/
|
‘{Openwall

Password security: past, present, future
(with strong bias towards password hashing)

Solar Designer Simon Marechal
<solar@openwall.com> <bartavelle@openwall.com>
@solardiz @bartavelle

http://www.openwall.com
@Openwall
December 2012

1960s to early 1970s: plaintext password storage

Early time-sharing systems
®CTSS

> "one afternoon [...] any user who logged in found that instead of the usual

message-of-the-day typing out on his terminal, he had the entire file of user passwords"
Fernando J. Corbato, "On Building Systems That Will Fail", 1991 (Turing Award Lecture)

(The problem was a text editor temporary file collision, "early 60's" to "1965" by different sources.)

® TENEX had a character-by-character timing leak exacerbated by paging
® "The UNIX system was first implemented with a password file that

contained the actual passwords of all the users”

Robert Morris and Ken Thompson, "Password Security: A Case History", 1978

Besides, some typewriters would print the password being typed unless manually prevented from doing so

Early 1970s - Multics: non-cryptographic hashes

Attempted one-way transformations, but no "true" cryptographic hashes yet

® "Multics User Control subsystem stored passwords one-way encrypted
[...] | knew people could take square roots, so | squared each password
and ANDed with a mask to discard some bits."

® After successful break by the Air Force tiger team doing a security
evaluation of Multics in 1972-1974, "we quickly changed the encryption to a

new stronger method"

Tom Van Vleck, "How the Air Force cracked Multics Security", 1993 (with later updates)

Early 1970s - Unix: weak cryptographic hash

crypt(3) of Unix up to 6th Edition inclusive
reused code from an "encryption program
[that] simulated the M-209 cipher machine
used by the U.S. Army during World War Il.
[...] the password was used not as the text
to be encrypted but as the key, and a
constant was encrypted using this key."

M-209B, cryptography collection of the Swiss Army headquarters
Photograph by Rama, Wikimedia Commons, licensed under CeCILL v2

and CC-BY-SA-2.0-FR

Early 1970s - Unix: too fast and not salted

The problems were understood before 7th Edition (1978)

® "The running time to encrypt one trial password and check the result turned
out to be approximately 1.25 milliseconds on a PDP-11/70 when the
encryption algorithm was recoded for maximum speed.”

® "It takes essentially no more time to test the encrypted trial password
against all the passwords in an entire password file, or for that matter,
against any collection of encrypted passwords, perhaps collected from

many installations.”
Robert Morris and Ken Thompson, "Password Security: A Case History", 1978

Late 1970s - Unix: DES-based crypt(3)

Unix 7th Edition crypt(3) is a cryptographic one-way hash function built upon the
DES block cipher
® "DES is, by design, hard to invert, but equally valuable is the fact that it is
extremely slow when implemented in software."
» Much faster software implementations of DES were devised later
® "the algorithm Is used to encrypt a constant [,which] can be made

installation-dependent.”

* First known mention of local parameterization?

® "Then the DES algorithm is iterated 25 times"

» First known use of password stretching?

Late 1970s - Unix: password strength checking

® "The password entry program was modified so as to urge the user to use
more obscure passwords.”

» First known use of automated proactive password strength checking?

® "Salted Passwords": "when a password is first entered, the password
program obtains a 12-bit random number [...] and appends this to the
password typed in by the user." "When the user later logs in to the system,

the 12-bit quantity is extracted from the password file and appended to the

typed password."

» First known use of salts with password hashing?

Late 1970s - Unix: salting

® Salting "does not increase the task of finding any individual password,
starting from scratch, but now the work of testing a given character string
against a large collection of encrypted passwords has been multiplied by

4096 (2'2)."

» With uniform distribution, there are ~3740 unique salts in 10,000 password file entries

® "It becomes impractical to prepare an encrypted dictionary in advance."

® "lt becomes nearly impossible to find out whether a person with passwords

on two or more systems has used the same password on all of them"

Speed of offline attacks (with salts)

AssumptIDHS: Guesses / second| Users | Daily guesses / user
® Unique per-user salts 1.000 1 86.400.000
® Non-targeted attack
1,000 1,000 86.400
» Accounts are of equal value
* No password strength hint 1,000 1,000,000 se
1,000 100,000,000 1
It is tough to limit offline attack speed to 1000/s (by 1.000,000.000] 86,400,000,000,000
password stretching). Obviously, if we need to handle 1 000,000,000 1.000 86.400,000.000
more than 1000 requests/s ourselves, an attacker with 1 100.000.000 1.000.000 86.400.000
the same resources will also be able to try at least as 1.000.000.000 100,000,000 864.000

many.
1 billion/s is a conservative GPU attack speed estimate for hashes

without password stretching.

In practice, multi-billion speeds are often achieved.

Late 1970s - Unix: "The Threat of the DES Chip"

® "Chips to perform the DES encryption are already commercially available
and they are very fast.”

® In crypt(3), "one of the internal tables of the DES algorithm |[...] is changed
in a way that depends on the 12-bit random number. The E-table is
inseparably wired into the DES chip, so that the commercial chip cannot be

used."

» Except for hashes on which the 12-bit salt happens to be zero

Food for thought: what if DES chips were installed into some computers running Unix, and instead of the E-table hack crypt(3)

allowed for much higher iteration counts on those machines? (Ilndeed, salts would be implemented differently.)

Late 1970s - Unix: salt & hash encoding syntax

Unix /etc/passwd file excerpt (2.9BSD default, 1983 - but the same hash
encoding Is used since 7th Edition in late 1970s)

wnj : ZDJXDBwXle2gc:8:2:Bill Jovy,457E,7780:/a/guest/wnj:/bin/csh
dmr:A1Int5gKdjmHs:9:2:Dennis Ritchie:/a/guest/dmr:
ken:sgbUDrP1KjlnA:10:2:& Thompson:/a/guest/ken:

mike: KnKNwMkyCt87ZI:11:2:mike karels:/a/guest/mike: /bin/csh
carl:82KiTfS3pH3kg:12:2:& Smith,508-21E,6258: /a/guest/carl:/bin/csh
Joshua::999:2:&: /usr/games: /usr/games/wargames

The first two characters are the salt (12-bit), followed by 11 characters of the hash (64-bit)

. . . T reloading sysop WOPR
The WarGames movie came out in 1983, featuring war dialing and more. JOSHUA v0.8b

data transfer from netework

"Joshua" is a backdoor username in the movie. relinking initial ses-banks

ACTivating p-synap

Why was DES slow in software?

