
The Linux Serial HOWTO

Table of Contents

The Linux Serial HOWTO...1
David S.Lawyer dave@lafn.org original by Greg Hankins ..1
1.Introduction...1
2.How the Hardware Transfers Bytes ...1
3.Serial Port Basics ...1
4.Is the Serial Port Obsolete?...2
5.Multiport Serial Boards/Cards/Adapters ..2
6.Configuring the Serial Port...2
7.Serial Port Devices /dev/ttyS2, etc. ..2
8.Interesting Programs You Should Know About...2
9.Speed (Flow Rate) ..3
10.Communications Programs And Utilities...3
11.Serial Tips And Miscellany..3
12.Troubleshooting ...3
13.Interrupt Problem Details ...3
14.What Are UARTs? How Do They Affect Performance? ...4
15.Pinout and Signals ...4
16.Voltage Waveshapes ..4
17.Other Serial Devices (not async EIA−232) ...4
18.Other Sources of Information ..4
1. Introduction..5
1.1 Copyright, Disclaimer, & Credits..5

Copyright..5
Disclaimer...5
Credits...6

1.2 Release Notes...6
1.3 New Versions of this Serial−HOWTO..6
1.4 Related HOWTO's re the Serial Port ..6
1.5 Feedback..7
1.6 What is a Serial Port?...7
10. Communications Programs And Utilities..7
10.1 List of Software..7
10.2 kermit and zmodem..8
11. Serial Tips And Miscellany...8
11.1 Line Drivers...8
11.2 Known Defective Hardware ...9

 Avoiding IO Address Conflicts with Certain Video Boards ..9
Problem with AMD Elan SC400 CPU (PC−on−a−chip)...9

11.3 What Are Lock Files ? ..9
12. Troubleshooting ..10
12.1 Serial Electrical Test Equipment...10

Breakout Gadgets, etc...10
Measuring Voltages..10
Taste Voltage..10

12.2 Serial Monitoring/Diagnostics ..11
12.3 The following subsections are in both the Serial and Modem HOWTOs:....................................11
12.4 My Serial Port is Physically There but Can't be Found ..11

The Linux Serial HOWTO

i

Table of Contents

12.5 Extremely Slow: Text appears on the screen slowly after long delays ...11
12.6 Somewhat Slow: I expected it to be a few times faster...12
12.7 The Startup Screen Show Wrong IRQs for the Serial Ports..12
12.8 "Cannot open /dev/ttyS?: Permission denied"...12
12.9 "Operation not supported by device" for ttyS?..13
12.10 "Cannot create lockfile. Sorry"..13
12.11 "Device /dev/ttyS? is locked."...13
12.12 "/dev/ttyS?: Device or resource busy" ..13
12.13 Troubleshooting Tools...14
13. Interrupt Problem Details ..14
13.1 Types of interrupt problems...14
13.2 Symptoms of Mis−set or Conflicting Interrupts..15
13.3 Mis−set Interrupts ...15
13.4 Interrupt Conflicts ...17
13.5 Resolving Interrupt Problems..17
14. What Are UARTs? How Do They Affect Performance? ..17
14.1 Introduction to UARTS...17
14.2 Two Types of UARTs..18
14.3 FIFOs ..18
14.4 UART Model Numbers..19
15. Pinout and Signals ..20
15.1 Pinout...20
15.2 Signals May Have No Fixed Meaning...20
15.3 Cabling Between Serial Ports ...21
15.4 RTS/CTS and DTR/DSR Flow Control ..21

The DTR and DSR Pins..22
15.5 Preventing a Port From Opening...22
16. Voltage Waveshapes ...23
16.1 Voltage for a Bit...23
16.2 Voltage Sequence for a Byte ...23
16.3 Parity Explained ..24
16.4 Forming a Byte (Framing)...24
16.5 How "Asynchronous" is Synchronized..24
17. Other Serial Devices (not async EIA−232) ..25
17.1 Successors to EIA−232 ...25
17.2 EIA−422−A (balanced) and EIA−423−A (unbalanced)..25
17.3 EIA−485...25
17.4 EIA−530...26
17.5 EIA−612/613 ..26
17.6 The Universal Serial Bus (USB)..26
17.7 Synchronization & Synchronous ..26

Defining Asynchronous vs Synchronous..26
Synchronous Communication...27

18. Other Sources of Information ...27
18.1 Books ..27
18.2 Serial Software...28
18.3 Linux Documents...28

The Linux Serial HOWTO

ii

Table of Contents

18.4 Usenet newsgroups: ..28
18.5 Serial Mailing List...28
18.6 Internet...29
2. How the Hardware Transfers Bytes ..29
2.1 Transmitting ..29
2.2 Receiving...31
2.3 The Large Serial Buffers..31
3. Serial Port Basics ..31
3.1 What is a Serial Port ?..31

Intro to Serial..31
Pins and Wires..32
RS−232 or EIA−232, etc. ..32

3.2 IO Address & IRQ...33
3.3 Names: ttyS0, ttyS1, etc...33
3.4 Interrupts ...33
3.5 Data Flow (Speeds)..34
3.6 Flow Control ...34

Example of Flow Control ..35
Symptoms of No Flow Control...35
Hardware vs. Software Flow Control...35

3.7 Data Flow Path; Buffers...36
3.8 Complex Flow Control Example...36
3.9 Serial Software: Device Driver Module..37
4. Is the Serial Port Obsolete?..38
4.1 Introduction..38
4.2 EIA−232 Cable Is Low Speed & Short Distance..38
4.3 Inefficient Interface to the Computer...39
5. Multiport Serial Boards/Cards/Adapters ...39
5.1 Intro to Multiport Serial ..39
5.2 Making "devices" in the /dev directory...40
5.3 Standard PC Serial Boards...40
5.4 Dumb Multiport Serial Boards (with 8250/16450/16550A UART's)...41
5.5 Intelligent Multiport Serial Boards..42
6. Configuring the Serial Port..44
6.1 PCI Bus Not Yet Supported ..44
6.2 Configuring Overview ..44
6.3 Common mistakes made re low−level configuring...45
6.4 I/O Address & IRQ: Boot−time messages ..45
6.5 What is the current IO address and IRQ of my Serial Port ? ..47

What does the device driver think?...47
 What is set in my serial port hardware ? ...47
What is set in my PnP serial port hardware ? ..48

6.6 Choosing Serial IRQs..48
IRQ 0 is not an IRQ..48
 Interrupt sharing and Kernels 2.2+ ...48
What IRQs to choose?..49

6.7 Choosing Addresses −−Video card conflict with ttyS3...50

The Linux Serial HOWTO

iii

Table of Contents

6.8 Set IO Address & IRQ in the hardware (mostly for PnP)..50
 Using a PnP BIOS to I0−IRQ Configure ..51

6.9 Giving the IRQ and IO Address to Setserial..51
6.10 High−level Configuring: stty, etc. ..52

Configuring Flow Control: Hardware Flow Control is Best..52
7. Serial Port Devices /dev/ttyS2, etc. ...52
7.1 Serial Port Device Names & Numbers ...53
7.2 Link ttySN to /dev/modem ?..53
7.3 Notes For Multiport Boards...53
7.4 Creating Devices In the /dev directory ...54
8. Interesting Programs You Should Know About..54
8.1 Serial Monitoring/Diagnostics Programs ..54
8.2 Changing Interrupt Priority..55
8.3 What is Setserial ? ...55

Introduction...55
 Probing ..56
Can Linux Configure The Serial Devices Automagically?..56
 Boot−time Configuration ..57
New configuration method using /etc/serial.conf ..57
 Old configuration method: edit a script ..58
IRQs..58

8.4 Stty ..58
Introduction...59
Using stty for a "foreign" terminal...59
 Two interfaces at a terminal ..60
 Where to put the stty command ? ...61

8.5 What is isapnp ?...61
9. Speed (Flow Rate) ...61
9.1 Can't Set a High Enough Speed...61

 How speed is set in hardware: the divisor and baud_base ..62
Work−arounds for setting speed...62
Crystal frequency is not baud_base..62

9.2 Higher Serial Throughput..63

The Linux Serial HOWTO

iv

The Linux Serial HOWTO

David S.Lawyer dave@lafn.org original by Greg Hankins

v2.05, 1 January 2000

This document describes serial port features other than those which should be covered by Modem−HOWTO,
PPP−HOWTO, Serial−Programming−HOWTO, or Text−Terminal−HOWTO. It lists info on multiport serial
cards. It contains technical info about the serial port itself in more detail than found in the above HOWTOs
and should be best for troubleshooting when the problem is the serial port itself. If you are dealing with a
Modem, PPP (used for Internet access on a phone line), or a Text−Terminal, those HOWTOs should be
consulted first.

1.Introduction

• 1.1 Copyright, Disclaimer, & Credits
• 1.2 Release Notes
• 1.3 New Versions of this Serial−HOWTO
• 1.4 Related HOWTO's re the Serial Port
• 1.5 Feedback
• 1.6 What is a Serial Port?

2.How the Hardware Transfers Bytes

• 2.1 Transmitting
• 2.2 Receiving
• 2.3 The Large Serial Buffers

3.Serial Port Basics

• 3.1 What is a Serial Port ?
• 3.2 IO Address & IRQ
• 3.3 Names: ttyS0, ttyS1, etc.
• 3.4 Interrupts
• 3.5 Data Flow (Speeds)
• 3.6 Flow Control
• 3.7 Data Flow Path; Buffers
• 3.8 Complex Flow Control Example
• 3.9 Serial Software: Device Driver Module

The Linux Serial HOWTO 1

mailto:dave@lafn.org
Serial-HOWTO-1.html
Serial-HOWTO-2.html
Serial-HOWTO-2.html
Serial-HOWTO-2.html
Serial-HOWTO-2.html
Serial-HOWTO-2.html
Serial-HOWTO-3.html
Serial-HOWTO-3.html
Serial-HOWTO-3.html

4.Is the Serial Port Obsolete?

• 4.1 Introduction
• 4.2 EIA−232 Cable Is Low Speed & Short Distance
• 4.3 Inefficient Interface to the Computer

5.Multiport Serial Boards/Cards/Adapters

• 5.1 Intro to Multiport Serial
• 5.2 Making "devices" in the /dev directory
• 5.3 Standard PC Serial Boards
• 5.4 Dumb Multiport Serial Boards (with 8250/16450/16550A UART's)
• 5.5 Intelligent Multiport Serial Boards

6.Configuring the Serial Port

• 6.1 PCI Bus Not Yet Supported
• 6.2 Configuring Overview
• 6.3 Common mistakes made re low−level configuring
• 6.4 I/O Address & IRQ: Boot−time messages
• 6.5 What is the current IO address and IRQ of my Serial Port ?
• 6.6 Choosing Serial IRQs
• 6.7 Choosing Addresses −−Video card conflict with ttyS3
• 6.8 Set IO Address & IRQ in the hardware (mostly for PnP)
• 6.9 Giving the IRQ and IO Address to Setserial
• 6.10 High−level Configuring: stty, etc.

7.Serial Port Devices /dev/ttyS2, etc.

• 7.1 Serial Port Device Names & Numbers
• 7.2 Link ttySN to /dev/modem ?
• 7.3 Notes For Multiport Boards
• 7.4 Creating Devices In the /dev directory

8.Interesting Programs You Should Know About

• 8.1 Serial Monitoring/Diagnostics Programs
• 8.2 Changing Interrupt Priority
• 8.3 What is Setserial ?
• 8.4 Stty
• 8.5 What is isapnp ?

The Linux Serial HOWTO

4.Is the Serial Port Obsolete? 2

Serial-HOWTO-4.html
Serial-HOWTO-4.html
Serial-HOWTO-4.html
Serial-HOWTO-4.html
Serial-HOWTO-4.html
Serial-HOWTO-5.html
Serial-HOWTO-5.html
Serial-HOWTO-5.html
Serial-HOWTO-6.html
Serial-HOWTO-6.html
Serial-HOWTO-6.html
Serial-HOWTO-6.html
Serial-HOWTO-7.html
Serial-HOWTO-7.html
Serial-HOWTO-7.html
Serial-HOWTO-7.html
Serial-HOWTO-7.html
Serial-HOWTO-8.html
Serial-HOWTO-8.html
Serial-HOWTO-8.html
Serial-HOWTO-8.html
Serial-HOWTO-8.html
Serial-HOWTO-8.html

9.Speed (Flow Rate)

• 9.1 Can't Set a High Enough Speed
• 9.2 Higher Serial Throughput

10.Communications Programs And Utilities

• 10.1 List of Software
• 10.2 kermit and zmodem

11.Serial Tips And Miscellany

• 11.1 Line Drivers
• 11.2 Known Defective Hardware
• 11.3 What Are Lock Files ?

12.Troubleshooting

• 12.1 Serial Electrical Test Equipment
• 12.2 Serial Monitoring/Diagnostics
• 12.3 The following subsections are in both the Serial and Modem HOWTOs:
• 12.4 My Serial Port is Physically There but Can't be Found
• 12.5 Extremely Slow: Text appears on the screen slowly after long delays
• 12.6 Somewhat Slow: I expected it to be a few times faster
• 12.7 The Startup Screen Show Wrong IRQs for the Serial Ports.
• 12.8 "Cannot open /dev/ttyS?: Permission denied"
• 12.9 "Operation not supported by device" for ttyS?
• 12.10 "Cannot create lockfile. Sorry"
• 12.11 "Device /dev/ttyS? is locked."
• 12.12 "/dev/ttyS?: Device or resource busy"
• 12.13 Troubleshooting Tools

13.Interrupt Problem Details

• 13.1 Types of interrupt problems
• 13.2 Symptoms of Mis−set or Conflicting Interrupts
• 13.3 Mis−set Interrupts
• 13.4 Interrupt Conflicts
• 13.5 Resolving Interrupt Problems

The Linux Serial HOWTO

9.Speed (Flow Rate) 3

Serial-HOWTO-9.html
Serial-HOWTO-9.html
Serial-HOWTO-9.html
Serial-HOWTO-10.html
Serial-HOWTO-10.html
Serial-HOWTO-10.html
Serial-HOWTO-10.html
Serial-HOWTO-11.html
Serial-HOWTO-11.html
Serial-HOWTO-11.html
Serial-HOWTO-11.html
Serial-HOWTO-12.html
Serial-HOWTO-13.html
Serial-HOWTO-13.html
Serial-HOWTO-13.html

14.What Are UARTs? How Do They Affect Performance?

