent (i.e., the

first layer fills the entire MNG frame with
opaque pixels).

4. MNG CHUNKS 21

1: Background transparency may be present.
bit 8: Semi-transparency

0: Semitransparency (i.e., an image with an
alpha

channel that has values that are neither 0
nor

the maximum value) is absent.
1: Semitransparency may be present.
If bit 3 is zero this field has no meaning.

bit 9: Stored object buffers
0: Object buffers need not be stored.
1: Object buffers must be stored.
(must be 0 in MNG-LC and MNG-VLC

datastreams)
If bit 2 is zero, this field has no meaning.

bits 10-15: Reserved bits
Reserved for public expansion. Must be zero in
this version.

bits 16-30: Private bits
Available for private or experimental expansion.
Undefined in this version and can be ignored.

bit 31: Reserved bit. Must be zero.

Decoders can ignore the “informative”nominal frame count , nominal layer count ,
nominal play time , andsimplicity profile fields.

Theframe width andframe height fields give the intended display size (measured in pixels) and pro-
vide default clipping boundaries (see Recommendations for encoders, below). It is strongly recommended
that these be set to zero if the MNG datastream contains no visible images.

The ticks per second field gives the unit used by the FRAM chunk to specify interframe delay and
timeout. In MNG-VLC datastreams, it gives the framing rate. It must be nonzero if the datastream contains a
sequence of images. When the datastream contains exactly one frame, this field should be set to zero. When
this field is zero, the length of a tick is infinite, and decoders will ignore any attempt to define interframe
delay, timeout, or any other variable that depends on the length of a tick. If the frames are intended to be
displayed one at a time under user control, such as a slide show or a multi-page FAX, the tick length can
be set to any positive number and a FRAM chunk can be used to set an infinite interframe delay and a zero
timeout. Unless the user intervenes, viewers will only display the first frame in the datastream.

Whenticks per second is nonzero, and there is no other information available about interframe delay,
viewers should display the sequence of frames at the rate of one frame per tick.

If the frame count field contains a zero, the frame count is unspecified. If it is nonzero, it contains the number
of frames that would be displayed, ignoring the fPRI chunks and the TERM chunk. If the frame count is
greater than231 − 1, encoders should write231 − 1, representing an infinite frame count. In MNG-VLC
datastreams, the frame count is the same as the number of embedded images in the datastream (or one, the
background layer, if there are no embedded images).

22

If the nominal layer count field contains a zero, the layer count is unspecified. If it is nonzero, it
contains the number of layers (including all background layers) in the datastream, ignoring any effects of
the fPRI chunks and the TERM chunk. If the layer count is greater than231 − 1, encoders should write
231 − 1, representing an infinite layer count. In MNG-VLC datastreams, the layer count is the number of
embedded images, plus one (for the background layer).

If the nominal play time field contains a zero, the nominal play time is unspecified. Otherwise, it gives
the play time, in ticks, when the file is displayed ignoring the fPRI chunks and the TERM chunk. Authors
who write this field should choose a value ofticks per second that will allow the nominal play time
to be expressed in a four-bit integer. If the nominal play time is greater than231 − 1 ticks, encoders should
write 231 − 1, representing an infinite nominal play time. In MNG-VLC datastreams, the nominal play
time is the same as the frame count, except when theticks per second field is zero, in which case the
nominal play time is also zero.

When bit 0 of thesimplicity profile field is zero, the simplicity (or complexity) of the MNG datas-
tream is unspecified, andall bits of the simplicity profile must be zero. The simplicity profile must be
nonzero in MNG-LC and MNG-VLC datastreams.

If the simplicity profile is nonzero, it can be regarded as a 32-bit profile, with bit 0 (the least significant bit)
being a “profile-validity” flag, bit 1 being a “simple MNG” flag, bit 2 being a “complex MNG” flag, bits 3,
7, and 8 being “transparency” flags, bit 4 being a “JNG” flag, bit 5 being a “Delta-PNG” flag, and bit 9 being
a “stored object buffers” flag. Bit 6 is a “validity” flag for bits 7, 8, and 9, which were added at version 0.98
of this specification. These three flags mean nothing if bit 6 is zero.

If a bit is zero, the corresponding feature is guaranteed to be absent or if it is present there is no effect on the
appearance of any frame if the feature is ignored. If a bit is one, the corresponding feature may be present
in the MNG datastream.

Bits 10 through 15 of the simplicity profile are reserved for future MNG versions, and must be zero in this
version.

Bits 16 through 30 are available for private test or experimental versions. The most significant bit (bit 31)
must be zero.

When bit 1 is zero (“simple” MNG features are absent), the datastream does not contain the DEFI, FRAM,
MAGN, or global PLTE and tRNS chunks, and filter method 64 is not used in any embedded PNG datas-
tream.

When bit 2 is zero, the datastream does not contain any “complex MNG features”. These are the BASI,
CLON, DHDR/IEND, PAST, DISC, MOVE, CLIP, and SHOW chunks, or any chunk in a future version of
this specification that defines or uses stored objects. If the DEFI chunk is present, it only defines object 0.
If the BACK chunk is present, it does not define a background image. If the LOOP chunk is present, it has
iterationmin=1. A MNG with a “complex MNG feature” (which has a simplicity profile that has bit 2 set
to 1) may contain at least one of these chunks. A simple decoder can display “simple” MNGs (which have
a simplicity profile with bit 2 set to 0) without having to store any objects or dealing with the SAVE/SEEK
mechanism, and it can ignore the LOOP and ENDL chunks and execute all loops exactly once.

4. MNG CHUNKS 23

“Transparency is absent or can be ignored” means that either the MNG or PNG tRNS chunk is not present
and no PNG or JNG image has an alpha channel, or if they are present they have no effect on the final
appearance of any frame and can be ignored (e.g., if the only transparency in a MNG datastream appears in
a thumbnail that is never displayed in a frame, or is in some pixels that are overlaid by opaque pixels before
being displayed, the transparency bit should be set to zero).

“Semitransparency is absent” means that if the MNG or PNG tRNS chunk is present or if any PNG or JNG
image has an alpha channel, they only contain the values 0 and the maximum (opaque) value. It also means
that the JDAA chunk is not present. The “semitransparency” flag means nothing and must be 0 if bit 3 is 0
or bit 6 is 0.

“Background transparency is absent” means that the first layer of every segment fills the entire frame with
opaque pixels, and that nothing following the first layer causes any frame to become transparent. Whatever
is behind the first layer does not show through.

When “Background transparency” is present, the application is responsible for supplying a background
color or image against which the MNG background layer is composited, and if the MNG is being displayed
against a changing scene, the application should refresh the entire MNG frame against a new copy of the
background layer whenever the application’s background scene changes. The “background transparency”
flag means nothing and must be 0 if bit 6 is 0. Note that bit 3 does not make any promises about background
transparency.

The “stored object buffers” flag is only useful when bit 2 is nonzero (i.e., “complex MNG features” are
present). This flag promises that even though such features are present, no chunk will ever use the informa-
tion in an existing object buffer; therefore it is not necessary to store an object buffer for any object. A set
of object attributes is necessary for each object, however. Therefore, the MOVE, CLIP, DISC, deterministic
LOOP, partial CLON, and immediately-displayed BASI chunk are permissible. The “stored object buffers”
flag means nothing if bit 2 is 0 or bit 6 is 0.

A MNG-LC (i.e., a “low-complexity MNG”) datastream must have a simplicity profile with bit 0 equal to 1
and all other bits except possibly for bits 1, 3, 6, 7, and 8 (“simple MNG” MNG features and transparency)
equal to zero. If bit 4 (JNG) is 1, the datastream is a “MNG-LC that might contain a JNG” datastream
carrying an image or an alpha channel.

MNG-LC decoders are allowed to reject such datastreams unless they have been enhanced with JNG capa-
bility.

A MNG-VLC (i.e., a “very low-complexity MNG”) datastream must have a simplicity profile with bit 0
equal to 1 and all other bits except possibly for bits 3, 6, 7, and 8 (transparency) equal to 0. If bit 4 (JNG)
is 1, the datastream is a “MNG-VLC with JNG” datastream. It might contain a JNG datastream carrying
an image or an alpha channel. MNG-VLC decoders are allowed to reject such datastreams unless they have
been enhanced with JNG capability.

Encoders that write a nonzero simplicity profile should endeavor to be accurate, so that decoders that process
it will not unnecessarily reject datastreams or avoid possible optimizations. For example, the simplicity
profile 351 (0x15f) indicates that JNG, critical transparency, semitransparency, and at least one “complex”
MNG feature are all present, but Delta-PNG, stored object buffers, and background transparency are not.

24

This example would not qualify as a MNG-LC or a MNG-VLC datastream because a “complex” MNG
feature might be present. If the simplicity profile promises that certain features are absent, but they are
actually present in the MNG datastream, the datastream is invalid.

4.1.2 MEND End of MNG datastream

The MEND chunk’s data length is zero. It signifies the end of a MNG datastream.

4.1.3 LOOP, ENDL Define a loop

The LOOP chunk provides a “shorthand” notation that can be used to avoid having to repeat identical chunks
in a MNG datastream. The LOOP chunk can be ignored by MNG-LC and MNG-VLC decoders, along with
the ENDL chunk. Its contents are the first two or more of the following fields. If any field is omitted, all
remaining fields must also be omitted:

Nest level: 1 byte (unsigned integer).
Iteration count: 4 bytes (unsigned integer),

range [0..2ˆ31-1].
Termination condition:

1 byte (unsigned integer).
Must be omitted if termination condition=0, which means
Deterministic, not cacheable, or if iteration count=0.
1: Decoder discretion, not cacheable.
2: User discretion, not cacheable.
3: External signal, not cacheable.
4: Deterministic, cacheable.
5: Decoder discretion, cacheable.
6: User discretion, cacheable.
7: External signal, cacheable.

Iteration min: 4 bytes(unsigned integer). Must be present if
termination condition is 3 or 7. If omitted, the
default value is 1.

Iteration max: 4 bytes (unsigned integer). Must be present if
termination condition is 3 or 7; must be omitted if
iteration min is omitted; if omitted, the default
value is infinity.

Signal number: 4 bytes (unsigned integer). Must be present if
termination condition is 3 or 7. Must not be present
otherwise.

Additional
signal number: 4 bytes. May be present only if termination condition

is 3 or 7.
...etc...

Decoders must treat the chunks enclosed in a loop exactly as if they had been repeatedly spelled out. There-
fore, during the first iteration of the loop, the parent objects for any Delta-PNG datastreams in the loop are

4. MNG CHUNKS 25

the images in existence prior to entering the LOOP chunk, but in subsequent iterations these parent objects
might have been modified. Thetermination condition field can be used to inform decoders that it
is safe to change the number of loop iterations.

Simple decoders can ignore all fields except for theiteration count .

When the LOOP chunk is present, an ENDL chunk with the samenest level must be present later in
the MNG datastream. Loops can be nested. Each inner loop must have a higher value ofnest level than
the loop that encloses it, though not necessarily exactly one greater.

The termination condition specifies how the actual number of iterations is determined. It is very similar to
the termination condition field of the FRAM chunk, and can take the same values:

Deterministic
This is the default behavior, when thetermination condition field is omitted or has a
value that is unrecognized by the decoder. The loop terminates after exactly the number of iterations
specified by the iteration count. This value must be used if altering the number of repetitions would
mess up the MNG datastream, but can be used merely to preserve the author’s intent.

Decoder-discretion
The number of iterations can be chosen by the decoder, and must not be less thaniteration min
nor more thaniteration max. If the decoder has no reason to choose its own value, it should use
the iteration count . One example of a decoder wishing to choose its own value is a real-time
streaming decoder hovering at a loop while waiting for its input buffer to fill to a comfortable level.

User-discretion
The number of iterations should be chosen by the user (e.g., by pressing the<escape> key),
but the decoder must enforce theiteration min and iteration max limits. Some decoders
might not be able to interact with the user, and many decoders will find that nested user-discretion
loops present too great of a user-interface challenge, so the<user-discretion> condition will probably
usually degenerate into the<decoder-discretion> condition.

External-signal
The number of iterations must not be less thaniteration min nor more thaniteration max.
The exact number can be determined by the arrival of a signal whose number matches one of the
signal number fields.

When the value of thetermination condition field is 4 or more, the loop is guaranteed to be
“cacheable”, which means that every iteration of the loop produces the same sequence of frames, and that
all objects and object buffers are left in the same condition at the end of each iteration. Decoders can use
this information to select a different strategy for handling the loop, such as storing the composited frames in
a cache and replaying them rather than decoding them repeatedly.

The iteration min and iteration max can be omitted. If the condition is<deterministic> the
values are not used. Otherwise, defaults of 1 and<infinity> are used. Theiteration count ,
iteration min , anditeration max can be any non-negative integers or<infinity>, but they must
satisfy iteration min <= iteration count <= iteration max. Infinity is represented by

26

0x7fffffff. If all of the loops in a MNG datastream haveiteration min=1 , the datastream can qualify
as a “simple” MNG for the purpose of setting bits 1 and 2 of the “simplicity profile” to zero, unless there
are other reasons for setting them to one.

If iteration count is zero, thetermination condition , and the remaining fields must be omit-
ted, and the loop is done zero times. Upon encountering a LOOP chunk whoseiteration count is
zero, decoders simply skip chunks until the matching ENDL chunk is found, and resume processing with
the chunk immediately following it.

The signal number can be omitted only if the termination condition is not<external-signal>. There
can be any number ofsignal number fields. Signalnumber = 0 is reserved to represent any input from a
keyboard or pointing device, and 1–255 are reserved to represent the corresponding character code, received
from a keyboard or simulated keyboard, and values 256–1023 are reserved for future definition by this
specification.

An infinite or just overly long loop could give the appearance of having locked up the machine. Therefore
a decoder should always provide a simple method for users to escape out of a loop or delay, either by
abandoning the MNG entirely or just proceeding to the next SEEK chunk (the SEEK chunk makes it safe
for a viewer to resume processing after it has jumped out of the interior of a segment).

MNG editors that extract a series of PNG or JNG files from a MNG datastream are expected to execute the
loop only iteration min times, when the termination condition is not<deterministic>.

The ENDL chunk ends a loop that begins with the LOOP chunk. It contains a single one-byte field:

Nest level: 1 byte (unsigned integer), range [0..255].

When the ENDL chunk is encountered, the loop iteration count is decremented, if it is not already zero. If
the result is nonzero, processing resumes at the beginning of the loop. Otherwise processing resumes with
the chunk immediately following the ENDL chunk.

When the ENDL chunk is present, a LOOP chunk with the samenest level must be present earlier in the
MNG datastream. See below. Loops must be properly nested: if a LOOP chunk with highernest level
appears inside a LOOP/ENDL pair, a matching ENDL chunk must also appear to close it.

The SAVE and SEEK chunks are not permitted inside a LOOP-ENDL pair. To rerun an entire datastream
that includes these chunks, use the TERM chunk instead. See below (Paragraph 4.2.11).

4.2 Critical MNG image defining chunks

The chunks described in this section create objects and initialize their object attributes, or change their
object attributes or the data in their object buffers. Some of them also may cause images to be immediately
displayed.

4. MNG CHUNKS 27

4.2.1 DEFI Define an object

The DEFI chunk sets the default set of object attributes (object id , do not show flag,
concrete flag , location, and clipping boundaries) for any subsequent images that are defined with
IHDR-IEND, BASI-IEND, or JHDR-IEND datastreams.

If bit 1 of the MHDR simplicity profile is 0 and bit 0 is 1, the DEFI chunk must not be present.

The DEFI chunk contains 2, 3, 4, 12, or 28 bytes. If any field is omitted, all remaining fields must also be
omitted.

Object id: 2 bytes (unsigned integer) identifier to be given to the
objects that follow the DEFI chunk. This field must be
zero in MNG-LC files.

Do not show: 1 byte (unsigned integer)
0: Make the objects potentially visible.
1: Make the objects not potentially visible.

Concrete flag: 1 byte (unsigned integer)
0: Make the objects "abstract" (image cannot be the

source for a Delta-PNG)
1: Make the objects "concrete" (object can be the

source
for a Delta-PNG).

MNG-LC decoders can ignore this flag.

X location: 4 bytes (signed integer).
The X location and Y location fields can be omitted as
a pair.

Y location: 4 bytes (signed integer).

Left cb: 4 bytes (signed integer). Left clipping boundary. The
left cb, right cb, top cb, and bottom cb fields can be
omitted as a group.

Right cb: 4 bytes (signed integer).

Top cb: 4 bytes (signed integer).

Bottom cb: 4 bytes (signed integer).

If the object number for an object is nonzero, subsequent chunks can use this number to identify it.

When the object number for an object is zero, its object buffer can be discarded immediately after it has been
processed, and it can be treated as an “abstract” image, regardless of the contents of theconcrete flag
field.

28

Negative values are permitted for the X and Y location and clipping boundaries. The left and top boundaries
are inclusive, while the right and bottom boundaries are exclusive. The positive directions are downward
and rightward from the frame origin (see Recommendations for encoders, below).

Multiple IHDR-IEND, JHDR-IEND, and BASI-IEND objects can follow a single DEFI chunk. When
object id is nonzero, the DEFI chunk values remain in effect until another DEFI chunk or a SEEK
chunk appears, unless they are modified by SHOW, MOVE, or CLIP chunks. Theobject id and
concrete flag can only be changed by using another DEFI chunk. If no DEFI chunk is in effect (either
because there is none in the datastream, or because a DISC or SEEK chunk has caused it to be discarded),
the decoder must use the following default values:

Object id = 0
Do not show = 0

Concrete flag = 0
X location = 0
Y location = 0

Left cb = 0
Right cb = frame width

Top cb = 0
Bottom cb = frame height

The object attributes for all existing unfrozen objects except for object 0 become undefined when a SEEK
chunk is encountered.

The object attributes for object 0 become undefined when a SEEK chunk is encountered, only if they have
been reset to values other than these defaults. It is the encoder’s responsibility to reset them explicitly to
these values prior to the end of every segment in which they have been changed, or to include a full DEFI
chunk prior to embedding object 0 in any segment.

These default values are also used to fill any fields that were omitted from the DEFI chunk, when an object
with the sameobject id has not been previously defined or a DISC or SEEK chunk has caused it to be
discarded.

An set of object attributes is created or an existing one is modified when the DEFI chunk appears, but an
object buffer is neither created nor discarded. Ifobject id is an identifier that already exists when a
DEFI chunk appears, the set of object attributes (except for the pointer to the object buffer) is immediately
replaced. The contents of the object buffer do not change, however, until and unless an IHDR, JHDR, BASI,
or PAST chunk is encountered. When one of these chunks appears, all of the contents of the object buffer
previously associated with the identifier are discarded and the new data is stored in the object buffer.

Note that if the object has partial clones, the object buffer of the clones is naturally affected by the new data
because it is shared, but the object attributes sets of the clones are not affected.

4. MNG CHUNKS 29

4.2.2 PLTE and tRNS Global palette

The PLTE chunk has the same format as a PNG PLTE chunk. It provides a global palette that is inherited
by PNG datastreams that contain an empty PLTE chunk.

The tRNS chunk has the same format as a PNG tRNS chunk. It provides a global transparency array that is
inherited along with the global palette by PNG datastreams that contain an empty PLTE chunk.

If a PNG datastream is present that does not contain an empty PLTE chunk, neither the global PLTE nor the
global tRNS data is inherited by that datastream.

If the global PLTE chunk is not present, each indexed-color PNG in the datastream must supply its own
PLTE (and tRNS, if it has transparency) chunks.

The global PLTE chunk is not permitted in MNG-VLC datastreams.

4.2.3 IHDR, PNG chunks, IEND

A PNG (Portable Network Graphics) datastream.

See the PNG specification [PNG] and the Extensions to the PNG Specification document [PNG-EXT] for
the format of the PNG chunks.

The IHDR and IEND chunks and any chunks between them are written and decoded according to the PNG
specification, except as extended in this section. These extensions do not apply to standalone PNG datas-
treams that have the PNG signature, but only to PNG datastreams that are embedded in a MNG datastream
that begins with a MNG signature. Nor are they allowed in MNG-VLC datastreams.

• An additional PNG filter method is defined:

64: Adaptive filtering with five basic types and intrapixel
differencing.

The intrapixel differencing transformation, which is a modification of a method previously used in the
LOCO image format [LOCO], is

S0 = Red - Green (when color type is 2 or 6)
S1 = Green (when color type is 2 or 6)
S2 = Blue - Green (when color type is 2 or 6)
S3 = Alpha (when color type is 6)

in which S0-S3 are the samples to be passed to the next stage of the filtering procedure.

The transformation is done in integer arithmetic in sufficient precision to hold intermediate results, and
the result is calculated modulo2sample depth. Intrapixel differencing (subtracting the green sample) is
only done for color types 2 and 6, and only when the filter method is 64. This filter method is not
permitted in images with color types other than 2 or 6.

30

Conceptually, the basic filtering is done after the intrapixel differencing transformation has been done
for all pixels involved in the basic filter, although in practice the operations can be combined.

To recover the samples, the transformation is undone after undoing the basic filtering, by the inverse
of the intrapixel differencing transformation, which inverse is

Red = S0 + S1
Green = S1
Blue = S2 + S1
Alpha = S3

As in the forward transformation, the inverse transformation is done in integer arithmetic in sufficient
precision to hold intermediate results and the result calculated modulo2sample depth.

Applications that convert a MNG datastream to a series of PNG datastreams must convert any PNG
datastream with the additional filter method 64 to a standard PNG datastream with a PNG filter method
(currently 0 is the only valid filter method).

The extra filter method can also be used in PNG datastreams that is embedded in Delta-PNG and
BASI datastreams.

It is suggested that encoders write a “nEED MNG-1.0” chunk if they use this feature, for the benefit
of pre-MNG-1.0 decoders.

Applications must not write MNG-VLC datastreams or independent PNG datastreams (with either the
.png or .mng file extension) with the new filter method, until and unless it should become officially
approved for use in PNG datastreams.

• If a global PLTE chunk appears in the top-level MNG datastream, the PNG datastream can have an
empty PLTE chunk to direct that the global PLTE and tRNS data be used. If an empty PLTE chunk
is not present, the data is not inherited. MNG applications that recreate PNG files must write the
global PLTE chunk rather than the empty one in the output PNG file, along with the global tRNS data
if it is present. The global tRNS data can be subsequently overridden by a tRNS chunk in the PNG
datastream. It is an error for the PNG datastream to contain an empty PLTE chunk when the global
PLTE chunk is not present or has been nullified.

• If the PNG sRGB, gAMA, iCCP, or cHRM chunks appear in the top-level MNG datastream (and have
not been nullified), but none of them appear in the PNG datastream, then the values are inherited
from the top level as though the chunks had actually appeared in the PNG datastream. Data from
such chunks appearing in the PNG datastream take precedence over the inherited values. If any one
of these chunks, or any chunk in a future version of this specification that defines the color space,
appears in the PNG datastream, none of them is inherited. MNG applications that recreate PNG files
must write these chunks, if they are inherited, in the output PNG files. If the sRGB chunk is present
in a MNG datastream, it need not be accompanied in the MNG datastream by gAMA and cHRM
chunks, despite the recommendation in the PNG specification. Any MNG viewer that processes the
gAMA chunk must also recognize and process the sRGB chunk. It can treat it as if it were a gAMA
chunk containing the value .45455 and it can ignore its “intent” field. If the sRGB chunk is present in
the MNG datastream, editors that write PNG datastreams should add the gAMA and cHRM chunks
to the PNG datastream, even though they are not present in the MNG datastream.

4. MNG CHUNKS 31

Note that the top-level color space chunks are used only to supply missing color space information
to subsequent embedded PNG or JNG datastreams. They do not have any effect on already-decoded
objects.

• If the PNG sPLT chunk appears in the top-level MNG datastream, it takes precedence over any sPLT
chunk appearing in the PNG datastream. MNG applications that recreate PNG files should not copy
top-level sPLT chunks to the output PNG files, because a suggested palette for rendering a group of
images is not necessarily the best palette for rendering a single image.

• The PNG oFFs and pHYs chunks and any chunks in a future version of this specification that attempt
to set the pixel dimensions or the drawing location must be ignored by MNG viewers and simply
copied (according to the copying rules) by MNG editors.

• The PNG gIFg, gIFt, and gIFx chunks must be ignored by viewers and must be copied according to
the copying rules by MNG editors.

If do not show is zero for the image when the IHDR chunk is encountered, a viewer can choose to display
the image while it is being decoded, perhaps taking advantage of the PNG interlacing method, or to display
it after decoding is complete.

If object id is zero, there is no need to store the pixel data after decoding it and perhaps displaying it.

If concrete flag=1 is 1 andobject id is nonzero, the decoder must store the original pixel data
losslessly, along with data from other recognized PNG chunks, because it is possible that a subsequent
Delta-PNG datastream might want to modify it. Ifconcrete flag is zero, the decoder can store the
pixel data in any form that it chooses. If the “stored object buffers” flag in the simplicity profile is valid and
zero, there is no need to store the pixel data and other chunk data after decoding and perhaps displaying the
image.

If an object already exists with the sameobject id , the contents of its object buffer are replaced with the
new data.

4.2.4 JHDR, JNG chunks, IEND

A JNG (JPEG Network Graphics) datastream.

See the JNG specification below (Chapter 5) for the format of the JNG datastream.

The JHDR and IEND chunks and any chunks between them are written and decoded according to the JNG
specification.

The remaining discussion in the previous paragraph about PNG datastreams also applies to JNG datastreams.

MNG-LC and MNG-VLC applications are not expected to process JNG datastreams unless they have been
enhanced with JNG capability.

32

4.2.5 BASI, PNG chunks, IEND

The BASI chunk introduces a basis object that, while it might be incomplete, can serve as a parent object to
which a delta image can be applied.

The first 13 bytes of the BASI chunk are identical to those of the IHDR chunk. The next 8 bytes, which can
be omitted, provide sixteen-bit{red, green, blue, alpha} values that are used to fill the entire basis object
when the IDAT chunk is not present, and a 1-byte “viewable” flag can also be present.

Width: 4 bytes (unsigned integer).
Height: 4 bytes (unsigned integer).
Sample depth: 1 byte (unsigned integer) 1, 2, 4, 8, or 16.
Color type: 1 byte (unsigned integer) 0: Gray, 2: RGB, 3: indexed

color, 4: Gray-alpha, 6: RGBA
Compression method: 1 byte (unsigned integer).

0: zlib with deflate
Filter method: 1 byte (unsigned integer).

0: five basic filter types.
64: intrapixel differencing and five basic filter

types.
Interlace method: 1 byte (unsigned integer).

0: none, 1: Adam7
Red sample or

gray sample: 2 bytes (unsigned integer).
Green sample: 2 bytes (unsigned integer).
Blue sample: 2 bytes (unsigned integer).
Alpha sample: 2 bytes (unsigned integer).
Viewable: 1 byte (unsigned integer).

0: Basis object is not viewable.
1: Basis object is viewable.

The sample depth, color type, compression method, and interlace method must be valid PNG types, and the
width and height must be within the valid range for PNG datastreams. The filter method must be one of the
filter methods allowed in PNG datastreams (currently only 0) or the additional filter method (64) allowed in
PNG datastreams that are embedded in MNG datastreams.

Thealpha sample can be omitted if theviewable field is also omitted. If so, and thecolor type is
one that requires alpha, the alpha value corresponding to an opaque pixel will be used. If the color samples
are omitted, zeroes will be used. If theviewable field is omitted, the object is not viewable.

