
Internet Engineering Task Force E. Kohler
INTERNET-DRAFT UCLA
draft-ietf-dccp-tfrc-faster-restart-02.ps S.Floyd
Expires: September 2007 ICIR
Intended status: Proposed Standard A. Sathiaseelan

University of Aberdeen
2 March 2007

Faster Restart for TCP Friendly Rate Control (TFRC)

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other
IPR claims of which he or she is aware have been or will be disclosed, and any of which he
or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its
areas, and its working groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,
replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-
Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-
abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 2007.

Abstract

TCP-Friendly Rate Control (TFRC) is a congestion control mechanism for unicast flows
operating in a best-effort Internet environment [RFC3448]. This document introduces Faster
Restart, an optional mechanism for safely improving the behavior of interactive flows that
use TFRC.Faster Restart is proposed for use with both the default TFRC and with the small
packet variant of TFRC [TFRCSP].We present Faster Restart in general terms as a
congestion control mechanism, and further describe how to implement Faster Restart in
Datagram Congestion Control Protocol (DCCP) Congestion Control IDs 3 and 4 [RFC4342],
[CCID4].
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1. Introduction
This document defines congestion control mechanisms that improve the performance of
data-limited and/or occasionally idle TCP-Friendly Rate Control (TFRC) [RFC3448] flows.
A data-limited and/or idle flow uses less than its fair share of path bandwidth for application-
specific reasons, such as lack of data to send. Existing TFRC (and TCP) mechanisms
prevent such a flow from quickly ramping up to its fair share of path bandwidth.We present
mechanisms that allow applications to ramp up faster, in a controlled way.

In any RTT, a TFRC flow may not send more than twice X_recv, the amount that was
received in the previous RTT. The TFRC nofeedback timer reduces this number by half
during each nofeedback timer interval (at least four RTT) in which no feedback is received.
The effect of this is that applications must slow start after going idle for any significant
length of time, in the absence of mechanisms such as Quick-Start [RFC4782]. Similarly,
X_recv forces applications with variable sending rates that wish to ramp up from an
application-limited rate up to a fair-share rate to do so using slow start.

This behavior is safe, though conservative, for best-effort traffic in the network. A silent
application stops receiving feedback about the condition of the current network path, and
thus should not be able to send at an arbitrary rate.A slowly-sending application stops
receiving feedback about whether current network conditions would support higher rates.
But this behavior can damage the perceived performance of interactive applications, such as
voice. Connectionsfor interactive telephony and conference applications, for example, will
usually have one party active at a time, with seamless switching between active parties. A
slow start on every switch between parties may seriously degrade perceived performance.
Some of the strategies suggested for coping with this problem, such as sending padding data
during application idle periods, might have worse effects on the network than simply
switching onto the desired rate with no slow start.

There is some justification for somewhat accelerating the slow start process after idle or slow
periods, as opposed to at the beginning of a connection.A flow that fairly achieves a
sending rate of X has proved, at least, that some path between the endpoints can support that
rate. Thepath might change, due to endpoint reset or routing adjustments; or many new
connections might start up, significantly reducing the application’s fair rate. However, it
seems reasonable to allow an application to contribute to transient congestion in times of
change, in return for improving application responsiveness.

This document suggests a relatively simple approach to this problem. Some protocols using
TFRC [RFC4342] already specify that the allowed sending rate is never reduced below the
TCP initial sending rate of two or four packets per RTT, depending on packet size, as the
result of an idle or slow period. [RFC3390]. Faster Restart doubles this allowed sending
rate after idle periods: that the allowed sending rate is never reduced below four packets per
RTT, or eight packets per RTT for small packets, as the result of an idle or slow period. In
addition, because flows already have some (possibly old) information about the path, Faster
Restart allows flows to quadruple their sending rate in every congestion-free RTT, instead of
doubling, up to the previously achieved rate. Any congestion event stops this faster restart
and switches TFRC into congestion avoidance.

This document also addresses a more general problem with idle periods. The first feedback
packet sent after an idle period may report an artificially low X_recv, since the time interval
used by the receiver to calculate X_recv may include the idle period as well as active periods
on either side. This low value will artificially depress the sender’s send rate. DCCP’s TFRC
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CCIDs 3 and 4 [RFC4342], [CCID4] report X_recv using a Receive Rate option.We
suggest a change to this Receive Rate option that lets the sender detect and compensate for
such problems.