® Each S-box uses only 6 bits and produces 4 bits
» Typical CPUs have much wider word size (16- to 64-bit,
then even wider SIMD)

® Possible optimizations (late 1980s)
» Spread the 6 and 4 data bits throughout up to 64-bit

words to save on other overhead (E and P lookups,
shifts to produce array indices)

» Do two S-box lookups at once (12-to0-8)

It is usually not practical to go further (combined tables become too

large for fast access)

® Wasteful even with the above optimizations

Half Block (32 bits)

l

Subkey (48 bits)

A

b

b

b

iy

S5

o
o

This diagram illustrating one round of

DES has been released into the public

domain by its author, Matt Crypto

Early 1980s: password cracker contests

® "The Second Official UNIX PASSWORD CRACKER CONTEST" (1983)

Newsgroups: net.general
Date: Thu Jan 6 08:02:27 1983
Subject: PASSWD CRACKER CONTEST

We proudly announce ® Sensitive gentlewomen of the
The Second Official

UNIX PASSWORD CRACKER CONTEST jury, this was not even the first

Submit vour ingenious /etc/passwd password cracker program (source code) to
the undersigned by January 31, 1983. We will test all programs for speed,
portability, and elegance, on verious Unix versions and on different
machines. A manual page and a short writeup explaining the algorithm 1s a
plus. The writers of the best three programs will win the Grand Prize, The

Super Grand Prize, and The Ultra Grand Prize (and world-wide, ever lasting
fame) .

Ran Ginosar, Computer Technology Research Center,
Bell Labs, Murray Hill.

.lallegralran

1980s: no progress on the defense side?

® "A Fast Version of the DES and a Password Encryption Algorithm" by Matt

Bishop, 1987
» Speeds up crypt(3) by a factor of 10 to 20 through the use of larger/combined lookup

tables (up to 200 KB total) and other optimizations

® Morris worm (1988) uses its own semi-fast implementation of DES-based

crypt(3) to crack passwords on local accounts
» 9 times faster on a VAX 6800 (45 passwords/second), needs only 6 KB

® Ultrix crypt16: poor attempt to overcome the 8-character limitation

® VMS introduces is own plethora of fancy password hashes

Late 1980s to 1990s - Unix: password shadowing

® "Password shadowing first appeared in UNIX systems with the development
of System V Release 3.2 in 1988 and BSD4.3 Reno in 1990."

Wikipedia
® Shadow Password Suite by Julianne Frances Haugh, 1988+

® |t took many years for the various Unix-like systems, individual Linux

distributions, etc. to catch up (although a few were pretty quick)

Password hashes were moved out of /etc/passwd and into file(s) not readable by regular users.

Typical filenames are /etc/shadow (SysV and others) and /etc/master.passwd (BSD), although

some "trusted" systems use per-user files under /tcb or /etc/tcb.

In 2001, Openwall GNU/*/Linux made use of per-user shadow files under /etc/tcb to reduce privileges of the password-changing

program, passwd(1) - something those "trusted" systems did not do

Early 1990s: password security tools

® COPS by Dan Farmer

» A local security auditing tool for Unix systems

» Includes detection of poor passwords as one of the features

® Crack (for Unix) by Alec Muffett
® Cracker Jack (for DOS and OS/2) by The Jackal

® goodpass.c, and later CrackLib by Alec Muffett

» "to be wired into "passwd" & "yppasswd", etc."

® npasswd, etc. with proactive password strength checking included

Early 1990s: LM and NTLM hashes

® | AN Manager uses a particularly weak password hashing method ("LM

hash") In its authentication protocol

» Passwords are case-insensitive
» An up to 14-character password is split after the 7th character and the two halves are

used as DES encryption keys
» The two password "halves" may be cracked separately, just like with crypt16 and bigcrypt,

but much faster (no salt, shorter, case-insensitive, no iterations)

® Windows NT stores LM hashes, along with MD4-based NTLM hashes

» Cracking the weaker LM hashes is usually enough
» NTLM hashes are also a step back as compared to Unix crypt(3): no salt, no iterations

» Knowledge of the NTLM hash is enough for network authentication

» Plaintext passwords and hashes of logged-on users are stored in memory

Early 1990s: BSDi configurable iteration count

® BSDi BSD/OS extends DES-based crypt(3) with proper support for long
passwords, configurable iteration count stored along with each hash (the
"J9.." below corresponds to 725 iterations), and 24-bit salt

J9..saltLSQbyJrHIZqg

® HP-UX, OSF/1, Digital Unix bigcrypt: poor attempt to fix crypt16

» Still possible to crack the 8-character "halves" separately

y3hOhMyJJW18ZgRrZfS5BcggE

winnliethepooh

Mid 1990s: FreeBSD fixed iteration count

® FreeBSD MD5-based crypt(3) by Poul-Henning Kamp, 1994
» Long passwords, 1000 iterations of MD5 (not configurable), up to 48-bit salt

»"On a 60 Mhz Pentium this takes 34 msec" (source code comment)

A password cracking optimized reimplementation later ran 5 times faster (also on original Pentium)

» |n late 1990s, adopted by most Linux distributions and Cisco 10S

... and eventually EOL'ed by the author in June 2012 - but nevertheless still in use

1longsalt$0QgNgdKo00f5todmPrBB3.

® "How should a password algorithm be designed today? I'd use iterated,
salted, locally-parameterized SHA or MD5 [...] I'd use an iteration count

stored with the hashed password"

Steven M. Bellovin, Bugtrag mailing list posting, 1995

1995-1997: QCrack - crypt(3) precomputation

® During precomputation, each candidate password (typically a dictionary
word or the like) is hashed with all 4096 possible salts. Then one byte is
written out per hash (thus, 4 KB per candidate password)

® On a Pentium 133 MHz that would do ~12500 c¢/s with John the Ripper,

having a 1 GB (an entire hard drive or tape) of QCrack-precomputed partial
hashes would save at most 1 day of computation during an attack
® Usually not practical, but illustrates precomputation attacks prior to the

advent of rainbow tables

Although there are anecdotes of people having used tapes with pre-computed DES-based crypt(3) hashes before, QCrack written

in 1995-1997 by The Crypt Keeper appears to be the only generally available tool of this nature

1997: bitslice DES

® "A Fast New DES Implementation in Software", Eli Biham, 1997
» "This implementation Is about five times faster than the fastest known DES implementation
on a (64-bit) Alpha computer, and about three times faster than than our new optimized
DES implementation on 64-bit computers. [...] view the processor as a SIMD computer,
..e., as 64 parallel one-bit processors computing the same instruction.”