The decoder is responsible for converting the color and alpha samples to the appropriate format and sample
depth for the specifiedcolor type .

The color and alpha samples are written as four sixteen-bit samples regardless of thecolor type and
sample depth . When thesample depth is less than sixteen, the least significant bits are used and the
remaining bits must be zero filled.

Whencolor type is 0 or 4, the green and blue samples must be present but must be ignored by decoders.

4. MNG CHUNKS 33

Whencolor type is 0 or 2, only the values 0 and2sample depth should be written. Any other alpha value
must be interpreted as fully opaque.

Whencolor type is 3, the decoder must generate a palette of length2sample depth, whose first entry con-
tains the given{red sample, green sample, blue sample } triple, and whose remaining entries
are filled with zeroes. It must also generate an alpha array whose first entry is the given alpha sample and
the rest are opaque (i.e., if the alpha sample is not opaque, it creates a one-entry tRNS chunk containing the
least significant byte of the given alpha sample).

The BASI datastream contains PNG chunks, but is not necessarily a PNG datastream. It can be incomplete
or empty and it can deviate in certain ways from the PNG specification. It can serve as a parent object for a
Delta-PNG datastream, which must supply the missing data or correct the other deviations before the image
is displayed. The end of the datastream is denoted by an IEND chunk.

The permitted deviations from the PNG format in a BASI datastream are:

• The IDAT chunk can be omitted or there can be a single empty IDAT chunk. If so, all of the pixels
are filled with the given color and alpha samples from the BASI chunk.

• Multiple instances of some chunks can be present even though the PNG specification allows only one.
The subsequent Delta-PNG that uses this as the parent object must select only one, through the DBYK
or similar mechanism. This deviation is only permitted when the object is concrete and not viewable.

• The PLTE chunk can be omitted or incomplete even whencolor type is 3. If so, the subsequent
Delta-PNG that uses this as the parent object can supply a complete replacement PLTE chunk, if the
single-entry palette that is generated is not desired. This deviation is only permitted when the object
is concrete and not viewable.

The BASI chunk can be used to introduce such things as a library of iCCP chunks from which one or
another can be selected for use with any single image, or it can be used to introduce a simple blank or
colored rectangle that will be immediately displayed or into which other images will be pasted by means of
the PAST chunk.

A BASI chunk appearing in a MNG datastream receives itsobject id , location, and potential visibility
from the preceding DEFI chunk, if one is present, or the default values for DEFI, if one is not present.
Theconcrete flag can be either 0 (abstract) or 1 (concrete), depending on whether the basis image is
intended for subsequent use by a Delta-PNG datastream or not. When it is abstract, it must also be viewable.
When it is viewable, the resulting object, after the pixel samples are filled in, must be identical to an object
that would have been obtained by decoding a legal PNG datastream. Ifviewable is 1 anddo not show
is 0, a viewer is expected to display it immediately, as if it were decoding a PNG datastream.

If an object already exists with the sameobject id , the contents of its object buffer are replaced with the
new data.

Top-level gAMA, sRGB, cHRM, bKGD, sBIT, pHYs, iCCP, and sPLT chunks are inherited by a BASI
datastream in the same manner as by a PNG datastream.

No provision is made in this specification for storing a BASI datastream as a standalone file. A BASI
datastream will normally be found as a component of a MNG datastream. Applications that need to store

34

a BASI datastream separately should use a different file signature and filename extension. Better, they can
wrap it in a MNG datastream consisting of the MNG signature, the MHDR chunk, the BASI datastream,
and the MEND chunk.

4.2.6 CLON Clone an object

Create a clone (a new copy) of an image, with a newobject id . The CLON chunk contains 4, 5, 6, 7, or
16 bytes. If a field is omitted, all remaining fields must also be omitted.

Source id: 2 bytes (nonzero unsigned integer). Identifier of the parent
object to be cloned.

Clone id: 2 bytes (nonzero unsigned integer). Identifier of the child
object that is created.

Clone type: 1 byte (unsigned integer).

0: Full clone of the set of object attributes and the
object buffer.

1: Partial clone; only set of object attributes (the
location, clipping boundaries, and potential

visibility)
are copied and a link is made to the object buffer.

2: Renumber object (this is equivalent to
"CLON source id clone id 1

DISC source id").

If this field is omitted, the clone type defaults to zero
(full clone).

Do not show: 1 byte (unsigned integer).
0: Make the clone potentially visible and display it

immediately.
1: Make the clone not potentially visible.

When this field is omitted, the object retains the potential
visibility of the parent object.

Concrete flag:
1 byte (unsigned integer).

0: Concrete flag is the same as that of the parent object.
1: Make the clone "abstract" (concrete flag=0).

When this field is omitted, the object retains the concrete
flag of the parent object.

Loca delta type:

4. MNG CHUNKS 35

1 byte (unsigned integer)

0: Location data gives X location and Y location directly.

1: New positions are determined by adding the location
data

to the position of the parent object.

This field, together with the X location and Y location
fields, can be omitted as a group. When they are omitted,
the clone has the same location as the parent object.

X location or delta X location:
4 bytes (signed integer).

Y location or delta Y location:
4 bytes (signed integer).

The source id must be an existing object identifier, and theclone id must not be an existing object
identifier.

Negative values are permitted for the X and Y position. The positive directions are downward and rightward
from the frame origin.

The clone is initially identical to the parent object except for the location and potential visibility. It has the
same clipping boundaries as the parent object. Subsequent DHDR, SHOW, CLON, CLIP, MOVE, PAST,
and DISC chunks can use theclone id to identify it. If the parent object is not a viewable image, neither
is the clone.

Subsequent chunks can modify, show, or discard a full clone or modify its potential visibility, location and
clipping boundaries without affecting the parent object. They can also modify, show, or discard the parent
object or modify its set of object attributes without affecting the clone.

Theconcrete flag byte must be zero or omitted when theclone type byte is nonzero.

If an object has partial clones, and the data in the object buffer of a parent object or any of its partial clones
is modified, the parent object and all of its partial clones are changed. Decoders must take care that when
the parent object or any partial clone is discarded, the object buffer is not discarded until the last remaining
one of them is discarded. Only the location, potential visibility, and clipping boundaries can be changed
independently for each partial clone.

If viewable is 1 anddo not show is 0, the resulting image is displayed immediately.

4.2.7 DHDR, Delta-PNG chunks, IEND

A Delta-PNG datastream.

See The Delta-PNG Format (Chapter 6), below, for the format of the Delta-PNG datastream. Any chunks
between DHDR and IEND are written and decoded according to the Delta-PNG format. Theobject id

36

of the Delta-PNG DHDR chunk must point to an existing parent object. The resulting image is immediately
displayed if itsdo not show is 0. The parent object must be concrete (i.e.,concrete flag must be 1).

4.2.8 PAST Paste an image into another

Paste an image or images identified bysource id , or part of it, into an existing abstract image identified
by destination id .

The PAST chunk contains a 2-bytedestination id and 9 bytes giving a “target location”, plus one or
more 30-byte source data sequences.

Destination id: 2 bytes (unsigned integer).

Target delta type:
1 byte (unsigned integer).

0: Target x and target y are given directly.
1: Target x and target y are deltas from their

previous
values in a PAST chunk with the same

destination id.
2: Target x and target y are deltas from their

previous
values in the previous PAST chunk regardless of

its
destination id.

Target x: 4 bytes (signed integer), measured rightward from the
left edge of the destination image.

Target y: 4 bytes (signed integer), measured downward from the
top edge of the destination image.

Source id: 2 bytes (unsigned nonzero integer). An image to be
pasted in.

Composition mode:
1 byte (unsigned integer).

0: Composite over.
1: Replace.
2: Composite under.

Orientation: 1 byte (unsigned integer).
The source image is flipped to another orientation.

0: Same as source image.
2: Flipped left-right, then up-down.
4: Flipped left-right.
6: Flipped up-down.

4. MNG CHUNKS 37

8: Tiled with source image. The upper left corner of
the assembly is positioned according to the
prescribed offsets.

Offset origin: 1 byte (unsigned integer).
0: Offsets are measured from the {0,0 } pixel in the

destination image.
1: Offsets are measured from the {target x,target y}

pixel in the destination image.

X offset: 4 bytes (signed integer).
Y offset: 4 bytes (signed integer).

Boundary origin: 1 byte (unsigned integer).
0: PAST clipping boundaries are measured from the
{0,0 } pixel in the destination image.

1: PAST clipping boundaries are measured from the
{target x,target y} pixel in the destination image.

Left past cb: 4 bytes (signed integer).
Right past cb: 4 bytes (signed integer).
Top past cb: 4 bytes (signed integer).
Bottom past cb: 4 bytes (signed integer).
...etc...

The destination image must have the “abstract” property(concrete flag=0) . When
destination id=0 , the resulting image is “write-only” and therefore only “composite-over”
(composition mode=0) operations are permitted.

The source images can be “abstract” or “concrete” and have anycolor type andsample depth . They
must have the “viewable” property. The number of source images is((chunk length-11)/30) .

The x offset and y offset distances and the PAST clipping boundaries are measured, in pix-
els, positive rightward and downward from either the{0,0 } pixel of the destination image or the
{target x, target y} position in the destination image. They do not necessarily have to fall within
the destination image. Only those pixels of the source image that fall within the destination image and also
within the specified clipping boundaries will be copied into the destination image. The coordinate system
for offsets and clipping is with respect to the upper lefthand corner of the destination image, which is not
necessarily the same coordinate system used by the DEFI, MOVE and CLIP chunks. If the source image
has been flipped or rotated,X offset andY offset give the location of its new upper left hand corner.
When it is tiled, the offsets give the location of the upper left hand corner of the upper left tile, and tiling
is done to the right and down. The PAST left and top clipping boundaries are inclusive, while the right and
bottom clipping boundaries are exclusive (see Recommendations for encoders, below).

Whencomposition mode=0, any non-opaque pixels in the source image are combined with those of
the destination image. If the destination pixel is also non-opaque, the resulting pixel will be non-opaque.

Whencomposition mode=1, all pixels simply replace those in the destination image. This mode can

38

be used to make a transparent hole in an opaque image.

Whencomposition mode=2, any non-opaque pixels in the destination image are combined with those
of the source image. If the source pixel is also non-opaque, the resulting pixel will be non-opaque.

The order of composition is the same as the order that thesource ids appear in the list (but a decoder
can do the composition in any order it pleases, or all at once, provided that the resulting destination image is
the same as if it had actually performed each composition in the specified order). Decoders must be careful
when the destination image equals the source image–the pixels to be drawn are the ones that existed before
the drawing operation began.

The clipping information from the DEFI, MOVE or CLIP chunks associated with thedestination id
and thesource ids is not used in the PAST operation (but if a decoder is simultaneously updating and
displaying thedestination id , the clipping boundaries for thedestination id are used in the
display operation).

4.2.9 MAGN Magnify objects

This chunk provides mandatory magnification factors for existing objects and/or for subsequent embedded
images whose object id is 0.

The chunk contains 0 to 18 bytes. If any field is omitted, all remaining fields must also be omitted.

First magnified object id:
2 bytes. If omitted, any previous MAGN chunk is

nullified.
Last magnified object id:

2 bytes. If omitted, last object id = first object id.
X method: 1 byte

0 or omitted: No magnification
1: Pixel replication of color and alpha samples.
2: Magnified intervals with linear interpolation of

color and alpha samples.
3: Magnified intervals with replication of color and

alpha samples from the closest pixel.
4: Magnified intervals with linear interpolation of

color samples and replication of alpha samples from
the closest pixel.

5: Magnified intervals with linear interpolation of
alpha samples and replication of color samples from
the closest pixel.

MX: 2 bytes. X magnification factor, range 1-65535. If
omitted, MX=1. Ignored if X method is 0 and assumed to
be 1.

MY: 2 bytes. Y magnification factor. If omitted, MY=MX.
ML: 2 bytes. Left X magnification factor. If omitted, ML=MX.
MR: 2 bytes. Right X magnification factor. If omitted,

4. MNG CHUNKS 39

MR=MX.
MT: 2 bytes. Top Y magnification factor. If omitted, MT=MY.

Ignored if Y method is 0 and assumed to be 1.
MB: 2 bytes. Bottom Y magnification factor. If omitted,

MB=MY.
Y method: 1 byte. If omitted, Y method is the same as X method.

The MAGN chunk causes the contents of the object buffers pointed to by the specified range of objects to
be immediately and irreversibly magnified.

The first magnified object id can be zero. If so, any subsequent embedded objects whose
object id is 0 must be magnified immediately when they appear in the datastream. Magnification
factors and methods for object 0 are updated by the appearance of a subsequent MAGN chunk whose
first magnified object id is 0. Magnification of object 0 is turned off by the appearance of an
empty MAGN chunk or by a MAGN chunk whosefirst magnified object id is zero and whose
X method andY method are zero, explicitly or by omission. The magnification factor for object 0 be-
comes undefined when a SEEK chunk appears. Therefore, it is the encoder’s responsibility either to include
a MAGN chunk that turns off magnification of object 0 prior to the end of any segment in which object
0 was magnified, or to include a MAGN chunk for object 0 prior to the first embedded object 0 in every
segment that contains an embedded object 0.

The last magnified object id must be greater than or equal to the
first magnified object id . It is not an error to include a nonexistent object or an existing
“frozen” object in the range; decoders must do nothing to any such objects. If an object is potentially visible
and viewable, it is displayed immediately after it is magnified. If anyobject id is nonzero, the result of
magnifying that object is stored in place of its original object buffer for later use.

If the MAGN chunk is present, all existing objects in the specified range must conceptually be magnified
immediately in accordance with the given magnification factors and methods. Decoders may wish to save
the magnification factors and delay the magnification until display time, or until the object is used as the
parent object of a Delta-PNG, to save memory. There is nothing preventing this, provided that the end effect
is the same as if the magnification had been accomplished immediately. If object 0 is in the specified range,
then any subsequent embedded objects with objectid=0 must be magnified immediately when they appear
in the datastream.

WhenX method is 0, all X magnification factors in the MAGN chunk are ignored and can be assumed to
be 1.

WhenX method is 1, X magnification is done by simple pixel replication. The leftmost pixel of each row
is replicated ML-1 times. If the original width is greater than 1, the rightmost pixel is replicated MR-1 times.
If the original width is greater than 2, the original interior pixels are replicated MX-1 times. The magnified
width W is

W = ML;
if (width > 1) W = W + MR;
if (width > 2) W = W + (width-2)*MX;

40

WhenX method is 2, X magnification is done by linear interpolation between pixels. If the original width
of the image is greater than 1, the interval between the leftmost pixel and the second pixel of each row is
subdivided intoMLequal intervals by inserting ML-1 pixels with color and alpha values that are obtained by
linear interpolation. If the original width is 1, then the pixel is simply magnified as if X method is 1. If the
original width is greater than 2, the rightmost interval is subdivided into MR equal intervals. If the original
width is greater than 3, each original interior interval is subdivided intoMXequal intervals. The magnified
width W is

/* The orginal pixels: */
W = width;

/* Add the new pixels in the left interval: */
if (width > 1) W = W + ML-1;

/* Add the new pixels in the right interval: */
if (width > 2) W = W + MR-1;

/* Add the new interior pixels: */
if (width > 3) W = W + (width-3)*(MX-1);

WhenX method is 3, intervals are subdivided as in X method 2, and the color and alpha values for the new
pixels are obtained by replicating the closest original pixel, with ties being broken by replicating the pixel
to the left. The magnified width is calculated in the same manner as in X method 2.

WhenX method is 4, the color samples are magnified as in X method 2 and the alpha samples are magnified
as in X method 3.

WhenX method is 5, the color samples are magnified as in X method 3 and the alpha samples are magnified
as in X method 2.

WhenY method is 0, all Y magnification factors in the MAGN chunk are ignored and can be assumed to
be 1.

WhenY method is 1, Y magnification is done by simple pixel replication. The topmost pixel of each
column is replicated MT-1 times. If the original height is greater than 1, the bottom pixel is replicated MB-1
times. If the original height is greater than 2, the original interior pixels of each column are replicated MY-1
times. The magnified height H is

H = MT;
if (height > 1) H = H + MB;
if (height > 2) H = H + (height-2)*MY;

WhenY method is 2, Y magnification is done by linear interpolation between pixels. If the original height
of the image is greater than 1, the interval between the topmost pixel and the second pixel of each column is
subdivided into MT equal intervals by inserting MT-1 pixels with color and alpha values that are obtained
by linear interpolation. If the original height is 1, then the pixel is simply magnified as if Y method is 1. If
the original height is greater than 2, the bottom interval is subdivided into MB equal intervals. If the original
height is greater than 3, each original interior interval is subdivided into MY equal intervals. The magnified
height H is

4. MNG CHUNKS 41

H = height;
if (height > 1) H = H + MT-1;
if (height > 2) H = H + MB-1;
if (height > 3) H = H + (height-3)*(MY-1);

WhenY method is 3, intervals are subdivided as in Y method 2, and the color and alpha values for the new
pixels are obtained by replicating the closest original pixel, with ties being broken by replicating the pixel
above. The magnified width is calculated in the same manner as in Y method 2.

WhenY method is 4, the color samples are magnified as in Y method 2 and the alpha samples are magnified
as in Y method 3.

WhenY method is 5, the color samples are magnified as in Y method 3 and the alpha samples are magnified
as in Y method 2.

When the image being magnified is a concrete object, it must not be a JNG or indexed-color PNG (the latter
could be promoted to RGB or RGBA via a Delta-PNG PROM chunk first). The result of the magnification
is also a concrete object. The Method 2 magnification is conceptually done first in the vertical (Y) direction,
the results rounded to the sample depth, then in the horizontal (X) direction. Linear interpolation must be
done on the raw pixels, prior to any color correction, using integer arithmetic, to ensure that the result is
deterministic. For each channel, the m-1 interpolated samples s[i] are obtained from the two samples s0 and
s1 by the following ISO C code or by any other method that obtains the identical results:

if(s1 == s0)
for (i=1; i < m; i++)

s[i] = s0;
else

for (i=1; i < m; i++)
s[i] = ((2*i*(s1-s0)+m)/(m*2) + s0;

Signed arithmetic in a precision large enough to hold the intermediate results must be used, and the final
results must be modulo the sample depth.

When the image being magnified is an abstract object, which is always true of object 0, interpolation can
be done by any means that achieves a visually similar but not necessarily identical result, such as rounding
the results to the sample depth later, using video hardware that is capable of interpolation, or using floating
point addition in the loop instead of integer multiplication and division as in:

float delta = ((float)(s1-s0)/(float)m);
float sf= (float)s0;
for (i=1; i < m; i++) {

sf = sf+delta;
s[i]=(int)(sf+0.5);
}

If the abstract object being magnified is being stored in an indexed representation, interpolation must be
accomplished by a method that achieves a similar result to that obtained by interpolating between RGB or
RGBA pixels.

42

Note that if an object and partial clones of it appear in the range of objects to be magnified, the object buffer
will be magnified repeatedly.

Because the MAGN chunk was added late in the development of MNG-1.0, it is recommended that encoders
place an empty MAGN chunk or a nEED MAGN chunk early in the datastream, so that pre-MNG-1.0
applications that do not recognize the MAGN chunk will encounter one quickly.

4.2.10 DISC Discard objects

The DISC chunk can be used to inform the decoder that it can discard the object data associated with the
associated object identifiers. Whether the decoder actually discards the data or not, it must not use it after
encountering the DISC chunk.

The chunk contains a sequence of zero or more two-byte object identifiers. The number of objects to be
discarded is the chunk’s data length, divided by two.

Discard id: 2 bytes (nonzero unsigned integer).
...etc...

If the DISC chunk is empty, all nonzero objects except those preceding the SAVE chunk (i.e., except for the
“frozen” objects) can be discarded. If a SAVE chunk has not been encountered, all objects can be discarded.
Note that each appearance of a SEEK chunk in the datastream implies an empty DISC chunk.

If the DISC chunk is not empty, the listed objects can be discarded.

When an object is discarded, any location, potential visibility, and clipping boundary data associated with it
is also discarded.

It is not an error to include anobject id in thediscard id list, when no such object has been stored,
or when the object has already been discarded.

It is an error to name explicitly any “frozen” object in the DISC list.

When the object is a partial clone or is the source of a partial clone that has not been discarded, only the set
of object attributes (location, potential visibility, clipping boundaries, etc.) can be discarded. The data in the
object buffer must be retained until the last remaining partial clone is discarded.

4.2.11 TERM Termination action

The TERM chunk suggests how the end of the MNG datastream should be handled, when a MEND chunk
is found. It contains either a single byte or ten bytes:

4. MNG CHUNKS 43

Termination action: 1 byte (unsigned integer)
0: Show the last frame indefinitely.
1: Cease displaying anything.
2: Show the first frame after the TERM chunk.

If processing the fPRI chunk, use a "cost"
of 255.

3: Repeat the sequence starting immediately
after the TERM chunk and ending with the
MEND chunk.

Action after iterations: 1 byte
0: Show the last frame indefinitely after

iteration max iterations have been done.
1: Cease displaying anything.
2: Show the first frame after the TERM chunk.

If processing the fPRI chunk, use a "cost"
of 255.

This and the remaining fields must be present
if termination action is 3, and must be omitted
otherwise.

Delay: 4 bytes (unsigned integer). Delay, in ticks,
before repeating the sequence.

Iteration max: 4 bytes (unsigned integer). Maximum number of
times to execute the sequence. Infinity is
represented by 0x7fffffff.

The loop created by processing a TERM chunk must always be treated by the decoder as if it were a
cacheable<user-discretion> loop, with iteration min=1 .

Applications must not depend on anything that has been drawn on the output buffer or device during the
previous iteration. Its contents become undefined when the TERM loop restarts.

MNG editors that extract a series of PNG or JNG files from a MNG datastream are expected to execute the
TERM loop only once, rather than emitting the files repeatedly.

The TERM chunk, if present, must appear either immediately after the MHDR chunk or immediately prior
to a SEEK chunk. The TERM chunk is not considered to be a part of any segment for the purpose of
determining the copy-safe status of any chunk. Only one TERM chunk is permitted in a MNG datastream.

Simple viewers and single-frame viewers can ignore the TERM chunk. It has been made critical only so
MNG editors will not inadvertently relocate it.

44

4.3 Critical MNG image displaying chunks

The chunks in this section cause existing objects and embedded objects to be displayed on the output device,
and control their location, clipping, and timing and the background against which they are displayed.

4.3.1 BACK Background

The BACK chunk suggests or mandates a background color, image, or both against which transparent,
clipped, or less-than-full-frame images can be displayed. This information will be used whenever the ap-
plication subsequently needs to insert a background layer, unless another BACK chunk provides new back-
ground information before that happens.

The BACK chunk contains 6, 7, 9, or 10 bytes. If any field is omitted, all remaining fields must also be
omitted.

Red background: 2 bytes (unsigned integer).

Green background: 2 bytes (unsigned integer).

Blue background: 2 bytes (unsigned integer).

Mandatory background:
1 byte (unsigned integer).

0: Background color and background image are
advisory. Applications can use them if they
choose to.

1: Background color is mandatory. Applications must
use it. Background image is advisory.

2: Background image is mandatory. Applications must
use it. Background color is advisory.

3: Background color and background image are both
mandatory. Applications must use them.

This byte can be omitted if the remaining fields are
also omitted. If so, the background color is
advisory.

Background image id:
2 bytes (unsigned nonzero integer). Object id of an
image that is to be used as the background layer or
part of it. If the image does not cover the area
defined by the layer clipping boundaries with opaque
pixels, the remainder of this area is filled with the
background color or application background and the
background image is composited against it. This
field can be omitted if the background tiling byte is
also omitted; if so, no background image is defined,
and the background image id from any previous BACK

4. MNG CHUNKS 45

chunk becomes undefined. This byte must be omitted
in MNG-LC and MNG-VLC datastreams, and when the
"stored object buffers" flag in the simplicity
profile is valid and is zero.

Background tiling:
1 byte (unsigned integer).

0: Do not tile the background.
1: Tile the background with the background image.

This field can be omitted; if so, do not tile the
background. This byte must be omitted in MNG-LC and
MNG-VLC datastreams.

The first layer displayed by a viewer is always a background layer that fills the entire frame. The BACK
chunk provides a background that the viewer can use for this purpose (or must use, if it is mandatory). If it is
not “mandatory” the viewer can choose another background if it wishes. If the BACK chunk is not present,
or if the background is not fully opaque or has been clipped to less than full frame, the viewer must provide
or complete its own background layer for the first frame. Each layer after the first must be composited over
the layers that precede it, until a FRAM chunk with framing mode 3 or 4 causes another background layer
to be generated.

Viewers are expected, however, to composite every foreground layer against a fresh copy of the background,
when the framing mode given in the FRAM chunk is 3, and to composite the first foreground layer of each
subframe against a fresh copy of the background, when the framing mode is 4. Also, when the framing
mode is 3 or 4 and no foreground layer appears between consecutive FRAM chunks, a background layer
alone is displayed as a separate frame.

The images and the background are both clipped to the subframe boundaries given in the FRAM chunk.
Anything outside these boundaries is inherited from the previous subframe. If the background layer is
transparent and the subsequent foreground layers do not cover the transparent area with opaque pixels, the
application’s background becomes re-exposed in any uncovered pixels within the subframe boundaries.

The background image (or tiled assembly) is also clipped to its own boundaries and located like any other
image, and is only displayed if it is potentially visible. When the background image is used for tiling, the
upper left tile is located according to the background image’s location attributes and the entire assembly
is clipped according to its clipping attributes. Viewers might actually follow some other procedure, but the
final appearance of each frame must be the same as if they had filled the area within the subframe boundaries
with the background color, then displayed the background image, and then displayed the foreground image
(or images), without delay.

Note that any background layer, including the one that begins the first frame of the datastream, must be
inserted at the latest possible moment, in case the background image is replaced or is modified by a Delta-
PNG datastream or its location or clipping boundaries are changed by a MOVE or CLIP chunk, or in case a
new BACK chunk appears, before that moment.

It is an error to specify abackground image id when the “stored object buffers” flag in the simplicity
profile is valid and zero.

46

It is not an error to specify abackground image id when such an image is not viewable and potentially
visible or does not yet exist or ceases to exist for some reason, or to fail to specify one even when the
mandatory background flag is 2 or 3. Viewers must be prepared to fall back temporarily to using
the background color or application background in this event, and to resume using the background image
whenever a potentially visible viewable object with thebackground image id becomes available. They
also must be prepared for the contents, viewability, location, potential visibility, and clipping boundaries of
the background image to change, just like any other object, if it has not been “frozen”. The background
image is allowed to have transparency, subject to any promises made in the simplicity profile.

The three BACK components are always written as though for an RGBA PNG with 16-bit sample depth. For
example, a mid-level gray background could be specified with the RGB color samples{0x9999, 0x9999,
0x9999}. The background color is interpreted in the current color space as defined by any top-level gAMA,
cHRM, iCCP, sRGB chunks that have appeared prior to the BACK chunk in the MNG datastream. If no
such chunks appear, the color space is unknown.

The color space of the background image, if one is used, is determined in the same manner as the color
space of any other image.

The data from the BACK chunk takes effect the next time the decoder needs to insert a background layer,
and remains in effect until another BACK chunk appears.

For the purpose of counting layers, when the background consists of both a background color and a back-
ground image, these are considered to generate a single layer and there is no delay between displaying the
background color and the background image.

Multiple instances of the BACK chunk are permitted in a MNG datastream.