• 14.1 Introduction to UARTS
• 14.2 Two Types of UARTs
• 14.3 FIFOs
• 14.4 UART Model Numbers

15.Pinout and Signals

• 15.1 Pinout
• 15.2 Signals May Have No Fixed Meaning
• 15.3 Cabling Between Serial Ports
• 15.4 RTS/CTS and DTR/DSR Flow Control
• 15.5 Preventing a Port From Opening

16.Voltage Waveshapes

• 16.1 Voltage for a Bit
• 16.2 Voltage Sequence for a Byte
• 16.3 Parity Explained
• 16.4 Forming a Byte (Framing)
• 16.5 How "Asynchronous" is Synchronized

17.Other Serial Devices (not async EIA−232)

• 17.1 Successors to EIA−232
• 17.2 EIA−422−A (balanced) and EIA−423−A (unbalanced)
• 17.3 EIA−485
• 17.4 EIA−530
• 17.5 EIA−612/613
• 17.6 The Universal Serial Bus (USB)
• 17.7 Synchronization & Synchronous

18.Other Sources of Information

• 18.1 Books
• 18.2 Serial Software
• 18.3 Linux Documents
• 18.4 Usenet newsgroups:
• 18.5 Serial Mailing List
• 18.6 Internet

The Linux Serial HOWTO

14.What Are UARTs? How Do They Affect Performance? 4

Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-14.html
Serial-HOWTO-15.html
Serial-HOWTO-15.html
Serial-HOWTO-15.html
Serial-HOWTO-16.html
Serial-HOWTO-16.html
Serial-HOWTO-17.html
Serial-HOWTO-17.html
Serial-HOWTO-17.html
Serial-HOWTO-17.html
Serial-HOWTO-17.html
Serial-HOWTO-17.html
Serial-HOWTO-18.html
Serial-HOWTO-18.html
Serial-HOWTO-18.html
Serial-HOWTO-18.html

Next Previous Contents Next Previous Contents

1. Introduction

This HOWTO covers basic info on the Serial Port and multiport serial cards. Information specific to modems
and text−terminals has been moved to Modem−HOWTO and Text−Terminal−HOWTO. Info on getty has
been also moved to these HOWTOs since mgetty and uugetty are best for modems while agetty is best for
text−terminals. If you are dealing with a modem, text terminal, or printer, then you may not need to consult
this HOWTO. But if you are using the serial port for some other device, using a multiport serial card,
trouble−shooting the serial port itself, or want to understand more technical details of the serial port, then you
may want to use this HOWTO as well as some of the other HOWTOs. (See Related HOWTO's) This
HOWTO lists info on various multiport serial cards since they may be used for either modems or
text−terminals. This HOWTO addresses Linux running on Intel x86 hardware, although it might be valid for
other architectures.

1.1 Copyright, Disclaimer, & Credits

Copyright

Copyright (c) 1993−1997 by Greg Hankins, 1998−1999 by David S. Lawyer.

Please freely copy and distribute (sell or give away) this document in any format. Forward any corrections
and comments to the document maintainer. You may create a derivative work and distribute it provided that
you:

1. Send your derivative work (in the most suitable format such as sgml) to the LDP (Linux
Documentation Project) or the like for posting on the Internet. If not the LDP, then let the LDP know
where it is available. Except for a translation, send a copy to the previous maintainer's url as shown in
the latest version.

2. License the derivative work in the spirit of this license or use GPL. Include a copyright notice and at
least a pointer to the license used.

3. Give due credit to previous authors and major contributors.

If you're considering making a derived work other than a translation, it's requested that you discuss your plans
with the current maintainer.

Disclaimer

While I haven't intentionally tried to mislead you, there are likely a number of errors in this document. Please
let me know about them. Since this is free documentation, it should be obvious that I cannot be held legally
responsible for any errors.

The Linux Serial HOWTO

1. Introduction 5

Serial-HOWTO-1.html
Serial-HOWTO-2.html

Credits

Most of the original Serial−HOWTO was written by Greg Hankins. gregh@cc.gatech.edu He also
rewrote many contributions by others in order to maintain continuity in the writing style and flow. He wrote:
"Thanks to everyone who has contributed or commented, the list of people has gotten too long to list
(somewhere over one hundred). Special thanks to Ted Ts'o for answering questions about the serial drivers.
Approximately half of v2.00 was from Greg Hankins HOWTO and the other half is by David Lawyer. Ted
Ts'o has continued to be helpful.

1.2 Release Notes

2.00 was a major revision which has removed info on Terminals and Modems from the old Serial−HOWTO
and put such info into:

• Text−Terminal−HOWTO
• Modem−HOWTO

2.01: Added info on Plug−and−Play from Modem−HOWTO and more. Info on setserial and stty has been
updated. I still haven't checked out all the info on multiport cards to see if it's up−to−date. The fact that this
HOWTO was pieced together from various sources has resulted in a certain lack of integration. This may be
improved on in future versions.

1.3 New Versions of this Serial−HOWTO

New versions of the Serial−HOWTO will be available to browse and/or download at LDP mirror sites. For a
list of mirror sites see: http://metalab.unc.edu/LDP/mirrors.html. Various formats are available. If you only
want to quickly check the date of the latest version look at
http://metalab.unc.edu/LDP/HOWTO/Serial−HOWTO.html and compare it to this version: v2.05, 1 January
2000

1.4 Related HOWTO's re the Serial Port

Modems, Text−Terminals, some printers, and other peripherals often use the serial port. Get these HOWTOs
from the nearest mirror site as explained above.

• Modem−HOWTO is about installing and configuring modems
• Printing−HOWTO has info on using a serial printer
• Serial−Programming−HOWTO helps you write C programs (or parts of them) that read and

write to the serial port and/or check/set its state. A new version is expected soon.
• Text−Terminal−HOWTO is about how they work, how to install configure, and repair them.

The Linux Serial HOWTO

Credits 6

mailto:gregh@cc.gatech.edu
http://metalab.unc.edu/LDP/mirrors.html
http://metalab.unc.edu/LDP/HOWTO/Serial-HOWTO.html

1.5 Feedback

Please send me any questions, comments, suggestions, or additional material. I'm always eager to hear about
what you think about this HOWTO. I'm also always on the lookout for improvements! Tell me exactly what
you don't understand, or what could be clearer. You can reach me via email at
mailto:dave@lafn.org (David Lawyer).

1.6 What is a Serial Port?

The conventional serial port (not the newer USB port, or HSSI port) is a very old I/O port. Almost all PC's
have them. But Macs (Apple Computer) after mid 1998 (with colored cases) only have the USB port. The
common specification is RS−232 (or EIA−232). The connector for the serial port is often seen as one or two
9−pin connectors (in some cases 25−pin) on the back of a PC. But the serial port is is more than just that. It
includes the associated electronics which must produce signals conforming to the EIA−232 specification. See
Voltage Waveshapes. One pin is used to send out data bytes and another to receive data bytes. Another pin is
a common signal ground. The other "useful" pins are used mainly for signalling purposes with a steady
negative voltage meaning "off" and a steady positive voltage meaning "on".

The UART (Universal Asynchronous Receiver−Transmitter) chip does most of the work. Today, the
functionality of this chip is usually built into another chip. See What Are UARTs? These have improved over
time and old models (several years old) are now obsolete.

The serial port was originally designed for connecting modems but it's used to connect many other devices
also such as mice, text−terminals, some printers, etc. to a computer. You just plug these devices into the
serial port using the correct cable. Many internal modem cards have a built−in serial port so when you install
one inside your PC it's as if you just installed another serial port in your PC.

Next Previous ContentsNextPreviousContents

10. Communications Programs And Utilities

10.1 List of Software

Here is a list of some communication software you can choose from, available via FTP, if they didn't come
with your distribution.

• ecu − a communications program
• C−Kermit − portable, scriptable, serial and TCP/IP communications including file transfer,

character−set translation, and zmodem support
• minicom − telix−like communications program

The Linux Serial HOWTO

1.5 Feedback 7

mailto:dave@lafn.org
Serial-HOWTO-2.html
Serial-HOWTO-11.html
Serial-HOWTO-9.html
http://www.columbia.edu/kermit/

• procomm − procomm−like communications program with zmodem
• seyon − X based communication program
• xc − xcomm communication package
• term and SLiRP offer TCP/IP functionality using a shell account.
• screen is another multi−session program. This one behaves like the virtual consoles.
• callback is where you dial out to a remote modem and then that modem hangs up and calls you

back (to save on phone bills).
• mgetty+fax handles FAX stuff, and provides an alternate ps_getty.
• ZyXEL is a control program for ZyXEL U−1496 modems. It handles dialin, dialout, dial back

security, FAXing, and voice mailbox functions.
• SLIP and PPP software can be found at

ftp://metalab.unc.edu/pub/Linux/system/network/serial.

10.2 kermit and zmodem

To use zmodem with kermit, add the following to your .kermrc:

define rz !rz < /dev/ttyS3 > /dev/ttyS3
define sz !sz \%0 > /dev/ttyS3 < /dev/ttyS3

Be sure to put in the correct port your modem is on. Then, to use it, just type rz or sz <filename> at the
kermit prompt.

NextPreviousContentsNextPreviousContents

11. Serial Tips And Miscellany

Here are some serial tips you might find helpful...

11.1 Line Drivers

For a text terminal, the EIA−232 speeds are fast enough but the usable cable length is often too short.
Balanced technology could fix this. The common method of obtaining balanced communication with a text
terminal is to install 2@ line drivers in the serial line to convert unbalanced to balanced (and conversely).
They are a specialty item and are expensive if purchased new.

The Linux Serial HOWTO

10.2 kermit and zmodem 8

ftp://metalab.unc.edu/pub/Linux/system/network/serial
Serial-HOWTO-11.html
Serial-HOWTO-9.html
Serial-HOWTO-12.html
Serial-HOWTO-10.html

11.2 Known Defective Hardware

 Avoiding IO Address Conflicts with Certain Video Boards

The IO address of the IBM 8514 video board (and others) is allegedly 0x?2e8 where ? is 2, 4, 8, or 9. This
may conflict (but shouldn't it the serial port is well designed) with the IO address of ttyS3 at 0x02e8 if the
serial port ignores the leading 0 hex digit when it decodes the address (many do). That is bad news if you try
to use ttyS3 at this IO address. Another story is that Linux will not detect your internal modem on
ttyS3 but that you can use setserial to put ttyS3 at this address and the modem will work fine.

Problem with AMD Elan SC400 CPU (PC−on−a−chip)

This has a race condition between an interrupt and a status register of the UART. An interrupt is issued when
the UART transmitter finishes the transmission of a byte and the UART transmit buffer becomes empty
(waiting for the next byte). But a status register of the UART doesn't get updated fast enough to reflect this.
As a result, the interrupt service routine rapidly checks and determines (erroneously) that nothing has
happened. Thus no byte is sent to the port to be transmitted and the UART transmitter waits in vain for a byte
that never arrives. If the interrupt service routine had waited just a bit longer before checking the status
register, then it would have been updated to reflect the true state and all would be OK.

There is a proposal to fix this by patching the serial driver. But Should linux be patched to accommodate
defective hardware, especially if this patch may impair performance of good hardware?

11.3 What Are Lock Files ?

A lock file is simply a file saying that a particular device is in use. They are kept in /var/lock. Formerly
they were in /usr/spool/uucp. Linux lock files are named LCK..name, where name is either a device
name, or a UUCP site name. Certain processes create these locks so that they can have exclusive access to
devices. For instance if you dial out on your modem, a lock will appear telling other processes that someone
is using the modem already. Locks mainly contain the PID of the process that has locked the device. Most
programs look at the lock, and try to determine if that lock is still valid by checking the process table for the
process that has locked the device. If the lock is found to be valid, the program (should) exit. If not, some
programs remove the stale lock, and use the device, creating their own lock in the process. Other programs
just exit and tell you that the device is in use.

Having the same physical serial port known by two different device names (such as ttyS0 and cua0) could
cause problems. The lock checking software is aware of ttyS vs. cua but it will make things simpler in this
regard by the planned elimination of cua. In other cases, assigning an alternate name to the same device is
asking for trouble.

NextPreviousContentsNextPreviousContents

The Linux Serial HOWTO

11.2 Known Defective Hardware 9

Serial-HOWTO-12.html
Serial-HOWTO-10.html
Serial-HOWTO-13.html
Serial-HOWTO-11.html

12. Troubleshooting

See Modem−HOWTO for troubleshooting related to modems or getty for modems.

12.1 Serial Electrical Test Equipment

Breakout Gadgets, etc.

While a multimeter (used as a voltmeter) may be all that you need for just a few terminals, simple special test
equipment has been made for testing serial port lines. Some are called "breakout ... " where breakout means
to break out conductors from a cable. These gadgets have a couple of connectors on them and insert into the
serial cable. Some have test points for connecting a voltmeter. Others have LED lamps which light when
certain modem control lines are asserted (turned on). Still others have jumpers so that you can connect any
wire to any wire. Some have switches.

Radio Shack sells (in 1998) a "RS−232 Troubleshooter" or "RS−232 Line Tester" which checks TD, RD, CD,
RTS, CTS, DTR, and DSR. A green light means on (+12 v) while red means off (−12 v). They also sell a
"RS−232 Serial Jumper Box" which permits connecting the pins anyway you choose.

Measuring Voltages

Any voltmeter or multimeter, even the cheapest that sells for about $10, should work fine. Trying to use other
methods for checking voltage is tricky. Don't use a LED unless it has a series resistor to reduce the voltage
across the LED. A 470 ohm resistor is used for a 20 ma LED (but not all LED's are 20 ma). The LED will
only light for a certain polarity so you may test for + or − voltages. Does anyone make such a gadget for
automotive circuit testing?? Logic probes may be damaged if you try to use them since the TTL voltages for
which they are designed are only 5 volts. Trying to use a 12 V incandescent light bulb is not a good idea. It
won't show polarity and due to limited output current of the UART it probably will not even light up.

To measure voltage on a female connector you may plug in a bent paper clip into the desired opening. The
paper clip's diameter should be no larger than the pins so that it doesn't damage the contact. Clip an alligator
clip (or the like) to the paper clip to connect up.