» ~100 gates per S-box
® "Reducing the Gate Count of Bitslice DES", Matthew Kwan, 1998+

S-box expressions released in 1998, technique presented in 1999, paper posted online many years later

» 51 to 56 gates per S-box on average depending on available gates

The gate count was further reduced in later years by Marc Bevand (45.5 using Cell's "bit select" instruction), Dango-Chu (39.875,
ditto), Roman Rusakov (32.875 with "bit selects", 44.125 without)

Why is bitslice DES faster?

® A single instance of DES uses at most 12 bits per machine word

when doing 12-to-8 dual S-box lookups, which also typically exceed the size of L1 data cache

® With bitslicing, we compute e.g. 64 instances of DES In parallel on a 64-bit

CPU - making full use of every bit in the 64-bit machine words
® We could compute multiple non-bitsliced instances of DES side-by-side and

more fully use the machine word width in this way, but this requires support

for vectorized array lookups for efficient implementation
» |In 2000s, some CPUs got SIMD permute instructions that are potentially usable: PowerPC
AltiVec VPERM, Cell SHUFB, Intel SSSE3 PSHUFB, AMD XOP VPERM

» 2013+: Intel Haswell microarchitecture is expected to include AVX2 VSIB (gather)

1998: validation vs. cracking speed ratio

Bitslice DES made it apparent that even an attacker possessing only the same kind of CPU that is
used by the defender (such as in an authentication server) has a speed advantage resulting from
the inherent parallelism of password cracking (test many passwords)

» "You can increase the iteration count, but you're limited with the validation time. [...] itis

Important to make sure that the best implementation of the same hash, but optimized for
cracking (multiple keys at a time), is hot much faster than the password validation
function."

» "One-way hash choice: make sure it can't be made faster by a bitslice implementation, or
mixing the instructions from two separate hashes (for higher issue rate). That is, the
function should have a lot of natural parallelism, so that we can exploit it all in the

validation function.”

Solar Designer, "bitslice & crypt(3) choice", comp.security.unix posting, 1998

1990s: new concepts

® Key derivation function (KDF)

® Key stretching (password stretching) was formally defined and studied

» J. Kelsey, B. Schneier, C. Hall, and D. Wagner, "Secure Applications of Low-Entropy
Keys", 1997
> A related concept became known as "strengthening” (throw salt away), but stretching

ended up winning

® Passphrase
*In PGP, S/Key, SSH, encrypted filesystems

1990s: network sniffing

® Non-switched Ethernet (10BASE2, 10BASE-T) was prevalent

® Network protocols typically transmitted passwords in the clear

» This has started to change in mid-1990s

® A common attack was sniffing of passwords via a machine (such as a
compromised server) on the same Ethernet segment with the target server

or with some of the users

® This has contributed to the rise of more advanced authentication methods

1990s: alternative authentication methods

Some of these are an improvement, but they are susceptible to offline password
guessing attacks on certain authentication material anyway:

® Challenge/response pairs
What may be worse, common protocols such as POP3 APOP and CRAM-MDS5 are poorly defined, requiring that

plaintext-equivalents be stored on the server, even though this was easy to avoid (like it is done in SCRAM, which
took 13 years - from an RFC draft in 1997 - to become RFC 5802 in 2010, finally)

® Kerberos: TGTs, AFS user database
® S/Key, OPIE: skeykeys file

® SSH: passphrase on private key

® SRP: verifiers

Thus, passwords (or passphrases) are not going away, and proper password hashing or key derivation remains relevant even if as

a component of other authentication schemes

Other uses of passwords

A password or passphrase Is also used to protect things such as:

® Encrypted home directories, filesystems, full disks
» FileVault, EFS, TrueCrypt, LUKS/dm-crypt, eCryptfs, ...

® Archives (WinZip, RAR, ...)
® Wireless networks (WiFi WPA-PSK)
® PGP secret keys

® Mac OS X keychains, other "password vaults"

This will also keep passwords/phrases and decent KDFs relevant for many

years to come

1996-2000: more password security tools

® John the Ripper by Solar Designer (later also by project contributors)
» "Incremental mode" orders candidate passwords for decreasing estimated probability
considering trigraph frequencies, yet Is able to search a keyspace exhaustively given

enough time
» Takes advantage of 64-bit CPUs, MMX, bitslice DES (1998+)

® pam_passwdqc by Solar Designer

» An alternative to pam_cracklib, with support for passphrases

» Later became passwdqgc tool set co-authored by Dmitry V. Levin

® | OphtCrack by LOpht Heavy Industries
» Cracks LM and NTLM hashes used by Windows NT

Effect of hash type and password policy

passwdqgc vs. KorelLogic's DEFCON 2010 contest passwords

® Of the MD5-based crypt(3) hashes, teams cracked 33%

» passwdqc with default policy would permit 3.5% of cracked or 1.1% of all

When a user's desired password is rejected, the user would not always pick a password that would not get

cracked. Estimate: 1.9% would be crackable.

» Of the uncracked passwords, passwdqgc would reject 45% and permit 55%

® Of the NTLM hashes, teams cracked 94%

» passwdqgc with default policy would permit 35% of cracked or 33% of all

Estimate: 53% would be crackable

» Of the few uncracked passwords, passwdqc would reject 14% and permit 86%

To withstand offline attacks, both a decent hash type and a decent password policy should be used at once

Late 1990s: OpenBSD bcrypt

® "We present two algorithms with adaptable cost -- eksblowfish, a block
cipher with a purposefully expensive key schedule, and bcrypt, a related

hash function."
Niels Provos and David Mazieres, "A Future-Adaptable Password Scheme", The OpenBSD Project, 1999

» Configurable iteration count (encoded as base-2 logarithm), 128-bit salt
»|n 2000 and later, adopted by Openwall GNU/*/Linux, ALT Linux, OpenSUSE and made

avallable as a non-default option on other *BSDs and Solaris

$2a$083%128bi1tsalt22charslongOlHvsgGDe2t1 XUwNgAVQ82BcG8Q8dWEu

® 8-t0-32 variable S-boxes, so uses 32 bits per machine word only
» Would need scatter/gather (or at least gather) to overcome that (AVX2 VSIB, Intel MIC)

What's wrong with bcrypt

® No parallelism, 32-bit word size - slows down defender
» Low Instructions per cycle (attack is ~2x faster), can't use SIMD
> Attacker's use of SIMD Is also impacted, though - except on devices with scatter/gather

addressing (or at least gather)
Intel MIC (2012, limited availability), AVX2 (2013, will be widespread?)