The BACK chunk can be omitted. If a background is needed and the BACK chunk is omitted, then the viewer
must supply its own background. For the purpose of counting layers, such a viewer-supplied background
layer is counted the same as a background supplied by the BACK chunk.

In practice, most applications that use MNG as part of a larger composition should ignore the BACK data
if mandatorybackground=0 and the application already has its own background definition. This will fre-
quently be the case in World Wide Web pages, to achieve nonrectangular transparent animations displayed
against the background of the page.

4.3.2 FRAM Frame definitions

The FRAM chunk provides information that a decoder needs for generating frames and interframe delays.
The FRAM parameters govern how the decoder is to behave when it encounters a FRAM chunk, an embed-
ded image, or a SHOW chunk. The FRAM chunk also delimits subframes.

If bit 1 of the MHDR simplicity profile is 0 and bit 0 is 1, the FRAM chunk must not be present.

An empty FRAM chunk is just a subframe delimiter. A nonempty one is a subframe delimiter, and it also
changes FRAM parameters, either for the upcoming subframe or until reset (“upcoming subframe” refers to
the subframe immediately following the FRAM chunk). When the FRAM chunk is not empty, it contains

4. MNG CHUNKS 47

a framing-mode byte, an optional name string, a zero-byte separator, plus four 1-byte fields plus a variable
number of optional fields.

When the FRAM parameters are changed, the new parameters affect the subframe that is about to be defined,
not the one that is being terminated by the FRAM chunk.

Framing mode: 1 byte.

0: Do not change framing mode.

1: No background layer is generated, except for one
ahead of the very first foreground layer in the
datastream. The interframe delay is associated with
each foreground layer in the subframe.

2: No background layer is generated, except for one
ahead of the very first image in the datastream.
The interframe delay is associated only with the
final layer in the subframe. A zero interframe

delay
is associated with the other layers in the subframe.

3: A background layer is generated ahead of each
foreground layer. The interframe delay is

associated
with each foreground layer, and a zero delay is
associated with each background layer.

4: The background layer is generated only ahead of the
first foreground layer in the subframe. The
interframe delay is associated only with the final
foreground layer in the subframe. A zero interframe
delay is associated with the background layers,
except when there is no foreground layer in the
subframe, in which case the interframe delay is
associated with the sole background layer.

Subframe name: 0 or more bytes (Latin-1 Text). Can be omitted; if so, the
subframe is nameless.

Separator: 1 byte: (null). Must be omitted if all remaining fields
are also omitted.

Change interframe delay:
1 byte.

0: No.
1: Yes, for the upcoming subframe only.
2: Yes, also reset default.

48

This field and all remaining fields can be omitted as a
group if no frame parameters other than the framing mode

or
the subframe name are changed.

Change timeout and termination:
1 byte

0: No.
1: Deterministic, for the upcoming subframe only.
2: Deterministic, also reset default.
3: Decoder-discretion, for the upcoming subframe only.
4: Decoder-discretion, also reset default.
5: User-discretion, for the upcoming subframe only.
6: User-discretion, also reset default.
7: External-signal, for the upcoming subframe only.
8: External-signal, also reset default.

This field can be omitted only if the previous field is
also

omitted.

Change layer clipping boundaries:
1 byte.

0: No.
1: Yes, for the upcoming subframe only.
2: Yes, also reset default.

This field can be omitted only if the previous field is
also

omitted.

Change sync id list:
1 byte.

0: No.
1: Yes, for the upcoming subframe only.
2: Yes, also reset default list.

This field can be omitted only if the previous field is
also

omitted.

Interframe delay:
4 bytes (unsigned integer). This field must be omitted if

the change interframe delay field is zero or is omitted.
The range is [0..2ˆ31-1] ticks.

Timeout: 4 bytes (unsigned integer). This field must be omitted if
the change timeout and termination field is zero or is
omitted. The range is [0..2ˆ31-1]. The value 2ˆ31-1

4. MNG CHUNKS 49

(0x7fffffff) ticks represents an infinite timeout
period.

Layer clipping boundary delta type:
1 byte (unsigned integer).

0: Layer clipping boundary values are given directly.
1: Layer clipping boundaries are determined by adding

the
FRAM data to the values from the previous subframe.

This and the following four fields must be omitted if the
change layer clipping boundaries field is zero or is
omitted.

Left layer cb or Delta left layer cb:
4 bytes (signed integer).

Right layer cb or Delta right layer cb:
4 bytes (signed integer).

Top layer cb or Delta top layer cb:
4 bytes (signed integer).

Bottom layer cb or Delta bottom layer cb:
4 bytes (signed integer).

Sync id: 4 bytes (unsigned integer). Must be omitted if
change sync id list=0 and can be omitted if the new list
is empty; repeat until all sync ids have been listed.
The range is [0..2ˆ31-1].

Framing modes:

The framing mode provides information to the decoder that it uses whenever it is about to display an
image, and when it is processing thenextFRAM chunk.

Any of these events generates a layer, even if no pixels are actually changed:

• Decoding a IHDR-IEND sequence at the MNG level, when it defines a potentially visible image.

• Decoding a JHDR-IEND sequence at the MNG level, when it defines a potentially visible image.

• Decoding a DHDR-IEND sequence, when it defines a potentially visible image.

• Decoding a BASI-IEND sequence, when it defines a potentially visible image.

• Decoding a CLON chunk, when it defines a potentially visible image.

• Decoding a PAST chunk, when its destination is a potentially visible image.

50

• Decoding a SHOW chunk, when it directs that a potentially visible image be displayed. When the
SHOW chunk directs that several images be displayed, each one in turn generates a separate layer (or
two layers, if the framing mode requires that a background layer be inserted before each).

• Decoding a MAGN chunk, when it directs that an existing potentially visible image be magnified.
When the MAGN chunk directs that several images be magnified and displayed, each one in turn
generates a separate layer.

• Also, decoding a FRAM chunk, when the current framing mode requires a background layer (framing
mode is 3 or 4) and none of the above have already caused the background layer to be inserted since the
previous FRAM chunk. Such background layers must be included in thenominal layer count
field of the MHDR chunk.

When a decoder is ready to perform a display update, it must check the framing mode, to decide whether
it should restore the background (framing modes 3 and 4) or not (framing modes 1 and 2), and whether it
needs to wait for the interframe delay to elapse before continuing (framing modes 1 and 3) or not (framing
modes 2 and 4).

When the interframe delay is zero, viewers are not required actually to update the display but can continue to
process the remainder of the frame and composite the next image over the existing frame before displaying
anything. The final result must appear the same as if each image had been displayed in turn with no delay.

Regardless of the framing mode, encoders must insert a background layer, with a zero delay, ahead of the
first image layer in the datastream, even when the BACK chunk is not present or has been clipped to less
than full-frame. This layer must be included in the layer count but not in the frame count.

Also, viewers that jump to a segment must insert a background layer, with a zero delay, ahead of the segment,
even when the BACK chunk is not present in the prologue segment, if they jumped from the interior of a
segment. Such layers arenot included in either the layer count or the frame count.

Framing mode 1
When framing mode is 1, the decoder must wait until the interframe delay for the previous
frame has elapsed before displaying each image. Each foreground layer is a separate subframe and
frame.

Framing mode 2
Framing mode 2 is the same as framing mode 1, except that the interframe delay occurs be-
tween subframes delimited by FRAM chunks rather than between individual layers. All of the
foreground layers between consecutive FRAM chunks make up a single subframe.

In the usual case, the interframe delay is nonzero, and multiple layers are present, so each frame is
a single subframe composed of several layers. When the interframe delay is zero, the subframe is
combined with subsequent subframes until one with a nonzero interframe delay is encountered, to
make up a single frame.

The decoder must wait until the interframe delay for the previous frame has elapsed before displaying
the frame. When framingmode=2, viewers are expected to display all of the images in a frame at

4. MNG CHUNKS 51

once, if possible, or as fast as can be managed, without clearing the display or restoring the back-
ground.

Framing mode 3
When framingmode=3, a background layer is generated and displayed immediately before
each image layer is displayed. Otherwise, framing mode 3 is identical to framing mode 1. Each
foreground layer together with its background layer make up a single subframe and frame.

When the background layer is transparent or does not fill the clipping boundaries of the image layer,
the application is responsible for supplying a background color or image against which the image layer
is composited, and if the MNG is being displayed against a changing scene, the application should
refresh the entire MNG frame against a new copy of the background layer whenever the application’s
background scene changes (see the “background transparency” bit of the simplicity profile).

Framing mode 4
When framing mode=4, the background layer is generated and displayed immediately be-
fore each frame, i.e., after each FRAM chunk, with no interframe delay before each image. The
decoder must wait until the interframe delay for the previous frame has elapsed before displaying the
background layer. Otherwise, framing mode 4 is identical to framing mode 2. All of the foreground
layers between consecutive FRAM chunks, together with one background layer, make up a single
subframe.

A transparent or clipped background layer is handled as in framing mode 3.

The subframe name must conform to the same formatting rules as those for a PNG tEXt keyword: It must
consist only of printable Latin-1 characters and must not have leading or trailing blanks, but can have single
embedded blanks. There must be at least one (unless the subframe name is omitted) and no more than
79 characters in the keyword. Keywords are case-sensitive. There is no null byte within the keyword. No
specific use for the subframe name is specified in this document, except that it can be included in the optional
index that can appear in the SAVE chunk. Applications can use this field for such purposes as constructing
an external list of subframe in the datastream. The subframe name only applies to the upcoming subframe;
subsequent subframes are unnamed unless they also have their ownframe name field. It is recommended
that the same name not appear in any other FRAM chunk or in any SEEK or eXPI chunk. Subframe
names should not begin with the case-insensitive strings “CLOCK(”, “FRAME(”, or “FRAMES(”, which
are reserved for use in URI queries and fragments (see Uniform Resource Identifier below).

The interframe delay value is the desired minimum time to elapse from the beginning of displaying one
frame until the beginning of displaying the next frame. When the interframe delay is nonzero, which will
probably be the usual case, layers are frames. When it is zero, a frame consists of any number of consecutive
subframes, until a nonzero delay subframe is encountered and completed. Decoders are not obligated or
encouraged to display such subframes individually; they can composite them offscreen and only display the
complete frame.

There is no interframe delay before the first layer (the implicit background layer) in the datastream nor after
the final frame, regardless of the framing mode.

The timeout field can be a number or<infinity>. Infinity can be represented by 0x7fffffff. Under certain

52

termination conditions, the application can adjust the interframe delay, provided that it is not greater than
the sum of the specified interframe delay and the timeout.

The termination condition given in thechange timeout and termination field specifies whether
and over what range the normal interframe delay can be lengthened or shortened. It can take the following
values:

deterministic
The frame endures no longer than the normal interframe delay. Even though this is the de-
fault, a streaming encoder talking to a real-time decoder might write a FRAM with a termination
condition of “deterministic” to force the display to be updated while the encoder decides its next
move.

decoder-discretion
If the interframe delay is nonzero, the decoder can shorten or lengthen the duration of the
frame, to any duration between the interframe delay and the timeout. A streaming decoder could take
the opportunity to wait for its input buffer to fill to a comfortable level.

user-discretion
If the interframe delay is nonzero, the decoder should wait for permission from the user (e.g.,
via a keypress) before proceeding, but must wait no less than the smaller of the timeout and the
interframe delay nor no longer than the greater of the timeout and the interframe delay. If the decoder
cannot interact with the user, this condition degenerates into “decoder-discretion”.

external-signal
If the interframe delay is nonzero, the decoder should wait for the arrival of a signal whose
number matches async id , but must wait no less than the smaller of the timeout and the interframe
delay nor no longer than the greater of the timeout and the interframe delay. If the decoder cannot
receive signals, this condition degenerates into “decoder-discretion”.

Thesync id list can be omitted if the termination condition is not “external-signal”.

When thesync id list is changed, the number ofsync id entries is determined by the remaining length
of the chunk data, divided by four. This number can be zero, which either inactivates the existingsync id
list for one frame or deletes it.

The initial values of the FRAM parameters are:

Framing mode = 1
Subframe name = <empty string>
Interframe delay = 1
Left subframe boundary = 0
Right subframe boundary = frame width
Top subframe boundary = 0
Bottom subframe boundary = frame height
Termination = deterministic
Timeout = 0x7fffffff (infinite)
Sync id = <empty list>

4. MNG CHUNKS 53

The layer clipping boundaries from the FRAM chunk are only used for clipping, not for placement. The
DEFI or MOVE chunk can be used to specify the placement of each image within the layer. The DEFI
or CLIP chunk can be used to specify clipping boundaries for each image. Even when the left and top
subframe boundaries are nonzero, the image locations are measured with respect to the{0,0} position in the
display area. The left and top subframe boundaries are inclusive, while the right and bottom boundaries are
exclusive.

If the layers do not cover the entire area defined by the layer clipping boundaries with opaque pixels, they
are composited against whatever already occupies the area, when the framing mode is 1 or 2. When the
framing mode is 3 or 4, they are composited against the background defined by the BACK chunk, or against
an application-defined background, if the BACK chunk is not present or does not define a mandatory back-
ground. The images, as well as the background, are clipped to the layer clipping boundaries for the subframe.
Any pixels outside the layer clipping boundaries remain unchanged from the previous layer.

The interframe delay field gives the duration of display, which is the minimum time that must elapse
from the beginning of displaying one layer until the beginning of displaying the next (unless the termination
condition and timeout permit this time to be shortened). It is measured in “ticks” using the tick length
determined fromticks per second defined in the MHDR chunk. When the interframe delay is zero,
it indicates that the layer is to be combined with the subsequent layer or layers into a single frame, until a
nonzero interframe delay is specified or the MEND chunk is reached.

A viewer does not actually have to follow the procedure of erasing the screen, redisplaying the background,
and recompositing the images against it, but what is displayed when the frame is complete must be the same
as if it had. It is sufficient to redraw the parts of the display that change from one frame to the next.

Thesync id list provides a point at which the processor must wait for all pending processes to reach the
synchronization point having the samesync id before resuming, perhaps because of a need to synchronize
a sound datastream (not defined in this specification) with the display, to synchronize stereo images, and the
like. When the period defined by the sum of theinterframe delay and thetimeout fields elapses,
processing can resume even though the processor has not received an indication that other processes have
reached the synchronization point.

Note that the synchronization point does not occur immediately, but at the end of the first frame that follows
the FRAM chunk.

The identifiersync id=0 is reserved to represent synchronization with a user input from a keyboard or
pointing device. Thesync id values 1–255 are reserved to represent the corresponding ASCII letter,
received from the keyboard (or a simulated keyboard), and values 256–1023 are reserved for future definition
by this specification. If multiple channels (not defined in this specification) are not present, viewers can
ignore other values appearing in thesync id list.

Note that the rules for omitting the interframe delay, timeout, clipping boundary, and sync id fields of the
FRAM chunk are different from the general rule stated in MNG Chunks, above (Chapter 4). These fields are
either present in the chunk data or omitted from it according to the contents of the corresponding “change”
byte.

54

4.3.3 MOVE New image location

The MOVE chunk gives a new location of an existing object or objects (replacing or incrementing the
location given in the DEFI chunk).

The position is measured downward and to the right of the frame origin, in pixels, where the named object
or group of objects is to be located.

The chunk’s contents are:

First object: 2 bytes (unsigned integer).

Last object: 2 bytes (unsigned integer).

Location delta type:1 byte (unsigned integer).
0: MOVE data gives X location and Y location

directly.
1: New locations are determined by adding the MOVE

data to the location of the parent object.

X location or delta X location:
4 bytes (signed integer).

Y location or delta Y location:
4 bytes (signed integer).

The new location applies to a single object, iffirst object=last object , or to a group of consecu-
tive object ids , if they are different.Last object must not be less thanfirst object . Negative
values are permitted for the X and Y location. The positive directions are downward and rightward from the
frame origin. The MOVE chunk can specify an image placement that is partially or wholly outside the dis-
play boundaries. In such cases, the resulting image must be clipped to fit within its clipping boundaries, or
not displayed at all if it falls entirely outside its clipping boundaries. The clipping boundaries are determined
as described in the specification for the CLIP chunk below (Paragraph 4.3.4). The left and top boundaries
are inclusive, while the right and bottom boundaries are exclusive.

It is not an error for the MOVE chunk to name an object that has not previously been defined. In such cases,
nothing is done to the nonexistent object. It is permitted to move “frozen” objects provided that the encoder
includes chunks to move them back to their original positions prior to then end of the segment.

When an object is discarded, its set of object attributes, which includes the MOVE data, is also discarded.

4.3.4 CLIP Object clipping boundaries

This chunk gives the new boundaries (replacing or incrementing those from the DEFI chunk) to which an
existing object or group of objects must be clipped for display. It contains the following 21 bytes:

4. MNG CHUNKS 55

First object: 2 bytes (unsigned integer).

Last object: 2 bytes (unsigned integer).

Clip delta type: 1 byte (unsigned integer).
0: CLIP data gives boundary values

directly.
1: CLIP boundaries are determined by

adding the CLIP data to their
previous values for this object.

Left cb or delta left cb: 4 bytes (signed integer).

Right cb or delta right cb: 4 bytes (signed integer).

Top cb or delta top cb: 4 bytes (signed integer).

Bottom cb or delta bottom cb: 4 bytes (signed integer).

The new clipping boundaries apply to a single object, iffirst object=last object , or to a group of
consecutive objects, if they are different. thelast object must not be less thanfirst object .

The clipping boundaries are expressed in pixels, measured rightward and downward from the frame origin.

The left and top clipping boundaries are inclusive and the right and bottom clipping boundaries are exclusive,
i.e., the pixel located at{x,y} is only displayed if the pixel falls within the physical limits of the display
hardware and all of the following are true:

0 <= x < frame width (from the MHDR chunk)
0 <= y < frame height
Left lcb <= x < right lcb (from the FRAM chunk)
Top lcb <= y < bottom lcb
Left cb <= x < right cb (from the CLIP chunk)
Top cb <= y < bottom cb

It is not an error for the CLIP chunk to name an object that has not previously been defined. In such cases,
nothing is done to the nonexistent object. It is permitted to clip “frozen” objects provided that another CLIP
chunk resets them to their original values prior to the end of the segment.

When an object is discarded, its set of object attributes, which includes the CLIP data, is also discarded.

4.3.5 SHOW Show images

The SHOW chunk is used to change the potential visibility of one or more previously-defined objects and
to direct that they be displayed. It contains 2, 4, or 5 bytes, or it can be empty. When any field is omitted,
all remaining fields must also be omitted.

56

First image: 2 bytes (nonzero unsigned integer).

Last image: 2 bytes (nonzero unsigned integer). This field can be
omitted if the show mode byte is also omitted. If so,
decoders must assume the default values, show mode=0 and
last image=first image.

Show mode: 1 byte (unsigned integer).
0: Make the images potentially visible and display them

(set do not show=0).
1: Make the images invisible (set do not show=1).
2: Do not change do not show flag; display those that are

potentially visible.
3: Mark images "potentially visible" (do not show=0), but

do not display them.
4: Toggle do not show flag; display any that are

potentially visible after toggling.
5: Toggle do not show flag, but do not display even if

potentially visible after toggling.
6: Step through the images in the given range, making the

next image potentially visible (set do not show=0) and
display it. Set do not show=1 for all other images in
the range. Jump to the beginning of the range when
reaching the end of the range. Perform one step for
each SHOW chunk (in reverse order
if last image < first image).

7. Make the next image in the range (cycle) potentially
visible (do not show=0), but do not display it. Set
do not show=1 for the rest of the images in the range.

This field can be omitted. If so, decoders must assume the
default, show mode=0.

The decoder processes the objects (or images) named in the SHOW chunk in the orderfirst image
throughlast image , and resets thedo not show flag for each of the objects. Ifshow mode is even-
valued, it also displays the images if they are potentially visible and are viewable images.

When the SHOW chunk is empty, the decoder displays all existing potentially visible images, without chang-
ing theirdo not show status. The empty SHOW chunk is equivalent to

SHOW 1 65535 2

If last image < first image the images are processed in reverse order.

Whenshow mode is odd-valued, nothing is displayed unless a subsequent SHOW chunk with an even-
valuedshow mode appears.

Interactions with the framing mode
When show mode is even-valued, each visible image that is displayed generates a separate

4. MNG CHUNKS 57

layer, even if it is offscreen and no pixels are actually displayed. In such cases, the layer is totally
transparent. Whenshow mode is odd, or whenshow mode is 2 or 4 or is empty and no image is
visible, no layer is generated.

Whenshow mode is 1, 4, 5, 6, or 7, images can be made invisible. This is not permitted when
the framing mode is 2 or 4 in the FRAM chunk and the images have already appeared in the frame,
because simple viewers will have already drawn them and have no way to make them invisible again
without redrawing the entire frame.

When show mode is 6 or 7, a single layer is generated. The decoder must make the next image in
the “cycle” visible. To do this, it must examine thedo not show flag for each image in the range
first image through last image , and make the next one (the one with the next higher value of
image id that exists and is “viewable”) after the first visible one it finds visible and the rest invisible.
When first image > last image , the cycle is reversed, and the “next” image is the one with the
next lower value ofimage id . In either case, if the first visible one found waslast id , or none were
visible, it must makefirst image visible. These modes are useful for manipulating a group of sequen-
tial images that represent different views of an animated icon. See Example 8, below (Chapter 19). If no
“viewable” object is in the specified range, an empty layer must be generated.

Whenshow mode is 0, 2, 4, or 6, separate layers will be generated, each containing an instance of one
visible image at the location specified by the DEFI, CLON, or MOVE chunk and clipped according to the
boundaries specified by the CLIP and FRAM chunks. When the MOVE or CLON chunk is used in the delta
form, which will frequently be the case, each image must be displaced from its previous position by the
values given in the MOVE or CLON chunk.

Assuming a nonzero interframe delay, any of the following sequences would cause the image identified by
object id=6 in a composite frame to blink:

LOOP 0 0 10
FRAM 4 # Show background
SHOW 1 10 # Show images 1 thru 10.
FRAM # Show background
SHOW 1 5 # Show images 1 thru 5.
SHOW 7 10 # Show images 7 thru 10.
ENDL

FRAM 4 # Show background
LOOP 0 0 10
SHOW 1 5 # Show images 1 thru 5.
SHOW 6 6 4 # Toggle potential visibility of image 6
SHOW 7 10 # and show it; show images 7 thru 10.
FRAM
ENDL

FRAM 4 # Show background
LOOP 0 0 10
SHOW 6 6 5 # Toggle potential visibility of image 6.
SHOW 1 10 2 # Show potentially visible images in 1

58

FRAM # through 10.
ENDL

It is not necessary to follow an IHDR-IEND, JHDR-IEND, BASI-IEND, or DHDR-IEND sequence or
PAST chunk with a SHOW chunk to display the resulting image, if it was already caused to appear by
do not show=0 in the DEFI chunk that introduced the image. Similarly, the CLON chunk need not be
followed by a SHOW chunk, ifdo not show=0 in the CLON chunk.

It is not an error for the SHOW chunk to name a nonviewable object or an object that has not previously
been defined. In such cases, nothing is done to the nonexistent object. It is permitted to change the potential
visibility of “frozen” objects provided that another SHOW chunk resets them to their original values prior
to the end of the segment.

4.4 SAVE and SEEK chunks

The SAVE chunk marks a point in the datastream at which objects are “frozen” and other chunk information
is “saved”. The SEEK chunk marks positions in the MNG datastream where a restart is possible, and where
the decoder must restore the “saved” information, if they have jumped or skipped to a SEEK point from the
interior of a segment. They only need to restore information that they will use, e.g., a viewer that processes
gAMA and global PLTE and tRNS, but ignores iCCP and sPLT, need only restore the value of gamma and
the global PLTE and tRNS data from the prologue segment but not the values of the iCCP and sPLT data.

Simple decoders that only read MNG datastreams sequentially can safely ignore the SAVE and SEEK
chunks, although it is recommended that, for efficient use of memory, they at least mark existing objects
as “frozen” when the SAVE chunk is processed and discard all “unfrozen” objects whenever the SEEK or
empty DISC chunk is processed.

4.4.1 SAVE Save information

The SAVE chunk marks a point in the datastream at which objects are “frozen” and other chunk information
is “saved”; a decoder skipping or jumping to a SEEK chunk from the interior of a segment must restore the
“saved” chunk information if it has been redefined or discarded. In addition, the SAVE chunk can contain
an optional index to the MNG datastream.

The SAVE chunk can be empty, or it can contain an index consisting of the following:

Offset size: 1 byte (unsigned integer).
4: Offsets and nominal start times are expressed as

32-bit
integers.

8: Offsets and nominal start times are expressed as
64-bit

integers.

4. MNG CHUNKS 59

plus zero or more of the following index entries:

Entry type: 1 byte (unsigned integer).
0: Segment with nominal start time, nominal layer number,

and nominal frame number.
1: Segment.
2: Subframe.
3: Exported image.

Offset: 4 or 8 bytes (unsigned integer). Must be omitted if
entry type > 1, set equal to zero if the offset is
unknown.

Nominal start time:
4 or 8 bytes: (unsigned integer). Start time of the segment,

measured in ticks from the beginning of the sequence,
assuming that all prior segments were played as intended on
an ideal player, ignoring any fPRI chunks. Must be omitted
if entry type > 0.

Nominal layer number:
4 bytes (unsigned integer). Sequence number of the first

layer in the segment, assuming that all prior segments were
played as intended on an ideal player, ignoring any fPRI
chunks; the first layer of the first segment being layer 0.
Must be omitted if entry type > 0.

Nominal frame number:
4 bytes (unsigned integer). Sequence number of the first

frame in the segment, assuming that all prior segments were
played as intended on an ideal player, ignoring any fPRI
chunks; the first frame of the first segment being frame 0.
Must be omitted if entry type > 0.

Name: 1-79 bytes (Latin-1 text). Must be omitted for unnamed
segments. The contents of this field must be the same as
the name field in the corresponding SEEK, FRAM, or eXPI
chunk.

Separator: 1 byte (null) (must be omitted after the final entry).

The SAVE chunk must be present when the SEEK chunk is present. It appears after the set of chunks that
define information that must be retained for the remainder of the datastream. These chunks, collectively
referred to as the prologue segment, are no different from chunks in other segments. They can be chunks
that define objects, or they can be chunks that define other information such as gAMA, cHRM, and sPLT. If
any chunks appear between the SAVE chunk and the first SEEK chunk, these chunks also form a part of the
prologue segment, but their contents become undefined when the SEEK chunk appears.

Only one instance of the SAVE chunk is permitted in a MNG datastream. It is not allowed anywhere after
the first SEEK chunk.

It is not permitted, at any point beyond the SAVE chunk, to modify or discard any object that was defined
ahead of the SAVE chunk.

An object appearing ahead of the SAVE chunk can be the subject of a CLON chunk. If the clone is a partial

60

clone, modifying it is not permitted, because this would also modify the object buffer that the original object
points to.

A chunk like gAMA that overwrites a single current value is permitted after the SAVE chunk, even if the
chunk has appeared ahead of the SAVE chunk. Decoders are responsible for saving a copy of the chunk data
(in any convenient form) when the SAVE chunk is encountered and restoring it when skipping or jumping
to a SEEK chunk from the interior of a segment. If no instance of the chunk appeared ahead of the SAVE
chunk, the decoder must restore the chunk data to its original “unknown” condition when it skips or jumps
to a SEEK chunk from the interior of a segment.

It is the encoder’sresponsibility, if it changes or discards any “saved” data, to restore it to its “saved”
condition (or to nullify it, if it was unknown) prior to the end of the segment. This makes it safe for simple
decoders to ignore the SAVE/SEEK mechanism.