The congestion control mechanisms here are intended to apply to any implementations of
TFRC, including that in DCCP’s CCID 3 and CCID 4 [RFC4342], [CCID4]. While we also
believe that TCP could safely use similar mechanisms, we do not specify them here.

2. Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].

3. Faster Restart Congestion Control
The Faster Restart mechanism refers to several existing TFRC state variables, including:

R The RTT estimate.

X The current allowed sending rate in bytes per second.

p The recent loss event rate.

X_recv
The rate at which the receiver estimates that data was received since the last feedback
report was sent.

s The packet size in bytes.

X_calc
The safe rate determined by the TCP throughput equation. Calculated from p, R, and s.

Faster Restart also introduces two new state variables to TFRC, as follows.

X_active_recv
The receiver’s estimated receive rate reported during a recent active sending period. An
active sending period is a period in which the sender was neither idle nor in faster
restart. Itis initialized to 0 until there has been an active sending period.

T_active_recv
The time at which X_active_recv was measured. It is initialized to the connection’s
start time.

X_active_min_rate
The minimum restart rate allowed by Faster Restart in the presence of idle and/or data-
limited periods. Note that Faster Restart flows can drop below this rate as the result of
actual loss feedback. X_active_min_rate is defined as follows:

X_active_min_rate := min(8*s, max(4*s, 8760 bytes)).

Other variables have values as described in [RFC3448].

3.1. Minimum Sending Rate
The TFRC specification allows a TFRC endpoint to go completely silent when the sending
application runs out of data to send. When Faster Restart is used, however, the transport
layer MUST send a minimum of X_ping/s packets per second, where X_ping is defined as

X_ping = min(X, s/4R).
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That is, the transport layer will send at least one packet per four round-trip times, as allowed
by the current allowed sending rate X. These packets give the endpoint a continuing stream
of RTT samples and information about network congestion. Extra packets generated by the
transport layer to maintain a minimum sending rate SHOULD NOT be reported to the
receiving application.

DCCP implementations MUST use DCCP-Data or DCCP-DataAck packets with a zero-
length application data area for packets sent to maintain a minimum sending rate.To that
end, this document modifies RFC 4340’s behavior with respect to zero-length application
data area DCCP-Data and DCCP-DataAck packets. RFC4340, Section 5.4, specifies that:

A DCCP-Data or DCCP-DataAck packet may have a zero-length application data area,
which indicates that the application sent a zero-length datagram. This differs from
DCCP-Request and DCCP-Response packets, where an empty application data area
indicates the absence of application data (not the presence of zero-length application
data). TheAPI SHOULD report any received zero-length datagrams to the receiving
application.

This document revises this statement as follows.
A DCCP-Data or DCCP-DataAck packet may have a zero-length application data area.
Such packets may be sent by congestion control algorithms to maintain a minimum
sending rate. As in DCCP-Request and DCCP-Response packets, an empty application
data area indicates the absence of application data. The API MUST NOT report any
received zero-length datagrams to the receiving application. The API SHOULD report
an error when a sending application attempts to send a zero-length datagram.

3.2. Receive Rate Adjustment
The X_recv values reported by a TFRC receiver may be artificially depressed by idle
periods. Thesender can properly detect and account for such X_recv values, given some
information about whether a reported X_recv includes information about an idle period.We
describe the relevant algorithm in the context of an implementation in DCCP’s CCID 3 and
4. Thisimplementation adds a new option to required feedback packets, namely Receive
Rate Length.

+--------+--------+--------+--------+--------+
|11000100|00000101| Receive Rate Length |
+--------+--------+--------+--------+--------+
Type=196 Len=5

Receive Rate Length (24 bits)
The Receive Rate Length reports the number of packets used to calculate the Receive
Rate, minus one. If a feedback packet’s Receive Rate was calculated using data packet
sequence numbers S1...S2, inclusive, where S2 is the feedback packet’s
Acknowledgement Number, then Receive Rate Length will be set to S2 − S1. Thus, a
Receive Rate Length of zero indicates that one packet was used to calculate Receive
Rate.

The Receive Rate Length option allows senders to adjust Receive Rates before using them in
TFRC calculations. The first adjustment applies to any Receive Rate options, with or
without Receive Rate Lengths.
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• Assume that the sender receives two feedback packets with Acknowledgement Numbers
A1 and A2, respectively. Further assume that the sender sent no data packets in between
Sequence Numbers A1+1 and A2. (All those packets must have been pure
acknowledgements, Sync and SyncAck packets, and so forth.) Then the sender MAY, at
its discretion, ignore the second feedback packet’s Receive Rate option. Note that when
the sender decides to ignore such an option, it MUST NOT reset the nofeedback timer as
it normally would; the nofeedback timer will go off as if the second feedback packet had
never been received.

