catanh, catanhf, catanhl — complex arc tangents hyperbolic
#include <complex.h>
double complex
catanh( |
double complex z); |
float complex
catanhf( |
float complex z); |
long double complex
catanhl( |
long double complex z); |
![]() |
Note |
|---|---|
|
Link with |
These functions calculate the complex arc hyperbolic
tangent of z. If
y = catanh(z), then
z = ctanh(y). The
imaginary part of y is chosen in
the interval [−pi/2,pi/2].
One has:
catanh(z) = 0.5 * (clog(1 + z) − clog(1 − z))
For an explanation of the terms used in this section, see attributes(7).
| Interface | Attribute | Value |
catanh(), catanhf(), catanhl() |
Thread safety | MT-Safe |
/* Link with "−lm" */
#include <complex.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
int
main(int argc, char *argv[])
{
double complex z, c, f;
if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);
}
z = atof(argv[1]) + atof(argv[2]) * I;
c = catanh(z);
printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));
f = 0.5 * (clog(1 + z) − clog(1 − z));
printf("formula = %6.3f %6.3f*i\n", creal(f2), cimag(f2));
exit(EXIT_SUCCESS);
}
This page is part of release 4.00 of the Linux man-pages project. A
description of the project, information about reporting bugs,
and the latest version of this page, can be found at
http://www.kernel.org/doc/man−pages/.
|
Copyright 2002 Walter Harms (walter.harmsinformatik.uni-oldenburg.de) and Copyright (C) 2011 Michael Kerrisk <mtk.manpagesgamil.com> %%%LICENSE_START(GPL_NOVERSION_ONELINE) Distributed under GPL %%%LICENSE_END |