Known chunks in this category include DEFI, FRAM, BACK, PLTE, cHRM, tRNS, fPRI, gAMA, iCCP,
bKGD, sBIT, pHYg, pHYs, and sRGB. In addition, it is the responsibility of the encoder to include chunks
that restore the potential visibility, location, and clipping boundaries of any “frozen” objects to their “saved”
condition.

In the case of chunks like sPLT that can occur multiple times, with different “purpose” fields, additional
instances of the chunk are permitted after the SAVE chunk, but not with the same keyword as any instances
that occurred ahead of the SAVE chunk. The decoder is required to forget such additional instances when it
skips or jumps to a SEEK chunk from the interior of a segment, but it must retain those instances that were
defined prior to the SAVE chunk. Encoders are required to nullify such additional instances prior to the end
of the segment. Known chunks in this category include only sPLT.

If an entry for a segment (entry type 0 or 1) appears in the optional index, there must also be an entry
for every segment, whether named or not, except for the prologue segment, that precedes it. All entries
must appear in the index in the same order that they appear in the MNG datastream. There must never be a
segment entry (type 0 or 1) for the prologue segment, but there can be entries for named images or subframes
in the prologue, placed ahead of the first segment entry. Only named images or subframes are permitted,
and it is not an error to omit any or all named images or subframes. Nor is it an error to omit a contiguous
set of segments at the end of the datastream from the index.

Offsets are calculated from the first byte of the MNG 8-byte signature, which has offset=0. This is true even
if the MNG datastream happens to be embedded in some other file and the signature bytes are not actually
present.

Applications with direct access to the datastream can use the index to find segments, subframes, and exported
images quickly. After processing the prologue segment, they can jump directly to any segment and then
process the remaining datastream until the desired subframe, image, or time is found. Applications that
have only streaming access to the datastream can still use the index to decide whether to decode the chunks
in a segment or to skip over them.

Only one instance of the SAVE chunk is permitted in a MNG datastream. If the SEEK chunk is present,
the SAVE chunk must be present, prior to the first SEEK chunk. The only chunks not allowed ahead of
the SAVE chunk are the SEEK chunk and the MEND chunk. The SAVE chunk must not appear inside a
LOOP-ENDL pair.

4. MNG CHUNKS 61

4.4.2 SEEK Seek point

The SEEK chunk marks positions (“seek points”) in the MNG datastream where a restart is possible, and
where the decoder must restore certain information to the condition that existed when the SAVE chunk was
processed, if it has skipped or jumped to the SEEK chunk from the interior of a segment.

The SEEK chunk can be empty, or it can contain a segment name.

Segment name: 1-79 bytes (Latin-1 string).

The segment name is optional. It must follow the format of a tEXt keyword: It must consist only of printable
Latin-1 characters and must not have leading or trailing blanks, but can have single embedded blanks. There
must be at least one and no more than 79 characters in the keyword. There is no null byte terminator within
the segment name, nor is there a separate null byte terminator. Segment names are case-sensitive. Use
caution when printing or displaying keywords (Refer to Security considerations, below, Chapter 17). No
specific use for the segment name is specified in this document, but applications can use the segment name
for such purposes as constructing a menu of seek points for a slide-show viewer. It can be included in the
optional index that can appear in the SAVE chunk. It is recommended that the same name not appear in
any other SEEK chunk or in any FRAM or eXPI chunk. Segment names should not begin with the case-
insensitive strings “CLOCK(”, “FRAME(”, or “FRAMES(”, which are reserved for use in URI queries and
fragments (see Uniform Resource Identifier below).

Applications must not use any information preceding the SEEK chunk, except for:

• Data appearing in the MHDR chunk.

• Anything appearing ahead of the SAVE chunk.

They also must not depend on anything that has been drawn on the output buffer or device. Its contents
become undefined when the SEEK chunk is encountered. Decoders that make random access to a seek point
from the interior of a segment must insert a background layer before processing the segment. Encoders must
ensure that simple viewers do not need to do this.

When the SEEK chunk is encountered, the decoder can discard any objects appearing after the SAVE chunk,
as though an empty DISC chunk were present.

In addition to providing a mechanism for skipping frames or backspacing over frames, the SEEK chunk
provides a means of dealing with a corrupted datastream. The viewer would abandon processing and simply
look for the next SEEK chunk before resuming. Note that looking for a PNG IHDR chunk would not be
sufficient because the PNG datastream might be inside a loop or a Delta-PNG datastream, or it might need
data from preceding MOVE or CLIP chunks.

When a decoder jumps to a seek point from the interior of a segment, it must restore the information that it
saved when it processed the SAVE chunk, and it must reset the object attributes and magnification factors
for object 0 to their default values. When it encounters a SEEK chunk during normal sequential processing
of a MNG datastream, it need not restore anything, because the encoder will have written chunks that restore
all saved information.

62

Multiple instances of the SEEK chunk are permitted. The SEEK chunk must not appear prior to the SAVE
chunk. The SAVE chunk must also be present if the SEEK chunk is present. The SEEK chunk must not
appear between a LOOP chunk and its ENDL chunk.

4.5 Ancillary MNG chunks

This section describes ancillary MNG chunks. MNG-compliant decoders are not required to recognize and
process them.

4.5.1 eXPI Export image

The eXPI chunk takes a snapshot of a viewable object (either concrete or abstract), associates the name with
that snapshot, and makes the name available to the “outside world” (like a scripting language).

The chunk contains an object identifier (snapshot id) and a name:

Snapshot id: 2 bytes (unsigned integer). Must be zero in
MNG-LC and MNG-VLC datastreams.

Snapshot name: 1-79 bytes (Latin-1 text).

When the snapshotid is zero, the snapshot is the first instance of an embedded image with objectid=0
following the eXPI chunk. When the snapshotid is nonzero, the snapshot is an already-defined object with
that objectid as it already exists when the eXPI chunk is encountered.

Note that thesnapshot name is associated with the snapshot, not with thesnapshot id nor its
subsequent contents; changing the image identified bysnapshot id will not affect the snapshot. The
snapshot name means nothing inside the scope of the MNG specification, except that it can be included
in the optional index that can appear in the SAVE chunk. If two eXPI chunks use the same name, it is the
outside world’s problem (and the outside world’s prerogative to regard it as an error). It is recommended,
however, that thesnapshot name not be the same as that appearing in any other eXPI chunk or in any
FRAM or SEEK chunk. A decoder that knows of no “outside world” can simply ignore the eXPI chunk.
This chunk could be used in MNG datastreams that define libraries of related images, rather than animations,
to allow applications to extract images by theirsnapshot id .

Names beginning with the word “thumbnail” are reserved for snapshot images that are intended to make
good icons for the MNG. Thumbnail images are regular PNG or Delta-PNG images, but they would nor-
mally have smaller dimensions and fewer colors than the MNG frames. They can be defined with the
potential visibility field set to “invisible” if they are not intended to be shown as a part of the regular display.

Thesnapshot name string must follow the format of a tEXt keyword: It must consist only of printable
Latin-1 characters and must not have leading or trailing blanks, but can have single embedded blanks. There
must be at least one and no more than 79 characters in the keyword. Keywords are case-sensitive. There
is no null byte terminator within thesnapshot name string, nor is there a separate null byte terminator.

4. MNG CHUNKS 63

Snapshot names should not begin with the case-insensitive strings “CLOCK(”, “FRAME(”, or “FRAMES(”
which are reserved for use in URI queries and fragments (see Uniform Resource Identifier below).

Multiple instances of the eXPI chunk are permitted in a MNG datastream, and they need not have different
values ofsnapshot id .

4.5.2 fPRI Frame priority

The fPRI chunk allows authors to assign a priority to a portion of the MNG datastream. Decoders can decide
whether or not to decode and process that part of the datastream based on its “priority” compared to some
measure of “cost”.

The fPRI chunk contains two bytes:

fPRI delta type: 1 byte (unsigned integer).
0: Priority is given directly.
1: Priority is determined by adding the fPRI

data to
the previous value, modulo 256.

Priority or delta priority:
1 byte (signed integer). Value to be assigned to

subsequent chunks until another fPRI chunk is
reached.

While 256 distinct values ofpriority are possible, it is recommended that only the values 0 (low priority),
128 (medium priority), and 255 (high priority) be used. Viewers that can only display a single image can
look for one withpriority=255 and stop after displaying it. If the datastream contains a large number
of frames and includes periodic “initial” frames that do not contain Delta-PNG datastreams, each “initial”
frame could be preceded by a fPRI withpriority=128 and followed by one withpriority=0 , and the
best representative initial frame could be preceded by a fPRI chunk withpriority=255 . Then single-
image viewers would just display the representative frame, slow viewers would display just the “initial”
frames, and fast viewers would display everything.

If a viewer has established a nonzero “cost”, it must skip any portion of the datastream whose priority is less
than that “cost”. The “cost” must be established prior to processing the proloque segment. If the decoder
changes its “cost” it must process again according to the new “cost”, unless it knows that there were no fPRI
chunks in the prologue segment.

The SAVE, SEEK, and MEND chunks always havepriority=255 ; decoders must look for these chunks
in addition to the fPRI chunk while skipping a low-priority portion of the datastream.

It is not permissible for a portion of the datastream to depend on any portion of the datastream having a lower
value, because a decoder might have skipped the lower value portion. Use of the fPRI chunk is illustrated in
Example 5 and Example 9.

64

Viewers that care about the priority must assumepriority=255 for any portion of the MNG datastream
that is processed prior to the first fPRI chunk.

Multiple instances of the fPRI chunk are permitted.

4.5.3 nEED Resources needed

The nEED chunk can be used to specify needed resources, to provide a quick exit path for viewers that are
not capable of displaying the MNG datastream.

The nEED chunk contains a list of keywords that the decoder must recognize. Keywords are typically private
critical chunk names.

Keyword: 1-79 bytes.
Separator: 1 byte (null).
...etc...

The nEED chunk should be placed early in the MNG datastream, preferably very shortly after the MHDR
chunk.

The keywords are typically 4-character private critical chunk names, but they could be any string that a
decoder is required to recognize. No critical chunks defined in this specification or in the PNG specification
should be named in a nEED chunk, because MNG-compliant decoders are required to recognize all of
them, whether they appear in a nEED chunk or not. The purpose of the nEED chunk is only to identify
requirements that are above and beyond the requirements of this document and of the PNG specification.

Each keyword string must follow the format of a tEXt keyword: It must consist only of printable Latin-1
characters and must not have leading or trailing blanks, but can have single embedded blanks. There must
be at least one and no more than 79 characters in the keyword. Keywords are case-sensitive. There is no
null byte terminator within the keyword. A null separator byte must appear after each keyword in the nEED
chunk except for the last one.

Decoders that do not recognize a chunk name or keyword in the list should abandon the MNG datastream or
request user intervention. The normal security precautions should be taken when displaying the keywords.

4.5.4 pHYg Physical pixel size (global)

The MNG pHYg chunk is identical in syntax to the PNG pHYs chunk. It applies to complete full-frame
MNG layers and not to the individual images within them.

Conceptually, a MNG viewer that processes the pHYg chunk will first composite each image into a full-
frame layer, then apply the pHYg scaling to the layer, and finally composite the scaled layer against the
frame. MNG datastreams can include both the PNG pHYs chunk (either at the MNG top level or within
the PNG and JNG datastreams) and the MNG pHYg chunk (only at the MNG top level), to ensure that the
images are properly displayed either when displayed by a MNG viewer or when extracted into a series of

4. MNG CHUNKS 65

individual PNG or JNG datastreams and then displayed by a PNG or JNG application. The pHYs and pHYg
chunks would normally contain the same values, but this is not necessary.

The MNG top-level pHYg chunk can be nullified by a subsequent empty pHYg chunk appearing in the
MNG top level.

4.6 Ancillary PNG chunks

The namespace for MNG chunk names is separate from that of PNG. Only those PNG chunks named in this
paragraph are also defined at the MNG top level. They have exactly the same syntax and semantics as when
they appear in a PNG datastream:

• iTXt, tEXt, zTXt

• tIME Same format as in PNG. Can appear at most once in the prologue segment (before the first SEEK
chunk), and at most once per segment (between two consecutive SEEK chunks). In the prologue
it indicates the last time any part of the MNG was modified. In a regular segment (between SEEK
chunks or between the final SEEK chunk and the MEND chunk), it indicates the last time that segment
was modified.

A MNG editor that writes PNG datastreams should not include the top-level iTXt, tEXt, tIME, and
zTXt chunks in the generated PNG datastreams.

• cHRM, gAMA, iCCP, sRGB, bKGD, sBIT, pHYs

These PNG chunks are also defined at the MNG top level. They provide default values to be used in
case they are not provided in subsequent PNG datastreams. Any of these chunks can be nullified by
the appearance of a subsequent empty chunk with the same chunk name. Such empty chunks are not
legal PNG or JNG chunks and must only appear in the MNG top level.

In the MNG top level, all of these chunks are written as though for 16-bit RGBA PNG datastreams.
Decoders are responsible for reformatting the chunk data to suit the actual bit depth and color type of
the datastream that inherits them.

A MNG editor that writes PNG or JNG datastreams is expected to include the top-level cHRM,
gAMA, iCCP, and sRGB chunks in the generated PNG or JNG datastreams, if the embedded im-
age does not contain its own chunks that define the color space. When it writes the sRGB chunk, it
should write the gAMA chunk (and perhaps the cHRM chunk), in accordance with the PNG specifi-
cation, even though no gAMA or cHRM chunk is present in the MNG datastream. It is also expected
to write the pHYs chunk and the reformatted top-level bKGD chunk in the generated PNG or JNG
datastreams, and the reformatted sBIT chunk only in generated PNG datastreams, when the datas-
tream does not have its own bKGD, pHYs, or sBIT chunks.

The top-level sRGB chunk nullifies the preceding top-level gAMA and cHRM chunks, if any, and
either the top-level gAMA or the top-level cHRM chunk nullifies the preceding top-level sRGB chunk,
if any.

66

• sPLT

This PNG chunk is also defined at the MNG top level. It provides a value that takes precedence over
those that might be provided in subsequent PNG or JNG datastreams and provides a value to be used
when it is not provided in subsequent PNG or JNG datastreams. It also takes precedence over the
PLTE chunk in a subsequent PNG datastream when the PLTE and hIST chunks are being used as a
suggested palette (i.e.,color type != 3). This chunk can appear for any color type. There can
be multiple sPLT chunks in a MNG datastream. If apalette name is repeated, the previous palette
having the samepalette name is replaced. It is not permitted, at the MNG top level, to redefine a
palette after the SAVE chunk with the samepalette name as one that appears ahead of the SAVE
chunk. It is permitted, however, to define and redefine other palettes with otherpalette name
fields. A single empty sPLT chunk can be used to nullify all sPLT chunks that have been previously
defined in the MNG top level, except for those that appeared ahead of the SAVE chunk, when the
SAVE chunk has been read.

When a decoder needs to choose between a suggested palette defined at the MNG level and a sug-
gested palette defined in the PNG datastream (either with the sPLT chunk, or with the PLTE/hIST
chunks for grayscale or truecolor images), it should give precedence to the palette from the MNG
level, to avoid spurious layer-to-layer color changes.

MNG editors that write PNG datastreams should ignore the sPLT data from the MNG level and simply
copy any sPLT chunks appearing within the embedded PNG datastreams.

5 The JPEG Network Graphics (JNG) Format

JNG (JPEG Network Graphics) is the lossy sub-format for MNG objects.

MNG-LC and MNG-VLC applications can choose to support JNG or not. Those that do not can check bit 4
(JNG is present/absent) of the MHDR simplicity profile to decide whether they can process the datastream.

Note: This specification depends on the PNG Portable Network Graphics specification [PNG]. The PNG
specification is available at the PNG home page,

http://www.libpng.org/pub/png/

A JNG datastream consists of a header chunk (JHDR), JDAT chunks that contain a complete JPEG datas-
tream, optional IDAT chunks that contain a PNG-encoded grayscale image that is to be used as an alpha
mask, and an IEND chunk. The alpha mask, if present, must have the same dimensions as the image itself.
The JDAT and IDAT chunks can be interleaved. Some of the PNG ancillary chunks are also recognized in
JNG datastreams.

While JNG is primarily intended for use as a sub-format within MNG, a single-image JNG datastream can
be written in a standalone file. If so, the JNG datastream begins with an 8-byte signature containing

139 74 78 71 13 10 26 10 (decimal)
91 4a 4e 47 0d 0a 1a 0a (hexadecimal)

\213 J N G \r \n \32 \n (ASCII C notation)

5. THE JPEG NETWORK GRAPHICS (JNG) FORMAT 67

which is similar to the PNG signature with “\ 213 J N G” instead of “\ 211 P N G” in bytes 0–3.

We may at some future time register an Internet Media Type for JNG files. Until then, the interim media
typeimage/x-jng can be used. It is recommended that the file extension “.jng” (lower case preferred) be
used.

JNG is pronounced “Jing.”

5.1 Critical JNG chunks

This section specifies the critical chunks that are defined in the JNG format.

5.1.1 JHDR JNG header

The format of the JHDR chunk introduces a JNG datastream. It contains:

Width: 4 bytes (unsigned integer, range 0..65535).
Height: 4 bytes (unsigned integer, range 0..65535).
Color type: 1 byte

8: Gray (Y).
10: Color (YCbCr).
12: Gray-alpha (Y-alpha).
14: Color-alpha (YCbCr-alpha).

Image sample depth:
1 byte

8: 8-bit samples and quantization tables.
12: 12-bit samples and quantization tables.
20: 8-bit image followed by a 12-bit image.

Image compression method:
1 byte

8: ISO-10918-1 Huffman-coded baseline JPEG.

Image interlace method:
1 byte.

0: Sequential JPEG, single scan.
8: Progressive JPEG.

Alpha sample depth:
1 byte.

0, 1, 2, 4, 8, or 16, if the Alpha compression method is 0
(PNG)

8, if the Alpha compression method is 8 (JNG).

Alpha compression method:
1 byte.

68

0: PNG grayscale IDAT format.
8: JNG 8-bit grayscale JDAA format.

Alpha filter method:
1 byte.

0: Adaptive PNG (see PNG spec) or not applicable (JPEG).

Alpha interlace method:
1 byte.

0: Noninterlaced PNG or sequential single-scan JPEG.

The width, height, imagesampledepth, imagecompressionmethod, and imageinterlacemethod fields
are redundant because equivalent information is also embedded in the JDAT datastream. They appear in the
JHDR chunk for convenience. Their values must be identical to their equivalents embedded in the JDAT
chunk. We use four bytes in the width and height fields for similarity to MNG and PNG, and to leave room
for future expansion, even though two bytes would have been sufficient.

When thecolor type is 8 or 10 (no alpha channel), the last four bytes, which describe the IDAT or JDAA
data, must be set to zero. Thealpha sample depth must be nonzero when the alpha channel is present.

5.1.2 JDAT JNG image data

A JNG datastream must contain one or more JDAT chunks, whose data, when concatenated, forms a com-
plete JNG JPEG datastream. JNG decoders are required to read all baseline JNG JPEG and eight-bit pro-
gressive JNG JPEG datastreams. Twelve-bit capability is not required.

JDAT chunks are like PNG IDAT chunks in that there may be multiple JDAT chunks, the data from which
are concatenated to form a single datastream that can be sent to the decompressor. No chunks are permitted
among the sequence of JDAT chunks, except for interleaved IDAT chunks. The ordering requirements of
other ancillary chunks are the same with respect to JDAT as they are in PNG with respect to the IDAT chunk.

A JNG JPEG is a baseline, extended-sequential, or progressive JPEG as defined by JPEG Part 1
[ISO/IEC-10918-1]. JNG uses only JFIF-compatible [JFIF] component interpretations, and imposes a few
additional restrictions that reflect limitations of many existing JPEG implementations. In particular, only
Huffman entropy coding is permitted.

Actually, a JNG may contain two separate JNG JPEG datastreams (one eight-bit and one twelve-bit), each
contained in a series of JDAT chunks, and separated by a JSEP chunk (see the JSEP chunk specification
below, Paragraph 5.1.6). Decoders that are unable to (or do not wish to) handle twelve-bit datastreams are
allowed to display the eight-bit datastream instead, if one is present.

The core of the JNG JPEG definition is baseline JNG JPEG, which is JPEG Part 1’s definition of base-
line JPEG further restricted by JFIF restrictions and JNG-specific restrictions. JNG JPEG also includes
progressive JPEG, which is also defined in JPEG Part 1 and has JNG-specific restrictions.

• Baseline JNG JPEG restrictions

5. THE JPEG NETWORK GRAPHICS (JNG) FORMAT 69

A baseline JPEG according to JPEG Part 1 is DCT-based (lossy) sequential JPEG, using 8-bit sample
precision and Huffman entropy coding, with the following further restrictions:

– Quantization table precision must be 8 bits for baseline JPEG.

– Huffman code tables can have table numbers 0 and 1 only.

The SOF marker type for baseline JPEG is SOF0.

JDAT datastreams must always follow “interchange JPEG” rules: all necessary quantization and
Huffman tables must be included in the datastream; no tables can be omitted.

• JFIF-compatible restrictions

The image data is always stored left-to-right, top-to-bottom.

The encoded data shall have one of the two color space interpretations allowed by the JFIF specifica-
tion:

– Grayscale: a single component representing luminance, ranging from 0 for black to 255 for white
(or 0 to 4095 when dealing with twelve-bit data). This component shall have JPEG component
identifier 1.

– YCbCr: three components representing luminance, chroma blue, and chroma red, in that order.
The components shall be assigned JPEG component identifiers 1, 2, 3 respectively. YCbCr is
defined as a linear transformation from RGB color space:

Y = Luma red*R + Luma green*G + Luma blue*B
Cb = (B - Y) / (2 - 2*Luma blue) + Half scale
Cr = (R - Y) / (2 - 2*Luma red) + Half scale

By convention, the luminance coefficients are always those defined by CCIR Recommendation
601-1:

Luma red = 0.299
Luma green = 0.587
Luma blue = 0.114

The constant Halfscale is 128 when dealing with eight-bit data, 2048 for twelve-bit data. With
these equations, Y, Cb, and Cr all have the same range as R, G, and B: 0 to 255 for eight-bit data,
0 to 4095 for twelve-bit data.

The JFIF convention for YCbCr differs from typical digital television practice in that no head-
room/footroom is reserved: the coefficient values range over the full available 8 or 12 bits.

Intercomponent sample alignment shall be such that the first (upper leftmost) samples of each
component share a common upper left corner position. This again differs from common digital
TV practice, in which the first samples share a common center position. The JFIF convention is
simpler to visualize: subsampled chroma samples always cover an integral number of luminance
sample positions, whereas with co-centered alignment, chroma samples only partially overlap
some luminance samples.

70

• Additional JNG restrictions

JNG imposes three additional restrictions not found in the text of either JPEG Part 1 or the JFIF
specification:

– The sampling factors for YCbCr images must be one of these sets:

∗ 1h1v,1h1v,1h1v (also called 4:4:4 or 1x1 sampling)
∗ 2h1v,1h1v,1h1v (also called 4:2:2 or 2x1 sampling)
∗ 2h2v,1h1v,1h1v (also called 4:2:0 or 2x2 sampling)
∗ 1h2v,1h1v,1h1v (also called 1x2 sampling)

In other words, the chroma components may be downsampled 2:1 or 1:2 horizontally or ver-
tically relative to luminance, or they may be left full size. These four sampling ratios are the
only ones supported by a wide spectrum of implementations (1x2 is relatively uncommon, and
is usually the result of a lossless rotation of a 2x1 sampling).

For grayscale images, the sampling factors are irrelevant according to a strict reading of JPEG
Part 1. Hence decoder authors should accept any sampling factors for grayscale. However, we
recommend that encoders always emit sampling factors 1h1v for grayscale, since some decoders
have been observed to malfunction when presented with other sampling factors.

– There must be only one scan in an image: that is, YCbCr images must be fully interleaved.
There is little advantage to be gained by encoding a baseline image in multiple scans, and many
baseline decoders do not support multiple scans at all.

– The DNL (Define Number of Lines) marker is prohibited. The image height must always be
specified accurately in the SOFn marker and in the JHDR chunk.

• Recommended progressive JPEG subset

For JNG progressive JPEG datastreams, the JPEG process is progressive Huffman coding (SOF
marker type SOF2) rather than baseline (SOF0). All JNG-compliant decoders must support full pro-
gression, including both spectral-selection and successive-approximation modes, with any sequence
of scan progression parameters allowed by the JPEG Part 1 standard.

Otherwise, all the restrictions listed above apply, except these:

– Multiple-scan support is obviously required for progressive JPEG.

– Huffman table numbers up to 3 (the full JPEG limit) may be used, since the baseline two-table
limit is unlikely to be needed by any decoder that can handle progressive JPEG.

We require full progression support since relatively little code savings can be achieved by subsetting
the JPEG progression features. In particular, successive approximation offers significant gains in the
visual quality of early scans. Omitting successive-approximation support from a decoder does not
save nearly enough code to justify restricting JNG progressive encoders to spectral selection only.

No particular progressive scan sequence is specified or recommended by this specification. Not
enough experience has been gained with progressive JPEG to warrant making such a recommen-
dation. To allow for future experimentation with scan sequences, decoders are expected to handle any

5. THE JPEG NETWORK GRAPHICS (JNG) FORMAT 71

JPEG-legal sequence. Again, the code savings that might be had by making restrictive assumptions
are too small to justify a limitation.

When the JSEP chunk is present, both images must be progressive if one of them is progressive.

• Recommended 12-bit JPEG subset

JNG JPEGs may optionally use 12-bit sample precision as defined in JPEG Part 1.

For a sequential image, the SOF marker type must be SOF1 (extended sequential) not SOF0, and
the baseline restriction of two Huffman tables is removed. Also, the encoder may use either 8-bit or
16-bit quantization tables. All other JNG baseline restrictions still apply. It is recommended that JNG
encoders not use extended-sequential mode except to encode 12-bit data.

For a progressive image, the only difference between 8-bit and 12-bit modes is that the sample pre-
cision is 12 bits and the encoder may use either 8-bit or 16-bit quantization tables. All other JNG
restrictions still apply.

5.1.3 IDAT JNG PNG-encoded alpha data

This chunk is exactly like the IDAT chunk in a PNG grayscale image, except that it is interpreted as an alpha
mask to be applied to the image data from the JDAT chunks, whenalpha compression method=0 .
The alpha channel, if present, can have sample depths 1, 2, 4, 8, or 16.

The filter method can be any filter method that is defined for PNG datastreams that are embedded in MNG
datastreams.

The IDAT chunks can be interleaved with the JDAT chunks (see Recommendations for Encoders: JNG
interleaving below). No other chunk type can appear among the sequence of IDAT and JDAT chunks. No
other chunk type can appear between the sequences of IDAT and JDAT chunks when they are not interleaved.
The samples in the IDAT must be presented in noninterlaced order, left to right, top to bottom. As in PNG,
zero means fully transparent and2alpha sample depth − 1 means fully opaque.

The IDAT chunks must precede the JSEP chunk, if the JSEP chunk is present. Minimal viewers that ignore
the twelve-bit JDAT chunks must read the IDAT chunks and apply the alpha samples to the eight-bit image
that is contained in the JDAT chunks that precede the JSEP chunk. Viewers that skip the eight-bit JDAT
chunks must decode the IDAT chunks that precede the JSEP chunk and apply the alpha samples to the
twelve-bit image that is contained in the JDAT chunks that follow the JSEP chunk.