® [ow memory needs (only 4 KB) - defender's off-chip RAM is not put to use

(only L1 cache is), attacker does not need to provide DRAM

» Yet due to berypt's memory access pattern this turns out to be (barely) enough to defeat
GPUs so far (AMD Radeon HD 7970 is only about as fast as a CPU)

Late 1990s: crypt(3) speed comparison

214000
crypts/sec
A
12500 Traditional DES Crypt
10000 - [0 Bitsliced DES Crypt
850
2500 MD35 Crypt
1000 L B BCrypt (2*%5 rounds)
335
* estimated
100 L 6O 62.5
22.5
10+ 6.5
3.6
5 i -
Original Generic Library John the Ripper V1.5 John the Ripper V1.5
VAX-11/780*% OpenBSD 2.3 x86 Assembler
1977 P5 133 MHz P5 133 MHz Alpha 21164A 600 MHz

Niels Provos and David Mazieres, "A Future-Adaptable Password Scheme", The OpenBSD Project, 1999

2012: modern crypt(3) cracking speeds

Since 1999
® crypt(3) cracking speeds for all flavors discussed so far have increased by

a factor of 50 to 200 per CPU chip (for the fastest code and CPUs)

® Configurable iteration counts do help to compensate for that, although
system defaults tend to be rather low to support a wide range of hardware
and usage scenarios (e.g., bcrypt is typically used at costs only 8 to 32

times larger than the "2° rounds" baseline used in 1999 benchmarks)

» Cracking speeds increase more rapidly than single password validation speeds

® AMD Radeon HD 7970 "Tahiti" GPU provides an additional boost of a factor
of 5 for DES and 20 for MD5 (but none for bcrypt so far)

2000s: PBKDF2

® PKCS #5v2.0 (1999), RFC 2898 (2000), NIST SP 800-132 (2010)
® Designed as a building block to use passwords and diversify keys in

cryptographic protocols (not a password hash storage system)

® Several tunable parameters
» A pseudorandom function to apply (such as HMAC-SHA-1)

» Number of iterations

» Derived key length

® Mainly used for deriving encryption keys (WinZip, OpenDocument, ...;
DPAPI, 1Password, ...; FileVault, TrueCrypt, Android, ...), but also used In
WiFI WPA-PSK and for password hash storage (Mac OS X 10.8, Django)

What's wrong with PBKDF2

As commonly used with HMAC-SHA-*
® No parallelism - slows down defender, but not attacker

» When implemented on modern CPUs for defensive use, only a relatively small portion of

resources available in one CPU core is used (can't use SIMD, low instructions per cycle)

® Almost no memory needs - defender's RAM is not put to use, attacker does
not need to provide RAM

® GPU friendly

» More so with SHA-1 than with SHA-512, though
SHA-512 uses 64-bit words, which helps CPUs and hurts current GPUs

Late 1990s to 2007(+7?): web apps use raw MD5

"Web apps” started to appear, usually written in PHP, so indeed they directly
used PHP's md5() function for password hashing

PHP also offers crypt(), but those hashes were not sufficiently portable between systems (in 1990s, some
Unix-like systems could lack DES-based crypt(3) because of US export regulations, and PHP is not Unix-only).
This may be too complicated an explanation, though. Chances are that those web apps' developers simply did

not know the options.

» No password stretching: Cracking speeds for one hash are about 1000 times higher than
those for FreeBSD's MD5-based crypt(3)

*» No salt: Effective cracking speeds ({account, password} combinations tested per second)
for non-targeted attacks against large raw MDS5 hash databases are even higher (times the

number of hashes), precomputed hash tables may be used

2003: rainbow tables

® "As an example we have |

hashes. Using 1.4GB of ¢

mplemented an attack on MS-Windows password
ata (two CD-ROMs) we can crack 99.9% of all

alphanumerical passwords hashes (2°7) in 13.6 seconds"”
Philippe Oechslin, "Making a Faster Cryptanalytic Time-Memory Trade-Off", 2003

» Martin Hellman's time-memory trade-off (1980) enhanced and applied to password hashes

® Storage needs are a lot lower than for QCrack's naive approach

® Nevertheless, infeasible with large random salts

® Each hash being cracked

requires extra processing

» With a very large number of saltless hashes it may be quicker not to use rainbow tables,

but instead to hash each candidate password and compare against all hashes being

cracked, with an efficient comparison algorithm

2007+: web apps move to phpass

® phpass is an easy to use PHP password hashing class
» phpass would use bcrypt if available (CRYPT BLOWFISH in PHP), and if not then fallback
to BSDi-style extended DES-based hashes (CRYPT _EXT DES in PHP), with "a last resort
fallback to MD5-based salted and variable iteration count password hashes implemented

In phpass itself (also referred to as portable hashes)"
® phpass has started to see some adoption by major web apps (WordPress,

phpBB3, and Drupal) in 2007, which has helped further adoption

» Not surprisingly, many of them chose to force the use of the "portable hashes", which

unfortunately make less efficient use of the server's CPU

phpass was originally written during a security audit of an Openwall client's "web app" in 2004 in response to the findings (so that

they could replace their weak password hashing). It was released publicly in 2005.

phpass portable hashes

The portable hashes are very simple, which was key to phpass' acceptance.
More elaborate "portable hashes" would likely not be accepted; this may be
something to try for a next generation phpass now that the foot is in the door.

PBlongsalt3aidu9JAocAsLRML86yvQuDO

In this example, "B" means 2™ or 8192 iterations. The salt is 48-bit.

phpBB3 uses 2048 iterations, WordPress uses 8192 (but these hashes are compatible with each
other). Drupal 7 uses a revision of these hashes with MD5 replaced by SHA-512, the prefix
changed to "$S%", and iteration counts at 16384 and beyond (increasing between releases).