Taste Voltage

As a last resort, if you have no test equipment and are willing to risk getting shocked (or even electrocuted)
you can always taste the voltage. Before touching one of the test leads with your tongue, test them to make
sure that there is no high voltage on them. Touch both leads (at the same time) to one hand to see if they
shock you. Then if no shock, wet the skin contact points by licking and repeat. If this test gives you a shock,
you certainly don't want to use your tongue.

For the test for 12 V, Lick a finger and hold one test lead in it. Put the other test lead on your tongue. If the
lead on your tongue is positive, there will be a noticeable taste. You might try this with flashlight batteries

The Linux Serial HOWTO

12. Troubleshooting 10

first so you will know what taste to expect.

12.2 Serial Monitoring/Diagnostics

A few Linux programs will monitor the modem control lines and indicate if they are positive (1) or negative
(0). See section Serial Monitoring/Diagnostics

12.3 The following subsections are in both the Serial and
Modem HOWTOs:

12.4 My Serial Port is Physically There but Can't be Found

If a device (such as a modem) works on a serial port, then obviously the port has been found. If it doesn't
work at all, then you need to make sure your serial port can be found.

Check the BIOS menus and BIOS messages. If it's an ISA bus PnP serial port, try "pnpdump −−dumpregs"
and/or see Plug−and−Play−HOWTO. For the PCI bus use lspci. You may try probing with setserial. See
Probing If nothing seems to get thru the port it may be there but have a bad interrupt. See Extremely Slow:
Text appears on the screen slowly after long delays.

12.5 Extremely Slow: Text appears on the screen slowly
after long delays

It's likely mis−set/conflicting interrupts. Here are some of the symptoms which will happen the first time you
try to use a modem, terminal, or printer. In some cases you type something but nothing appears on the screen
until many seconds later. Only the last character typed may show up. It may be just an invisible <return>
character so all you notice is that the cursor jumps down one line. In other cases where a lot of data should
appear on the screen, only a batch of about 16 characters appear. Then there is a long wait of many seconds
for the next batch of characters. You might also get "input overrun" error messages (or find them in logs).

For more details on the symptoms and why this happens see

Interrupt Problem Details and/or Interrupt Conflicts and/or Mis−set Interrupts. If it involves Plug−and−Play
devices, see also Plug−and−Play−HOWTO.

As a quick check to see if it really is an interrupt problem, set the IRQ to 0 with "setserial". This will tell the
driver to use polling instead of interrupts. If this seems to fix the "slow" problem then you had an interrupt
problem. You should still try to solve the problem since polling uses excessive computer resources and
sometimes drastically decreases your thruput.

Checking to find the interrupt conflict may not be easy since Linux supposedly doesn't permit any interrupt

The Linux Serial HOWTO

12.2 Serial Monitoring/Diagnostics 11

conflicts and will send you a /dev/ttyS?: Device or resource busy error message if it thinks you are attempting
to create a conflict. But a real conflict can be created if "setserial" has incorrect information. Thus using
"setserial" will not reveal the conflict (nor will looking at /proc/interrupts which bases its info on "setserial").
You still need to know what "setserial" thinks so that you can pinpoint where it's wrong and change it when
you determine what's really set in the hardware.

What you need to do is to check how the hardware is set by checking jumpers or using PnP software to check
how the hardware is actually set. For PnP run either "pnpdump −−dumpregs" or run "lspci". Compare this to
how Linux (e.g. "setserial") thinks the hardware is set.

12.6 Somewhat Slow: I expected it to be a few times faster

One reason may be that whatever is on the serial port (such as a modem, terminal, printer) doesn't work as
fast as you thought it did.

Another possible reason is that the serial driver thinks you have an obsolete serial port (UART 8250,16450 or
early 16550). See What Are UARTs?. Use "setserial −g /dev/ttyS*". If it shows anything less than a 16550A,
this is likely your problem. Then if "setserial" has it wrong, change it. See What is Setserial for more info. Of
course if you really do have an obsolete serial port, lying about it to setserial will only make things worse.

12.7 The Startup Screen Show Wrong IRQs for the Serial
Ports.

Linux does not do any IRQ detection on startup. When the serial module loads it only does serial device
detection. Thus, disregard what it says about the IRQ, because it's just assuming the standard IRQs. This is
done, because IRQ detection is unreliable, and can be fooled. But if and when setserial runs from a start−up
script, it changes the IRQ's and displays the new (and hopefully correct) state on on the startup screen. If the
wrong IRQ is not corrected by a later display on the screen, then you've got a problem.

So, even though I have my ttyS2 set at IRQ 5, I still see

ttyS02 at 0x03e8 (irq = 4) is a 16550A

at first when Linux boots. (Older kernels may show "ttyS02" as "tty02") You have to use setserial to tell
Linux the IRQ you are using.

12.8 "Cannot open /dev/ttyS?: Permission denied"

Check the file permissions on this port with "ls −l /dev/ttyS?"_ If you own the ttyS? then you need read and
write permissions: crw with the c (Character device) in col. 1. It you don't own it then it should show rw− in
cols. 8 & 9 which means that everyone has read and write permission on it. Use "chmod" to change
permissions. There are more complicated ways to get access like belonging to a "group" that has group

The Linux Serial HOWTO

12.6 Somewhat Slow: I expected it to be a few times faster 12

permission.

12.9 "Operation not supported by device" for ttyS?

This means that an operation requested by setserial, stty, etc. couldn't be done because the kernel doesn't
support doing it. Formerly this was often due to the "serial" module not being loaded. But with the advent of
PnP, it may likely mean that there is no modem (or other serial device) at the address where the driver (and
setserial) thinks it is. If there is no modem there, commands (for operations) sent to that address obviously
don't get done. See What is set in my serial port hardware?

If the "serial" module wasn't loaded but "lsmod" shows you it's now loaded it might be the case that it's
loaded now but wasn't loaded when you got the error message. In many cases the module will automatically
loaded when needed (if it can be found). To force loading of the "serial" module it may be listed in the file:
/etc/modules.conf or /etc/modules. The actual module should reside in: /lib/modules/.../misc/serial.o.

12.10 "Cannot create lockfile. Sorry"

When a port is "opened" by a program a lockfile is created in /var/lock/. Wrong permissions for the lock
directory will not allow a lockfile to be created there. Use "ls −ld /var/lock" to see if the permissions are OK:
usually rwx for everyone (repeated 3 times). If it's wrong, use "chmod" to fix it. Of course, if there is no
"lock" directory no lockfile can be created there. For more info on lockfiles see What Are Lock Files

12.11 "Device /dev/ttyS? is locked."

This means that someone else (or some other process) is supposedly using the serial port. There are various
ways to try to find out what process is "using" it. One way is to look at the contents of the lockfile
(/var/lock/LCK...). It should be the process id. If the process id is say 261 type "ps 261" to find out what it is.
Then if the process is no longer needed, it may be gracefully killed by "kill 261". If it refuses to be killed use
"kill −9 261" to force it to be killed, but then the lockfile will not be removed and you'll need to delete it
manually. Of course if there is no such process as 161 then you may just remove the lockfile but in most
cases the lockfile should have been automatically removed if it contained a stale process id (such as 261).

12.12 "/dev/ttyS?: Device or resource busy"

``resource busy'' often means (for the case of ttyS2) ``You can't use ttyS2 since another device is using ttyS2's
interrupt.'' The potential interrupt conflict is inferred from what "setserial" thinks. A more accurate error
message would be ``Can't use ttyS2 since the setserial data indicates that another device is using ttyS2's
interrupt''.

Thus there are two possibilities. There may be a real interrupt conflict that is being avoided. But if setserial
has it wrong, there may be no reason why ttyS2 can't be used, except that setserial erroneously predicts a

The Linux Serial HOWTO

12.9 "Operation not supported by device" for ttyS? 13

conflict. What you need to do is to find the interrupt setserial thinks ttyS2 is using by looking at boot−time
messages (using setserial will not work since it gives the "device busy" error message). Then check to see if
anything else uses this interrupt or if the interrupt reported is the same as set in the hardware.

12.13 Troubleshooting Tools

These are some of the programs you might want to use in troubleshooting:

• "lsof /dev/ttyS*" will list serial ports which are open.
• "setserial" shows and sets the low−level hardware configuration of a port (what the driver thinks it

is). See What is Setserial
• "stty" shows and sets the configuration of a port (except for that handled by "setserial"). See the

section Stty
• "modemstat" or "statserial" will show the current state of various modem signal lines (such as DTR,

CTS, etc.)
• "irqtune" will give serial port interrupts higher priority to improve performance.
• "hdparm" for hard−disk tuning may help some more.
• "lspci" shows the actual IRQs, etc. of hardware on the PCI bus.
• "pnpdump −−dumpregs" shows the actual IRQs, etc. of hardware for PnP devices on the ISA bus.
• Some "files" in the /proc tree (such as ioports and interrupts).

NextPreviousContentsNextPreviousContents

13. Interrupt Problem Details

While the section Troubleshooting lists problems by symptom, this section explains what will happen if
interrupts are set incorrectly. This section helps you understand what caused the symptom, what other
symptoms might be due to the same problem, and what to do about it.

13.1 Types of interrupt problems

The "setserial" program will show you how serial driver thinks the interrupts are set. If the serial driver (and
setserial) has it right then everything regarding interrupts should be OK. Of course a /dev/ttyS must exist for
the device and Plug−and−Play (or jumpers) must have set an address and IRQ in the hardware. Linux will not
knowingly permit an interrupt conflict and you will get a "Device or resource busy" error message if you
attempt to do something that would create a conflict.

Since the kernel tries to avoid interrupt conflicts and gives you the "resource busy" message if you try to
create a conflict, how can interrupt conflicts happen? Easy. "setserial" may have it wrong and erroneously
predicts no conflict when there will actually be a real conflict based on what is set in the hardware. When this

The Linux Serial HOWTO

12.13 Troubleshooting Tools 14

Serial-HOWTO-13.html
Serial-HOWTO-11.html
Serial-HOWTO-14.html
Serial-HOWTO-12.html

happens there will be no "... busy" message but performance will be extremely slow. Both devices will send
identical interrupt signals on the same wire and the CPU will erroneously think that the interrupts only come
from one device. This will be explained in detail in the following sections.

Linux doesn't complain when you assign two devices the same IRQ provided that neither device is in use. As
each device starts up (initializes), it asks Linux for permission to use its hardware interrupt. Linux keeps track
of which interrupt is assigned to whom, and if your interrupt is already in use, you'll see this "... busy" error
message. Thus if two devices use the same IRQ and you start up only one of the devices, everything is OK.
But when you next try to start the second device (without quitting the first device) you get "... busy" error
message.

13.2 Symptoms of Mis−set or Conflicting Interrupts

The symptoms depend on whether or not you have a modern serial port with FIFO buffers or an obsolete
serial port without FIFO buffers. It's important to understand the symptoms for the obsolete ones also since
sometimes modern ports seem to behave that way.

For the obsolete serial ports, only one character gets thru every several seconds. This is so slow that it seems
almost like nothing is working (especially if the character that gets thru is invisible (such a space or newline).
For the modern ports with FIFO buffers you will likely see bursts of up to 16 characters every several
seconds.

If you have a modem on the port and dial a number, it seemingly may not connect since the CONNECT
message may not make it thru. But after a long wait it may finally connect and you may see part of a login
message (or the like). The response from your side of the connection may be so delayed that the other side
gives up and disconnects you, resulting in a NO CARRIER message.

If you use minicom, a common test to see if things are working is to type the simplest "AT" command and
see if the modem responds. Typing just at<enter> should normally (if interrupts are OK) result in an
immediate "OK" response from the modem. With bad interrupts you type at<enter> and may see nothing. But
then after 10 seconds or so you see the cursor drop down one line. What is going on is that the FIFO is
behaving like it can only hold one byte. The "at" you typed caused it to overrun and both letters were lost.
But the final <enter> got thru since you waited for it and you "see" this invisible character by noting that the
cursor jumped down one line. If you were to type a single letter and then wait about 10 seconds, you should
see it echo back to the screen. This is fine if your typing speed is less that one word per minute :−)

13.3 Mis−set Interrupts

If you don't understand what an interrupt does see Interrupts. If a serial port has one IRQ set in the hardware
but a different one set in the device driver, the device driver will not catch any interrupts sent by the serial
port. Since the serial port uses interrupts to call its driver to service the port (fetching bytes from it's 16−byte
receive buffer or putting another 16−bytes in its transmit buffer) one might expect that the serial port would
not work at all.

But it still may work anyway −−sort of. Why? Well, besides the interrupt method of servicing the port there's
a slow polling method that doesn't need interrupts. The way it works is that every so often the device driver
checks the serial port to see if it needs anything such as if it has some bytes that need fetching from its

The Linux Serial HOWTO

13.2 Symptoms of Mis−set or Conflicting Interrupts 15

receive buffer. If interrupts don't work, the serial driver falls back to this polling method. But this polling
method was not intended to be used a substitute for interrupts. It's so slow that it's not practical to use and
may cause buffer overruns. Its purpose may have been to get things going again if just one interrupt is lost or
fails to do the right thing. It's also useful in showing you that interrupts have failed.

For the 16−byte transmit buffer, 16 bytes will be transmitted and then it will wait until the next polling takes
place (several seconds later) before the next 16 bytes are sent out. Thus transmission is very slow and in
small chunks. Receiving is slow too since bytes that are received by the receive buffer are likely to remain
there for several seconds until it is polled.

This explains why it takes so long before you see what you typed. When you type say AT to a modem, the
AT goes out the serial port to the modem. The modem then echos the AT back thru the serial port to the
screen. Thus the AT characters have to pass twice thru the serial port. Normally this happens so fast that AT
seems to appear on the screen at the same time you hit the keys on the keyboard. With polling delays thru the
serial port, you don't see what you typed until many seconds later.

What about overruns of the 16−byte receive buffer? This will happen with an external modem since the
modem just sends to the serial port at high speed which is likely to overrun the 16−byte buffer. But for an
internal modem, the serial port is on the same card and it's likely to check that this receive buffer has room
for more bytes before putting received bytes into it. In this case there will be no overrun of this receive
buffer, but text will just appear on your screen in 16−byte chunks spaced at intervals of several seconds.