5.1.4 JDAA JNG JPEG-encoded alpha data

This chunk is exactly like the JDAT chunk in a non-progressive JNG 8-bit grayscale image, except
that it is interpreted as an alpha mask to be applied to the image data from the JDAT chunks, when
alpha compression method=8 . The alpha channel, if present, can have only sample depth 8. The
JDAA chunks can be interleaved with the JDAT chunks (see Recommendations for Encoders: JNG inter-
leaving below).

72

Like IDAT chunks, the JDAA chunks must precede the JSEP chunk, if the JSEP chunk is present, and are
handled similarly.

5.1.5 IEND End of JNG datastream

The JNG IEND chunk is identical to its counterpart in PNG. Its data length is zero, and it serves to mark the
end of the JNG datastream.

5.1.6 JSEP 8-bit/12-bit image separator

JNG permits storage of both an 8-bit and a 12-bit JPEG datastream in a single JNG file. This feature allows
an 8-bit image to be provided for non-12-bit-capable decoders. The JSEP chunk is used to separate the two
datastreams.

The JSEP chunk is empty.

A JSEP chunk must appear between the JDAT chunks of an eight-bit datastream and those
of a twelve-bit datastream, whenimage sample depth=20 in the JHDR chunk. When
image sample depth != 20 , the JSEP chunk must not be present. The eight-bit datastream must
appear first. Both images must have the same width, height, color type, compression method, and interlace
method. Viewers can choose to display one or the other image, but not both.

5.2 Ancillary JNG chunks

Some PNG ancillary chunks can also appear in JNG datastreams, and are used for the same purposes as de-
scribed in the PNG specification [PNG] and the Extensions to the PNG Specification document [PNG-EXT].

If the bKGD chunk is present, it must be written as if it were written for a PNG datastream with sam-
ple depth=8. It has one 2-byte entry for grayscale JNGs and three 2-byte entries for color JNGs. The first
(most significant) byte of each entry must be 0.

The following chunks have exactly the same meaning and have the same syntax as given in the PNG speci-
fication: cHRM, gAMA, iCCP, sRGB, pHYs, oFFs, sCAL, iTXt, tEXt, tIME, and zTXt.

The PNG PLTE, hIST, pCAL, sBIT, sPLT, tRNS, fRAc, and gIF* chunks are not defined in JNG.

When cHRM, gAMA, iCCP, or sRGB are present, they provide information about the color space of the
decoded JDAT image, and they have no effect on the decoded alpha samples from the IDAT or JDAA
chunks. Any viewer that processes the gAMA chunk must also recognize and process the sRGB chunk. It
can treat it as if it were a gAMA chunk containing the value .45455 and it can ignore its “intent” field.

The chunk copying and ordering rules for JNG are the same as those in PNG, except for the fact that the
JDAT chunks and IDAT or JDAA chunks can be interleaved.

6. THE DELTA-PNG FORMAT 73

6 The Delta-PNG Format

A Delta-PNG datastream describes a single image, by giving the changes from a previous PNG (Portable
Network Graphics) image or nonviewable PNG-like object, a JNG (JPEG Network Graphics) image, or
another Delta-PNG image.

No provision is made in this specification for storing a Delta-PNG datastream as a standalone file. A Delta-
PNG datastream will normally be found as a component of a MNG datastream. Applications that need to
store a Delta-PNG datastream separately should use a different file signature and filename extension, or they
can wrap it in a MNG datastream consisting of the MNG signature, the MHDR chunk, a BASI chunk with
the appropriate dimensions and an IEND chunk, the Delta-PNG datastream, and the MEND chunk.

The decoder must have available a parent (decoded) object that has an object buffer from which the original
chunk data is known. The parent object can be the result of decoding a PNG, another Delta-PNG datastream,
or it could have been generated by a PNG-like datastream introduced by a BASI chunk.

The child image is always of the same basic type (at present only PNG and JNG are defined) as the parent
object. The child is always a viewable image even if the parent is not.

The decoder must not have modified the pixel data in the parent object by applying output transformations
such as gAMA or cHRM, or by compositing the image against a background. Instead, the decoder must
make available to the Delta-PNG decoder the unmodified pixel data along with the values for the gAMA,
cHRM, and any other recognized chunks from the parent object datastream.

A Delta-PNG datastream consists of a DHDR and IEND enclosing other optional chunks (if there are no
other chunks, the decoder simply copies the parent image, and displays it if itsdo not show=0).

Chunk structure (length, name, CRC) and the chunk-naming system are identical to those defined in the
PNG specification. Definitions ofcompression method andinterlace method are also the same
as defined in the PNG specification. The definition offilter method is the same as for PNG datastreams
that are embedded in MNG datastreams (see the IHDR chunk specification, above, Paragraph 4.2.3).

6.1 Delta-PNG critical chunks

This section describes critical Delta-PNG chunks. MNG-compliant decoders must recognize and process
them.

6.1.1 DHDR Delta-PNG datastream header

The DHDR chunk introduces a Delta-PNG datastream. Subsequent chunks, through the next IEND chunk,
are interpreted according to the Delta-PNG format.

The DHDR chunk can contain 4, 12, or 20 bytes:

74

Object id: 2 bytes (nonzero unsigned integer). Identifies the parent
object from which changes will be made. This is also the
object id of the child image, which can be used as the
parent image for a subsequent Delta-PNG.

Image type: 1 byte.

0: Image type is unspecified. An IHDR, JHDR, IPNG, or
IJNG chunk must be present. If JHDR or IJNG is
present, delta type must not be 1, 3, 4, or 6.

1: Image type is PNG. IHDR and IPNG can be omitted under
certain conditions.

2: Image type is JNG. JHDR and IJNG can be omitted under
certain conditions. Delta type must not be 1, 3, 4,
or 6.

Delta type: 1 byte.

0: Entire image replacement.

1: Block pixel addition, by samples, modulo
2ˆsample depth.

2: Block alpha addition, by samples, modulo
2ˆsample depth.

Regardless of the color type of the parent image, the
IDAT data are written as a grayscale image (color type
0), but the decoded samples are used as deltas to the
alpha samples in the parent image. The parent image
must have (or be promoted to via the PROM chunk) a
color type that has an alpha channel.

3: Block color addition. Similar to delta type 1 except
that only the color channels are updated even when the
parent has an alpha channel.

4: Block pixel replacement.

5: Block alpha replacement.

6: Block color replacement.

7: No change to pixel data.

Block width: 4 bytes (unsigned integer). This field must be omitted when
delta type=7.

6. THE DELTA-PNG FORMAT 75

Block height: 4 bytes (unsigned integer). This field must be omitted when
delta type=7.

Block X location:
4 bytes (unsigned integer), measured in pixels from the

left
edge of the parent object. This field must be omitted
when delta type=0 or when delta type=7.

Block Y location:
4 bytes (unsigned integer), measured in pixels from the top

edge of the parent object. This field must be omitted
when delta type=0 or when delta type=7.

Theobject id must identify an existing object, and the object must be a “concrete” object, i.e., it must
have the propertyconcrete flag=1 .

Theimage type , whether given explicitly as 1 or 2 or implied by the presence of an IHDR, IPNG, JHDR,
or IJNG chunk, must be the same as that of the parent object.

When delta type=0 , the width and height of the child image are given by theblock width and
block height fields.

For all other values ofdelta type , the width and height of the child image are inherited from the parent
object.

Whendelta type=1--6 , theblock width andblock height fields give the size of the block of
pixels to be modified or replaced, andblock X location andblock Y location give its location
with respect to the top left corner of the parent object. The block must fall entirely within the parent object.

Entire image replacement
When delta type=0 in the DHDR chunk, the pixel data in the IDAT chunks represent a
completely new image, with dimensions given by theblock width andblock height fields of
the DHDR chunk. Data from chunks other than IDAT or JDAT can be inherited from the parent object.
If the IHDR or JHDR chunk is present, all of its fields exceptwidth andheight (which must be
ignored by decoders) provide new values that are inherited by subsequent objects. The “pixel sample
depth” and “alpha sample depth” are also reset equal to the IHDRsample depth value (in the case
of a JNG object, the new “alpha sample depth” is taken from the JHDRalpha sample depth
field). If the IHDR or JHDR chunk is not present, the IDAT chunks are decoded according to
the parent object’s sample depth, and not according to the “pixel sample depth” or “alpha sample
depth” which are used for decoding the IDAT chunks in subsequent Delta-PNG datastreams when
delta type is nonzero.

Block pixel addition
When delta type=1 in the DHDR chunk, the pixel data in the IDAT chunks represent
deltas from the pixel data in a parent object known to the decoder, including the alpha channel, if the
parent object has an alpha channel.

76

The IDAT chunk data contains a filtered and perhaps interlaced set of delta pixel samples. The delta
samples are presented in the order specified byinterlace method , filtered according to the
filter method and compressed according to thecompression method given in the IHDR
chunk. The pixel data includes alpha samples, if the parent object has an alpha channel.

An encoder calculates the delta sample values from the samples in the parent object and those in
the child image by subtracting the parent object samples from the child image samples, modulo
2sample depth. When decoding the IDAT chunk, the child image bytes are obtained by adding the
delta bytes to the parent object bytes, modulo2sample depth. This is similar in operation to the PNG
SUB filter, except that it works by samples instead of working by bytes.

Only the pixels in the block defined by the block location and dimensions given in the DHDR chunk
are changed. The size of the IDAT data must correspond exactly to this rectangle.

When the parent object hascolor type=3 , the deltas are differences between index values, not
between color samples.

The color type must match that of the parent, except that when the parent has PNGcolor type=3 ,
the delta can havecolor type=0 , and vice versa, since the contents of the IDAT chunks of either
color type are indistinguishable.

If the pixel sample depth does not match theobject sample depth , the delta must be
scaled to theobject sample depth using the zero-fill or right-shift method described in the
PNG specification, before performing the pixel addition.

When the IHDR chunk is present, the compression method, filter method, and interlace method need
not be the same as those of the parent object. The new values are used in decoding the IDAT data, and
the new values are inherited by the child object.

Whenever the sample depth differs from that of the parent object, the resulting object inherits the
original value from the parent. The value from the IHDR chunk is only used for decoding the IDAT
data in this and subsequent Delta-PNGs. Implicit in this is the requirement for decoders to remember
in the object buffer not only the sample depth of the object but (separately) the “pixel sample depth”
for use in decoding the IDAT chunks of subsequent Delta-PNG datastreams that do not contain their
own IHDR chunk. The parent object cannot have alpha samples that were carried in JPEG-encoded
JDAA chunks.

Block alpha addition
When delta type=2 in the DHDR chunk, the pixel data in the IDAT chunks represent
deltas from the alpha data in a parent object known to the decoder. The color samples are not
changed, and the updated alpha samples are calculated in the same manner as the updated pixel
samples are calculated whendelta type=1 .

Thecolor type is 0 (grayscale), regardless of thecolor type of the parent object. The parent
object must have an alpha channel or must have been promoted to a type that has an alpha channel. The
compression method, filter method, and interlace method need not be the same. If they are different,
the child object inherits the new values, and the new values will be used in decoding the data in any
subsequent IDAT chunks. Neither the parent object nor the delta object can have alpha samples that
were carried in JPEG-encoded JDAA chunks.

6. THE DELTA-PNG FORMAT 77

The sample depth value from the IHDR chunk is interpreted as a new value of
alpha sample depth and is only used for decoding the IDAT data in this and subsequent Delta-
PNGs. Implicit in this is the requirement for decoders to remember in the object buffer not only the
sample depth of the object but (separately) thealpha sample depth for use in decoding the IDAT
chunks in any subsequent Delta-PNG datastreams.

If the alpha sample depth does not match theobject sample depth , the delta must be
scaled to theobject sample depth , using the zero-fill or right-shift method described in the
PNG specification, before performing the pixel addition.

Block color addition
delta type=3 is similar to delta type=1 except that the alpha channel is not included
in the IDAT pixels; the alpha channel is inherited from the parent object. The color type of the
parent must be one that has an alpha channel (4 or 6) and the color type of the delta must be the
corresponding color type (0 or 2) that does not have an alpha channel.

Block pixel replacement
When delta type=4 in the DHDR chunk, the pixel data in the IDAT chunks represent re-
placement values for the pixel samples in the rectangle given by the block location and dimension
fields in the DHDR chunk, including the alpha channel, if the parent object has an alpha channel.

If the pixel sample depth does not match theobject sample depth , the pixel data must be
scaled to theobject sample depth before making the replacements, using the left bit replication
method described in the PNG specification, or by the right shift method in the unlikely event that the
pixel sample depth is larger than theobject sample depth .

The color type must match that of the parent, except for the cases mentioned for delta type 1, above.

Block alpha replacement
When delta type=5 in the DHDR chunk, the pixel data in the IDAT chunks represent re-
placement values of the alpha samples in the rectangle given by the block location and dimension
fields in the DHDR chunk. The sample depth of the data (i.e. the “alpha sample depth”) need not
match the sample depth of the parent object, andcolor type is 0 (grayscale), regardless of the
color type of the parent object. If the sample depths differ, the samples must be scaled to the
object sample depth , using the left bit replication method or right shift method described in
the PNG specification, depending on whether thealpha sample depth is larger or smaller than
the object sample depth . The parent object must have an alpha channel or must have been
promoted to a type that has an alpha channel. The compression method, filter method, and interlace
method need not be the same. If they differ, the child object inherits the new values.

It is permitted to use JPEG-encoded JDAA chunks to convey the new alpha data. If this is done,
then the alpha channel of the object can no longer be used as the parent for block-pixel-addition or
block-alpha-addition.

Block color replacement
delta type=6 is similar to delta type=4 except that the alpha channel is not included
in the IDAT pixels; the alpha channel is inherited from the parent object. The color type of the

78

parent must be one that has an alpha channel (4 or 6) and the color type of the delta must be the
corresponding color type (0 or 2) that does not have an alpha channel.

No change to pixel data
When delta type=7 in the DHDR chunk, there is no change to the pixel data, and it is an
error for IDAT, JDAT, or JDAA to appear. If the IHDR or JHDR chunk appears, the width, height,
and colortype fields are ignored, the PNG sample depth (or JNG alphasampledepth) is used to
update thepixel sample depth and alpha sample depth , and the data in the remaining
fields are inherited by the child object.

Pixel sample depth, alpha sample depth
As mentioned above, the sample depth of the deltas is not necessarily the same as that of the
object, whendelta type is 0. The decoder needs to remember thepixel sample depth
andalpha sample depth to use with each object. They are initialized to thesample depth
value from the IHDR chunk that appears when the object is first created but can be changed by the
appearance of the IHDR chunk in a Delta-PNG datastream that has a nonzerodelta type . If
the object is a JNG image, they are initialized from the value ofalpha sample depth from the
original JHDR chunk, and can be changed by the appearance of the JHDR chunk in a Delta-PNG
datastream that hasdelta type != 0 .

6.1.2 IDAT, JDAT, and JDAA New pixel data

In a Delta-PNG datastream, new pixel data is conveyed by IDAT, JDAT, or JDAA chunks, depending on the
image type and delta type in the DHDR chunk. Any remaining part of the Delta-PNG datastream following
these chunks must be interpreted as PNG or JNG chunks and not as Delta-PNG chunks. If the image type
is 0 (i.e., unspecified), the first IDAT or JDAA chunk must be preceded by an IHDR, JHDR, IPNG, IJNG,
PLTE, or PPLT chunk that will serve to identify the image type.

6.1.3 PROM Promotion of parent object

This chunk is used to “promote” a parent object to a higher bit depth or to add an alpha channel, before
making changes to it.

New color type: 1 byte.
New sample depth: 1 byte.
Fill method: 1 byte.

0: Left-bit-replication
1: Zero fill

When a decoder encounters the PROM chunk, it must promote the pixel data. The cases are:

G -> GA (color type 0 - > 4)
Do not change the gray values. Set all the alpha values to fully opaque, except for pixels

6. THE DELTA-PNG FORMAT 79

marked transparent by cheap transparency–set their alpha values to fully transparent. Discard the
cheap transparency information (the PNG tRNS chunk data).

RGB -> RBGA (color type 2 - > 6)
Do not change the RGB values. Convert the tRNS chunk data to alpha values as in the G ->
GA promotion.

G -> RGB (color type 0 - > 2)
Set R, G, and B equal to the gray value. Apply the same operation to the cheap transparency
data (if any). Expand any bKGD or sBIT data.

GA -> RGBA (color type 4 - > 6)
Set R, G, and B equal to the gray value. Do not change the alpha values. Expand any bKGD
or sBIT data.

G -> RGBA (color type 0 - > 6)
Set R, G, and B equal to the gray value. Handle transparency as in the G -> GA promotion.
Expand any bKGD or sBIT data.

indexed -> RGB (color type 3 - > 2)
Set R, G, and B according to the palette entry corresponding to the index. Discard the cheap
transparency information (if any). Expand any bKGD or sBIT data.

indexed -> RGBA (color type 3 - > 6)
Set R, G, and B as in indexed -> RGB. Set the alpha value according to the cheap trans-
parency information (if any). Discard the cheap transparency information. Expand any bKGD or
sBIT data.

JNG-G -> JNG-C (JNG color type 8 - > 10)
Expand the gray values to color. Expand any bKGD data.

JNG-G -> JNG-GA (JNG color type 8 - > 12)
Do not change the gray values. Set all the alpha values to fully opaque. The given sample
depth is the new sample depth for the alpha channel.

JNG-G -> JNG-CA (JNG color type 8 - > 14)
Expand the gray values to color. Set all the alpha values to fully opaque. The given sample
depth is the new sample depth for the alpha channel. Expand any bKGD data.

JNG-C -> JNG-CA (JNG color type 10 - > 14)
Do not change the color values. Set all the alpha values to fully opaque. The given sample
depth is the new sample depth for the alpha channel.

JNG-GA -> JNG-CA (JNG color type 12 - > 14)
Expand the gray values to color. Do not change the alpha values. Expand any bKGD data.

No change incolor type
Only the sample depth is changed. The new sample depth must be larger than the old one.

80

If the sample depth has been changed, the sample values must be widened. The decoder must use left-
bit-replication or zero-fill according to the specifiedfill method to fill the additional bits of each sam-
ple. If cheap transparency information is present in a grayscale or truecolor object, its sample values must
also be widened in the same manner. If the image type is JNG, then the new sample depth refers to the
alpha sample depth and only the alpha channel is affected, if one is present. If thecolor type has
been promoted from indexed-color, the original bit depth is always considered to be 8. See the PNG speci-
fication [PNG] for further information on these filling methods. Any alpha channel added in this manner is
eligible to be updated by block-alpha-addition in this or a subsequent Delta-PNG.

If the basis object contains data from the PNG bKGD chunk, this data must be promoted as well. If a
grayscale object is being promoted to a truecolor object, the background RGB samples are set equal to the
grayscale background sample. If the bit depth has been changed, the background samples are widened in
accordance with the specifiedfill method . If the basis object is a JNG, the bKGD chunk is not affected.

If the basis object contains data from the PNG sBIT chunk, this data must also be promoted. If a grayscale
object is being promoted to a truecolor object, the new RGB bytes are set equal to the grayscale byte. When
an alpha channel is added, the alpha byte is set equal to the sample depth of the basis image. If the sample
depth has been changed, the sBIT bytes do not change.

The PROM chunk is not permitted to “demote” a parent object to an object with a lesser bit depth or from
one with an alpha channel to one without an alpha channel.

The PROM chunk must appear ahead of the IHDR chunk, if IHDR is present, and ahead of any chunks that
would have followed IHDR, if IHDR is omitted.

6.1.4 IHDR PNG image header

Inside a Delta-PNG datastream, the IHDR chunk introduces an incomplete PNG (Portable Network Graph-
ics) datastream. The parent object must be a PNG or PNG-based Delta-PNG. The datastream can be
introduced by a complete PNG IHDR chunk or by an IPNG chunk, which is empty.

If the IHDR chunk is present, itswidth andheight fields are ignored. The values for these parameters
are inherited from the parent object or from the DHDR chunk.

The sample depth , color type , compression method , interlace method , and
filter method fields, if different from those of the parent object, are used in decoding any sub-
sequent IDAT chunks, and the new values will be inherited by any subsequent image that uses this object as
its parent. These do not change thesample depth andcolor type of the object itself; those can only
be changed by using the PROM chunk or by usingdelta type=0 .

See the PNG specification and the Extensions to the PNG Specification document [PNG-EXT] for the for-
mat of the PNG chunks. Thefilter method can be anyfilter method that is allowed in PNG
datastreams that are embedded in a MNG datastream. The PNG datastream must contain at least IHDR
and IEND (whether actually present in the datastream or omitted and included by implication, as described
below), but can inherit other chunk data from the parent object. Except for IDAT and PPLT, any chunks
appearing between IHDR and IEND are always treated as replacements or additions and not as deltas.

6. THE DELTA-PNG FORMAT 81

6.1.5 IPNG Incomplete PNG

The IPNG chunk is empty.

The IPNG chunk can be used instead of the IHDR chunk if the IHDR chunk is not needed for resetting
the value ofcompression method , filter method , or interlace method . The purpose of this
chunk is to identify the beginning of the PNG datastream, so decoders can start interpreting PNG chunks
instead of Delta-PNG chunks. The decoder must treat this datastream as though the IHDR chunk were
present in the location occupied by the IPNG chunk.

The IHDR chunk can also be omitted whenimage type=1 and the PNG datastream begins with a PLTE
chunk, a PPLT chunk, or an IDAT chunk. In this case, no IPNG chunk is required, either. The decoder must
treat this datastream as though the IHDR chunk were present, immediately preceding the first PNG chunk.
If the first PNG chunk is neither a PLTE chunk, a PPLT chunk, nor an IDAT chunk, then either the IPNG or
IHDR chunk must be present to introduce the PNG datastream.

6.1.6 PLTE and tRNS

If the PLTE chunk is present, it need not have the same length as that inherited from the parent object, but
it must contain the complete palette needed in the child image. If it is shorter than the palette of the parent
object, decoders can discard the remaining entries and the child image must not refer to them. Decoders can
also truncate any tRNS data inherited from an indexed-color parent object. If the new palette is longer than
the parent palette, and a new tRNS chunk is not present in an indexed-color image, the tRNS data must be
extended with opaque entries. The new palette must not be longer than the object’ssample depth would
allow, and must not have more than 256 entries.

When processing the tRNS chunk, ifcolor type=3 and PLTE is not supplied, then the number of allow-
able entries is determined from the number of PLTE entries in the parent object. A tRNS chunk appearing in
a Delta-PNG datastream is always treated as a complete replacement for the tRNS chunk data in the parent
object. All entries beyond those actually supplied are overwritten with the “opaque” value (255).

6.1.7 PPLT Partial palette

If it is desired only to overwrite or add palette entries, the PPLT chunk can be used. This might be useful for
palette-animation applications. This chunk can also be used to overwrite or add entries to the transparency
(alpha) data from the parent’s tRNS chunk.

The PPLT chunk contains adelta type byte and one or more groups of palette entries:

PPLT delta type: 1 byte.
0: Values are replacement RGB samples.
1: Values are delta RGB samples.
2: Values are replacement alpha samples.
3: Values are delta alpha samples.
4: Values are replacement RGBA samples.

82

5: Values are delta RGBA samples.
First index,

first group: 1 byte.
Last index,

first group: 1 byte.
First set of

samples: 1, 3, or 4 bytes.
...etc...
Last set of

samples: 1, 3, or 4 bytes.
First index,

second group: 1 byte.
...etc...

The last index must be equal to or greater thanfirst index . The groups are not required to appear
in ascending order. If any index of any group is beyond the end of the parent object’s palette, the palette
and tRNS data must be extended just as if a longer complete PLTE chunk had appeared. If there are gaps in
the resulting extended palette, the colors must be filled with{0,0,0} and the alphas filled with 255. If alpha
samples are supplied (PPLT delta type > 1) and no tRNS data is present in the parent object, a tRNS
chunk must be created in the child object as though a complete tRNS chunk had appeared. The new palette
must not be longer than the object’ssample depth would allow.

WhenPPLT delta type=0 , the values are replacements for the existing samples in the palette.

WhenPPLT delta type=1 , the values are added to the existing samples (modulo 256) to obtain the new
samples.

If the new entry is beyond the range of the original palette, the values are simply appended, regardless of the
contents ofPPLT delta type .

6.1.8 JHDR JNG image header

Inside a Delta-PNG datastream, the JHDR chunk introduces an incomplete JNG (JPEG Network Graphics)
datastream. The parent object must be a JNG or JNG-based Delta-PNG. The datastream is introduced by a
complete JHDR chunk.

If the JHDR chunk is present, itswidth , height , image sample depth , image color type ,
image filter method , and image interlace method fields are ignored. The values for these
parameters are inherited from the parent object.

The alpha compression method , alpha interlace method , and alpha filter method
fields, if different from those of the parent object, are used in decoding any subsequent IDAT chunks,
and the new values will be inherited by any subsequent image that uses this object as its parent. If the
alpha sample depth differs, it will be used in decoding the IDAT chunk data of the Delta-PNG and
subsequent Delta-PNG datastreams; but the child object itself will retain the original sample depth, and must
also retain the “alpha sample depth” for use in decoding subsequent Delta-PNG datastreams. The decoded

6. THE DELTA-PNG FORMAT 83

alpha samples must be scaled to the object’s sample depth before the replacements or delta calculations are
done.

See the JNG specification above for the format of the JNG chunks. The PNG datastream must contain at
least JHDR and IEND, but can inherit other chunk data from the parent object. Except for IDAT, any chunks
appearing between IHDR and IEND are always treated as replacements or additions and not as deltas.

6.1.9 IJNG Incomplete JNG

The IJNG chunk is empty.

The IJNG chunk can be used instead of the JHDR chunk if the JHDR chunk is not needed for resetting
the value of any of the JHDR fields. The purpose of this chunk is to identify the beginning of the JNG
datastream, so decoders can start interpreting JNG chunks instead of Delta-PNG chunks. The decoder must
treat this datastream as though the JHDR chunk were present in the location occupied by the IJNG chunk.

The JHDR chunk can also be omitted whenimage type=2 and the JNG datastream begins with a JDAT
or JDAA chunk. In this case, no IJNG chunk is required, either. The decoder must treat this datastream as
though the JHDR chunk were present, immediately preceding the first JDAT chunk. If the first JNG chunk
is not a JDAT or JDAA chunk, then either the IJNG or JHDR chunk must be present to introduce the JNG
datastream.

6.1.10 DROP Drop chunks

All chunks in the parent object with the specified name are inhibited from being copied into the child image.

Chunk name: 4 bytes (ASCII text).
etc.

If multiple names appear in the DROP chunk, it is shorthand for multiple DROP chunks.

6.1.11 DBYK Drop chunks by keyword

Chunk name: 4 bytes (ASCII text).

Polarity: 1 byte (unsigned integer).
0: Only.
1: All-but.

Keywords (null-separated Latin-1 text strings).

The chunk name must be the name of a chunk whose data begins with a null-terminated text string. Some
parent object chunks with the specified chunk name are inhibited from being copied into the child image.
If polarity is <only>, then any parent chunk whose keyword appears in the keywords list is inhibited. If

84

polarity is<all-but>, then any parent object chunk whose keyword does not appear in the keywords list is
inhibited.

The format of the keyword is the same as that specified for the parent chunk. Comparisons of keywords in
the parent chunk and the DBYK chunk are case sensitive.

Use caution when printing or displaying keywords (Refer to Security considerations, below, Chapter 17).