2007+: password cracking on GPUs

® Pioneered by Andrey Belenko of Elcomsoft
» Initially for NTLM, LM, and raw MD5 hashes, achieving speeds of over 100M per second

Beyond reach

of existing software on CPUs at the time (except for Cell such as in PS3)

® Andrey and others improved the speeds and implemented other attacks

»2010: Whitepixel by Marc Bevand achieves 33.1 billion passwords/second against a single

raw MD5 has
» 2012: oclHas
» 2011: oclHas

n on a sub-$3000 4x AMD Radeon HD 5970 computer (8 GPU chips)
ncat-lite by atom does 10.9 billion on a single HD 6990 card (two GPU chips)

hcat-plus by atom made GPUs usable for a full set of password cracking

attacks on a wide variety of hashes (both "fast" and "slow" ones)

® John the Ripper is catching up with GPU support

»2011, 2012: more limited in GPU support than oclHashcat-plus, but Open Source

2007: SHA-crypt in glibc 2.7+

Introduced for political rather than technical reasons
® "Security departments in companies are trying to phase out all uses of

MDS5. They demand a method which is officially sanctioned. For US-based

users this means tested by the NIST."
Ulrich Drepper, "Unix crypt using SHA-256 and SHA-512", 2007 (revised in 2008)

® Configurable iteration count (5000 by default), large salts

Ulrich's SHA-crypt.txt shows some confusion during SHA-crypt design: "the produced output is 32
or 64 bytes respectively in size. This fulfills the requirement for a large output set which makes

rainbow tables less useful to impossible" - that's nonsense

fefzsaltstringdsvwvnEUcSVapltMuglukES4tPOAE iKwSMHN) 1/0817G3uBnIFNnDJues I68udOTLiBFdechYEdFCoROfaS35inz=1
Fefround==10000F=altstringsaltstIOW] /O6BYHVEBcXEFudQVeXbDira 30eqghl0sbHEEMCVN SnCM / Ur JmM0Dp&vwoiuZeHBy /Y TEmMSKeHY gs / vIRnDawsv .

SHA-crypt analysis

® SHA-crypt hashes are decent (albeit not a technical improvement),

especially the flavor based on SHA-512
» Uses 64-bit machine words; not SIMD, though

® SHA-512 is not as GPU-friendly as e.g. MD5, yet is reasonable to attack on

current GPUs (2012)

> sha512crypt at default rounds=5000 can be attacked at ~12000 c/s on NVIDIA GTX 580
with John the Ripper (code by Claudio Andre) or hashcat, or at ~32500 c/s with hashcat
on HD 6990 (two GPUs)

> bcrypt at "$2a$08" (256 iterations), which is default on some systems, can be attacked at
~680 c/s on AMD FX-8120 3.1 GHz (combined speed for 8 threads) with John the Ripper;
no speedup from GPUs yet (e.g. HD 7970 and 6990 achieve CPU-like speeds at bcrypt)

2009: sequential memory-hard functions

Defense against specialized hardware (ASICs, FPGAs, GPUs)
® "We introduce the concepts of memory-hard algorithms and sequential

memory-hard functions, and argue that in order for key derivation functions
to be maximally secure against attacks using custom hardware, they should

be constructed from sequential memory-hard functions."

Colin Percival, "Stronger key derivation via sequential memory-hard functions”, 2009

» General-purpose computers spend more die area on memory (RAM, caches) than on
computation logic (ALUs, vector units) inside CPUs

» RAM is about as expensive to implement in cracking-optimized hardware, whereas
computation logic is cheaper to implement in a specialized and massively-parallel fashion

(avoiding the overhead on instruction decode, out-of-order execution, etc.)

2009: scrypt

® The scrypt KDF accepts three parameters tunable "according to the amount
of memory and computing power available, the latency-bandwidth product

of the memory subsystem, and the amount of parallelism desired".
® As defined, scrypt uses Salsa20/8 core as its main cryptographic primitive,

which makes efficient use of up to 128-bit SIMD vectors

It should be possible to use wider SIMD vectors when p is greater than 1, but this is a trade-off

® A variation of scrypt based on another cryptographic primitive is possible

(e.g., to please those requiring NIST-approved cryptography)

> Alternatively, it may be shown that scrypt's cryptographic security is achieved by its initial

and final use of PBKDF2 with SHA-256, whereas other processing is "non-cryptographic”

ASIC/FPGA attacks on modern hashes

® PBKDF2-HMAC-SHA-1
® PBKDF2-HMAC-SHA-256

® sha256¢rypt Weaker

® PBKDF2-HMAC-SHA-512

® sha512crypt

® bcrypt

® scrypt Stronger
It is a sound approach to consider attacks with ASICs, but in v

practice attacks with less flexible devices are also relevant

GPU attacks on modern hashes

® PBKDF2-HMAC-SHA-1
® PBKDF2-HMAC-SHA-256

® sha256¢rypt Weaker
® PBKDF2-HMAC-SHA-512
® sha512crypt
® scrypt at up to ~1 MB (misuse)
Litecoin at 128 KB is ~10x faster on GPU vs. CPU Stron er
9
® berypt (uses 4 KB) \ 4

® scrypt at multi-megabyte memory
® Revised scrypt with TMTO defeater

scrypt at

low memory

® scrypt accesses memory in cache line sized chunks, which lets it use the

memory bus efficiently

» The attacker's cost is meant to be RAM itself, not bandwidth

® When scrypt is set to use only a small amount of memory (~1 MB or less),

it is weaker than bcrypt at least as it relates to attacks on GPU

® At 128 KB, as demonstrated by scrypt's use in Litecoin, scrypt is ~10x

faster on G
than on CP

PU than on CPU (whereas bcrypt is currently not faster on GPU

J)

scrypt time-memory trade-off

® scrypt deliberately allows for a time-memory trade-off
» "The design of scrypt puts a lower bound on the area-time product - you can use less
memory and more CPU time, but the ratios stay within a constant factor of each other, so

for the worst-case attacker (ASICs) the cost per password attempted stays the same”