Even with an external modem you might not get overruns. If just a few characters (under 16) are sent you
don't get overruns since the buffer likely has room for them. But attempts to send a larger number of bytes
from your modem to your screen may result in overruns. However, more than 16 (with no gaps) can get thru
without overruns if the timing is right. For example, suppose a burst of 32 bytes is sent into the port from the
external cable. The polling might just happen after the first 16 bytes came in so it would pick up these 16
bytes OK. Then there would be space for the next 16 bytes so that entire 32 bytes gets thru OK. While this
scenario is not very likely, similar cases where 17 to 31 bytes make thru are more likely. But it's even more
likely that only an occasional 16−byte chunk will get thru with possible loss of data.

If you have an obsolete serial port with only a 1−byte buffer (or it's been incorrectly set to work like a 1−byte
buffer) then the situation will be much worse than described above and only one character will occasionally
make it thru the port. Every character received causes an overrun (and is lost) except for the last character
received. This character is likely to be just a line−feed since this is often the last character to be transmitted in
a burst of characters sent to your screen. Thus you may type AT<return> to the modem but never see AT on
the screen. All you see several seconds later is that the cursor drops down one line (a line feed). This has
happened to me with a 16−byte FIFO buffer that was behaving like a 1−byte buffer.

When a communication program starts up, it expects interrupts to be working. It's not geared to using this
slow polling−like mode of operation. Thus all sorts of mistakes may be made such as setting up the serial port
and/or modem incorrectly. It may fail to realize when a connection has been made. If a script is being used
for login, it may fail (caused by timeout) due to the polling delays.

The Linux Serial HOWTO

13.2 Symptoms of Mis−set or Conflicting Interrupts 16

13.4 Interrupt Conflicts

When two devices have the same IRQ number it's called sharing interrupts. Under some conditions this
sharing works out OK. Starting with kernel version 2.2, serial ports may, in some cases, share interrupts with
other serial ports. Devices on the PCI bus may share the same IRQ interrupt with other devices on the PCI
bus. In other cases where there is potential for conflict, there should be no problem if no two devices with the
same IRQ are ever "in use" at the same time. More precisely, "in use" really means "open" (in programmer
jargon). In cases other than the exceptions mentioned above (unless special software and hardware permit
sharing), sharing is not allowed and conflicts arise if sharing is attempted.

Even if two processes with conflicting IRQs run at the same time, one of the devices will likely have its
interrupts caught by its device driver and may work OK. The other device will not have its interrupts caught
by the correct driver and will likely behave just like a process with mis−set interrupts. See Mis−set
Interrupts for more details.

13.5 Resolving Interrupt Problems

If you are getting a very slow response as described above, then one test is to change the IRQ to 0 (uses fast
polling instead of interrupts) and see if the problem goes away. Note that the polling due to IRQ=0 is orders
of magnitude faster than the slow "polling" due to bad interrupts. If IRQ=0 seems to fix the problem, then
there was likely something wrong with the interrupts. Using IRQ=0 is very resource intensive and is only a
temporary fix. You should try to find the cause of the interrupt problem and not permanently use IRQ=0.

Check /proc/interrupts to see if the IRQ is currently in use by another process. If it's in use by another serial
port you could try "top" (type f and then enable the TTY display) or "ps −e" to find out which serial ports are
in use. If you suspect that setserial has a wrong IRQ then see What is the current IO address and IRQ of my
Serial Port ?

NextPreviousContentsNextPreviousContents

14. What Are UARTs? How Do They Affect Performance?

14.1 Introduction to UARTS

(This section is also in the Modem−HOWTO) UARTs (Universal Asynchronous Receiver Transmitter) are
serial chips on your PC motherboard (or on an internal modem card). The UART function may also be done
on a chip that does other things as well. On older computers like many 486's, the chips were on the disk IO
controller card. Still older computer have dedicated serial boards.

The UART's purpose is to convert bytes from the PC's parallel bus to a serial bit−stream. The cable going out
of the serial port is serial and has only one wire for each direction of flow. The serial port sends out a stream

The Linux Serial HOWTO

13.4 Interrupt Conflicts 17

Serial-HOWTO-14.html
Serial-HOWTO-12.html
Serial-HOWTO-15.html
Serial-HOWTO-13.html

of bits, one bit at a time. Conversely, the bit stream that enters the serial port via the external cable is
converted to parallel bytes that the computer can understand. UARTs deal with data in byte sized pieces,
which is conveniently also the size of ASCII characters.

Say you have a terminal hooked up to your PC. When you type a character, the terminal gives that character
to it's transmitter (also a UART). The transmitter sends that byte out onto the serial line, one bit at a time, at a
specific rate. On the PC end, the receiving UART takes all the bits and rebuilds the (parallel) byte and puts it
in a buffer.

Along with converting between serial and parallel, the UART does some other things as a byproduct (side
effect) of it's primary task. The voltage used to represent bits is also converted (changed). Extra bits (called
start and stop bits) are added to each byte before it is transmitted. See the Serial−HOWTO section, ``Voltage
Waveshapes'' for details. Also, while the flow rate (in bytes/sec) on the parallel bus inside the computer is
very high, the flow rate out the UART on the serial port side of it is much lower. The UART has a fixed set
of rates (speeds) which it can use at its serial port interface.

14.2 Two Types of UARTs

There are two basic types of UARTs: dumb UARTS and FIFO UARTS. Dumb UARTs are the 8250, 16450,
early 16550, and early 16650. They are obsolete but if you understand how they work it's easy to understand
how the modern ones work with FIFO UARTS (late 16550, 16550A, 16c552, late 16650, 16750, and
16C950).

There is some confusion regarding 16550. Early models had a bug and worked properly only as 16450's (no
FIFO). Later models with the bug fixed were named 16550A but many manufacturers did not accept the
name change and continued calling it a 16550. Most all 16550's in use today are like 16550A's. Linux will
report it as being a 16550A even though your hardware manual (or a label note) says it's a 16550. A similar
situation exists for the 16650 (only it's worse since the manufacturer allegedly didn't admit anything was
wrong). Linux will report a late 16650 as being a 16650V2. If it reports it as 16650 it is bad news and only is
used as if it had a one−byte buffer.

14.3 FIFOs

To understand the differences between dumb and FIFO (First In, First Out queue discipline) first let's
examine what happens when a UART has sent or received a byte. The UART itself can't do anything with the
data passing thru it, it just receives and sends it. For the original dumb UARTS, the CPU gets an interrupt
from the serial device every time a byte has been sent or received. The CPU then moves the received byte out
of the UART's buffer and into memory somewhere, or gives the UART another byte to send. The 8250 and
16450 UARTs only have a 1 byte buffer. That means, that every time 1 byte is sent or received, the CPU is
interrupted. At low transfer rates, this is OK. But, at high transfer rates, the CPU gets so busy dealing with
the UART, that is doesn't have time to adequately tend to other tasks. In some cases, the CPU does not get
around to servicing the interrupt in time, and the byte is overwritten, because they are coming in so fast. This
is called an "overrun" or "overflow".

That's where the FIFO UARTs are useful. The 16550A (or 16550) FIFO chip comes with 16 byte FIFO
buffers. This means that it can receive up to 14 bytes (or send 16 bytes) before it has to interrupt the CPU.
Not only can it wait for more bytes, but the CPU then can transfer all 14 (or more) bytes at a time. This is a

The Linux Serial HOWTO

14.2 Two Types of UARTs 18

significant advantage over the other UARTs, which only have 1 byte buffers. The CPU receives less
interrupts, and is free to do other things. Data is not lost, and everyone is happy. Note that the interrupt
threshold of FIFO buffers (trigger level) may be set at less than 14. 1, 4 and 8 are other possible choices.

While most PC's only have a 16550 with 16−byte buffers, better UARTS have even larger buffers. Note that
the interrupt is issued slightly before the buffer get full (at say a "trigger level" of 14 bytes for a 16−byte
buffer). This allows room for a few more bytes to be received during the time that the interrupt is being
serviced. The trigger level may be set to various permitted values by kernel software. A trigger level of 1 will
be almost like a dumb UART (except that it still has room for 15 more bytes after it issues the interrupt).

If you type something while visiting a BBS, the characters you type go out thru the serial port. Your typed
characters that you see on the screen are what was echoed back thru the telephone line thru your modem and
then thru your serial port to the screen. If you had a 16−byte buffer on the serial port which held back
characters until it had 14 of them, you would need to type many characters before you could see what you
typed (before they appeared on the screen). This would be very confusing but there is a "timeout" to prevent
this. Thus you normally see a character on the screen just as soon as you type it.

The "timeout" works like this for the receive UART buffer: If characters arrive one after another, then an
interrupt is issued only when say the 14th character reaches the buffer. But if a character arrives and the next
character doesn't arrive soon thereafter, then an interrupt is issued. This happens even though there are not 14
characters in the buffer (there may only be one character in it). Thus when what you type goes thru this
buffer, it acts almost like a 1−byte buffer even though it is actually a 16−byte buffer (unless your typing
speed is a hundred times faster than normal). There is also "timeout" for the transmit buffer as well.

14.4 UART Model Numbers

Here's a list of UARTs. TL is Trigger Level

• 8250, 16450, early 16550: Obsolete with 1−byte buffers
• 16550, 16550A, 16c552: 16−byte buffers, TL=1,4,8,14
• 16650: 32−byte buffers. Speed up to 460.8 Kbps
• 16750: 64−byte buffer for send, 56−byte for receive. Speed up to 921.6 Kbps
• Hayes ESP: 1K−byte buffers.

The obsolete ones are only good for modems no higher than 14.4k (DTE speeds up to 38400 bps). For
modern modems you need at least a 16550 (and not an early 16550). For V.90 56k modems, it may be a
several percent faster with a 16650 (especially if you are downloading uncompressed files). The main
advantage of the 16650 is its larger buffer size as the extra speed isn't needed unless the modem compression
ratio is high. Some 56k internal modems may come with a 16650 ??

Non−UART, and intelligent multiport boards use DSP chips to do additional buffering and control, thus
relieving the CPU even more. For example, the Cyclades Cyclom, and Stallion EasyIO boards use a Cirrus
Logic CD1400 RISC UART, and many boards use 80186 CPUs or even special RISC CPUs, to handle the
serial IO.

Most newer PC's (486's, Pentiums, or better) come with 16550A's (usually called just 16550's). If you have
something really old the chip may unplug so that you may be able to upgrade by buying a 16550A chip and
replacing your existing 16450 UART. If the functionality has been put on another type of chip, you are out of
luck. If the UART is socketed, then upgrading is easy (if you can find a replacement). The new and old are

The Linux Serial HOWTO

14.4 UART Model Numbers 19

pin−to−pin compatible. It may be more feasible to just buy a new serial board on the Internet (few retail
stores stock them today).

NextPreviousContentsNextPreviousContents

15. Pinout and Signals

15.1 Pinout

 PINOUT of the SERIAL PORT (−−> direction is out of PC)
 (Note DCD is sometimes labeled CD)
Pin # Pin # Acronym Full−Name Direction What−it−May−Do/Mean
9−pin 25−pin
 3 2 TxD Transmit Data −−> Transmits byte out of PC
 2 3 RxD Receive Data <−− Receives bytes into PC
 7 4 RTS Request To Send −−> RTS/CTS flow control
 8 5 CTS Clear To Send <−− RTS/CTS flow control
 6 6 DSR Data Set Ready <−− I'm ready to communicate
 4 20 DTR Data Terminal Ready−−> I'm ready to communicate
 1 8 DCD Data Carrier Detect<−− Modem connected to another
 9 22 RI Ring Indicator <−− Telephone line ringing
 5 7 Signal Ground

15.2 Signals May Have No Fixed Meaning

Only 3 of the 9 pins have a fixed assignment: transmit, receive and signal ground. This is fixed by the
hardware and you can't change it. But the other signal lines are controlled by software and may do (and
mean) almost anything at all. However they can only be in one of two states: asserted (+12 volts) or negated
(−12 volts). Asserted is "on" and negated is "off". For example, Linux software may command that DTR be
negated and the hardware only carries out this command and puts −12 volts on the DTR pin. A modem (or
other device) that receives this DTR signal may do various things. If a modem has been configured a certain
way it will hang−up the telephone line when DTR is negated. In other cases it may ignore this signal or do
something else when DTR is negated (turned off).

It's like this for all the 6 signal lines. The hardware only sends and receives the signals, but what action (if
any) they perform is up to the Linux software and the configuration/design of devices that you connect to the
serial port. However, most pins have certain functions which they normally perform but this may vary with
the operating system and the device driver configuration. Under Linux, one may modify the source code to
make these signal lines behave differently (some people have).

The Linux Serial HOWTO

15. Pinout and Signals 20

Serial-HOWTO-15.html
Serial-HOWTO-13.html
Serial-HOWTO-16.html
Serial-HOWTO-14.html

15.3 Cabling Between Serial Ports

A cable from a serial port always connects to another serial port. A modem or other device that connects to
the serial port has a serial port built into it. For modems, the cable is always straight thru: pin 2 goes to pin 2,
etc. The modem is said to be DCE (Data Communications Equipment) and the computer is said to be DTE
(Data Terminal Equipment). Thus for connecting DTE−to−DCE you use straight−thru cable. For connecting
DTE−to−DTE you must use a null−modem cable and there are many ways to wire such cable (see examples
in Text−Terminal−HOWTO subsection: "Direct Cable Connection")

There are good reasons why it works this way. One reason is that the signals are unidirectional. If pin 2 sends
a signal out of it (but is unable to receive any signal) then obviously you can't connect it to pin 2 of the same
type of device. If you did, they would both send out signals on the same wire to each other but neither would
be able to receive any signal. There are two ways to deal with this situation. One way is to have a two
different types of equipment where pin 2 of the first type sends the signal to pin 2 of the second type (which
receives the signal). That's the way it's done when you connect a PC (DTE) to a modem (DCE). There's a
second way to do this without having two different types of equipment: Connect pin 3 (a sending pin) to a
receiving pin 3 on same type of equipment. That's the way it's done when you connect 2 PC's together or a
PC to a terminal (DTE−to−DTE). The cable used for this is called a null−modem cable.

The serial pin designations were originally intended for connecting a dumb terminal to a modem. The
terminal was DTE (Data Terminal Equipment) and the modem was DCE (Data Communication Equipment).
Today the PC is usually used as DTE instead of a terminal (but real terminals may still be used this way). The
names of the pins are the same on both DTE and DCE. The words: "receive" and "transmit" are in this case
from the point of view of the PC (DTE). The transmit pin from the PC transmits to the "transmit" pin of the
modem (but actually the modem is receiving the data from this pin so from the point of view of the modem it
would be a receive pin).