6.1.12 ORDR Ordering restrictions

The ORDR chunk informs the applier of the Delta-PNG of the ordering restrictions for ancillary chunks. It
contains one or more 5-byte sequences:

Chunk name: 4 bytes (ASCII text).
Order type: 1 byte.

0: Anywhere.
1: After IDAT and/or JDAT or JDAA.
2: Before IDAT and/or JDAT or JDAA.
3: Before IDAT but not before PLTE.
4: Before IDAT but not after PLTE.

etc.

Critical chunk names must not appear in the ORDR chunk. The applier needs to know everything about
them anyway.

If a chunk name appears in the ORDR chunk, it is a promise that any chunk of that name appearing in the
parent object which is not inhibited by DROP/DBYK will not be broken by this Delta-PNG, and therefore
the applier must copy it into the child image at a location compatible with its ordering restrictions.

If any ancillary chunk appears in the parent object, and it is not inhibited, and its name does not appear in
the ORDR chunk, then the applier should copy it into the child only if it knows the chunk well enough to be
sure that it is consistent with the changes made by the Delta-PNG, and knows where it can be placed in the
child. Those conditions are always true of safe-to-copy chunks.

If any critical chunk defined in neither this specification nor the PNG specification appears in the parent
object or in the Delta-PNG, it is a fatal error unless the applier knows how to handle it. The specification of
the critical chunk can include provisions for this scenario.

6.2 Ancillary Delta-PNG chunks

This section describes ancillary Delta-PNG chunks. MNG-compliant decoders should recognize and process
them, but are not required to.

6. THE DELTA-PNG FORMAT 85

6.2.1 gAMA, cHRM, iCCP, sRGB Color space chunks

A gAMA, cHRM, iCCP, sRGB or similar chunk existing in the parent object would not affect the pixel data
in a concrete object inherited by this Delta-PNG datastream because they are not used in decoding the pixel
data. Applications are responsible for ensuring that the pixel values that are inherited from the parent object
are the raw pixel data that existed prior to any transformations that were applied while displaying the parent
image. These color transformations are applied to the resulting pixel data for display purposes.

6.2.2 oFFs and pHYs

MNG viewers must ignore oFFs and pHYs chunks that appear inside a PNG or JNG datastream or are
inherited from the MNG top level. MNG editors are expected to treat them as if they were unknown copy-
safe chunks.

6.2.3 Other ancillary PNG chunks

Any other ancillary PNG chunks that the decoder recognizes when processing a PNG datastream should also
be recognized and handled when processing a delta-PNG datastream. Any chunks that it does not recognize
should be processed as instructed by the ORDR, DROP, and DBYK chunks. MNG viewers are free to ignore
any ancillary chunks, while MNG editors should handle them in accordance with the copying rules.

6.2.4 IEND End of Delta-PNG datastream

End of Delta-PNG datastream. An IEND chunk must be present for each DHDR chunk in a MNG datas-
tream. A single IEND terminates both the Delta-PNG datastream and any embedded PNG or JNG datas-
tream within it.

The IEND chunk is empty.

6.3 Chunk ordering requirements

The PNG specification places ordering requirements on many chunks with respect to the PLTE and IDAT
chunks. If neither of these two chunks is present, and the ORDR chunk is not present, known chunks (always
including all standard chunks described in the PNG specification) are considered to have appeared in their
proper order with respect to the critical chunks. Unknown chunks are ordered as described above (Paragraph
6.1.12).

86

7 Extension and Registration

New public chunk types, and additional options in existing public chunks, can be proposed for inclu-
sion in this specification by contacting the PNG/MNG specification maintainers at png-info@uunet.uu.net,
png-group@w3.org, or at mng-list@ccrc.wustl.edu.

New public chunks and options will be registered only if they are of use to others and do not violate the
design philosophy of PNG and MNG. Chunk registration is not automatic, although it is the intent of the
authors that it be straightforward when a new chunk of potentially wide application is needed. Note that the
creation of new critical chunk types is discouraged unless absolutely necessary.

Applications can also use private chunk types to carry data that is not of interest to other applications.

Decoders must be prepared to encounter unrecognized public or private chunk type codes. If the unrecog-
nized chunk is critical, then decoders should abandon the segment, and if it is ancillary they should simply
ignore the chunk. Editors must handle them as described in the following section, Chunk Copying Rules.

8 Chunk Copying Rules

The chunk copying rules for MNG are the same as those in PNG, except that a MNG editor is not permitted
to move unknown chunks across any of the following chunks, or across any critical chunk in a future version
of this specification that creates or displays an image:

• SAVE

• SEEK

• IHDR

• JHDR

• IEND

• DHDR

• BASI

• CLON

• PAST

• SHOW

• MAGN

The copy-safe status of an unknown chunk is determined from the chunk name, just as in PNG. If bit 5 of
the first byte of the name is 0 (Normally corresponding to an uppercase ASCII letter), the unknown chunk is
critical and cannot be processed or copied. If it is 1 (usually corresponding to a lowercase ASCII letter), the
unknown chunk is ancillary and its copy-safe status is determined by bit 5 of the fourth byte of the name, 0
meaning copy-unsafe and 1 meaning copy-safe.

9. MINIMUM REQUIREMENTS FOR MNG-COMPLIANT VIEWERS 87

If an editor makes changes to the MNG datastream that render unknown chunks unsafe-to-copy, this does
not affect the copy-safe status of any chunks beyond the next SEEK chunk or prior to the previous one.
However, if it makes such changes prior the SAVE chunk, this affects the copy-safe status of all top-level
unknown chunks in the entire MNG datastream.

Changes to the MHDR chunk do not affect the copy-safe status of any other chunk.

The SAVE, SEEK, and TERM chunks are not considered to be a part of any segment. Changes to the data
in the SAVE or SEEK chunks do not affect the copy-safe status of any other chunks. Adding or removing
a SEEK chunk affects the copy-safe status of unknown chunks in the newly-merged or newly-separated
segments. Adding, removing, or changing the TERM chunk has no effect on the copy-safe status of any
chunk.

As in PNG, unsafe-to-copy ancillary chunks in the top-level MNG datastream can have ordering rules only
with respect to critical chunks. Safe-to-copy ancillary chunks in the top-level MNG datastream can have
ordering rules only with respect to the SAVE, SEEK, SHOW, and PAST chunks, DHDR-IEND, BASI-
IEND, IHDR-IEND, JHDR-IEND sequences, or with respect to any other critical “header-end” sequence
that might be defined in the future that could contain IDAT or similar chunks.

The copying rules for unknown chunks inside IHDR-IEND, BASI-IEND, DHDR-IEND, and JHDR-IEND
sequences are governed by the PNG and JNG specifications, and any changes inside such sequences have
no effect on the copy-safe status of any top-level MNG chunks.

The copy-safe status of chunks inside a DHDR-IEND sequence depends on the copy-safe status of the
chunks in its parent object.

9 Minimum Requirements for MNG-Compliant Viewers

This section specifies the minimum level of support that is expected of MNG, MNG-LC, or MNG-VLC-
compliant decoders, and provides recomendations for viewers that will support slightly more than the mini-
mum requirements. All critical chunks must be recognized, but some of them can be ignored after they have
been read and recognized. Ancillary chunks can be ignored, and do not even have to be recognized.

Anything less than this level of support requires subsetting.Applications that provide less than minimal
MNG support should check the MHDR “simplicity profile” for the presence of features that they are unable
to support or do not wish to support. A specific subset, in which “complex MNG features” and JNG are
absent, is called“MNG-LC” . In MNG-LC datastreams, bit 0 of the simplicity profile must be 1 and bits 2
and 4 must be 0. Another subset is called“MNG-VLC” . In MNG-VLC datastreams, “simple MNG features”
are also absent, and bit 1 must therefore also be 0.

Subsets are useable when the set of MNG datastreams to be processed is known to be (or is very likely to be)
limited to the feature set in MNG-LC or MNG-VLC. Limiting the feature set in a widely-deployed WWW
browser to anything less than MNG with 8-bit JNG support would be highly inappropriate.

Some subsets of MNG support are listed in the following table, more or less in increasing order of complex-
ity.

88

MHDR Profile bits Profile Level of support
31-10 9 8 7 6 5 4 3 2 1 0 value

0 0 0 0 1 0 0 0 0 0 1 65 MNG-VLC without transparency
0 0 1 1 1 0 0 1 0 0 1 457 MNG-VLC
0 0 1 1 1 0 1 1 0 0 1 473 MNG-VLC with JNG
0 0 1 1 1 0 0 1 0 1 1 459 MNG-LC
0 0 1 1 1 0 1 1 0 1 1 475 MNG-LC with JNG
0 0 1 1 1 0 1 1 1 1 1 479 MNG without stored object buffers
0 1 1 1 1 0 0 1 1 1 1 975 MNG without JNG or Delta-PNG
0 1 1 1 1 0 1 1 1 1 1 991 MNG without Delta-PNG
0 1 1 1 1 1 0 1 1 1 1 1007 MNG without JNG
0 1 1 1 1 1 1 1 1 1 1 1023 or 0 MNG
0 1 1 1 1 1 1 1 1 1 1 1023 or 0 MNG with 12-bit JNG support

| | | | | | | | | |
| | | | | | | | | +- Validity
| | | | | | | | +--- Simple MNG features
| | | | | | | +----- Complex MNG features
| | | | | | +------- Transparency
| | | | | +--------- JNG
| | | | +----------- Delta-PNG
| | | +------------- Validity of bits 7,8, and 9
| | +--------------- Semitransparency
| +----------------- Background transparency
+------------------- Stored objects

One reasonable path for an application developer to follow might be to develop and test the application at
each of the following levels of support in turn:

1. MNG-VLC,

2. MNG-LC,

3. MNG-LC with JNG,

4. MNG.

An equally reasonable development path might be

1. MNG-VLC with JNG,

2. MNG-LC with JNG,

3. MNG with JNG, but without stored object buffers.

4. MNG.

On the other hand, a developer working on an application for storing multi-page fax documents might have
no need for more than “MNG-VLC without transparency”.

We are allowing conformant decoders to skip twelve-bit JNGs because those are likely to be rarely encoun-
tered and used only for special purposes. There is no profile flag to indicate the presence or absence of 12-bit
JNGs.

9. MINIMUM REQUIREMENTS FOR MNG-COMPLIANT VIEWERS 89

9.1 Required MNG chunk support

MHDR
The ticks per second must be supported by animation viewers. The simplicity profile,
frame count, layer count, and nominal play time can be ignored. Decoders that provide less than
minimal support can use the simplicity profile to identify datastreams that they are incapable of
processing.

MEND
The MEND chunk must be recognized but does not require any processing other than completing the
last frame.

Global PLTE and tRNS
Must be fully supported. Bit 1 of the simplicity profile can be used to promise that these
chunks are not present.

LOOP, ENDL
The iteration count must be supported. Thenest level should be used as a sanity
check but is not required. Wheniteration min=1 either explicitly or when it is omitted and the
termination condition is not 0 or 4, the LOOP chunk and its ENDL chunk can be ignored
(bit 2 of the simplicity profile can be used to promise that this is true for all loops).

DEFI, CLON
Must be fully supported. All objects can be treated as “concrete” if the decoder does not wish
to take advantage of the distinction between “abstract” and “concrete”. Bit 2 of the simplicity profile
can be used to promise that the CLON chunk is not present and that if the DEFI chunk is present
it only defines object 0, which does not have an object buffer that needs to be stored. Bit 1 of the
simplicity profile can be used to promise that the DEFI chunk is not present.

BASI, BACK, MAGN, DISC, PAST
Must be fully supported. Bit 2 of the simplicity profile can be used to promise that the BASI,
DISC, and PAST chunks are not present, and that if the BACK chunk is present it does not define a
background image. Bit 1 can be used to promise that the MAGN chunk is not present.

FRAM
The framing mode and clipping parameters must be supported. Theinterframe delay
must be supported except by single-frame viewers. Thesync id and timeout data can be
ignored. Bit 1 of the simplicity profile can be used to promise that the FRAM chunk is not present.

MOVE, CLIP, SHOW
Must be fully supported. Bit 2 of the simplicity profile can be used to promise that none of
these chunks are present, and bit 9 of the simplicity profile can be used to promise that the SHOW
chunk is not present.

SAVE and SEEK
Partial support is required: All existing objects must be marked “frozen” when the SAVE
chunk is processed, so that unneeded objects can be discarded when the SEEK chunk or an empty

90

DISC chunk is processed. The SEEK chunk must be processed as if it were an empty DISC chunk, as
a minimum. Chunk information need only be “saved” and “restored” when the viewer is able to skip
or jump to random SEEK chunk locations from the interior of a segment, such as when recovering
from a corrupted datastream or from a segment containing an unknown critical chunk, or when
escaping from a deterministic loop in response to a user request. The optional index can be ignored.
Slide-show controllers may wish to support SAVE and SEEK fully. Bit 2 of the simplicity profile can
be used to promise that the SAVE and SEEK chunks can be ignored entirely (because there will be
nothing to discard).

TERM
Must be recognized but can be ignored.

9.2 Required PNG chunk support

IHDR, PLTE, IDAT, IEND
All PNG critical chunks must be fully supported. All values ofcolor type , bit depth ,
compression method , filter method and interlace method must be supported.
Interlacing, as in PNG, need not necessarily be displayed on-the-fly; the image can be displayed after
it is fully decoded. The alpha-channel must be supported, at least to the degree that fully opaque
pixels are opaque and fully transparent ones are transparent. It is recommended that alpha be fully
supported. Alpha is not present, or can be ignored because it has no effect on the appearance of any
frame, if bit 3 of the simplicity profile is 0. Bit 1 of the simplicity profile can be used to promise that
only filter methods defined in the PNG specification are present.

tRNS
The PNG tRNS chunk, although it is an ancillary chunk, must be supported in MNG-compliant
viewers, at least to the degree that fully opaque pixels are opaque and fully transparent ones are
transparent. It is recommended that alpha data from the tRNS chunk be fully supported in the same
manner as alpha data from an RGBA image or a JNG with an alpha channel contained in IDAT
chunks. The tRNS chunk is not present (or can be ignored because it has no effect on the appearance
of any frame) if bit 3 of the simplicity profile is 0.

Other PNG ancillary chunks
Ancillary chunks other than PNG tRNS can be ignored, and do not even have to be recognized.

Color management
It is highly recommended that decoders support at least the gAMA chunk to allow platform-
independent color rendering. If they support the gAMA chunk, they must also support the sRGB
chunk, at least to the extent of interpreting it as if it were a gAMA chunk with gamma value 0.45455.

9.3 Required JNG chunk support

Bit 4 of the simplicity profile can be used to promise that JNG chunks are not present. Viewers that choose
not to support JNG can check this bit before deciding to proceed. MNG-compliant decoders must support

9. MINIMUM REQUIREMENTS FOR MNG-COMPLIANT VIEWERS 91

JNG, but MNG-LC and MNG-VLC decoders are not required to support JNG.

JHDR, JDAT, IDAT, JDAA, JSEP, IEND
All JNG critical chunks must be fully supported. All values ofcolor type , bit depth ,
compression method , filter method and interlace method must be supported.
Interlacing, as in PNG, need not necessarily be displayed on-the-fly; the image can be displayed after
it is fully decoded. The alpha-channel must be supported, at least to the degree that fully opaque
pixels are opaque and fully transparent ones are transparent. It is recommended that alpha be fully
supported.

JNG ancillary chunks
All JNG ancillary chunks can be ignored, and do not even have to be recognized.

JNG image sample depth
Only image sample depth=8 must be supported. The JSEP chunk must be recognized
and must be used by minimal decoders to select the eight-bit version of the image, when both
eight-bit and twelve-bit versions are present, as indicated byimage sample depth=20 in the
JHDR chunk. Whenimage sample depth=12 , minimal decoders are not obligated to display
anything. Such decoders can choose to display nothing or an empty rectangle of the width and
height specified in the JHDR chunk. This can be done by processing the JNG as though a viewable
transparent BASI object had appeared:

BASI width height 1 4 0 0 0 0 00 00 00 00 1
IEND

9.4 Required Delta-PNG chunk support

MNG-compliant decoders are required to support Delta-PNG, but MNG-LC and MNG-VLC decoders are
not. Bit 2 or 5 of the simplicity profile can be used to promise that Delta-PNG datastreams are not present.

DHDR, PROM, IHDR, IDAT, IPNG, PLTE, tRNS, IEND, PPLT
Must be fully supported if Delta-PNG is supported.

JHDR, JDAT, JDAA, JSEP, IJNG
Must be fully supported if JNG is also supported outside of Delta-PNG datastreams. Bit 4 of
the simplicity profile can be used to promise that no JNG chunks are present.

DROP, DBYK, ORDR
Can be recognized and ignored. These are only of concern to MNG editors and to MNG
viewers that handle private chunks or chunks that can be selected by keyword, such as pCAL and
iCCP. If you decide to support such chunks, then you will also have to support these three chunks.

Ancillary chunks
Ancillary chunks appearing in Delta-PNG datastreams must be treated in the same manner as
if they appeared in a PNG or JNG datastream. See the recommendations, above. Note that the PNG
tRNS chunk must be supported, despite its being an ancillary chunk in PNG.

92

10 Recommendations for Encoders

The following recommendations do not form a part of the specification.

10.1 Use a common color space

It is a good idea to use a single color space for all of the layers in an animation, where speed and fluidity
are more important than exact color rendition. This is best accomplished by defining a single color space
at the top level of MNG, using either an sRGB chunk or the gAMA and cHRM chunks and perhaps the
iCCP chunk, and removing any color space chunks from the individual images after converting them to the
common color space.

When the encoder converts all images to a single color space before putting them in the MNG datastream,
decoders can improve the speed and consistency of the display.

For single-frame MNG datastreams, however, decoding speed is less important and exact color rendition
might be more important. Therefore, it is best to leave the images in their original color space, as recom-
mended in the PNG specification, retaining the individual color space chunks if the images have different
color spaces. This will avoid any loss of data due to conversion.

10.2 Use the right framing mode

Always use framing mode 1 or 2 when all of the images are opaque. This avoids unnecessary screen clearing,
which can cause flickering.

10.3 Immediate frame sync point

If it is necessary to establish a synchronization point immediately, this can be done by using two consecutive
FRAM chunks, the first setting a temporaryinterframe delay=0 , timeout , andsync id , and the
second establishing the synchronization point:

FRAM 2 0 1 1 0 1 0000 timeout sync id
FRAM 0 name

10.4 Embedded images in LOOPs

Embedded images should not be enclosed in loops unless absolutely necessary. It is better to store them
ahead of time and then use SHOW chunks inside the loops. Otherwise, decoders will be forced to repeatedly
decode them. See Examples 2, 8, 11, and 12, below (Chapter 19).

11. RECOMMENDATIONS FOR DECODERS 93

10.5 Including optional index in SAVE chunk

Authors of MNG files that are intended for transmission over a network should consider whether it is more
economical for the client to rebuild the index from scratch than it is to transmit it. Web pages that are likely
to be downloaded over slow lines, and whose clients are unlikely to use the index anyway, generally should
have empty SAVE chunks. No information is lost by deleting the index, because the MNG datastream
contains all of the information needed to build the index. If an application does build an index, and the file
is going to be kept as a local file, the application should replace the empty SAVE chunk with one containing
the index. See above (Paragraph 4.4.1).

10.6 Interleaving JDAT, JDAA, and IDAT chunks

When a JNG datastream contains an alpha channel, and the file is intended for transmission over a network,
it is useful to interleave the IDAT or JDAA and the JDAT chunks. In the case of sequential JPEG, the
interleaving should be arranged so that the alpha data arrives more or less in sync with the color data for the
scanlines. In the case of progressive JPEG, the alpha data should be interleaved with the first JPEG pass, so
thatall of the alpha data has arrived before the beginning of the second JPEG pass.

10.7 Use of the JDAA chunk

It is recommended that the JDAA chunk be used only to convey smoothly varying alpha channels and not to
convey binary transparency which is more precisely and efficiently conveyed in IDAT chunks.

11 Recommendations for Decoders

11.1 Using the simplicity profile

The simplicity profile in the MHDR chunk can be ignored or it can be used for

• Deciding whether to abandon a datatream immediately if it is beyond the decoder’s capabilities. De-
coders are of course free to plunge ahead, rendering whatever is possible and abandoning any seg-
ments that contain critical chunks that they do not recognize or cannot handle. Unmanageable features
might not be present even when the simplicity profile indicates that the features “might be present”.
The profile never guarantees that a certain feature is present; it only guarantees that certain features
are not present or have no effect on the appearance of any frame.

• Deciding whether to perform certain optimizations. For example, the transparency flags can be used
to determine whether full alpha composition is going to be necessary, and to choose appropriate code
paths and internal representations of abstract objects accordingly.

94

11.2 ENDL without matching LOOP

If a decoder reads an ENDL chunk for which the matching LOOP chunk is missing, or has been skipped for
some reason, any active loops with a highernest level should be terminated, and processing can resume
after the next SEEK chunk. Simple viewers that do not process the SAVE chunk should abandon the MNG
datastream. See above.

11.3 Note on compositing

The PNG specification gives a good explanation of how to composite a partially transparent image over an
opaque image, but things get more complicated when both images are partially transparent.

Pixels in PNG and JNG images are represented using gamma-encoded RGB (or gray) samples along with a
linear alpha value. Alpha processing can only be performed on linear samples. This chapter assumes that R,
G, B, and A values have all been converted to real numbers in the range [0..1], and that any gamma encoding
has been undone.

For a top pixel{Rt,Gt,Bt,At} and a bottom pixel{Rb,Gb,Bb,Ab}, the composite pixel{Rc,Gc,Bc,Ac} is
given by:

Ac = 1 - (1 - At)(1 - Ab)
if (Ac != 0) then

s = At / Ac
t = (1 - At) Ab / Ac

else
s = 0.0
t = 1.0

endif
Rc = s Rt + t Rb
Gc = s Gt + t Gb
Bc = s Bt + t Bb

When the bottom pixel is fully opaque (Ab = 1.0), the function reduces to:

Ac = 1
Rc = At Rt + (1 - At) Rb
Gc = At Gt + (1 - At) Gb
Bc = At Bt + (1 - At) Bb

When the bottom pixel is not fully opaque, the function is much simpler if premultiplied alpha is used. A
pixel that uses non-premultiplied alpha can be converted to premultiplied alpha by multiplying R, G, and B
by A.

For a premultiplied top pixel{Rt,Gt,Bt,At} and a premultiplied bottom pixel{Rb,Gb,Bb,Ab}, the premul-
tiplied composite pixel{Rc,Gc,Bc,Ac} is given by:

11. RECOMMENDATIONS FOR DECODERS 95

Ac = 1 - (1 - At)(1 - Ab)
Rc = Rt + (1 - At) Rb
Gc = Gt + (1 - At) Gb
Bc = Bt + (1 - At) Bb

As mentioned in the PNG specification, the equations become much simpler when no pixel has an alpha
value other than 0.0 or 1.0, and the RGB samples need not be linear in that case.

11.4 Retaining object data

The decoder must retain information about each object (except for objects withobject id=0) for pos-
sible redisplay with the SHOW chunk or for possible use as the parent object for a subsequent Delta-PNG
datastream.

The following information must be retained, for each nonzero object that is defined and not subsequently
discarded:

• The set of object attributes (potential visibility, location, clipping boundary data from the DEFI,
MOVE, CLIP, and SHOW chunks, and pointer to an object buffer).

• The pixel data and the values associated with other recognized PNG chunks such as PLTE and gAMA,
subject to the chunk copying rules and the DROP/DBYK chunks. If the object is “abstract”, the data
can be stored in any convenient form. If it is “concrete”, it must be stored in an object buffer in a
manner that would permit the complete restoration of the original PNG or JNG file or its equivalent.

• The most recent values oftarget x and target y , if the object was the destination of a PAST
chunk.

When the encoder knows that data in the object buffer will not be needed later, it help decoders operate more
efficiently by usingobject id=0 or by using the DISC or the SEEK chunk. Abstract images rather than
concrete objects should be used if the encoder knows that the data will not later be used as the parent object
for a Delta-PNG. If no object buffer in the entire datastream will be needed later, the “stored object buffers”
flag can be set appropriately in the simplicity profile field of the MHDR chunk.

11.5 Decoder handling of fatal errors

When a fatal error is encountered, such as a bad CRC or an unknown critical MNG chunk, minimal viewers
that do not implement the SAVE/SEEK mechanism should simply abandon the MNG datastream. More
capable MNG viewers should attempt to recover gracefully by abandoning processing of the segment and
searching for a SEEK chunk. If such errors occur before the SAVE chunk is reached, the viewer should
abandon the MNG datastream.

When an error occurs within a image datastream, such as an unknown critical PNG chunk or a missing
parent object where one was required, only that image should be abandoned and the associated object should

96

be discarded. If a bad CRC is found, indicating a corrupted datastream, the entire segment should be
abandoned, as above.

MNG editors, on the other hand, should be more strict and reject any datastream with errors unless the user
intervenes.

11.6 Decoder handling of interlaced images

Decoders are required to be able to interpret datastreams that contain interlaced PNG images, but are only
required to display the completed frames; they are not required to display the images as they evolve. Viewers
that are decoding datastreams coming in over a slow communication link might want to do that, but MNG
authors should not assume that the frames will be displayed in other than their final form.

11.7 Decoder handling of palettes

When a PLTE chunk is received, it only affects the display of the PNG datastream that includes or inherits
it. Decoders must take care that it does not retroactively affect anything that has already been decoded.

If PLTE or PPLT is present in a Delta-PNG datastream, the new palette is used in displaying the image
defined by the Delta-PNG; if no IDAT chunk is present and the image type is PNG indexed-color, then the
resulting image is displayed using the old pixel samples as indices into the new palette, which provides a
“palette animation” capability.

If a frame contains two or more images, the PLTE chunk in one image does not affect the display of the
other, unless one image is a subsequent Delta-PNG that has no PLTE chunk and has been declared by the
DHDR object id field to depend on the other.

A composite frame consisting only of indexed-color images should not be assumed to contain 256 or fewer
colors, since the individual palettes do not necessarily contain the same set of colors. Encoders can supply a
top-level sPLT chunk with a suggested reduced global palette, to help decoders build an appropriate palette
when necessary.

11.8 Behavior of single-frame viewers

Viewers that can only display a single frame must display the first frame that they encounter. It is strongly
recommended that such viewers understand the fPRI chunk above (Paragraph 4.5.2), which will enable them
to find and display the best representative frame, if the encoder has identified one.

11.9 Clipping

MNG provides four types of clipping, in addition to any clipping that might be required due to the physical
limitations of the display device.

11. RECOMMENDATIONS FOR DECODERS 97

Frame width and frame height
The frame width and frame height are defined in the MHDR chunk and cannot be
changed by any other MNG chunk.

This is the only type of clipping available in MNG-VLC datastreams.

Decoders can use these parameters to establish the size of a window in which to display the MNG
frames. When theframe width or frame height exceeds the physical dimensions of the display
hardware, the contents of the area outside those dimensions is undefined. If a viewer chooses, it can
create “scroll bars” or the like, to enable persons to pan and scroll to the offscreen portion of the frame.
If this is done, then the viewer is responsible for maintaining and updating the offscreen portion of the
frame.

In the case of a MNG datastream that consists of a PNG or JNG datastream, with the PNG or JNG
signature, theframe width andframe height are defined by thewidth andheight fields of
the IHDR (or JHDR) chunk.