Colin Percival, scrypt and crypt-dev mailing lists posting, 2011

® | itecoin miners on GPU use this

® scrypt may be revised to defeat the trade-off

» Pros: fewer pre-existing hardware devices (GPUs, etc.) are efficient in an attack
» Cons: not official scrypt anymore, some defensive uses may be impacted as well (e.g.,

client-side hashing on mobile devices)

What's wrong with scrypt

® ~100 ms corresponds to 32 MB memory usage on current server hardware

» We could afford more RAM on dedicated authentication servers

® OTOH, in crypt(3) used by a Unix system distribution by default, even a few
megabytes per thread might not be universally affordable (think VMs)
® At 1 ms, memory usage is so low that bcrypt is stronger

® Time-memory trade-off benefits attackers with GPUs
» Can be fairly easily defeated, but then it's not official scrypt

® A single instance of Salsa20/8 might not contain enough natural parallelism
to fully use a modern CPU core's execution units

» |In scrypt, only high-level parallelism is tunable

Issues with scrypt for mass user authentication

At low durations and decent throughput, we face two problems:
® | ow memory usage: acceptable at 100 ms (~32 MB), way too low at 1 ms

® [imited scalability on multi-CPU/multi-core when we maximize RAM usage

» Optimized scrypt's SMix achieves a throughput of ~1500/s on a dual Xeon E5649 machine
(12 cores, 24 logical CPUs) when running 24 threads (thus, latency 16 ms) at 4 MB/each
» A cut-down hack (Salsa20 round count reduced from 8 to 2, SMix second loop iteration

count reduced from N to N/4) achieves the same at 8 MB

This is sane speed and sane memory usage, but we want to do better - and we can

> scrypt paper recommends at least 16 MB
» scrypt at 128 KB (Litecoin) is ~10x faster to attack on GPU than on CPU

2012: current uses of scrypt

® As KDF in scrypt author's simple file encryption program
® As KDF in Tarsnap, scrypt author's "online backups for the truly paranoid”

® As KDF in Chromium OS to better protect the user's vault keyset

» as well as to mitigate offline attacks on the Google Account password

® As proof-of-work scheme in Litecoin, "a coin that is silver to Bitcoin's gold"

» 128 KB (misuse: too low) makes Litecoin ~10x faster to mine or GPUs than on CPUs

® As KDF in Phidelius, constructing asymmetric keypairs from passwords

® There's an RFC draft on scrypt

® crypt(3) encoding syntax for scrypt is being considered

A drawback of memory-hard KDFs

This applies to use of memory-hard KDFs for authentication in general, it is not

specific to scrypt

® To use a lot of RAM fast, we need to get close to the full memory

bandwidth, but this means poor scalability when many concurrent instances

dare run

® Thus, we have to choose between using more RAM per instance (and using

C
C

D

D

Us' resources poorly when there are concurrent instances) and using

J cores more fully (but at a lower RAM setting per instance)

Revising scrypt's ROMix algorithm

Algorithm ROMixy (B, N)

Paraieters | What if we reuse the same ROM
H A hash funection.
k Length of output produced by H, in bits. .
Integerify A bijective function from {0,1}* to {0,...2F —1}. across haSh ComDUtatIOHS?
Input: .
B Dk o Tecighh & o, ® Not a sequential memory-hard
N Integer work metric, < 2F/® f t b t th ROM
Output: unction anymore, but the
B’ Output of length & bits. y
5‘1“_“1‘; . can be arbitrarily large for any
2. fori=0to N —1do
N ; _ ff{x') < Can do it once throughput and latency
4: [«— y
5 end for | | ® Attacker's cost per candidate
o for 1 =0 to f‘i;&f}lﬂ - < Any iteration count o
T g — Integeriy modc IV
¢ XeBEse password tested is in ROM
9: d fi .
o o access ports and bandwidth

ROMix algorithm description by Colin Percival, "Stronger key derivation via sequential memory-hard functions”, 2009

ROM-port-hard functions

® Not a precise definition, more like word play on Colin Percival's sequential

memory-hard functions concept

® We might access only a tiny fraction of array elements per hash computed

(vs. scrypt's 100% write, 63% read), but that's OK as long as each element

Is equally likely to be needed and the access pattern is not predictable

® Because of the above and since the ROM must stay read-only, can't defeat

the time-memory trade-off by modifying the array (we could in scrypt)

® However, can defeat the TM

O by pre-filling the ROM differently (not

allowing for one array element to be quickly computed from another)

Pros of ROM-port-hardness (vs. scrypt)

® Can use ~1000 times more memory on current server hardware (and

require as much memory in each node for efficient attack: anti-botnet)
»e.g., 10 to 240 GB of ROM (actually in RAM) vs. scrypt's 4 MB or 8 MB per thread

® Can use a server's full RAM capacity even when the current request rate is
low (that is, when few hashes are being computed concurrently)

® Excellent scalability to more CPUs and CPU cores

» We only need to increase the amount of processing between memory accesses to be such
that we stay just below saturating the memory bandwidth when all CPU cores are in use

(unlike with scrypt, this does not result in reduction of memory usage)

® Can use types of memory other than RAM (e.g., SSDs)

Cons of ROM-port-hardness (vs. scrypt)

® Good scalability of attacks to more computing power (CPUs, CPU cores,
GPUs, etc.) while not having to provide more memory

» However, If the defender stayed just below saturating the memory bandwidth then the

attacker may have to provide more bandwidth first

® A custom or otherwise more suitable hardware setup would have a larger

number of ports to the same ROM capacity

» Moreover, those don't have to be ports to the same large ROM - instead, separate smaller
ROM banks may be used as long as bank conflicts are fairly rare

> Yet at below ~1000 cores sharing a ROM the attack speed per die area will be lower than
for scrypt, whereas with more cores the attacker will have to provide more interconnect

and ROM ports, which will have a cost of its own

The best of both worlds

® We can have a function that is
» sequential memory-hard with a small amount of RAM (a few MB)
» ROM-port-hard with a large amount of ROM (many GB)

® Trivial: compute e.g. scrypt and our ROM-port-hard function sequentially
(feeding the output of one into the other) or independently (then combine

the outputs e.g. using a fast hash)

» Drawback: an attacker may use smaller memory machines to compute the scrypt portion

® Smarter: merge the two functions, interleave the memory access types

> In scrypt terms, this can be done in SMix or BlockMix
» The block size and relative frequency of small RAM and large ROM accesses may be

tunable in case different memory types are being used or caching plays a role

How about obese scrypt?