The serial port was originally intended to be used for connecting DTE to DCE which makes cabling simple:
just use a straight−thru cable. Thus when one connects a modem one seldom needs to worry about which pin
is which. But people wanted to connect DTE to DTE (for example a computer to a terminal) and various
ways were found to do this by fabricating various type of special cables. In this case what pin connects to
what pin becomes more important.

15.4 RTS/CTS and DTR/DSR Flow Control

This is "hardware" flow control. Flow control was previously explained in the Flow Control subsection but
the pins and voltage signals were not. Linux only supports RTS/CTS flow control at present (but a special
driver may exist for a specific application which supports DTR/DSR flow control). Only RTS/CTS flow
control will be discussed since DTR/DSR flow control works the same way. To get RTS/CTS flow control
one needs to either select hardware flow control in an application program or use the command:
stty crtscts < /dev/ttyS2 (or the like). This enables RTS/CTS hardware flow control in the Linux device
driver.

Then when a DTE (such as a PC) wants to stop the flow into it, it negates RTS. Negated "Request To Send"
(−12 volts) means "Request NOT To Send to me" (stop sending). When the PC is ready for more bytes it
asserts RTS (+12 volts) and the flow of bytes to it resumes. Flow control signals are always sent in a
direction opposite to the flow of bytes that is being controlled. DCE equipment (modems) works the same
way but sends the stop signal out the CTS pin. Thus it's RTS/CTS flow control using 2 lines.

The Linux Serial HOWTO

15.3 Cabling Between Serial Ports 21

On what pins is this stop signal received? That depends on whether we have a DCE−DTE connection or a
DTE−DTE connection. For DCE−DTE it's a straight−thru connection so obviously the signal is received on a
pin with the same name as the pin it's sent out from. It's RTS−−>RTS (PC to modem) and CTS<−−CTS
(modem to PC). For DTE−to−DTE the connection is also easy to figure out. The RTS pin always sends and
the CTS pin always receives. Assume that we connect two PCs (PC1 and PC2) together via their serial ports.
Then it's RTS(PC1)−−>CTS(PC2) and CTS(PC1)<−−RTS(PC2). In other words RTS and CTS cross over.
Such a cable (with other signals crossed over as well) is called a "null modem" cable. See Cabling Between
Serial Ports

What is sometimes confusing is that there is the original use of RTS where it means about the opposite of the
previous explanation above. This original meaning is: I Request To Send to you. This request was intended to
be sent from a terminal (or computer) to a modem which, if it decided to grant the request, would send back
an asserted CTS from its CTS pin to the CTS pin of the computer: You are Cleared To Send to me. Note that
in contrast to the modern RTS/CTS bi−directional flow control, this only protects the flow in one direction:
from the computer (or terminal) to the modem. This original use appears to be little used today on modern
equipment (including modems).

The DTR and DSR Pins

Just like RTS and CTS, these pins are paired. For DTE−to−DTE connections they are likely to cross over.
There are two ways to use these pins. One way is to use them as a substitute for RTS/CTS flow control. The
DTR pin is just like the RTS pin while the DSR pin behaves like the CTS pin. Although Linux doesn't
support DTR/DSR flow control, it can be obtained by connecting the RTS/CTS pins at the PC to the
DSR/DTR pins at the device that uses DTR/DSR flow control. DTR flow control is the same as DTR/DSR
flow control but it's only one−way and the DSR pin is not used. Many text terminals and some printers use
this type of flow control.

The normal use of DTR and DSR is as follows: A device asserting DTR says that its powered on and ready to
operate. For a modem, the meaning of a DTR signal from the PC depends on how the modem is configured.
To send a DTR signal manually from a PC using the stty command set the baud rate to 0. Negating DTR is
sometimes called "hanging up" but it doesn't always do this.

15.5 Preventing a Port From Opening

If "stty −clocal" (or getty is used with the "local" flag negated) then a serial port can't open until DCD gets an
assert (+12 volts) signal.

NextPreviousContentsNextPreviousContents

The Linux Serial HOWTO

The DTR and DSR Pins 22

Serial-HOWTO-16.html
Serial-HOWTO-14.html
Serial-HOWTO-17.html
Serial-HOWTO-15.html

16. Voltage Waveshapes

16.1 Voltage for a Bit

At the EIA−232 serial port, voltages are bipolar (positive or negative with respect to ground) and should be
about 12 volts in magnitude (some are 5 or 10 volts). For the transmit and receive pins +12 volts is a 0−bit
(sometimes called "space") and −12 volts is a 1−bit (sometimes called "mark"). This is known as inverted
logic since normally a 0−bit is both false and negative while a one is normally both true and positive.
Although the receive and transmit pins are inverted logic, other pins (modem control lines) are normal logic
with a positive voltage being true (or "on" or "asserted") and a negative voltage being false (or "off" or
"negated"). Zero voltage has no meaning (except it usually means that the unit is powered off).

A range of voltages is allowed. The specs say the magnitude of a transmitted signal should be between 5 and
15 volts but must never exceed 25 V. Any voltage received under 3 V is undefined (but some devices will
accept a lower voltage as valid). One sometimes sees erroneous claims that the voltage is commonly 5 volts
(or even 3 volts) but it's usually 11−12 volts. If you are using a EIA−422 port on a Mac computer as an
EIA−232 (requires a special cable) or EIA−423 then the voltage will actually be only 5 V. The discussion
here assumes 12 V.

Note that normal computer logic normally is just a few volts (5 volts was once the standard) so that if you try
to use test equipment designed for testing 3−5 volt computer logic (TTL) on the 12 volts of a serial port, it
may damage the test equipment.

16.2 Voltage Sequence for a Byte

The transmit pin (TxD) is held at −12 V (mark) at idle when nothing is being sent. To start a byte it jumps to
+12 V (space) for the start bit and remains at +12 V for the duration (period) of the start bit. Next comes the
low−order bit of the data byte. If it's a 0−bit nothing changes and the line remains at +12 V for another
bit−period. If it's a 1−bit the voltage jumps from +12 to −12 V. After that comes the next bit (−12 V if a 1 or
+12 V if a 0), etc., etc. After the last data bit a parity bit may be sent and then a −12 V (mark) stop bit. Then
the line remains at −12 V (idle) until the next start bit. Note that there is no return to 0 volts and thus there is
no simple way (except by a synchronizing signal) to tell where one bit ends and the next one begins for the
case where 2 consecutive bits are the same polarity (both zero or both one).

A 2nd stop bit would also be −12 V, just the same as the first stop bit. Since there is no signal to mark the
boundaries between these bits, the only effect of the 2nd stop bit is that the line must remain at −12 V idle
twice as long. The receiver has no way of detecting the difference between a 2nd stop bit and a longer idle
time between bytes. Thus communications works OK if one end uses one stop bit and the other end uses 2
stop bits, but using only one stop bit is obviously faster. In rare cases 1 1/2 stop bits are used. This means that
the line is kept at −12 V for 1 1/2 time periods (like a stop bit 50% wider than normal).

The Linux Serial HOWTO

16. Voltage Waveshapes 23

16.3 Parity Explained

Characters are normally transmitted with either 7 or 8 bits of data. An additional parity bit may (or may not)
be appended to this resulting in a byte length of 7, 8 or 9 bits. Some terminal emulators and older terminals
do not allow 9 bits. Some prohibit 9 bits if 2 stop bits are used (since this would make the total number of bits
too large: 12 bits total after adding the start bit).

The parity may be set to odd, even or none (mark and space parity may be options on some terminals). With
odd parity, the parity bit is selected so that the number of 1−bits in a byte, including the parity bit, is odd. If a
such a byte gets corrupted by a bit being flipped, the result is an illegal byte of even parity. This error will be
detected and if it's an incoming byte to the terminal an error−character symbol will appear on the screen.
Even parity works in a similar manner with all legal bytes (including the parity bit) having an even number of
1−bits. During set−up, the number of bits per character usually means only the number of data bits per byte
(7 for true ASCII and 8 for various ISO character sets).

A "mark" is a 1−bit (or logic 1) and a "space" is a 0−bit (or logic 0). For mark parity, the parity bit is always a
one−bit. For space parity it's always a zero−bit. Mark or space parity only wastes bandwidth and should be
avoided if feasible. "No parity" means that no parity bit is added. For terminals that don't permit 9 bit bytes,
"no parity" must be selected when using 8 bit character sets since there is no room for a parity bit.

16.4 Forming a Byte (Framing)

In serial transmission of bytes via EIA−232 ports, the low−order bit is always sent first. Serial ports on PC's
use asynchronous communication where there is a start bit and a stop bit to mark the beginning and end of a
byte. This is called framing and the framed byte is sometimes called a frame. As a result a total of 9, 10, or 11
bits are sent per byte with 10 being the most common. 8−N−1 means 8 data bits, No parity, 1 stop bit. This
adds up to 10 bits total when one counts the start bit. One stop bit is almost universally used. At 110 bits/sec
(and sometimes at 300 bits/sec) 2 stop bits were once used but today the 2nd stop bit is used only in very
unusual situations (or by mistake since it still works OK that way but wastes bandwidth).

16.5 How "Asynchronous" is Synchronized

The EIA−232 serial port as implemented on PC is asynchronous which in effect means that there is no
"clock" signal sent with "ticks" to mark when each bit is sent.. There are only two states of the transmit (or
receive) wire: mark (−12 V) or space (+12 V). There is no state of 0 V. Thus a sequence of 1−bits is
transmitted by just a steady −12 V with no markers of any kind between bits. For the receiver to detect
individual bits it must always have a clock signal which is in synchronization with the transmitter clock. Such
a clock would generate a "tick" in synchronization with each transmitted (or received) bit.

For asynchronous transmission, synchronization is achieved by framing each byte with a start bit and a stop
bit (done by hardware). The receiver listens on the negative line for a positive start bit and when it detects one
it starts its clock ticking. It uses this clock tick to time the reading of the next 7, 8 or 9 bits. (It actually is a
little more complex than this since several samples of a bit are normally taken and this requires additional
timing ticks.) Then the stop bit is read, the clock stops and the receiver waits for the next start bit. Thus async
is actually synchronized during the reception of a single byte but there is no synchronization between one
byte and the next byte.

The Linux Serial HOWTO

16.3 Parity Explained 24

NextPreviousContentsNextPreviousContents

17. Other Serial Devices (not async EIA−232)

17.1 Successors to EIA−232

A number of EIA standards have been established for higher speeds and longer distances using twisted−pair
(balanced) technology. Balanced transmission can sometimes be a hundred times faster than unbalanced
EIA−232. For a given speed, the distance (maximum cable length) may be many times longer with twisted
pair. But PC−s keep being made with the "obsolete" EIA−232 since it works OK with modems and mice
since the cable length is short. If this appears in the latest version of this HOWTO, please let me know if any
of the non−EIA−232 listed below are supported by Linux.

17.2 EIA−422−A (balanced) and EIA−423−A (unbalanced)

EIA−423 is just like the unbalanced EIA−232 except that the voltage is only 5 volts. Since this falls within
EIA−232 specs it can be connected to a EIA−232 port. Its specs call for somewhat higher speeds than the
EIA−232 (but this may be of little help on a long run where it's the unbalance that causes interference).

Apple's Mac computer prior to mid−1998 with its EIA−232/EIA−422 Port provided twisted−pairs (balanced)
for transmit and receive (when used as a 422). It is (per specs) exactly 100 times as fast as EIA−423 (which
in turn is somewhat faster than EIA−232) The Mac used a small round "mini−DIN−8" connector. It also
provided conventional EIA−232 but at only at 5 volts (which is still legal EIA−232). To make it work like at
EIA−232 one must use a special cable which (signal) grounds RxD+ (one side of a balanced pair) and use
RxD− as the receive pin. While TxD− is used as the transmit pin, for some reason TxD+ should not be
grounded. See Macintosh Communications FAQ. However, due to the fact that Macs (and upgrades for them)
cost more than PC's, they are not widely as host computers for Linux.

17.3 EIA−485

This is like EIA−422 (balanced). It is half−duplex. It's not just point−to−point but may be used for a
multidrop LAN (up to 32 nodes). There are no connector specs

The Linux Serial HOWTO

17. Other Serial Devices (not async EIA−232) 25

Serial-HOWTO-17.html
Serial-HOWTO-15.html
Serial-HOWTO-18.html
Serial-HOWTO-16.html
http://www.modemshop.com/csm-comm-faq.html
http://www.modemshop.com/csm-comm-faq.html
http://www.modemshop.com/csm-comm-faq.html

17.4 EIA−530

EIA−530−A (balanced but can also be used unbalanced) at 2Mbits/s (balanced) was intended to be a
replacement for EIA−232 but few have been installed. It uses the same 25−pin connector as EIA−232.

17.5 EIA−612/613

The High Speed Serial Interface (HSSI = EIA−612/613) uses a 50−pin connector and goes up to about 50
Mbits/s but the distance is limited to only several meters. For Linux there are PCI cards supporting HSSI. The
companies that sell the cards often provide (or point you to) a Linux driver. A mini−howto or the like is
needed for this topic.

17.6 The Universal Serial Bus (USB)

The Universal Serial Bus (USB) is being built into PCI chips. New PC's have them. It is 12 Mbits/s over a
twisted pair with a 4−pin connector (2 wires are power supply) but it also is limited to short distances of at
most 5 meters (depends on configuration).

Another HOWTO is needed for it. Work is underway for supporting it in Linux (but no HOWTO). It is
synchronous and transmits in special packets like a network. Just like a network, it can have several devices
attached to it. Each device on it gets a time−slice of exclusive use for a short time. A device can also be
guaranteed the use of the bus at fixed intervals. One device can monopolize it if no other device wants to use
it. It's not simple to describe in detail.

17.7 Synchronization & Synchronous

Beside the asynchronous EIA−232 (and others) there are a number of synchronous serial port standards. In
fact EIA−232 includes synchronous specifications but they aren't normally implemented for serial ports on
PC's. But first we'll explain what a synchronous means.

Defining Asynchronous vs Synchronous

Asynchronous (async) means "not synchronous". In practice, an async signal is what the async serial port
sends and receives which is a stream of bytes each delimited by a start and stop bit. Synchronous (sync) is
most everything else. But this doesn't explain the basic concepts.