Layer clipping boundaries
The layer clipping boundaries are optionally defined in the FRAM chunk, and cannot be changed
within a subframe. When the framing mode is 3 or 4, viewers must, prior to displaying the foreground
layers of each frame, clear the area within the layer clipping boundaries to the background color, and
display the background image if one has been defined, thus creating a separate layer at the beginning
of each frame. Viewers must not change any pixels outside the layer boundaries; encoders must
be able to rely on the fact that the part of the display that is outside the layer clipping boundaries
(but inside the area defined byframe width and frame height) will remain on the display
from frame to frame without being explicitly redisplayed. See Example 8, which displays a large
background image once, and then, in each frame, only redisplays the portion of the background
surrounding the moving sprite.

Image clipping boundaries
The image clipping boundaries are defined in the DEFI and CLIP chunks. They are associated
with individual objects, not with the layers, and they can be changed within a subframe of layers.
They are useful for exposing only a portion of an image in a frame, to achieve effects such as
scrolling, panning, or gradual exposure.

The clipping boundaries are expressed in pixels, measured rightward and downward from the frame
origin.

The left and top clipping boundaries are inclusive and the right and bottom clipping boundaries are
exclusive, i.e., the pixel located at{x,y} is only displayed if the pixel falls within the physical limits
of the display hardware and all of the following are true:

0 <= x < frame width (from the MHDR chunk)
0 <= y < frame height
Left lcb <= x < right lcb (from the FRAM chunk)
Top lcb <= y < bottom lcb
Left cb <= x < right cb (from the DEFI or CLIP chunk)
Top cb <= y < bottom cb

98

PAST clipping boundaries
One type of clipping performed in PAST gives a fourth type that has no dependencies on the
other types, since the object CLIP data is ignored and the PAST chunk defines its own clipping
boundaries within the destination object. The left and top of this type of clipping is also inclusive,
and the right and bottom are exclusive.

Clipping to PAST destination object dimensions
A second type of clipping performed in PAST gives a fifth type that also has no dependencies
on the other types. The result of all PAST operations is clipped to fall within the dimensions of the
destination object. The left and top of this type of clipping is also inclusive, and the right and bottom
are exclusive. After this internal clipping is completed, the destination object is clipped in the same
manner as other objects when it is displayed.

12 Recommendations for Editors

12.1 Editing datastreams with optional index

Editors must recreate or delete the optional SAVE chunk index whenever they make any change that affects
the offsets of chunks following the portion of the datastream that is changed. If the changes do not involve
the addition, deletion, or relocation of segments, frames, and images, then it is sufficient to zero out the
offsets.

The SAVE chunk is not considered to be in any MNG segment, so changing it has no effect on the copy-safe
status of unknown chunks in any other part of the MNG datastream.

When the SAVE chunk is expanded to include an index, all chunks that follow will have their offsets changed
by an amount equal to the change in the length of the data segment of the SAVE chunk, so the offset table
will have to be adjusted accordingly. If a SAVE chunk is already present with zero offsets, the correct offsets
can be written without adjustment.

12.2 Handling LOOP and TERM chunks

Editors that create a series of PNG or JNG datastreams from a MNG datastream should check the termination
condition of any LOOP chunks and execute loops onlyiteration min times. The loop created by the
TERM chunk should be executed only once.

13 Miscellaneous Topics

13.1 File name extension

On systems where file names customarily include an extension signifying file type, the extension.mng is
recommended for MNG (including MNG-LC and MNG-VLC) files. Lowercase.mng is preferred if file

13. MISCELLANEOUS TOPICS 99

names are case-sensitive. The extension.jng is recommended for JNG files.

13.2 Internet media type

When and if the MNG format becomes finalized, the MNG authors intend to registervideo/mng as the
Internet Media Type for MNG [RFC-2045], [RFC-2048].

At the date of this document, the media type registration process had not been started. It is recommended
that implementations also recognize the interim media typevideo/x-mng .

Although we define a standalone JNG format, we recommend that such files be used only temporarily while
compiling or disassembling MNG datastreams. We may at some future time register an Internet Media Type
for JNG files. Until then, the interim media typeimage/x-jng can be used.

13.3 Uniform Resource Identifier (URI)

Segments, subframes, and objects are externally accessible via named SEEK, eXPI, and FRAM chunk
names. They can be referred to by URI, as in

SRC=file.mng#segment name
SRC=file.mng#subframe name
SRC=file.mng#snapshot name
SRC=file.mng?segment name#segment name
SRC=file.mng?snapshot name#snapshot name

When the URI specializer (“#” or “?”) is “#”, and the fragment identifier (the string following the specializer)
is the name of a segment, i.e., a named SEEK chunk, the viewer should display the sequence from the
beginning of the named segment up to the next segment. When it refers to a subframe or an image, i.e., a
named FRAM or eXPI chunk, it should display the single frame (as it exists when the next FRAM chunk is
encountered) or image that is identified by the fragment identifier. The client can find the needed segment
quickly if the SAVE chunk is present and contains the optional index.

When the URI specializer is “?” (server side query), the “query component” is the string following the
“?” specializer and up to but not including the “#” if the “#” specializer is also present. The server should
find the segment that is named in the query component or the segment that contains the subframe or image
named in the query component, and it should return a datastream consisting of:

• all chunks prior to the SAVE chunk,

• an empty SAVE chunk,

• the SEEK chunk for the segment being returned,

• all chunks in the segment, and

• a MEND chunk.

100

If no SAVE chunk is present, the server must simply return the entire MNG datastream. Servers that are
unwilling to parse the MNG datastream and are unconcerned about bandwidth can return the entire MNG
datastream even when the SAVE chunk is present. Authors should defend against this behavior by including
both a query and a fragment in the URI even when a segment is being requested.

The client can process this as a complete MNG datastream, either displaying the entire segment, if no
fragment identifier is present, or extracting the segment, frame or image that is named in a fragment identifier
and displaying it, if a fragment identifier is present (a fragment identifier must be present if a frame or image
is being requested). To “extract a frame” means to decode the returned datastream through the end of the
frame that contains the named subframe and to display the result as a single still image. If the layers of the
named subframe do not cover the entire frame, pixels from the background and from earlier subframes must
be included in the resulting composition.

A part of the MNG datastream can also be requested by timecode, as in

SRC=file.mng#clock(10s-20s)
SRC=file.mng#clock(0:00-0:15)
SRC=file.mng?clock(0:00-0:15)#clock(0:00-0:15)

or by frame number, as in

SRC=file.mng#frame(10)
SRC=file.mng#frames(30-60)
SRC=file.mng?frames(30-60)#frames(30-60)

The timecode must consist of starting and ending clock values, as defined in the W3C SMIL recommenda-
tion, separated by a hyphen (ASCII code 45).

When the URI specializer is “#”, the viewer should play that part of the sequence beginning and ending at
the requested times, measuring from zero time at the beginning of the MNG datastream, or beginning and
ending with the specified frame numbers. To do this it must start with the segment containing the requested
time and decode any part of the segment up to that time, composing but not displaying the frames; this will
provide the background against which the desired frames are displayed.

When the URI specializer is “?”, the server can send the entire MNG datastream, or, preferably, it should
construct a complete MNG file containing:

• the chunks preceding the SAVE chunk,

• the SAVE chunk itself with an optional index that gives the starting time and starting frame number
of the first SEEK chunk that is sent, and

• the one or more consecutive sets of segments, with their SEEK chunks, that contain the sequence
beginning and ending at the requested times, or frame numbers, at the proper framing rate.

If the server does not send the entire MNG datastream, and the first segment after the SAVE chunk is not
sent but a later segmentis sent, the optional index must be written even if it does not exist in the source file.
The index must contain at least one “type 0” entry that gives the nominal start time and frame number for

14. RATIONALE 101

the first segment that is sent after the SAVE chunk. The offset field can be set to zero and the segment name
can be omitted.

The query component should always be repeated as a fragment identifier, so clients can find the requested
item in case the server sends more than what was requested.

MNG datastreams should not contain segment, subframe, or image names that begin with the case-
insensitive strings “CLOCK(”, “FRAME(”, or “FRAMES(”, which are reserved for use in URI queries
and fragments (see Uniform Resource Identifier below).

See [RFC-2396] and the W3C SMIL recommendation at http://www.w3.org/TR/.

14 Rationale

This (incomplete as of version 0.998) section does not form a part of the specification. It provides the
rationale behind some of the design decisions in MNG.

Interframe delay

Explain why the interframe delay has to be providedbeforethe subframes of layers are defined, instead of
having a simpler DELA chunk that occurs in the stream where the delay is wanted.

DHDR delta types

Some delta types are not allowed when the parent object is a JNG image. Explain why types 4 and 6 (pixel
replacement and color channel replacement) are not allowed under these circumstances.

Additional filter methods

Filter method 64 could have been implemented as a new critical chunk in embedded PNG datastreams.

FILT
method (1 byte)

64: intrapixel differencing
data (variable, depends on method)

method 64 requires no data

The FILT chunk would turn on this type of filtering.

The choice of using a new filter method instead of a new critical chunk was made based on simplicity
of implementation and possible eventual inclusion of this method in PNG. Also, using the filter-method
byte helps implementors avoid confusion about whether this is a color transform (which could affect the

102

implementation of tRNS and other color-related chunks) or part of the filtering mechanism (which would
not conceivably affect color-related chunks).

We considered using an ancillary chunk (e.g., fILt or fILT) to turn on the new filtering method. This would
have the advantage that existing applications could manipulate the files, but viewers that ignore the chunk
would display the image in unacceptably wrong colors, and editors could mistakenly discard the chunk.

MAGN chunk rationale

Q. Why not just use a BASI chunk to encode solid-color rectangles?

A. The MAGN chunk also allows encoding of gradient-filled rectangles.

Q. Why not just use PNG to encode gradient-filled rectangles?

A. While PNG can encode vertical and horizontal gradients fairly efficiently, it cannot do diagonal ones
efficiently, and none are as efficient as a 30-byte MAGN chunk plus a 4-pixel PNG.

Q. Why not use full-scale low-quality JPEG/JNG?

A. Low-quality JPEG with reduced dimensions can be much smaller than even the lowest-quality full-
sized JPEG. Such images can then be magnified to full scale with the MAGN chunk, for use as preview
(“LOWSRC”) images. this has been demonstrated to be about 40 to 50 times as efficient as using Adam7
interlacing of typical natural images,

It appears that in general, usable preview images of truecolor photographic images can be made at com-
pression ratios from M*800:1 to M*2500:1, where M is the number of megapixels in the original image, by
reducing the original image spatially to width and height in the range 64 to 200 pixels and then compressing
the result to a medium-quality JNG.

Q. Why not use the pHYg chunk?

A. It is not mandatory for decoders to process the pHYg chunk and it does not apply to individual images; it
is used to scale the entire MNG frame. The pHYs chunk cannot be used either because MNG decoders are
required to ignore it.

Q. Why not 4-byte magnification factors instead of 2-byte ones?

A. Encoders can start with a larger object or, except for object 0, magnify it twice.

Q. Why not 1-byte magnification factors, then?

A. With typical screen widths currently 1280 or 1620 pixels and film and printer pages currently about 3000
pixels wide, magnifying a 1x1 image to a width of more than 255 pixels would not be uncommon.

Q. I want to magnify a “frozen” object.

A. You can make a full clone and magnify that.

Q. Why define Methods 4 and 5?

15. REVISION HISTORY 103

A. Method 4 is useful for magnifying an alpha-encoded image while maintaining binary transparency.
Method 5 is useful for making an alpha-gradient while preserving sharp edges in the main image.

Global JPEG tables

It has been suggested that a new global MNG chunk, JTAB, be defined to hold global JPEG quantization
and Huffman tables that could be inherited by JNG datastreams from which these have been omitted. This
has not been tested, and we are reluctant to add new critical chunks to the MNG specification now.

15 Revision History

15.1 Version 0.998b

Proposed 20 January 2001

• Editorial changes.

15.2 Version 0.998a

Proposed 19 January 2001

• Editorial changes.

15.3 Version 0.998

Released 18 January 2001

15.4 Version 0.997

Released 10 January 2001

• Changed the meaning of the FRAM timeout. Instead of being added to the interframe delay, it is
a minimum or maximum value to which the decoder can change the interframe delay. This was
approved by consensus on December 23, 2000.

• Added a section on Extension and Registration.

• Fixed some typographical errors and made minor formatting changes.

104

15.5 Version 0.995a

Proposed 23 December 2000

Proposes some changes to the simplicity profile.

15.6 Version 0.99

Released 10 December 2000

• Miscellaneous technical changes

– A new filter method (method 64, intrapixel differencing) is defined for PNG datastreams that are
embedded in MNG-LC, MNG, and Delta-PNG datastreams. This was approved by formal vote
on December 4, 2000.

– Deleted “or can be ignored” from the definition of the background transparency profile flag. This
was approved by consensus on October 28, 2000.

– Revised definition of magnification methods 3 and 4 and added method 5 for the MAGN chunk.
This was approved by consensus on November 11, 2000.

– Clarified that “saved” data need only be restored when a decoder makes random access to a seek
point after jumping from the interior of a segment. This was approved by consensus on October
28, 2000.

– Clarified that the background image must be potentially visible to be displayed. This was ap-
proved by consensus on October 28, 2000.

– When the sample depth in a delta-PNG is larger than the sample depth of the parent object,
right-shifting of the delta is specified. This was approved by consensus on November 10, 2000.

– Clarified that the MAGN chunk can generate one or more layers, when the existing objects being
magnified are potentially visible.

– Added a security recommendation to check for user input after each loop iteration as well as after
each complete frame, to avoid being stuck in an infinite loop of subframes with zero interframe
delay.

• Clarifications

– Added the MAGN and CLON chunks to the list of chunks across which MNG editors cannot
move unknown ancillary chunks.

– Added “foreground layer” terminology.

– Editorial changes to the FRAM chunk specification to clarify when interframe delays and syn-
chronization points occur.

– Added paragraph about object 0 in the introductory section on objects.

– Clarified that object attributes for object 0 become undefined when a SEEK chunk appears, if
they are different from the default values at the end of any segment. Made the treatment of
magnification data for object 0 consistent with the treatment of the other attributes.

15. REVISION HISTORY 105

– Removed statement in the FRAM chunk specification that a subframe ends when a SEEK chunk
is encountered. This is inconsistent with statements elsewhere in the specification that the SEEK
chunk can be treated as if it were an empty DISC chunk.

– Clarified that inserting a background layer ahead of a segment is only necessary when the de-
coder jumps to a seek point from the interior of a segment.

– Clarified that the empty DISC chunk only discards nonzero objects.

• Revised the author list.

15.7 Version 0.98

Released 01 October 2000

• Added the MAGN chunk. This was approved by a formal vote. Caution: there were errors in the
interpolation formula for MAGN (unbalanced parentheses, “+m” was “+1”) in the proposal that was
voted upon; those errors have been fixed in this public release.

• Added JPEG-encoded alpha channel in JNG and Delta-PNG datastreams, stored in a new JDAA
chunk. This was approved by a formal vote.

• Added a “stored object buffers” flag to promise that even when “complex MNG features” are present,
it is not necessary to create object buffers. This proposal was approved by a formal vote.

• Separated the “transparency” profile bit into “transparency”, “semitransparency”, and “background
transparency”, and added discussion of “background transparency” to the BACK and FRAM chunk
specifications. This proposal was approved by a formal vote.

• Added a “validity” flag to maintain backward compatibility of the simplicity profile. If it is zero, then
the “background transparency”, “semitransparency”, and “stored object buffers” flags donot make
any promises.

• Global sRGB nullifies global gAMA and cHRM, andvice versa.

• It is permitted to change the potential visibility, location, and clipping boundaries of “frozen” objects,
provided that the encoder writes chunks to restore them to their “frozen” values prior to the end of the
segment.

• Added a note that top-level color-space chunks do not have any effect on already-decoded objects.

• Mentioned a fifth type of clipping: clipping the result of PAST operations to the dimensions of the
PAST destination object.

• Disallowed the JSEP chunk whenimage sample depth != 20

• Clarified some wording in the SEEK chunk specification, and added a cross reference to the existing
requirement to insert a background layer when making random access to a segment.

• Added terminology entries for “animation”, “framing rate”, “interpolation”, “iteration”, “replication”,
and “nullify”.

106

• Clarified treatment of the alpha sample in the BASI chunk when the color type is 0, 2, or 3, and
clarified that the BASI chunk inherits default DEFI values if no DEFI chunk is present.

• Changed “repeat count” to “iteration count” in the LOOP chunk specification, and “times to repeat”
to “times to execute” in the description of the “iterationmax” field in the TERM chunk, and added a
statement about representing infinity.

• Added two examples related to the MAGN chunk.

• Various editorial changes.

15.8 Version 0.97

Released 28 February 2000.

• Minor editorial changes only.

• A new example was added.

15.9 Version 0.96

Released 18 July 1999.

The changes that are not simple editorial changes were approved by votes of the PNG Development group
that closed 16 July 1999 (pHYg and change to treatment of the pHYs chunk), 14 July 1999 (global bKGD
and sBIT) and 25 June 1999 (change to LOOP chunk and treatment of the DEFI chunk and nonviewable
objects).

• An object “comes into existence” when it is named in a DEFI chunk instead of later, when the cor-
responding embedded image is received. This makes it possible to MOVE or CLIP objects whose
object buffer does not yet exist.

• The special treatment of the set of object attributes for object 0 was eliminated.

• Any attempt to display a nonviewable object must be ignored and not treated as an error. The restric-
tion that a nonviewable object must not be made potentially visible was removed.

• Any nonviewable object included in the list of objects to be processed by the SHOW chunk must be
ignored and not treated as an error (in MNG-0.95 and earlier, the SHOW chunk would change its
visibility but not display it).

• If fields are omitted from the DEFI chunk, values are inherited from a previous DEFI chunk, if one
was present. In MNG-0.95, such fields assumed specified default values. In this version, the default
values are only used if no prior DEFI chunk with the same objectid was present or if the prior DEFI
chunk has been discarded.

• The termination condition byte of the LOOP chunk was extended to include a “cacheable”
bit.

16. REFERENCES 107

• Revised wording of paragraph 3.3 to describe “viewable objects” as well as “viewable object buffers”.

• Clarified that an image is displayed immediately if it is the subject of a CLON chunk with
do not show==0.

• Revised Examples 6, 7, 9, 13 and 14.

• Changed “JDAT sample depth ” to “ image sample depth ” and “IDAT sample depth ” to
“alpha sample depth ”, etc.

• Started a Rationale section.

• Started a Revision History section.

• Added the pHYg chunk and changed the meaning of the global pHYs chunk.

• Added the global bKGD and sBIT chunks.

15.10 Version 0.95

• Initial public release, approved by the PNG Development Group on 11 May 1999.

16 References

[ISO/IEC-10918-1]
International Organization for Standardization and International Electrotechnical Commission,
“Digital Compression and Coding of Continuous-tone Still Images, Part 1: Requirements and
guidelines” ISO/IEC IS 10918-1, ITU-T T.81.
See also Pennebaker, William B., and Joan L. Mitchell, “JPEG : Still Image Data Compression
Standard” Van Nostrand Reinhold, ISBN:0442012721, September 1992

[JFIF]
C-Cube Microsystems, “JPEG File Interchange Format, Version 1.02”, September 1992.

[LOCO]
Weinberger, Marcelo J., Gadiel Seroussi, and Guillermo Sapiro, “The LOCO-I Lossless Image
Compression Algorithm: Principles and Standardization into JPEG-LS” Hewlett Packard Report
HPL-98-193R1, November 1998, revised October 1999, available at http://www.hpl.hp.com/loco/.

[PNG]
Boutell, T., et. al., “PNG (Portable Network Graphics Format) Version 1.0”, RFC 2083,
ftp://ftp.isi.edu/in-notes/rfc2083.txt also available at
ftp://swrinde.nde.swri.edu/pub/png/documents/. This specification has also been published as a W3C
Recommendation, which is available at
http://www.w3.org/TR/REC-png.html.

108

See also the PNG-1.2 specification:
Randers-Pehrson, G., et. al., “PNG (Portable Network Graphics Format) Version 1.2”, which is avail-
able at
ftp://swrinde.nde.swri.edu/pub/png/documents/.

[PNG-EXT]
Randers-Pehrson, G., et al, “Extensions to the PNG 1.2 Specification”,
ftp://swrinde.nde.swri.edu/pub/png/documents/pngext-*.

[RFC-2119]
Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, RFC 2119/BCP
14, Harvard University, March 1997.

[RFC-2045]
Freed, N., and N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part One: For-
mat of Internet Message Bodies”, RFC 2045, Innosoft, First Virtual, November 1996.
ftp://ftp.isi.edu/in-notes/rfc2045.txt

[RFC-2048]
Freed, N., Klensin, J., and J. Postel, “Multipurpose Internet Mail Extensions (MIME) Part
Four: Registration Procedures”, RFC 2048, Innosoft, MCI, USC/Information Sciences Institute,
November 1996.
ftp://ftp.isi.edu/in-notes/rfc2048.txt

[RFC-2396]
Berners-Lee, T., R. Fielding, U. C. Irvine, and L. Masinter, “Uniform Resource Identifiers
(URI): Generic Syntax”, RFC 2396, MIT/LCS, Xerox Corporation, University of Minnesota,
August 1998.
ftp://ftp.isi.edu/in-notes/rfc2396.txt

17 Security Considerations

Security considerations are addressed in the PNG specification.

An infinite or just overly long loop could give the appearance of having locked up the machine, as could
an unreasonably long interframe delay or a misplacedsync id with a long timeout value. Therefore
a decoder should always provide a simple method for users to escape out of a loop or delay, either by
abandoning the MNG entirely or just proceeding to the next SEEK chunk. Decoders should check for
user input after each loop iteration (not just after each frame) in case of infinite loops that are empty or that
generate layers with zero interframe delay. The SEEK chunk makes it safe for a viewer to resume processing
after it encounters a corrupted portion of a MNG datastream or jumps out of the interior of a segment for
any reason.

Some people may experience epileptic seizures when they are exposed to certain kinds of flashing lights or
patterns that are common in everyday life. This can happen even if the person has never had any epileptic

17. SECURITY CONSIDERATIONS 109

seizures. All graphics software and file formats that support animation and/or color cycling make it possible
to encode effects that may induce an epileptic seizure in these individuals. It is the responsibility of authors
and software publishers to issue appropriate warnings to the public in general and to animation creators in
particular.

No known additional security concerns are raised by this format.

110

18 Appendix: EBNF Grammar for MNG, PNG, and JNG

This (incomplete as of version 0.998) section does not form a part of the specification.

An EBNF grammar for the chunk ordering in MNG, PNG, and JNG is being developed. Eventually it will
be included here as an appendix. The current draft, together with some supporting programs, is available at
ftp://swrinde.nde.swri.edu/pub/mng/documents/ebnf/.

19 Appendix: Examples

We use the “#” character to denote commentary in these examples; such comments are not present in actual
MNG datastreams.

19.1 Example 1: A single image

The simplest MNG datastream is a single-image PNG datastream. The simplest way to create a MNG from
a PNG is:

copy file.png file.mng

The resulting MNG file looks like:

\211 P N G \r \n ˆz \n # PNG signature.
IHDR 720 468 8 0 0 0 0 # Width and Height, etc.
sRGB 2
gAMA 45455
IDAT ...
IEND

If file.png contains an sRGB chunk and also gAMA and cHRM chunks that are recommended in
the PNG specification for “fallback” purposes, you can remove those gAMA and cHRM chunks from
file.mng because any MNG viewer that processes the gAMA chunk is also required to recognize and
process the sRGB chunk, so those chunks will always be ignored. Any MNG editor that converts the MNG
file back to a PNG file is supposed to insert the recommended gAMA and cHRM chunks.

19.2 Example 2: A very simple movie

This example demonstrates a very simple movie, such as might result from directly converting an animated
GIF that contains a simple series of full-frame images:

19. APPENDIX: EXAMPLES 111

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 256 300 # Width and height.

1 # 1 tick per second.
5 4 4 # Layers, frames, play time
7 # Simplicity profile

DEFI 1 0 0 IHDR ... IDAT ... IEND # Four PNG datastreams
DEFI 2 0 0 IHDR ... IDAT ... IEND # are read and stored
DEFI 3 0 0 IHDR ... IDAT ... IEND # and are displayed as
DEFI 4 0 0 IHDR ... IDAT ... IEND # they are read.
SAVE # This is needed so we can place TERM before SEEK.
TERM 3 0 120 10 # When done, repeat from TERM 10 times.
SEEK
SHOW
MEND

112

19.3 Example 3: A simple slideshow

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 720 468 1 # Width and height, 1 tick per second.

6 5 5 # Layers, frames, play time.
1 # Simplicity profile (MNG-VLC)

FRAM 1 0 2 2 0 2 1 600 0 # Set interframe delay to 1,
timeout to 600 sec, and sync id list to {0}.

SAVE
SEEK "Briefing to the Workforce"
IHDR ... IDAT ... IEND # DEFI 0, visible, abstract
SEEK "Outline" # is implied.
IHDR ... IDAT ... IEND
SEEK "Our Vision" IHDR ... IDAT ... IEND
SEEK "Our Mission" IHDR ... IDAT ... IEND
SEEK "Downsizing Plans" IHDR ... IDAT ... IEND
MEND

19.4 Example 4: A more storage-efficient slideshow

This slideshow gives exactly the same output as Example 3, but the storage in the datastream is more efficient
(the IDAT chunks will be smaller) while the memory requirements in the decoder are larger. Image ID 1 is
used to store the ornate logos and frame design that appear on every slide. The DHDR-IEND datastreams
only contain deltas due to the text and other information that is unique to each slide.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 720 468 # Width and height.

1 6 5 5 15 # 1 tick per second, complex, no JNG.
DEFI 1 1 1 # Define image 1, invisible, concrete.
IHDR ... IDAT ... IEND
FRAM 1 0 2 2 0 2 1 600 0 # set interframe delay to 1,

timeout to 600 sec and sync id list to {0}.
SAVE
SEEK "Briefing to the Workforce"
CLON 1 2 DHDR 2 ... IDAT ... IEND SHOW 2
SEEK "Outline"
CLON 1 2 DHDR 2 ... IDAT ... IEND SHOW 2
SEEK "Our Vision"
CLON 1 2 DHDR 2 ... IDAT ... IEND SHOW 2
SEEK "Our Mission"
CLON 1 2 DHDR 2 ... IDAT ... IEND SHOW 2
SEEK "Downsizing Plans"
CLON 1 2 DHDR 2 ... IDAT ... IEND SHOW 2
MEND

19. APPENDIX: EXAMPLES 113

19.5 Example 5: A simple movie

This movie is still fairly simple, but it capitalizes on frame-to-frame similarities by use of Delta-PNG datas-
treams, and also demonstrates the use of the fPRI chunk.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 720 468 # Width and height.

30 6 5 15 # 30 ticks per second.
47 # Delta-PNG, transparent, complex

tEXtTitle\0Sample Movie
fPRI 0 128 # Default frame priority is "medium".
FRAM 1 0 2 0 0 0 3 # Set interframe delay to 1/10 sec.
DEFI 1 0 1 # Set default image to 1 (concrete).
SAVE
SEEK "start"

IHDR 720 468 8 2 0 0 0 # DEFI 1 is implied.
IDAT ...
IEND

DHDR 1 1 1 20 30 100 220 # A PNG-delta frame.
IDAT ... # The IDAT gives the 20x30 block
IEND # of deltas.

DHDR 1 1 1 20 30 102 222 # Another PNG-delta frame.
IDAT ... # This time the deltas are in a 20 x 30
IEND # block at a slightly different location.