® Computing our ROM content from a site-specific(?) seed value at service
startup may take ~1 minute (e.g., 60 GB at 1 GB/s)
® [oading it from an SSD may take ~5 minutes (e.g., 60 GB at 200 MB/s)

> Alternatively, we can mmap() it and start serving requests right away, getting to full speed

In a few minutes as the content gets cached in RAM

® Then we don't have to store the seed value on the server - In fact, we don't
have to store it at all (nor to ever have had it)

® The entire site-specific ROM would have to be stolen and distributed to all

attack nodes (in addition to them needing this much RAM for sane speed)

Taking obese scrypt a step further

® Besides using an SSD to load our ROM content into RAM, we can keep a
larger ROM on SSD - and use it from there

» This may be achieved with mmap() and making less frequent, larger block size accesses

» May want to prefetch data on a previous loop iteration, to avoid stalling computation

Consider: madvise(), aio_read(), helper thread

® |f there's no seed value stored on the server, the intruder will have to copy
and likely distribute the SSD ROM content to attack nodes
® Multiple SSDs and potentially even a NAS/SAN based on SSDs may be

used to make the ROM even larger

» Compared to blind hashing (refer to our ZeroNights 2012 slides) with database size similar

to our SSD ROM's, this may be more practical and it has more obvious properties

Issues with ROM on SSD

® SSD read disturb errors are a potential concern
» The firmware would presumably prevent these by rewriting or relocating the block after
"too many" reads have been made
» Theoretically, these rewrites could in turn wear the SSD out
» A back of the envelope calculation suggests that theoretically it'd take on the order of a

million years until this problem would occur, assuming smart firmware

® |f the firmware maintains per-block read counts and they're retrieved by an
intruder, this may potentially allow for early-reject of some candidate

passwords (block never accessed? this password must be wrong!)
» Mitigation: start using the ROM SSD half way through computation of a hash

Light use of ROM on SSD

® Rather than use our SSD ROM throughout hash computation, we can
access It just once before a final cryptographically secure step (e.g., before
the final PBKDF2-HMAC-SHA-256 invocation in a revision of scrypt)

» This iIs much simpler to implement and it avoids the issues/concerns with using SSDs
» |t Is friendly towards other uses of the same SSDs since we would only be making ~1000
requests/s from each machine (one request per hash computed), which is more than an

order of magnitude below SSDs' IOPS capacity
® The attacker will need to have access to a copy of the SSD ROM for offline

password cracking, but will not need to distribute it to attack nodes

Late 1990s to 2000+: 2FA goes mainstream

® Many online services and especially banks have started to treat
user-targeted attacks such as trojans and phishing seriously

® To this end, they deployed 2-factor authentication where passwords are

augmented with one-time codes or another second authentication factor

» There's some debate as to whether and which kinds of 2FA are effective against which
types of attacks. "Two-factor authentication isn't our savior. It won't defend against
phishing. It's not going to prevent identity theft. It's not going to secure online accounts

from fraudulent transactions. It solves the security problems we had ten years ago, not the

security problems we have today."

Bruce Schneier, "The Failure of Two-Factor Authentication", 2005

® Passwords remain relevant as one of the factors: "something you know"

= DUO:SECURITY

b

MULTIFACTOR AUTHENTICATION
\4

KNOW HAVE ARE

D'OH!
Passwords Token Face Behavior
ID Questions (Smart) Card Iris Location
Secret Images Phone Hand/Finger Reputation

A slide from "Modern Two-Factor Authentication: Defending Against User-Targeted Attacks” by Dug Song and Jon Oberheide, Duo Security, 2012

Threat models

® Offline attacks ® Online attacks
> Decent hash type » Password policy
> Prgper passwgrd stretching se’[tings At least ban top N most common passwords
» Random per-account salts » Per-source rate limiting
With targeted attacks (on few high-value » Multi-factor authentication

accounts as opposed to lots of low-value » Behavior analysis

ones), salts are of less help, yet they should be _ _
Akin to a "spam filter"

used in those cases as well

» Strict password policy » User-targeted attacks
Phishing, trojans, client vulnerability exploits

» Network-based attacks

DNS, routing, MITM, old-fashioned sniffing
® Password reuse across sites > Server vulnerability exploits

Desirable properties of a future KDF

® These need to be configurable

» With settings encoded along with password hashes, etc. - depending on specific use case

® Tunable high-level and instruction-level parallelism within one instance

» Barely sufficient if the KDF is sequential memory-hard, otherwise abundant will do

® Ability to use almost arbitrarily wide SIMD vectors within one instance
® Running time almost independent of password length

® Existing hashes upgradable to higher iteration counts

» without knowledge of the plaintext passwords

» Maybe to higher memory cost and higher available parallelism as well? - tricky

® Friendly to whatever hardware we have in the defender's system

» and to hardware that we might have there in the foreseeable future

KDFs unfriendly to hardware we do not have

® This Is controversial
» Concept pioneered in DES-based crypt(3) being unfriendly to existing DES chips

® If our authentication server only has CPUs and RAM, then the KDF being

GPU-unfriendly is a plus

» However, future server CPUs might have embedded GPUs or similar

® |f we have an FPGA or ASIC in the server, being CPU-unfriendly is a plus

> e.g., this may slow down attacks with a botnet, where victims' computers will generally not

have specialized

® Multiple blocks

hardware

friendly to different hardware components that we have

» However, complexity is the enemy of security and reliability

® Configurable unfriendliness (set of blocks to use and their weights)

CPU + RAM friendliness

® CPU-friendly
> 32- or 64-bit integers, SIMD
» Sequential memory-hard functions

»"Large" variable S-boxes
However, this prevents use of SIMD until AVX2 VSIB

» Use of specialized instructions - e.g., AES-NI

® CPU-unfriendly

» Small S-boxes (variable or/and fixed) - waste machine word bits

Beware of bitslicing and byte permute instructions

» Bit permutations

Such instructions are to appear in 2013 in non-SIMD form, though

» Unusual transforms

e.g., integer addition with only partial carry (an adder with some holes punched)