The second adjustment applies only to packets containing a Receive Rate Length as well as a
Receive Rate. Ifa packet contains a Receive Rate option but not a Receive Rate Length,
then the sender MUST use that Receive Rate as is.We refer to the original Receive Rate, as
encoded in the option, as X_recv_in.

• Assume that the sender receives a feedback packet with Acknowledgement Number S2
and Receive Rate Length RRL. Let S1 = S2 − RRL; then the feedback packet’s Receive
Rate was calculated using sequence numbers S1...S2, inclusive. Assume that the sender
sent packet S1 at time T1, and packet S2 at time T2. If T1 = T2, then X_recv_in MUST
be used as is. Otherwise, assume that in that interval, the sender was idle for a total of I
seconds. Here,"idle" means that the sender had nothing to send for a contiguous period
of at least one-half round trip time. (Note that this definition of idleness is less
conservative than that applied to the Faster Restart algorithm.) Then the sender MAY act
as if the feedback packet specified a Receive Rate of

X_recv_in*(T2 − T1 + I)/(T2 − T1),

rather than the nominal Receive Rate of X_recv_in. The inflation factor,
(T2 − T1 + I)/(T2 − T1), compensates for the idle periods by removing their effect.

3.2.1. Send Receive Rate Length Feature

The Send Receive Rate Length feature lets DCCP CCID 3 and 4 endpoints negotiate whether
the receiver MUST provide Receive Rate Length options on its feedback packets. DCCPA
sends a "Change R(Send Receive Rate Length, 1)" option to ask DCCP B to send Receive
Rate Length options as part of its acknowledgement traffic.

Receive Rate Length has feature number 196 and is server-priority. It takes one-byte
Boolean values. DCCPB MUST send Receive Rate Length options on its feedback packets
when Send Receive Rate Length/B is one, although it MAY send Receive Rate Length
options even when Send Receive Rate Length/B is zero.Values of two or more are reserved.
A CCID 3 half-connection starts with Send Receive Rate Length equal to zero.

3.3. Feedback Packets
The Faster Restart algorithm replaces for the 4th step of Section 4.3, "Sender behavior when
a feedback packet is received", of [RFC3448]. The replacement code has two goals:

1. It keeps track of the active receive rate, X_active_recv. This parameter models the
connection’s highest recent loss- and mark-free fair transmit rate, and represents an upper
bound on the rate achievable through faster restart. Thus, X_active_recv is increased as
the connection achieves higher congestion-free transmit rates, and reduced on congestion
feedback, to prevent inappropriate Faster Restart until a new stable active rate is
achieved. Specifically, on congestion feedback at low rates, the sender sets
X_active_recv to X_recv/2; this allows limited Faster Restart up to a likely-safe rate, and
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lowers the likelihood that badly-timed transient congestion will wholly cripple the Faster
Restart mechanism.

2. It adjusts the receive rate, X_recv, more aggressively during faster restart periods, up to
the limit of X_active_recv.

The code works in four phases. The first phase adjusts the feedback packet’s X_recv to
make sure it does not drop too low as the result of a slow send rate.

The second phase determines X_fast_max, the adjusted rate at which Faster Restart should
stop. FullFaster Restart up to X_active_recv should be allowed for short idle periods, but
more conservative behavior should prevail after longer idle periods. Thus, if 10 minutes or
less have elapsed since the last active-period measurement (T_active_recv), the code sets
X_fast_max to the full value of X_active_recv. If 30 minutes or more have elapsed,
X_fast_max is set to 0. Linear interpolation is used between these extremes.

The second phase adjusts X_active_recv based on the feedback packet’s contents and the
value of X_fast_max.

Finally, the third phase sets X based on X_fast_max, X_recv, and X_calc, the calculated send
rate. Several temporary variables are used, namely X_fast_max, delta_T, F, and
X_recv_limit.
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To update X when you receive a feedback packet
----------------------------------------------
/* First phase. Adjust X_recv so send rate doesn’t drop

below X_active_min_rate as the result of an idle and/or
slow period. */

If the feedback packet does not indicate a loss or mark
and the old X_recv >= X_active_min_rate/2, then

X_recv := max(X_recv, X_active_min_rate/2).