In theory, synchronous means that bytes are sent out at a constant rate one after another in step with a clock
signal tick. There is often a separate wire or channel for sending the clock signal. Asynchronous bytes may be
sent out erratically with various time intervals between bytes (like someone typing characters at a keyboard).

There are certain situations that need to be classified as either sync or async. The async serial port often sends
out bytes in a steady stream which would make this a synchronous case but since they still have the start/stop

The Linux Serial HOWTO

17.4 EIA−530 26

bits (which makes it possible to send them out erratically) it's called async. Another case is where data bytes
(without any start−stop bits) are put into packets with possible erratic spacing between one packet and the
next. This is called sync since the bytes within each packet must be transmitted synchronously.

Synchronous Communication

Did you ever wonder what all the unused pins are for on a 25−pin connector for the serial port? Most of them
are for use in synchronous communication which is seldom implemented on PC's. There are pins for sync
timing signals as well as for a sync reverse channel. The EIA−232 spec provides for both sync and async but
PC's use a UART (Universal Asynchronous Receiver/Transmitter) chip such as a 16450, 16550A, or 16650
and can't deal with sync. For sync one needs a USART chip or the equivalent where the "S" stands for
Synchronous. Since sync is a niche market, a sync serial port is likely to be quite expensive.

Besides the sync part of the EIA−232, there are various other EIA synchronous standards. For EIA−232, 3
pins of the connector are reserved for clock (or timing) signals. Sometimes it's a modem's task to generate
some timing signals making it impossible to use synchronous communications without a synchronous modem
(or without a device called a "synchronous modem eliminator" which provides the timing signals).

Although few serial ports are sync, synchronous communication does often take place over telephone lines
using modems which use V.42 error correction. This strips off the start/stop bits and puts the date bytes in
packets resulting in synchronous operation over the phone line.

NextPreviousContents Next PreviousContents

18. Other Sources of Information

18.1 Books

1. Axleson, Jan: Serial Port Complete, Lakeview Research, Madison, WI, 1998.
2. Black, Uyless D.: Physical Layer Interfaces & Protocols, IEEE Computer Society Press, Los

Alamitos, CA, 1996.
3. Campbell, Joe: The RS−232 Solution, 2nd ed., Sybex, 1982.
4. Levine, Donald: POSIX Programmer's Guide, (ISBN 0−937175−73−0; O'Reilly)
5. Putnam, Byron W.: RS−232 Simplified, Prentice Hall, 1987.
6. Seyer, Martin D.: RS−232 Made Easy, 2nd ed., Prentice Hall, 1991.
7. Stevens, Richard W.: Advanced Programming in the UNIX Environment, (ISBN 0−201−56317−7;

Addison−Wesley)
8. Tischert, Michael & Bruno Jennrich: PC Intern, Abacus 1996. Chapter 7: Serial Ports

Notes re books:

The Linux Serial HOWTO

Synchronous Communication 27

Serial-HOWTO-18.html
Serial-HOWTO-16.html
Serial-HOWTO-17.html
http://www.ora.com/catalog/posix/
http://www.ora.com/catalog/posix/
http://www.ora.com/catalog/posix/
http://www.ora.com/catalog/posix/
http://www.ora.com/catalog/posix/
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk
http://heg-school.aw.com/cseng/authors/stevens/advanced/advanced.nclk

1. "... Complete" has hardware details (including register) but the programming aspect is Window
oriented.

2. "Physical Layer ..." covers much more than just EIA−232.

18.2 Serial Software

It's best to use the nearest mirror site, but here's the main sites:
Serial Software for Linux software for the serial ports including getty and port monitors.
Serial Communications for communication programs.

• irqtune will give serial port interrupts higher priority to improve performance. Using hdparm for
hard−disk tuning may help some more.

• modemstat and statserial show the current state of various modem control lines. See Serial
Monitoring/Diagnostics

18.3 Linux Documents

• man pages for: setserial(8) stty
• libc (or glibc) docs package: "Low Level Terminal Interface"
• Modem−HOWTO: modems on the serial port
• PPP−HOWTO: help with PPP (using a modem on the serial port)
• Printing−HOWTO: for setting up a serial printer
• Serial−Programming−HOWTO: for some aspects of serial−port programming
• Text−Terminal−HOWTO: how they work and how to install and configure
• UPS−HOWTO: setting up UPS sensors connected to your serial port
• UUCP−HOWTO: for information on setting up UUCP

18.4 Usenet newsgroups:

• comp.os.linux.answers
• comp.os.linux.hardware: Hardware compatibility with the Linux operating system.
• comp.os.linux.networking: Networking and communications under Linux.
• comp.os.linux.setup: Linux installation and system administration.

18.5 Serial Mailing List

The Linux serial mailing list. To join, send email to majordomo@vger.rutgers.edu, with
``subscribe linux−serial'' in the message body. If you send ``help'' in the message body, you get a
help message. The server also serves many other Linux lists. Send the ``lists'' command for a list of

The Linux Serial HOWTO

18.2 Serial Software 28

ftp://metalab.unc.edu/pub/Linux/system/serial/
ftp://metalab.unc.edu/pub/Linux/system/serial/
ftp://metalab.unc.edu/pub/Linux/apps/serialcomm
ftp://metalab.unc.edu/pub/Linux/apps/serialcomm
mailto:majordomo@vger.rutgers.edu

mailing lists.

18.6 Internet

• Serial Suite by Vern Hoxie is a collection of blurbs about the care and feeding of the Linux serial port
plus some simple programs. When logging into 'scicom' as "anonymous", you must use your full
e−mail address as the password. For example: greg.hankins@cc.gatech.edu

• A white paper discussing serial communications and multiport serial boards was available from
Cyclades at http://www.cyclades.com.

END OF Serial−HOWTO

Next PreviousContentsNextPreviousContents

2. How the Hardware Transfers Bytes

2.1 Transmitting

Transmitting is sending bytes out of the serial port away from the computer. The first explanation given here
will be grossly oversimplified. Then more detail will be added in later explanations. When the computer
wants to send a byte out the serial port the CPU sends the byte on the bus inside the computer to the I/O
address of the serial port. The serial port takes the byte, and sends it out one bit at a time (a serial bit−stream)
on the transmit pin of the serial connector. For what a bit (and byte) look like electrically see Voltage
Waveshapes. Everything in this section is about transmission of bytes (and not about reception which uses
another set of hardware inside the serial port).

Here's a replay of the above in a little more detail (but still very incomplete). Most of the work at the serial
port is done by the UART chip (or the like). To transmit a byte, the serial device driver program (running on
the CPU) sends a byte to the serial port"s I/O address. This byte gets into a 1−byte "transmit shift register" in
the serial port. From this shift register bits are taken from the byte one−by−one and sent out bit−by−bit on the
serial line. Then when the last bit has been sent the shift register needs another byte to send it could ask the
CPU to send it another byte. Thus would be simple but it would likely introduce delays since the CPU might
not be able to get the byte immediately. After all, the CPU is usually doing other things besides just handling
the serial port.

A way to eliminate delays of getting a byte into the shift register is to arrange things so that the CPU gets the
byte before the shift register needs it and stores it in a serial port buffer (in hardware). Then when the shift
register has sent out its byte and needs a new byte immediately, the serial port hardware just transfers the next
byte from its own buffer to the shift register. No need to call the CPU to do this.

The size of this serial port buffer was originally only one byte, but today it is usually 16 bytes (more in higher

The Linux Serial HOWTO

18.6 Internet 29

ftp://scicom.alphacdc.com/pub/linux
ftp://scicom.alphacdc.com/pub/linux
http://www.cyclades.com
Serial-HOWTO-17.html
Serial-HOWTO-3.html
Serial-HOWTO-1.html

priced serial ports). Now there is still the problem of keeping this buffer sufficiently supplied with bytes so
that when the shift register needs a byte to transmit it will always find one there (unless there are no more
bytes to send). This is done by contacting the CPU using an interrupt.

For the old fashioned one−byte buffer it works like this. When the shift register grabs the byte out of the
buffer and the butter needs another byte, it sends an interrupt to the CPU by putting a voltage on a dedicated
wire on the computer bus. Unless the CPU is doing something very important, the interrupt forces it to stop
what it was doing and start running a program which will supply another byte to the port's buffer. Thus the
purpose of this buffer is to keep a ready supply of bytes (waiting to be sent) queued in hardware so that there
will be no gaps in transmission of bytes out the serial port.

Once the CPU gets the interrupt, it will know who sent the interrupt since there is a dedicated interrupt wire
for each serial port (unless interrupts are shared). Then the CPU will start running the serial device driver
which checks registers at I/0 addresses to find out what has happened. It finds out that the serial's transmit
buffer is empty and waiting for another byte. So if there are more bytes to send, it sends the next byte to the
serial port's I/0 address. This next byte should arrive when the previous byte is still in the transmit shift
register and still being transmitted bit−by−bit.

In review, when a byte has been fully transmitted out the transmit wire of the serial port and the shift register
is now empty the following 3 things happen almost simultaneously:

1. Another new byte is moved from the transmit buffer into the transmit shift register
2. The transmission of this new byte (bit−by−bit) begins
3. Another interrupt is issued to tell the device driver to send another byte to the now empty transmit

buffer

We say that the serial port is interrupt driven. Each time the serial port issues an interrupt, the CPU sends it
another byte. Once a byte has been sent to the transmit buffer by the CPU, then the CPU is free to pursue
some other activity until it gets the next interrupt. The serial port transmits bits at a fixed rate which is
selected by the user (or an application program). It's sometimes called the baud rate. The serial port also adds
extra bits to each byte (start, stop and perhaps parity bits) so there are often 10 bits sent per byte. At a rate
(also called speed) of 19,200 bits per second (bps), there are thus 1,920 bytes/sec (and also 1,920
interrupts/sec).

Doing all this is a lot of work for the CPU. This is true for many reasons. First, just sending one 8−bit byte at
a time over a 32−bit data bus (or even 64−bit) is not a very efficient use of bus width. Also, there is a lot of
overhead in handing each interrupt. When the interrupt is received, the device driver only knows that
something caused an interrupt at the serial port but doesn't know that it's because a character has been sent.
The device driver has to make various checks to find out what happened. The same interrupt could mean that
a character was received, one of the control lines changed state, etc.

One improvement has been the enlargement of the buffer size of the serial port. Most serial ports today have
16−byte buffers instead of just 1−byte buffers. This means that when the CPU gets an interrupt it gives the
serial port up to 16 new bytes to transmit. This is fewer interrupts to service but data must still be transferred
one byte at a time over a wide bus. The 16−byte buffer is actually a FIFO (First In First Out) queue. For a
repetition of some of the above plus a few more details see FIFOs.

The Linux Serial HOWTO

18.6 Internet 30

2.2 Receiving

Receiving bytes by a serial port is similar to sending them only it's in the opposite direction. It's also interrupt
driven. For the obsolete type of serial port with 1−byte buffers, when a byte is fully received it goes into the
1−byte receive buffer. Then the port gives the CPU an interrupt to tell it to pick up that byte so that the serial
port will have room for storing the byte which is currently being received. For newer serial ports with
16−byte buffers, this interrupt (to fetch the bytes) may be sent after 14 bytes are in the receive buffer. The
CPU then stops what it was doing, runs the interrupt service routine, and picks up 1 to 16 bytes from the port.
For an interrupt sent when the 14th byte has been received, there could be 16 bytes to get if 2 more bytes
have arrived since the interrupt. But if 3 more bytes should arrive (instead of 2), then the 16 byte buffer will
overrun.

2.3 The Large Serial Buffers

We've talked about small (1 or 16 byte) serial port hardware buffers but there are also much larger buffers in
main memory. When the CPU takes bytes (1 to 16) out of the receive buffer of the hardware, it puts them into
a huge (say 8K−byte) receive buffer in main memory. Then a program that is getting bytes from the serial
port takes the bytes it's receiving out of that large buffer (using a "read" statement in the program). A similar
situation exists for bytes that are to be transmitted. When the CPU needs to fetch some bytes to be transmitted
it takes them out of a large (8K−byte) transmit buffer in main memory and puts them into the small transmit
buffer (1 or 16 bytes) in the hardware.

NextPreviousContentsNextPreviousContents

3. Serial Port Basics

You don't have to understand the basics to use the serial port But understanding it may help to determine
what is wrong if you run into problems. This section not only presents new topics but also repeats some of
what was said in the previous section How the Hardware Transfers Bytes but in greater detail.

3.1 What is a Serial Port ?

Intro to Serial

The serial port is an I/O (Input/Output) device.

An I/O device is just a way to get data into and out of a computer. There are many types of I/O devices such
as serial ports, parallel ports, disk drive controllers, ethernet boards, universal serial buses, etc. Most PC's
have one or two serial ports. Each has a 9−pin connector (sometimes 25−pin) on the back of the computer.
Computer programs can send data (bytes) to the transmit pin (output) and receive bytes from the receive pin

The Linux Serial HOWTO

2.2 Receiving 31

Serial-HOWTO-3.html
Serial-HOWTO-1.html
Serial-HOWTO-4.html
Serial-HOWTO-2.html

(input). The other pins are for control purposes and ground.

The serial port is much more than just a connector. It converts the data from parallel to serial and changes the
electrical representation of the data. Inside the computer, data bits flow in parallel (using many wires at the
same time). Serial flow is a stream of bits over a single wire (such as on the transmit or receive pin of the
serial connector). For the serial port to create such a flow, it must convert data from parallel (inside the
computer) to serial on the transmit pin (and conversely).

Most of the electronics of the serial port is found in a computer chip (or a section of a chip) known as a
UART. For more details on UARTs see the section What Are UARTs? How Do They Affect Performance?.
But you may want to finish this section first so that you will hopefully understand how the UART fits into the
overall scheme of things.

Pins and Wires

Old PC's used 25 pin connectors but only about 9 pins were actually used so today most connectors are only
9−pin. Each of the 9 pins usually connects to a wire. Besides the two wires used for transmitting and
receiving data, another pin (wire) is signal ground. The voltage on any wire is measured with respect to this
ground. Thus the minimum number of wires to use for 2−way transmission of data is 3. Except that it has
been known to work with no signal ground wire but with degraded performance and sometimes with errors.