GPU friendliness

® GPU-friendly
» 32-bit integers, SIMD
» No/low memory needs

> Low register pressure

® GPU-unfriendly

> Exceeding total memory available on typical GPU cards

However, there may be a practical recomputation vs. memory trade-off - in fact, it's deliberate in scrypt
> Variable S-boxes exceeding fast memory size per thread (work-item in OpenCL parlance)

» Data-dependent branching - may work, but is tricky and risky - let's not do it

Deep enough tree (not just an if/else in a loop) to make eager execution inefficient

Beware of side-channel leaks - a sufficient reason not to use data-dependent branching

» CPU-unfriendly algorithms

Small S-boxes, bit permutations, unusual transforms

FPGA/ASIC friendliness

® FPGA/ASIC-friendly

» Small S-boxes (variable or/and fixed)

> Bit permutations

® ASIC-friendly

» Unusual yet simple transforms

e.g., integer addition with only partial carry (an adder with some holes punched)
#define pecaddia, b, mask) ((((a) ~ (b)) + (((a) & (b) & (mask)) << 1)) & 0Oxff)

® FPGA/ASIC-unfriendly

» Sequential memory-hard functions

All of the friendliness examples in this and previous slides assume that sufficient parallelism is

avallable in one instance of a KDF, as suggested before

Local parameter

® Must contain sufficient entropy

» way beyond a typical password or even passphrase

® Hashes are not crackable offline without knowledge of the local parameter

® However, If the local parameter is stored right on the authentication server

or in the password database, then it may be stolen/leaked along with the
hashes
® Problem: migration of locally-parameterized hashes between systems with

different local parameters, changing the local parameter after a compromise

» Solution: embed a "local parameter ID" in the hash encodings, support multiple local

parameters at once

Unreadable local parameter

® When a KDF is at least partially implemented in a dedicated device (e.g., In
a hardware security module or even a dedicated server), it becomes
possible to embed a local parameter in the device

® |f the local parameter is unreadable by the host system (e.g., by a server

doing password authentication), this buys us an extra layer of security

» Need to have a backup copy - e.g., a cluster of multiple HSMs or/and a piece of paper in
CEQ's safe
Companies like Google and Facebook could use this approach to substantially reduce the impact
of a possible user/password database compromise. Clearly, they can afford to move password

hashing onto HSMs or dedicated servers. |n fact, they could benefit from hardware acceleration of
password hashing.

Network structure (logical)

® Authentication servers
» Recelve usernames and passwords, reply with yes/no or a token
» Optionally perform the costly portion of password hashing
» Access the database, talk to password hashing HSMs or servers for the portion involving

the local parameter

® Password hashing HSMs or servers

> Are accessible from the authentication servers only

» Recelve partially computed hashes or passwords to hash, return computed hashes

® Other servers needing user authentication

» Talk to authentication servers or/and accept tokens

YubiHSM - a USB dongle for servers

™ . Lo e

YubiHSM in a server's internal USB port. Photo (c) Yubico, reproduced under the fair use doctrine.

Local parameter in YubiHSM

YubiHSM provides several suitable Key handle Data Reset/Final
functions.

=

T
If we use HMAC-SHA-1: = HMAC-SHA1

-

:;,_

® Key is the local parameter
® "Key handle" is its ID

® "Data" is output of a KDF
® HMAC is password hash

HMAC @ Final

Diagram (c) Yubico, reproduced under the fair use doctrine

YubiHSM pros

® Similar purpose, thus the right threat model
® Per key permission flags

® No custom OS kernel level driver required (USB CDC)

® Well-documented APls, sample code
® | ow cost ($500; other HSMs may be $10k to 20k EUR)

» You need at least two for redundancy

® Independent formal analysis of the Yubikey protocol
> "YubiSecure? Formal Security Analysis Results for the Yubikey and YubiHSM" by Robert

Kunnemann and Graham Steel, INRIA

Assumes "that the implementation is correct with respect to the documentation”

Found an oversight, which Yubico has since released a security advisory on

YubiHSM cons

® No independent whitebox audits m Matthew Green
® No iﬂdependent blackbox audits .@agl_ @ioerror HSMs can and should be
. . - audited. Obviously this isn't trivial, but it's
» probing for implementation issues critical if you're going to use one.

® USB CDC is slow, up to ~500 requests per second sustained throughput

® Serial interface for block-oriented data is risky

> "careful design is required not to lose synchronization in a serial byte stream” (Yubico)

® Not tamper-resistant (physical attacks are outside of the threat model)

Issues with HSMs in general

® Purpose and threat model are not always suitable

» Crypto acceleration or/and security

At least symmetric crypto is often not faster than optimized code on CPU anyway

» Attacks from compromised host or/and physical

® Potential vulnerabillities

» Firmware bugs, design errors, side-channels

Attack surface (too many features, each being a risk - can disable or not?)

» No known whitebox audits, source code not available for review

® Interfaces (physical, driver, APl) and their reliability

® Cost is often significant

» Especially given that multiple HSMs need to be installed

KDFs in scripting languages (future phpass?)

® We're limited in our choice of cryptographic primitives, especially if
portability to other scripting languages is desired

» MDS5 is the most ubiquitous common denominator, but use of SHA-512 is more

appropriate by other criteria

® Include parallelism so that we may eventually benefit from it

» e.g., when support for next generation phpass hashes gets embedded into PHP proper
® Feed moderately large amounts of data into the available cryptographic

primitives so that we save on interpreter or VM overhead

»e.g., Invoke PHP's SHA-512 implementation on strings that are several kilobytes long -

enough to keep the call overhead to a minimum, yet still within L1 cache

® Sequential memory-hard functions may be practical

Need to resist the temptation

Please resist the temptation to customize password hashing in your own web
application or the like

® |t Is too easy to get it wrong

® Having too many different password hash types in active use is undesirable

> Difficult to migrate hashes between systems
» Existing password security auditing tools are not immediately usable, so administrators of

individual installs of your app won't be able to audit the security of their users' passwords

Yet a determined attacker will implement this, then distribute the tool to others

® Further research, experiments, discussions within the community are

needed - to arrive at as few next generation KDFs as practical

oy
RN

/ \

{l\lOpenwaII

Questions?

http://www.openwall.com

@Openwall
Solar Designer Simon Marechal

<solar@openwall.com> <bartavelle@openwall.com>
@solardiz @bartavelle