/* Second phase. Calculate X_fast_max */
/* If achieved X_active_recv <= 10 minutes ago, end

Faster Restart at the full last fair rate; if achieved
X_active_recv >= 30 minutes ago, don’t do Faster Restart;
in between, interpolate. */

delta_T := now - T_active_recv,
F := (30 min - min(max(delta_T, 10 min), 30 min)) / 20 min,
X_fast_max := F*X_active_recv.

/* Third phase. Update X_active_recv */
If the feedback packet does not indicate a loss or mark

and X_recv >= X_fast_max, then
X_active_recv := X_fast_max := X_recv,
T_active_recv := current time.

Else if the feedback packet DOES indicate a loss or mark
and X_recv < X_fast_max, then

X_active_recv := X_fast_max := X_recv/2,
T_active_recv := current time.

/* Fourth phase. Calculate X */
X_recv_limit := 2*X_recv.
If X_recv_limit < X_fast_max,

X_recv_limit := min(4*X_recv, X_fast_max).
If p > 0,

Calculate X_calc using the TCP throughput equation.
X := max(min(X_calc, X_recv_limit), s/t_mbi).

Else
If (t_now - tld >= R)

X := max(min(2*X, X_recv_limit), s/R);
tld := now.

3.4. Nofeedback Timer
RFC 3448, Section 4.4, specifies that the sending rate is cut in half when the TFRC
nofeedback timer expires. Thisis accomplished by reducing X_recv. Faster Restart changes
this algorithm so that the sending rate never drops below 4 packets per RTT, or 8 packets per
RTT for small packets, as the result of an idle period. In particular, Step 1) of the algorithm
executed as a result of a nofeedback timer is changed to the following:
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If the sender has sent no data whatsoever since the
time the nofeedback timer was set,
and X_active_min_rate/2 <= X_recv <= X_active_min_rate,

X_recv := X_active_min_rate/2.
Else if X_calc > 2*X_recv, then

X_recv := max(X_recv/2, s/(2*t_mbi)).
Else

X_recv := X_calc/4.

4. Faster Restart Discussion
TCP has historically dealt with idleness and data-limited flows either by keeping cwnd
entirely open ("immediate start") or by entering slow start, as recommended in RFC 2581.
The first option is too liberal, the second too conservative. Clearly a short idle or data-
limited period is not a new connection: recent evidence shows that the connection could
fairly sustain some rate. However, longer idle periods are more problematic, and idle periods
of many minutes would seem to require slow start. RFC2861 [RFC2861], which is fairly
widely implemented [MAF04], gives a moderate mechanism for TCP, where the congestion
window is halved for every round-trip time that the sender has remained idle, and the
window is re-opened in slow-start when the idle period is over.

Faster Restart should be acceptable for TFRC if its worst-case scenario is acceptable.
Realistic worst-case scenarios might include the following scenarios:

• The path changes and the old rate isn’t acceptable on the new path. RTTs are shorter on
the new path too, so Faster Restart clobbers other connections for multiple RTTs, not just
one.

• Two (or more) connections enter Faster Restart simultaneously. The packet drop rate can
be twice as bad, for one RTT, than if they had slow-started after their idle periods.

• In addition to connections Fast-Restarting, there are short TCP or DCCP connections
starting and stopping all the time, with initial windows of three or four packets. There
are also TCP connections with short quiescent periods (web browsing sessions using
HTTP 1.1). The audio and video connections have idle periods. The available
bandwidth might vary over time because of bandwidth used by higher-priority traffic.
All of this might happen at once, so the aggregate arrival rate naturally varies from one
RTT to the next. And the congested link is an access link, not a backbone link, so the
level of statistical multiplexing may not be sufficiently high for connections to obtain a
deterministic estimate of the fair rate.

• The network allocates capacity based on traffic conditions, as happens in some current
wireless technologies, such as Bandwidth on Demand (BoD) links [RFC3819] where
capacity is variable and dependent on several parameters other than network congestion.

Further analysis is required to analyze the effects of these scenarios.