SEEK "frame 3" # OK to restart here because a
complete PNG frame follows.

fPRI 0 255 # This is the representative frame that
IHDR 720 468 ...# will be displayed by single-frame
IDAT ... # viewers.
IEND
fPRI 0 128 # Return to medium frame priority.

DHDR 1 1 1 720 468 0 0 # Another PNG-delta frame.
IDAT ... # The entire 720x468 rectangle changes
IEND # this time.

SEEK "end"
MEND # End of MNG datastream.

114

19.6 Example 6: A single composite frame

Here is an example single-composite-frame MNG, with thumbnails, which takes a grayscale image and
draws it side-by-side with a false-color version of the same image:

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 1024 512 0 # Width, height, ticks per second

4 1 0 47 # Layers, frames, time, simplicity
BACK 16448 16448 52800 1 # Must use sky blue background.

PLTE ... # Define global PLTE
gAMA 50000 # Define global gAMA
DEFI 1 1 # Define invisible abstract thumbnail image.
IHDR 64 64 4 3 0 0 0 PLTE IDAT ... IEND # use global PLTE
eXPI 1 "thumbnail 1"
DEFI 1 1 # Also define a larger thumbnail.
IHDR 96 96 4 3 0 0 0 PLTE IDAT ... IEND # use global PLTE
eXPI 1 "thumbnail 2"
DISC # Discard the thumbnail image.

FRAM 4 "Two views of the data"
DEFI 1 0 1 6 6 # Define first (bottom) image.
IHDR 500 500 16 0 .. # A 16-bit graylevel image.
IDAT ...
IEND # End of image.

CLON 1 2 0 1 0 0 518 6 # Make full invisible concrete clone.
SHOW 2 2 3 # Mark it for immediate display during

the upcoming delta-PNG operation.
DHDR 2 1 7 # Modify it (no change to pixels).
ORDR faLT 2 # Establish chunk placement.
gAMA 100000 # Local gamma value is 100000 (gamma=1.0).
tEXtComment\0The faLT chunk is described in ftp://swrinde...
faLT ... # Apply pseudocolor to parent image.
IEND # End of image.
DEFI 3 0 0 900 400 # Overlay near lower right-hand corner.
IHDR 101 101 2 3 ...
PLTE ... # Use a local PLTE and global gAMA.
tRNS ... # It is transparent (maybe a logo).
IDAT ... # Note that the color type can differ
IDAT ... # from that of the other images.
IEND # End of image.

MEND # End of MNG datastream.

19. APPENDIX: EXAMPLES 115

19.7 Example 7: A movie with sprites

Here is another movie, illustrating the use of Delta-PNG datastreams as sprites:

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 512 512 30 0 0 0 47 # Start of MNG datastream.
FRAM 2 "frame 1" 0 2 0 0 0 3 # First frame

sets interframe delay=3 ticks.
DEFI 1 # Define image 1 (abstract, LOCA 0 0).
IHDR 512 512 ... # It is a full-display PNG image.
etc # Chunks according to PNG spec.
IEND # SHOW 1 is implied by DEFI 1.
DEFI 2 0 1 300 200 # Define image 2, concrete.
IHDR 32 32 ... # It is a small PNG.
gAMA 50000
IDAT ...
IEND
FRAM 0 "frame 2" # Start new frame.

New location for image 1 is still 0,0.
SHOW 1 # Display image 1 from previous frame.
MOVE 2 2 1 10 5 # New (delta) location for image 2.
SHOW 2 # Retrieve image 2 from previous frame,
CLON 2 3 0 1 0 # make a full clone of it as image 3.

0 400 500 # Location for image 3.
DHDR 3 1 7 0 0 0 0 # Modify image 3 (no change to pixels).
tRNS ... # Make it semitransparent.
IEND # SHOW 3 is implied by CLON visibility.
FRAM 0 "frame 3" # Next frame (repeat this FRAM-SHOW 1 3

sequence with different locations to
move the images around).
New location for image 1 is still 0,0.

MOVE 2 2 1 10 5 # New (delta) location for image 2.
MOVE 3 3 1 5 -2 # New location for image 3.
SHOW 1 3 # Show images 1 through 3.
FRAM 0 "frame 4" # Another frame.
etc.
FRAM 0 "frame 99"
etc. # More frames.
MEND # End of MNG datastream.

116

19.8 Example 8: A movie with an animated sprite

This movie illustrates the use of several abstract images with Showmode=6 to describe an animated sprite,
and the PAST chunk to turn it around. The sprite runs back and forth across the background ten times. The
FRAM clipping boundaries restrict the screen updates to the small region that changes, with a little “wiggle
room” to make sure the disturbed part of the background gets updated.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 512 512 30 0 0 0 15 # Start of MNG datastream.
FRAM 2 "frame 1" 0 2 0 0 0 3 # First frame.
DEFI 1 IHDR 512 512 ... # Background PNG image.
etc ... IEND # Chunks according to PNG spec.

DEFI 10 1 0 x0 y0 # Static part of sprite.
IHDR 64 64 ... IDAT ... IEND
DEFI 11 1 0 x0 y1 # View 1 of animated part.
IHDR 64 32 ... IDAT ... IEND # (y1=y0+64)
DEFI 12 1 0 x0 y1 # View 2 of animated part.
IHDR 64 32 ... IDAT ... IEND
DEFI 13 1 0 x0 y1 # View 3 of animated part.
IHDR 64 32 ... IDAT ... IEND

FRAM 0 0 0 0 2 0 0 x0-dx x0+64+dx y0-dy y1+32+dy
LOOP 0 0 10
LOOP 1 0 150
FRAM 0 "left-to-right" 0 0 2 0 1 dx dx dy dy
MOVE 10 13 1 dx dy # Move animated icon {dx, dy }.
SHOW 1 SHOW 10 # Show background and static part.
SHOW 11 13 6 # Select the next view of the
ENDL 1 # animated part and show it.

FRAM SHOW 1
PAST 10 0 0 0 10 1 4 0 0 0 0 0 64 64
PAST 11 0 0 0 11 1 4 0 0 0 0 0 64 32
PAST 12 0 0 0 12 1 4 0 0 0 0 0 64 32
PAST 13 0 0 0 13 1 4 0 0 0 0 0 64 32
LOOP 1 0 150
FRAM 0 "right-to-left" 0 0 2 0 1 -dx -dx -dy -dy
MOVE 10 13 1 -dx -dy # Move animated icon {-dx, -dy }.
SHOW 1 SHOW 10 # Show background and static part.
SHOW 11 13 6 # Select the next view of the
ENDL 1 # animated part and show it.
ENDL 0 FRAM
MEND

19. APPENDIX: EXAMPLES 117

19.9 Example 9: “Fading in” a transparent image

The opaque parts of this image will “fade in” gradually. This example also illustrates the use of the PPLT
and fPRI chunks.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 64 64 30 0 0 0 47 # Width, height, ticklength,
BACK 52800 52800 52800 # "Browser gray" default background.

FRAM 3 0 2 0 0 0 3 # Set interframe delay=3 ticks. Use
framing mode 3 so background gets restored.

DEFI 1 1 1 # Invisible and "concrete".
IHDR ... # PNG header.
PLTE ...
tRNS 0 # Entries are zero for the transparent (0)

color and 255 for the nontransparent ones.
IDAT ...
IEND
fPRI 0 0 # Give the fade-in sequence a low priority.
CLON 1 2 # Make a working concrete copy of the image

that will be modified during the low-priority
part of the datastream. It is a full clone.

DHDR 2 1 7 # No change to pixel data.
tRNS 0 0 0 0 0 0 ... # Make all pixels fully transparent.
IEND
SHOW 2 2 3 # Make it visible but do not show it now.

LOOP 0 0 15
DHDR 2 1 7 # A Delta-PNG.

Delta-type 7 means no change to pixels.
PPLT 1 10 3 16 16 16 16 ... # Increment all alphas except
IEND # for entry 0 by 16.
SHOW 2
ENDL 0 # Nontransparent pixel alpha=15, 31, ... 240.

DISC 2 # Discard the working copy.
fPRI 0 255 # Give the final frame the highest value
FRAM 0 0 1 0 0 0 60 # Hold the last frame for at least

60 ticks (2 sec). Applications might show it longer.
SHOW 1 # This copy still has alpha=255 for the

opaque pixels and alpha=0 for the others.
MEND # End of MNG.

118

19.10 Example 10: Storing three-dimensional images

In this example, we store a series of twenty-four 150 x 150 x 150 blocks of eight-bit voxels. Each block is
stored as a composite frame with the first image being a PNG whose pixels represent the top layer of voxels,
which is followed by 149 Delta-PNG images representing the rest of the layers of voxels. Only one image
is defined, through which the parent image is passed along from PNG to Delta-PNG to Delta-PNG. This
example also illustrates the use of unregistered ancillary chunks that describe the x, y, and z scales and pixel
calibration.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 150 150 1 # Width, height, ticklength.

0 0 0 47 # Layers, frames, time, simplicity.
tEXtTitle\0Weather modeling results
tEXtComment\0The xxSC, yySC, zzSC, and ttSC chunks

in this file are written according to the Proposed
Chunk Specifications version 19970203 and Sci-Vis
Chunks Specification version 19970203 available at
ftp://swrinde.nde.swri.edu/pub/png-group/documents/

xxSC kch\0 [sig\0] kilometers\0 0\0 150
yySC kch\0 [sig\0] kilometers\0 0\0 150
zzSC kch\0 [sig\0] Height (kilometers)\0 0\0 15
ttSC kch\0 [sig\0] Time (hours)\0 0\0 24
pCAL kch\0 0 255 0 2 Degrees Celsius\0 0\0 45
DEFI 1 0 1 # All images will have image = 1
SAVE # and be visible and "concrete".
SEEK
FRAM 2 # Initial composite image.
IHDR 150 150 16 # Width, height, bit depth for top layer.

0 0 0 0 # Color, comp, filter, interlace.
IDAT ...
IEND # No DEFI chunk, so it is image 0.
DHDR 1 1 0 # Source=0, PNG, pixel addition,

150 150 0 0 # Block is entire image.
IDAT ... # IHDR is omitted; everything matches top.
IEND # IEND is also omitted.
etc. # Repeat DHDR through IEND 148 more times.
SEEK
FRAM # End of first block.
etc. # Repeat FRAM through SEEK 19 more times.
SEEK
MEND # End of MNG.

19. APPENDIX: EXAMPLES 119

19.11 Example 11: Tiling

Here is another composite frame, illustrating the use of the LOOP syntax to tile a large (1024 by 768) image
area with a small (128 by 64) image.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 1024 768 0 # Start of MNG datastream.

98 1 0 15 # Layers, frames, time, simplicity.
FRAM 2
DEFI 1 1 0 0 -64 # Set up an offscreen "abstract" copy
IHDR 128 64 ... PLTE ... IDAT ... IEND # of the tile.
LOOP 0 0 12 # Y loop -- make 12 rows of tiles.
MOVE 1 1 1 0 64 # Move the first copy down 64 rows.
SHOW 1 # Display it.
CLON 1 2 1 # Create a partial clone of the tile.
LOOP 1 0 7 # X loop - 7 additional columns.
MOVE 2 2 1 0 128 # Move it to the right 128 columns.
SHOW 2 # Use the second copy.
ENDL 1
ENDL 0
MEND

Here is a better approach, which creates a reusable tiled image by means of the PAST chunk.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 1024 768 0 # Start of MNG datastream.

3 1 0 15 # Layers, frames, time, simplicity.
DEFI 1 1 # Set up an offscreen "abstract" copy
IHDR 128 64 ... PLTE ... IDAT ... IEND # of the tile.
DEFI 2 # The abstract, visible, viewable image to
BASI 1024 768 8 2 0 0 0 0 0 0 0 1 # be tiled. Initially
IEND # all pixels are zero.
PAST 2 0 0 0 # Destination and target location.

src mod orient offset clipping
1 0 8 0 0 512 0 0 1024 0 768

End of PAST chunk data.
MEND

120

19.12 Example 12: Scrolling

Here is an example of scrolling a 3000-line-high image (perhaps an image of some text, but could be any-
thing) through a 256-line-high window with an alpha-blended border.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 512 256 30 # Width, height, ticks per second

6513 3257 3257 15 # Layers, frames, time, simplicity.
BACK 50000 50000 50000 0 # advisory gray background
DEFI 1 1 0 0 256 # Define image 1 but do not display now.

Initially it is offscreen, just
below the 512 by 256 window.

IHDR 512 3000 1 0 ... # A PNG datastream containing the
PLTE ... # text (or whatever) to be scrolled.
IDAT ...
IEND

DEFI 2
IHDR 512 256 8 6 ... # A PNG datastream containing some kind
PLTE ... # of alpha-blended border that is
tRNS ... # transparent in the center.
IDAT ...
IEND

LOOP 0 0 3256
MOVE 1 1 1 0 -1 # Jack image 1 up one scanline, 3256 times.

It ends up just above the 512 by 256 window.
The border does not move.

FRAM 1 0 2 0 0 0 0 # Interframe delay = 0 ticks.
We use Framing mode=1 to avoid unnecessary
screen clearing between frames.

SHOW 1 # Show first image and continue without delay.
FRAM 1 0 2 0 0 0 1 # Interframe delay = 1 tick.
SHOW 2 # Composite second image over first, wait 1 tick.
ENDL 0
MEND

Alternatively, we can declare the scrolling object to be the background and use framing-mode 3:

(Same as above down to the LOOP chunk.)
BACK 50000 50000 50000 2 1 # Advisory gray background.

Mandatory image background.
FRAM 3 0 2 0 0 0 1 # Interframe delay = 1 tick.
LOOP 0 0 3256
MOVE 1 1 1 0 -1 # Jack background up one scanline, 3256 times.
SHOW 2 # Composite the second image over it, wait 1 tick.
ENDL 0
MEND

19. APPENDIX: EXAMPLES 121

19.13 Example 13: Cycling animations

This demonstrates the use of the SHOW chunk withshow mode=6 to create animations that cycle through
a series of ten objects.

This will cycle through the ten objects in the forward direction, 100 times, unless terminated sooner by the
user or the decoder.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 400 88 30 # Width, height, ticks per second

11 1001 1001 7 # Layers, frames, time, simplicity.
DEFI 1 ...
etc. # Define 10 objects.
DEFI 10 ...
LOOP 0 100 6 # 100 iterations, user-discretion, cacheable
SHOW 1 10 6
ENDL 0
MEND

This will cycle through the ten objects, back and forth, 50 times, unless terminated sooner by the user or the
decoder.

\212 M N G \r \n ˆz \n # MNG signature.
MHDR 400 88 6 # Width, height, ticks per second

11 901 901 7 # Layers, frames, time, simplicity.
DEFI 1 ...
etc. # Define 10 objects.
DEFI 10 ...
CLON 11 9 1 # Make partial clones of objects 2-9
etc. # in reverse order, as objects 11-18.
CLON 18 2 1

LOOP 0 50 6 # 50 iterations, user-discretion, cacheable
SHOW 1 18 6
ENDL 0
MEND

122

19.14 Example 14: Converting a GIF animation

Outline of a program to convert GIF animations to MNG format:

begin
write "MHDR" chunk
saved images := 0; Interframe delay := 0
First frame := TRUE
if(loops>1) "write TERM 3 0 0 loops" chunk
write "BACK" chunk
for subimage in gif89a file do

if(interframe delay != gif duration) then
interframe delay := gif duration
write "FRAM 4 0 2 2 0 2 0 interframe delay 0" chunk
First frame := FALSE

else if(First frame == TRUE)then
write "FRAM 4" chunk
First frame := FALSE

else
write "FRAM" chunk

endif
if(X loc == 0 AND Y loc == 0) then

write "DEFI saved images 1 1" chunk
else

write "DEFI saved images 1 1 X loc Y loc" chunk
write "<image>"
write "SHOW 0 saved images" chunk
if (gif disposal method == 0

OR gif disposal method == 2) then
/* (undefined or restore background) */

write "DISC" chunk
saved images := 0

else if (gif disposal method == 1) then
/* (keep) */
saved images := saved images + 1

else if (gif disposal method == 3) then
/* (restore previous) */
write "DISC saved images" chunk

endif
endfor
write "FRAM" and "MEND" chunks

end

Where “<image>” represents a PNG or Delta-PNG containing a GIF frame converted to PNG format.

Caution: if you write such a program, you might have to pay royalties in order to convey it to anyone else.

19. APPENDIX: EXAMPLES 123

19.15 Example 15: Converting a simple GIF animation

Outline of a program to convert simple GIF animations that do not use the “restore-to-previous” disposal
method to “simple” MNG (or “MNG-LC”) format:

begin
write "MHDR" chunk
Interframe delay := 0; Previous mode := 1
Framing mode := 1
if(loops>1) "write TERM 3 0 0 loops"
write "mandatory BACK" chunk
for subimage in gif89a file do

if(interframe delay != gif duration) then
interframe delay := gif duration
write "FRAM 0 0 2 2 0 2 0 interframe delay 0"

endif
if(X loc != 0 OR Y loc != 0) then

write "DEFI 0 0 0 X loc Y loc" chunk
endif
write "<image>"
if (gif disposal method < 1) then

/* (none or keep) */
Framing mode := 1

else if (gif disposal method == 2) then
/* (restore background) */
write "FRAM 4 0 1 0 1 0 0 L R T B"
Previous mode := 4; Framing mode := 1

else if (gif disposal method == 3) then
/* (restore previous) */
error ("can’t do gif disposal method = previous.")

endif
if(Framing mode != Previous mode) then

write "FRAM Framing mode" chunk
Previous mode := Framing mode

endif
end
write "MEND" chunk

end

Where “<image>” represents a PNG datastream containing a GIF frame that has been converted to PNG
format.

Caution: if you write such a program, you might have to pay royalties in order to convey it to anyone else.

124

19.16 Example 16: Counting layers and frames

This demonstrates the determination of the layer count and frame count that should be written in the MHDR
chunk. For framingmodes 1 and 2, the FRAM chunks themselves do not generate layers. For fram-
ing modes 3 and 4, they do generate layers (“B” for background), and also generate frames if there is
no embedded image with which to combine the background layer. Note that every framingmode creates a
“B” layer at the beginning.

Given the following chunk stream:

MHDR sRGB Fn F I I I F F I I I F F I I I MEND

in which

Fn represents a FRAM chunk with framing mode n
F represents an empty FRAM chunk;
I represents an embedded image

This table shows the layer count and frame count for each of the four possible values of framing-mode:

Framing Layer count Frame count
mode

1 B,I,I,I, I,I,I, I,I,I = 10 BI,I,I, I,I,I, I,I,I = 9
2 B,I,I,I, I,I,I, I,I,I = 10 BIII,III,III = 3
3 3*(B, B,I, B,I, B,I) = 21 3*(B,BI,BI,BI) = 12
4 3*(B,B,I,I,I) = 15 B,BIII,B,BIII,B,BIII = 6

19. APPENDIX: EXAMPLES 125

19.17 Example 17: Storing an icon library

Here is an example of storing a library of icons in a MNG-LC datastream. All of the icons use the same
palette, transparency, and colorspace, so these are put in global chunks at the beginning. Empty PLTE
chunks in the embedded images are used to import the global palette and transparency data.

MHDR 96 96 1 6 5 5 11 # Profile 11 is MNG-LC
sRGB 2 # Global sRGB
PLTE ... # Global PLTE
tRNS 0 # Global tRNS
eXPI 0 "thumbnail"
IHDR 32 32 ... PLTE IDAT ... IEND
eXPI 0 "left arrow"
IHDR 96 96 ... PLTE IDAT ... IEND
eXPI 0 "right arrow"
IHDR 96 96 ... PLTE IDAT ... IEND
eXPI 0 "up arrow"
IHDR 96 96 ... PLTE IDAT ... IEND
eXPI 0 "down arrow"
IHDR 96 96 ... PLTE IDAT ... IEND
MEND

This is similar, but it uses Delta PNG datastreams to create modified versions by replacing the palette.
This can be more storage-efficient, but requires a full MNG decoder because of the presence of Delta PNG
datastreams.

MHDR 96 96 1 6 5 5 47 # Profile 47 is MNG without JNG
sRGB 2 # Global sRGB
PLTE ... # Global PLTE
tRNS 0 # Global tRNS
eXPI 0 "thumbnail"
IHDR 32 32 ... PLTE IDAT ... IEND
SAVE
<index>
SEEK "left arrows"
DEFI 1
IHDR 96 96 ... PLTE IDAT ... IEND
eXPI 1 "red left arrow"
DHDR 1 1 7 PPLT ... IEND # Change some palette entries.
eXPI 1 "blue left arrow"
SEEK "right arrows"
IHDR 96 96 ... PLTE IDAT ... IEND
eXPI 1 "red right arrow"
DHDR 1 1 7 PPLT ... IEND
eXPI 1 "blue right arrow"
MEND

126

19.18 Example 18: MAGN methods

This demonstrates the methods used in the MAGN chunk.

Original 3x2 object or embedded image:

1 9 1
9 17 9

Magnification method 1, XM = 5, YM = 3. Replicates each pixel 4 additional times in the X direction and
2 additional times in the Y direction; new size is 15x6:

1 1 1 1 1 9 9 9 9 9 1 1 1 1 1
1 1 1 1 1 9 9 9 9 9 1 1 1 1 1
1 1 1 1 1 9 9 9 9 9 1 1 1 1 1
9 9 9 9 9 17 17 17 17 17 9 9 9 9 9
9 9 9 9 9 17 17 17 17 17 9 9 9 9 9
9 9 9 9 9 17 17 17 17 17 9 9 9 9 9

Magnification method 2, XM = 8, YM = 4. Fills the X intervals with 7 new pixels and the Y interval with 3
new pixels and interpolates to get pixel values; new size is 17x5:

1 2 3 4 5 6 7 8 9 8 7 6 5 4 3 2 1
3 4 5 6 7 8 9 10 11 10 9 8 7 6 5 4 3
5 6 7 8 9 10 11 12 13 12 11 10 9 8 7 6 5
7 8 9 10 11 12 13 14 15 14 13 12 11 10 9 8 7
9 10 11 12 13 14 15 16 17 16 15 14 13 12 11 10 9

Magnification method 3, XM = 8, YM = 4 Fills the X intervals with 7 new pixels and the Y interval with 3
new pixels replicating the closest pixel to get pixel values; new size is 17x5:

1 1 1 1 1 9 9 9 9 9 9 9 9 1 1 1 1
1 1 1 1 1 9 9 9 9 9 9 9 9 1 1 1 1
1 1 1 1 1 9 9 9 9 9 9 9 9 1 1 1 1
9 9 9 9 9 17 17 17 17 17 17 17 17 9 9 9 9
9 9 9 9 9 17 17 17 17 17 17 17 17 9 9 9 9

19. APPENDIX: EXAMPLES 127

19.19 Example 19: MAGN chunks and ROI

This example demonstrates the use of MNG to display a region of interest (ROI) at a higher quality than
the rest of the frame, and the MAGN chunk to convey a highly-compressed but very lossy image, a drop
shadow, and a diagonal gradient background.

MHDR 600 600 0 5 1 0 19
Gradient background
MAGN 00 00 2 599
sRGB 1
IHDR IDAT IEND <dblue2x2.png> # 93 bytes

Drop shadow
DEFI 0 0 0 52 52
BASI 512 512 1 4 0 0 0 51 51 51 153 1
IEND # Grey-Alpha object, 46 bytes

Main image, with most of the region of interest
replaced with a solid rectangle, and reduced to
128x128 dimensions, low quality JPEG compression.
DEFI 0 0 0 36 36
MAGN 00 00 2 04 04 06 05 06 05
JHDR 128 128 10 8 8 0 0 0 0 0
JDAT <lena q25 fourth.jpg> # 2514 bytes
IEND

Region of interest, full scale, cropped to
dimensions 200x313 at location 192,200,
high quality JPEG compression.
MAGN # Turn off magnification of all subsequent object 0
DEFI 0 0 0 228 236
JHDR 200 312 10 8 8 0 0 0 0 0
JDAT <lena face q65.jpg> # 8001 bytes
IEND

MEND

For the particular image used in this example (the 512x512 color Lena from Bragzone (
http://links.uwaterloo.ca/bragzone.base.html), the resulting 600x600 frame occupies about 2.6 times the file
size when written as a simple JNG and about 26 times the file size when written as a simple PNG.

128

20 Credits

Editor

• Glenn Randers-Pehrson, randeg @ alum.rpi.edu

Contributors

Contributors’ names are presented in alphabetical order:

• Mark Adler, madler @ alumni.caltech.edu

• Matthias Benkmann, mbenkmann @ gmx.de

• Thomas Boutell, boutell @ boutell.com

• John Bowler, jbowler @ acm.org

• Christian Brunschen, christian @ brunschen.com

• Glen Chapman, glenc @ clark.net

• Adam M. Costello, amc @ cs.berkeley.edu

• Lee Daniel Crocker, lee @ piclab.com

• Peter da Silva, peter @ starbase.neosoft.com

• Andreas Dilger, adilger @ turbolinux.com

• Oliver Fromme, oliver @ fromme.com

• Jean-loup Gailly, jloup @ gzip.org

• Chris Herborth, chrish @ pobox.com

• Alex Jakulin, jakulin @ acm.org

• Gerard Juyn, gjuyn @ xs4all.nl

• Neal Kettler, neal @ westwood.com

• Tom Lane, tgl @ sss.pgh.pa.us

• Alexander Lehmann, lehmann @ usa.net

• Chris Lilley, chris @ w3.org

• Dave Martindale, davem @ cs.ubc.ca

• Carl Morris, msftrncs @ htcnet.com

• Owen Mortensen, ojm @ acm.org

• Josh M. Osborne, stripes @ va.pubnix.com

• Keith S. Pickens, ksp @ rice.edu

20. CREDITS 129

• Glenn Randers-Pehrson, randeg @ alum.rpi.edu

• Nancy M. Randers-Pehrson, randeg @ alum.rpi.edu

• Greg Roelofs, newt @ pobox.com

• Willem van Schaik, willem @ schaik.com

• Guy Schalnat, gschal @ infinet.com

• Paul Schmidt, pschmidt @ photodex.com

• Smarry Smarasderagd, smar @ reptiles.org

• Alaric B. Snell, alaric @ alaric-snell.com

• Thomas R. Tanner, ttehtann @ argonet.co.uk

• Cosmin Truta, cosmin@cs.toronto.edu

• Guido Vollbeding, guivol @ esc.de

• Tim Wegner, twegner @ phoenix.net

Trademarks

• GIF is a service mark of CompuServe Incorporated.

• X Window System is a trademark of the Massachusetts Institute of Technology.

Document source

This document was built from the filemng-master-20010120 on 20 January 2001.

Copyright Notice

Copyright c© 1998-2001, by Glenn Randers-Pehrson

This specification is being provided by the copyright holder under the following license. By obtaining,
using and/or copying this specification, you agree that you have read, understood, and will comply with the
following terms and conditions:

Permission to use, copy, and distribute this specification for any purpose and without fee or royalty is hereby
granted, provided that the full text of thisNOTICE appears onALL copies of the specification or portions
thereof, including modifications, that you make.

THIS SPECIFICATION IS PROVIDED “AS IS,” AND COPYRIGHT HOLDER MAKES NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAM-
PLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE

130

OR THAT THE USE OF THE SPECIFICATION WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDER
WILL BEAR NO LIABILITY FOR ANY USE OF THIS SPECIFICATION.

The name and trademarks of copyright holder mayNOT be used in advertising or publicity pertaining to
the specification without specific, written prior permission. Title to copyright in this specification and any
associated documentation will at all times remain with copyright holder.

End of MNG Specification.