There are still more wires which are for control purposes (signalling) only and not for sending bytes. All of
these signals could have been shared on a single wire, but instead, there is a separate dedicated wire for every
type of signal. Some (or all) of these control wires are called "modem control lines". Modem control wires
are either in the asserted state (on) of +12 volts or in the negated state (off) of −12 volts. One of these wires is
to signal the computer to stop sending bytes out the serial port cable. Conversely, another wire signals the
device attached to the serial port to stop sending bytes to the computer. If the attached device is a modem,
other wires may tell the modem to hang up the telephone line or tell the computer that a connection has been
made or that the telephone line is ringing (someone is attempting to call in). See section Pinout and
Signals for more details.

RS−232 or EIA−232, etc.

The serial port (not the USB) is usually a RS−232−C, EIA−232−D, or EIA−232−E. These three are almost
the same thing. The original RS (Recommended Standard) prefix became EIA (Electronics Industries
Association) and later EIA/TIA after EIA merged with TIA (Telecommunications Industries Association).
The EIA−232 spec provides also for synchronous (sync) communication but the hardware to support sync is
almost always missing on PC's. The RS designation is obsolete but is still widely used. EIA will be used in
this howto. Some documents use the full EIA/TIA designation. For info on other (non−EIA−232) serial ports
see the section Other Serial Devices (not async EIA−232)

The Linux Serial HOWTO

Pins and Wires 32

3.2 IO Address & IRQ

Since the computer needs to communicate with each serial port, the operating system must know that each
serial port exists and where it is (its I/O address). It also needs to know which wire (IRQ number) the serial
port must use to request service from the computer's CPU. It requests service by sending an interrupt on this
wire. Thus every serial port device must store in its non−volatile memory both its I/O address and its
Interrupt ReQuest number: IRQ. See Interrupts. For the PCI bus it doesn't work exactly this way since the
PCI bus has its own system of interrupts. But since the PCI−aware BIOS sets up chips to map these PCI
interrupts to IRQs, it seemingly behaves just as described above except that sharing of interrupts is allowed (2
or more devices may use the same IRQ number).

I/O addresses are not the same as memory addresses. When an I/O addresses is put onto the computer's
address bus, another wire is energized. This both tells main memory to ignore the address and tells all devices
which have I/O addresses (such as the serial port) to listen to the address to see if it matches the device's. If
the address matches, then the I/O device reads the data on the data bus.

3.3 Names: ttyS0, ttyS1, etc.

The serial ports are named ttyS0, ttyS1, etc. (and usually correspond respectively to COM1, COM2, etc. in
DOS/Windows). The /dev directory has a special file for each port. Type "ls /dev/ttyS*" to see them. Just
because there may be (for example) a ttyS3 file, doesn't necessarily mean that there exists a physical serial
port there.

Which one of these names (ttyS0, ttyS1, etc.) refers to which physical serial port is determined as follows.
The serial driver (software) maintains a table showing which I/O address corresponds to which ttyS. This
mapping of names (such as ttyS1) to I/O addresses (and IRQ's) may be both set and viewed by the "setserial"
command. See What is Setserial. This does not set the I/O address and IRQ in the hardware itself (which is
set by jumpers or by plug−and−play software). Thus what physical port corresponds to say ttyS1 depends
both on what the serial driver thinks (per setserial) and what is set in the hardware. If a mistake has been
made, the physical port may not correspond to any name (such as ttyS2) and thus it can't be used. See Serial
Port Devices /dev/ttyS2, etc. for more details>

3.4 Interrupts

When the serial port receives a number of bytes (may be set to 1, 4, 8, or 14) into its FIFO buffer, it signals
the CPU to fetch them by sending an electrical signal known as an interrupt on a certain wire normally used
only by that port. Thus the FIFO waits for a number of bytes and then issues an interrupt.

However, this interrupt will also be sent if there is an unexpected delay while waiting for the next byte to
arrive (known as a timeout). Thus if the bytes are being received slowly (such as someone typing on a
terminal keyboard) there may be an interrupt issued for every byte received. For some UART chips the rule is
like this: If 4 bytes in a row could have been received, but none of these 4 show up, then the port gives up
waiting for more bytes and issues an interrupt to fetch the bytes currently in the FIFO. Of course, if the FIFO
is empty, no interrupt will be issued.

The Linux Serial HOWTO

3.2 IO Address & IRQ 33

Each interrupt conductor (inside the computer) has a number (IRQ) and the serial port must know which
conductor to use to signal on. For example, ttyS0 normally uses IRQ number 4 known as IRQ4 (or IRQ 4). A
list of them and more will be found in "man setserial" (search for "Configuring Serial Ports"). Interrupts are
issued whenever the serial port needs to get the CPU's attention. It's important to do this in a timely manner
since the buffer inside the serial port can hold only 16 (1 in old serial ports) incoming bytes. If the CPU fails
to remove such received bytes promptly, then there will not be any space left for any more incoming bytes
and the small buffer may overflow (overrun) resulting in a loss of data bytes. There is no Flow Control to
prevent this.

Interrupts are also issued when the serial port has just sent out all 16 of its bytes from its small transmit buffer
out the external cable. It then has space for 16 more outgoing bytes. The interrupt is to notify the CPU of that
fact so that it may put more bytes in the small transmit buffer to be transmitted. Also, when a modem control
line changes state an interrupt is issued.

The buffers mentioned above are all hardware buffers. The serial port also has large buffers in main memory.
This will be explained later

Interrupts convey a lot of information but only indirectly. The interrupt itself just tells a chip called the
interrupt controller that a certain serial port needs attention. The interrupt controller then signals the CPU.
The CPU runs a special program to service the serial port. That program is called an interrupt service routine
(part of the serial driver software). It tries to find out what has happened at the serial port and then deals with
the problem such a transferring bytes from (or to) the serial port's hardware buffer. This program can easily
find out what has happened since the serial port has registers at IO addresses known to the the serial driver
software. These registers contain status information about the serial port. The software reads these registers
and by inspecting the contents, finds out what has happened and takes appropriate action.

3.5 Data Flow (Speeds)

Data (bytes representing letters, pictures, etc.) flows into and out of your serial port. Flow rates (such as 56k
(56000) bits/sec) are (incorrectly) called "speed". But almost everyone says "speed" instead of "flow rate".

It's important to understand that the average speed is often less than the specified speed. Waits (or idle time)
result in a lower average speed. These waits may include long waits of perhaps a second due to Flow Control.
At the other extreme there may be very short waits (idle time) of several micro−seconds between bytes. If the
device on the serial port (such as a modem) can't accept the full serial port speed, then the average speed must
be reduced.

3.6 Flow Control

Flow control means the ability to stop the flow of bytes in a wire. It also includes provisions to restart the
flow without any loss of bytes. Flow control is needed for modems to allow a jump in instantaneous flow
rates.

The Linux Serial HOWTO

3.5 Data Flow (Speeds) 34

Example of Flow Control

For example, consider the case where you connect a 36.6k external modem via a short cable to your serial
port. The modem sends and receives bytes over the phone line at 36.6k bits per second (bps). It's not doing
any data compression or error correction. You have set the serial port speed to 115,200 bits/sec (bps), and you
are sending data from your computer to the phone line. Then the flow from the your computer to your modem
over the short cable is at 115.2k bps. However the flow from your modem out the phone line is only 33.6k
bps. Since a faster flow (115.2k) is going into your modem than is coming out of it, the modem is storing the
excess flow (115.2k −33.6k = 81.6k bps) in one of its buffers. This buffer would eventually overrun (run out
of free storage space) unless the 115.2k flow is stopped.

But now flow control comes to the rescue. When the modem's buffer is almost full, the modem sends a stop
signal to the serial port. The serial port passes on the stop signal on to the device driver and the 115.2k bps
flow is halted. Then the modem continues to send out data at 33.6k bps drawing on the data it previous
accumulated in its buffer. Since nothing is coming into the buffer, the level of bytes in it starts to drop. When
almost no bytes are left in the buffer, the modem sends a start signal to the serial port and the 115.2k flow
from the computer to the modem resumes. In effect, flow control creates an average flow rate in the short
cable (in this case 33.6k) which is significantly less than the "on" flow rate of 115.2k bps. This is "start−stop"
flow control.

The above is a simple example of flow control for flow from the computer to a modem , but there is also flow
control which is used for the opposite direction of flow: from a modem (or other device) to a computer. Each
direction of flow involve 3 buffers: 1. in the modem 2. in the UART chip (called FIFOs) 3. in main memory
managed by the serial driver. Flow control protects certain buffers from overflowing. The small UART FIFO
buffers are not protected in this way but rely instead on a fast response to the interrupts they issue. FIFO
stand for "First In, First Out" which is the way it handles bytes. All the 3 buffers use the FIFO rule but only
one of them also uses it as a name. This is the essence of flow control but there are still some more details.

Symptoms of No Flow Control

Understanding flow−control theory can be of practical use. The symptom of no flow control is chunks of data
missing from files sent without the benefit of flow control. This is because when overflow happens, it's
usually more than just a few bytes that overflow and are lost. Often hundreds or even thousands of bytes get
lost, and all in contiguous chunks.

Hardware vs. Software Flow Control

If feasible it's best to use "hardware" flow control that uses two dedicated "modem control" wires to send the
"stop" and "start" signals.

Software flow control uses the main receive and transmit wires to send the start and stop signals. It uses the
ASCII control characters DC1 (start) and DC3 (stop) for this purpose. They are just inserted into the regular
stream of data. Software flow control is not only slower in reacting but also does not allow the sending of
binary data unless special precautions are taken. Since binary data will likely contain DC1 and DC3, special

The Linux Serial HOWTO

Example of Flow Control 35

means must be taken to distinguish between a DC3 that means a flow control stop and a DC3 that is part of
the binary code. Likewise for DC1.

3.7 Data Flow Path; Buffers

Although much has been explained about this including flow control, a pair of 16−byte FIFO buffers (in the
hardware), and a pair of larger buffers inside a device connected to the serial port there is still another pair of
buffers. These are large buffers (perhaps 8k) in main memory also known as serial port buffers. When an
application program sends bytes to the serial port they first get stashed in the the transmit serial port buffer in
main memory. The pair consists of both this transmit buffer and a receive buffer for the opposite direction of
byte−flow.

The serial device driver takes out say 16 bytes from this transmit buffer, one byte at a time and puts them into
the 16−byte transmit buffer in the serial hardware for transmission. Once in that transmit buffer, there is no
way to stop them from being transmitted. They are then transmitted to the device connected to the serial port
which also has a fair sized (say 1k) buffer. When the device driver (on orders from flow control) stops the
flow of outgoing bytes from the computer, what it actually stops is the flow of outgoing bytes from the large
transmit buffer in main memory. Even after this has happened and the flow to the device connected to the
serial port has stopped, an application program may keep sending bytes to the 8k transmit buffer until it
becomes fill.

When it gets fill, the application program can't send any more bytes to it (a "write" statement in a C_program
blocks) and the application program temporarily stops running and waits until some buffer space becomes
available. Thus a flow control "stop" is ultimately able to stop the program that is sending the bytes. Even
though this program stops, the computer does not necessarily stop computing. It may switch to running other
processes while it's waiting at a flow control stop. The above was a little oversimplified since there is another
alternative of having the application program itself do something else while it is waiting to "write".

3.8 Complex Flow Control Example

For many situations, there is a transmit path involving several links, each with its own flow control. For
example, I type at a text−terminal connected to a PC with a modem to access a BBS. For this I use the
application program "minicom" which deals with 2 serial ports: one connected to a modem and another
connected to the text−terminal. What I type at the text terminal goes into the first serial port to minicom, then
from minicom out the second serial port to the modem, and then onto the telephone line to the BBS. The
text−terminal has a limit to the speed at which bytes can be displayed on its screen and issues a flow control
"stop" from time to time to slow down the flow. What happens when such a "stop" is issued? Let's consider a
case where the "stop" is long enough to get thru to the BBS and stop the program at the BBS which is
sending out the bytes.

Let's trace out the flow of this "stop" (which may be "hardware" on some links and "software" on others).
First, suppose I'm "capturing" a long file from the BBS which is being sent simultaneously to both my
text−terminal and a to file on my hard−disk. The bytes are coming in faster than the terminal can handle them
so it sends a "stop" out its serial port to the first serial port on my PC. The device driver detects it and stops

The Linux Serial HOWTO

3.7 Data Flow Path; Buffers 36

sending bytes from the 8k serial buffer (in main memory) to the terminal. Now minicom still keeps sending
out bytes for the terminal into this 8k buffer.

When this 8k transmit buffer (on the first serial port) is full, minicom must stop writing to it. Minicom stops
and waits. But this also causes minicom to stop reading from the 8k receive buffer on the 2nd serial port
connected to the modem. Flow from the modem continues until this 8k buffer too fills up and sends a
different "stop" to the modem. Now the modem's buffer ceases to send to the serial port and also fills up. The
modem (assuming error correction is enabled) sends a "stop signal" to the other modem at the BBS. This
modem stops sending bytes out of its buffer and when its buffer gets fill, another stop signal is sent to the
serial port of the BBS. At the BBS, the 8−k (or whatever) buffer fills up and the program at the BBS can't
write to it anymore and thus temporarily halts.

Thus a stop signal from a text terminal has halted a programs on a BBS computer. What a complex sequence
of events! Note that the stop signal passed thru 4 serial ports, 2 modems, and one application program
(minicom). Each serial port has 2 buffers (in one direction of flow): the 8k one and the hardware 16−byte
one. The application program may have a buffer in its C_code. This adds up to 11 different buffers the data is
passing thru. Note that the small serial hardware buffers do not participate directly in flow control.

If the terminal speed limitation is the bottleneck in the flow from the BBS to the terminal, then its flow
control "stop" is actually stopping the program that is sending from the BBS as explained above. But you
may ask: How can a "stop" last so long that 11 buffers (some of them large) all get filled up? It can actually
happen this way if all the buffers were near their upper limits when the terminal sent out the "stop".

But if you were to run a simulation on it you would discover that it's usually more complicated than this. At
an instant of time some links are flowing and others are stopped (due to flow control). A "stop" from the
terminal seldom propagates back to the BBS neatly as described above. It may take a few "stops" from the
terminal to result in one "stop" at the BBS. To understand what is going on you really need to observe a
simulation which can be done for a simple case with coins on a table. Use only a few buffers and set the
upper level for each buffer at only a few coins.