We note that Faster Restart in TFRC-SP [TFRCSP] is considerably more restrained that
Faster Restart in the default TFRC. In TFRC-SP, the sender is restricted to sending at most
one packet every Min Interval. Similarly, Faster Restart in the default TFRC is more
restrained than Faster Restart would be if added to TCP; TFRC is controlled by a sending
rate, while TCP is controlled by a window, and could send in a very bursty pattern without
rate-based pacing.
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5. Simulations of Faster Restart
Some test case scenarios based on simulation analysis are described in Appendix A. These
simulation follow the guidelines set in [TFRCSP]. These are:

1. Fairness to standard TCP and TFRC: The simulation tests examine whether flows that
use Faster Restart allow TCP and TFRC flows can achieve its fair share rate of the path
capacity.

2. Fairness within FR: The simulation tests examine how multiple competing FR flows
share the available capacity among them.

3. Responseto transient events: The simulation tests examine how a FR flow reacts to a
sudden congestion event.

4. Behaviour in a range of environments: Tests assess a range of bandwidth, RTTs, and
varying idle periods.

>>> A later version of this draft will provide more discussion on these results in the
appendix and implications will be noted here.

6. Implementation Issues
TBA

7. Security Considerations
DCCP security considerations are discussed in [RFC4340].Faster Restart adds no additional
security considerations. XXX WE WILL PROBABLY BE REQUIRED TO ADD SOME
STUFF HERE

8. IANA Considerations
This document allocates two values in the "Profile for DCCP Congestion Control ID 3:
TFRC Congestion Control Parameters" registry. Specifically, it allocates Option Type 196
for the Receive Rate Length option, and Feature Number 196 for the Send Receive Rate
Length feature.

9. Thanks
We thank the DCCP Working Group for feedback and discussions, including Gorry
Fairhurst. We especially thank Vlad Balan for pointing out problems with the mechanisms
discussed in previous versions of the draft.
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A. Appendix: Simulations
This appendix describes a set of initial test case scenarios for simulation analysis of Faster
Restart. The topology will be the classic dumb-bell topology used in many simulations of
TCP.

Six types of flow are considered:

• Bulk TCP Flows.

• Interactive (short) TCP Flows.

• TFRC Flows.

• TFRC Flows that employ FR.

• TFRC-SP Flows.

• TFRC Flows that employ FR (TFRC-SP).

The implications on other flows (e.g. using UDP) may be extrapolated from this.

For these simulations, we consider three application-limited rates.

• The first resembles constant bit rate (CBR) voice over IP with a media bit rate of 64 kbps
(using packets of size 160 bytes and a nominal transmit rate of 8000Bps).

• The second resembles constant bit rate (CBR) medium quality video over IP with a
media bit rate of 512 kbps (using packets of size 1000 bytes and a nominal transmit rate
of 64000Bps).
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• The third class uses an unspecified upper limit on the sending rate, but experiences
period of idleness.

These are intended to be illustrative, rather than exact models of the application behaviour.

The simulations will model the effect of an idle period in which the application does not
attempt to send any data for a period of time, then resumes transmission.

In the first case, we shall examine periods of idleness of 1s, 10s, and 30s with a path RTT of
50ms, 300ms.

The scenarios to be examined are:

• Performance of a long-lived (bulk) TCP flow (e.g. FTP) with TFRC (with and without
FR): The test scenario would involve a single large FTP flow with varying number of
CBR flows. Each CBR flow becomes idle for 10s and then restarts. The FTP flow starts
during the idle period. The throughput performance of the single FTP flow would be
plotted for varying number of CBR flows. Simulations would be performed by varying
parameters such as CBR rate and number of silence periods. Does the single FTP flow
get at least 1/n share of the bandwidth, where ’n’ is the number of TFRC flows and the
single TCP flow? Does the single TCP flow get less share of the bandwidth while
competing with FR flows when compared to TFRC flows?

• Fairness test: The test scenario would involved ’n’ number CBR and long lived TCP
flows. The CBR flows become idle for 10s and then restarts. During the silence period,
the FTP flows arrive. Do all flows get atleast 1/n share of the bandwidth? Jain’s Fairness
Index [JCH84] would be an appropriate measure.

• Performance of small TCP flows (HTTP) with TFRC with and without FR: The test
scenario would involve a single CBR flow running for 50s, becomes ilde between 20s
and 30s and then restarts. At 30.s, a number of HTTP flows are started. The min, max
and median of the request/response time of these HTTP flows would be plotted.
Simulations would be performed by varying several parameters such as CBR rate,
bottleneck bandwidth, delay and queue size. Do the request/response times of these
HTTP flows differ? If so, by how much?
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