Does one really need to understand all this? Well, understanding this explained to me why capturing text
from a BBS was loosing text. The situation was exactly the above example but modem−to−modem flow
control was disabled. Chunks of captured text that were supposed to also get to my hard−disk never got there
because of an overflow at my modem buffer due to flow control "stops" from the terminal. Even though the
BBS had a flow path to the hard−disk without bottlenecks, the overflow due to the terminal happened on this
path and chunks of text were lost and never even made it to the hard−disk. Note that the flow to the hard−disk
passed thru my modem and since the overflow happened there, bytes intended for the hard−disk were lost.

3.9 Serial Software: Device Driver Module

The device driver for the serial port is the software that operates the serial port. It is now provided as a serial
module. This module will normally get loaded automatically if it's needed. The kernel 2.2 + will do this. In
earlier kernels, you had to have kerneld running in order to do auto−load modules on demand. Otherwise
the serial module needed to be explicitly listed in /etc/modules. Before modules became popular with Linux,
the serial driver was usually built into the kernel. If it's still built into the kernel (you might have selected this
when you compiled the kernel) don't let the serial module load. If you do and wind up with two serial drivers,
it's reported that you can't use the serial ports and get an "I/O error" if an attempt is made to open them.

When the serial module is loaded it displays a message on the screen about the existing serial ports (often

The Linux Serial HOWTO

3.9 Serial Software: Device Driver Module 37

showing a wrong IRQ). But once the module is used by setserial to tell the device driver the (hopefully)
correct IRQ then you should see a second display similar to the first but with the correct IRQ, etc. See What
is Setserial for more info on setserial.)

One may modify the driver by editing the kernel source code. Much of the serial driver is found in the file
serial.c. For details regarding writing of programs for the serial port see Serial−Programming−HOWTO
(currently being revised by Vern Hoxie).

NextPreviousContentsNextPreviousContents

4. Is the Serial Port Obsolete?

4.1 Introduction

The answer is yes, but ... The serial port is somewhat obsolete but it's still needed, especially for Linux. The
serial port has many shortcomings but almost all new PC's seem to come with them them. Linux supports
ordinary telephone modems only if they work thru a serial port.

The serial port must pass data between the computer and the external cable. Thus it has two interfaces and
both of these interfaces are slow. First we'll consider the interface via external cable to the outside world.

4.2 EIA−232 Cable Is Low Speed & Short Distance

The conventional EIA−232 serial port is inherently low speed and is severely limited in distance. Ads often
read "high speed" but it can only work at "high speed" over very short distances such as to a modem located
right next to the computer. Compared to a network card, even this "high speed" is low speed. All of the serial
cable wires use a common ground return wire so that twisted−pair technology (needed for high speeds) can't
be used without additional hardware. More modern interfaces for serial ports exist but they are not standard
on PC's like the EIA−232 is. See Successors to EIA−232. Some multiport serial cards support them.

It is somewhat tragic that the RS−232 standard from 1969 did not use twisted pair technology which could
operate about a hundred times faster. Twisted pairs have been used in telephone cables since the late 1800's.
In 1888 (over 110 years ago) the "Cable Conference" reported its support of twisted−pair (for telephone
systems) and pointed out its advantages. But over 80 years after this approval by the "Cable Conference",
RS−232 failed to utilize it. Since RS−232 was originally designed for connecting a terminal to a low speed
modem located nearby, the need for high speed and longer distance transmission was apparently not
recognized.

The Linux Serial HOWTO

4. Is the Serial Port Obsolete? 38

Serial-HOWTO-4.html
Serial-HOWTO-2.html
Serial-HOWTO-5.html
Serial-HOWTO-3.html

4.3 Inefficient Interface to the Computer

To communicate with the computer, any I/O device needs to have an address so that the computer can write
to it and read from it. For this purpose many I/O devices (such as serial ports) use a special type of address
known as an I/O addresses (sometimes called an I/O port). It's actually a range of addresses and the lower
address in this range is the base address. If someone only says (or writes) "address" it likely really means
"base address"

Instead of using I/O, addresses some I/O devices read and write directly from/to main memory. This provides
more bandwidth since the conventional serial I/O system only moves a byte at a time. There are various ways
to read/write directly to main memory. One way is called shared memory I/O (where the shared memory is
usually on the same card as the I/O device). Other methods are DMA (direct memory access) on the ISA bus
and what is about the same as DMA (only much faster): "bus mastering" on the PCI bus. These methods are a
lot faster than those used for the serial port. Thus the conventional serial port with it's interrupt driven (every
14 bytes) interface and single bytes transfers on a bus which could accommodate 4 (or 8) bytes at a time is
not suited for very high speed I/O.

NextPreviousContentsNextPreviousContents

5. Multiport Serial Boards/Cards/Adapters

5.1 Intro to Multiport Serial

Multiport serial cards install in a slot in a PC on the ISA or PCI bus. Instead of being called "... cards" they
are also called "... adapters" or "... boards". Each such card provides you with many serial ports. They were
commonly used for connecting up many terminals/modems to serial ports but are now obsolete for use with
modems. For modem communication today, many modem chips are mounted on a single card and connect up
to phone lines that carry multiple calls (in digital format) on a single circuit. Such modems are called "digital
modems" and the phone line interface is called a "... concentrator". Such systems are either stand−alone
proprietary servers or are implemented in a PC by special cards (no longer called "multiport"). Digi calls one
such card a "remote access server concentrator adapter". Brief mention of multiport modem cards may be
found in Modem−HOWTO but concentrators are not covered.

Now back to the multiport serial cards. Each card has a number of external connecters (DB−25 or RJ45
(telephone−like)) so that one may connect up a number of devices (modems, terminals, etc.). Each such
physical device would then be connected to its own serial port. Since the space on the external−facing part of
the card is limited there is often not enough room for all the serial port connectors. To solve this problem, the
connectors may be on the ends of cables which come out (externally) from the card (octopus cable). They
may also be on little boxes which are connected by cable to the multiport card.

Dumb ones are not too much different than ordinary serial ports. They are interrupt driven and the CPU of the
computer does most all the work servicing them. They usually have a system of sharing a single interrupt for
all the ports. For this they usually require special drivers that you must put into the kernel or activate by

The Linux Serial HOWTO

4.3 Inefficient Interface to the Computer 39

Serial-HOWTO-5.html
Serial-HOWTO-3.html
Serial-HOWTO-6.html
Serial-HOWTO-4.html

modifying source code.

Smart boards may use ordinary UARTs but handle most interrupts from the UARTs internally within the
board. This frees the CPU from the burden of handling all these interrupts. The board may save up bytes in its
large internal FIFOs and transfer perhaps 1K bytes at a time to the serial buffer in main memory. It may use
the full bus width of 32 bits for making data transfers to main memory (instead of transferring only 8−bit
bytes like dumb serial cards do). Not all "smart" boards are equally efficient. Many boards today are
Plug−and−Play.

For a smart board to work, a special driver for it must be used. Sometimes this driver is built into the kernel
source code or supplied as a module. Even in such cases, you must still do something to activate it. This
includes selecting it when you compile the kernel (or making sure that a pre−compiled kernel has done this).
The "make config" or "make menuconf" commands may display an option for this. In some cases there is a
special module to load or certain parameters to pass to the kernel (via lilo's append command). The board's
manufacturer should have info on this on their website. Unfortunately, info for old boards is sometimes not
there but might be found somewhere else on the Internet (including discussion groups).

5.2 Making "devices" in the /dev directory

The serial ports your multiport board uses depends on what kind of board you have. Some of these may be
listed in detail in rc.serial or in 0setserial. These files may be included in a >setserial or serial
package. I highly recommend getting the latest version of setserial if you are trying to use multiport
boards. You will probably need to create these devices. Either use the mknod command, or the
MAKEDEV script. Devices (in the /dev directory) for serial ports are made by adding ``64 + port number''. So,
if you wanted to create devices for ttyS17, you would type:

linux# mknod −m 666 /dev/cua17 c 5 81
linux# mknod −m 666 /dev/ttyS17 c 4 81

Note that ``64 + 17 = 81''. Using the MAKEDEV script, you would type:

linux# cd /dev
linux# ./MAKEDEV ttyS17

Besides the listing of various brands of multiports found in this HOWTO there is Gary's Encyclopedia −
Serial Cards. It's not as complete, but may have some different links.

5.3 Standard PC Serial Boards

Standard PC serial boards (COM1 − COM4) can be used to, to connect external serial devices (modems,
serial mice, etc...). Since PC's no longer come with them (but have the chips for this purpose mounted on the
motherboard), they are hard to find in retail stores. An internal modem for the ISA bus may include a built−in
serial port.

The Linux Serial HOWTO

5.2 Making "devices" in the /dev directory 40

http://members.aa.net/~swear/serialcards.html
http://members.aa.net/~swear/serialcards.html
http://members.aa.net/~swear/serialcards.html
http://members.aa.net/~swear/serialcards.html
http://members.aa.net/~swear/serialcards.html

Note: due to address conflicts, you may not be able to use COM4 and IBM8514 video board (or clones)
simultaneously. See Avoiding IO Address Conflicts with Certain Video Boards

5.4 Dumb Multiport Serial Boards (with 8250/16450/16550A
UART's)

They are also called "serial adapters".
* => The file that ran setserial in Debian shows some details of configuring # => See note below for this
board

• AST FourPort and clones (4 ports) * #
• Accent Async−4 (4 ports) *
• Arnet Multiport−8 (8 ports)
• Bell Technologies HUB6 (6 ports)
• Boca BB−1004 (4 ports), BB−1008 (8 ports), BB−2016 (16 ports; See the mini−howto) * #
• Boca IOAT66 or? ATIO66 (6 ports, Linux doesn't support it's IRQ sharing ?? Uses odd−ball

10−cond RJ45−like connectors)
• Boca 2by4 (4 serial ports, 2 parallel ports)
• Byterunner (claims low prices)
• Computone ValuePort V4−ISA (AST FourPort compatible) *
• Digi PC/8 (8 ports) #
• GTEK BBS−550 (8 ports; See the mini−howto)
• Hayes ESP (after kernel 2.1.15)
• HUB−6 See Bell Technologies.
• Longshine LCS−8880, Longshine LCS−8880+ (AST FourPort compatible) *
• Moxa C104, Moxa C104+ (AST FourPort compatible) *
• NI−SERIAL by National Instruments
• PC−COMM (4 ports)
• Sealevel Systems COMM−2 (2 ports), COMM−4 (4 ports) and COMM−8 (8 ports)
• SIIG I/O Expander 2S IO1812 (4 ports) #
• STB−4COM (4 ports)
• Twincom ACI/550
• Usenet Serial Board II (4 ports) *

In general, Linux will support any serial board which uses a 8250, 16450, 16550, 16550A, 16650, etc.
UART. See the latest man page for "setserial" for a more complete list.

Notes:

AST Fourport: You might need to specify skip_test in rc.serial.

BB−1004 and BB−1008 do not support DCD and RI lines, and thus are not usable for dialin modems. They
will work fine for all other purposes.

Digi PC/8 Interrupt Status Register is at 0x140.

SIIG IO1812 manual for the listing for COM5−COM8 is wrong. They should be COM5=0x250,
COM6=0x258, COM7=0x260, and COM8=0x268.

The Linux Serial HOWTO

5.4 Dumb Multiport Serial Boards (with 8250/16450/16550A UART's) 41

http://digital.natinst.com/manuals.nsf/web%2Fbyproductcurrent?OpenView&Start=1&Count=500&Expand=15.1#15.1
http://www.sealevel.com
http://www.sealevel.com

5.5 Intelligent Multiport Serial Boards

Make sure that a Linux−compatible driver is available and read the information that comes with it. These
boards use special devices (in the /dev directory), and not the standard ones. This information varies
depending on your hardware. If you have updated info which should be shown here please email it to me.

• Comtrol RocketPort (36MHz ASIC; 4, 8, 16, 32, up to 128 ports)
contact: info@comtrol.com or http://www.comtrol.com
driver status: supported by Comtrol
driver location: ftp://tsx−11.mit.edu/pub/linux/packages/comtrol

• Computone IntelliPort II (ISA, PCI and EISA busses up to 64 ports)
contact: Michael H. Warfield, mailto:mhw@wittsend.com, http://www.computone.com
driver status: Beta
driver location: ftp://ftp.computone.com/PUB/Products/IntelliPortII/Linux/BETA, patch at
http://www.wittsend.com/computone/linux−2.2.10−ctone.patch.gz
mailing list: mailto:majordomo@lazuli.wittsend.com with "subscribe linux−computone" in body
note: Old ATvantage and Intelliport cards are not supported by Computone

• Cyclades
Cyclom−Y (Cirrus Logic CD1400 UARTs; 8 − 32 ports),
Cyclom−Z (MIPS R3000; 8 − 64 ports)
website: http://www.cyclades.com/products.html
driver status: supported by Cyclades
driver location: ftp://ftp.cyclades.com/pub/cyclades and included in Linux kernel
since version 1.1.75

• Decision PCCOM8 (8 ports)
contact: pccom8@signum.se
driver location: ftp://ftp.signum.se/pub/pccom8

• Digi PC/Xi (12.5MHz 80186; 4, 8, or 16 ports),
PC/Xe (12.5/16MHz 80186; 2, 4, or 8 ports),
PC/Xr (16MHz IDT3041; 4 or 8 ports),
PC/Xem (20MHz IDT3051; 8 − 64 ports)
website: http://www.dgii.com driver status: supported by Digi
driver location: ftp://ftp.dgii.com/drivers/linux and included in Linux kernel since
version 2.0

• Digi COM/Xi (10MHz 80188; 4 or 8 ports)
contact: Simon Park, si@wimpol.demon.co.uk
driver status: ALPHA
note: Simon is often away from email for months at a time due to his job. Mark Hatle,
mailto:fray@krypton.mankato.msus.edu has graciously volunteered to make the driver available if
you need it. Mark is not maintaining or supporting the driver.

• Equinox SuperSerial Technology (30MHz ASIC; 2 − 128 ports)
contact: sales@equinox.com or http://www.equinox.com
driver status: supported by Equinox
driver location: ftp://ftp.equinox.com/library/sst

• GTEK Cyclone (16C654 UARTs; 6, 16 and 32 ports),
SmartCard (24MHz Dallas DS80C320; 8 ports),
BlackBoard−8A (16C654 UARTs; 8 ports),
PCSS (15/24MHz 8032; 8 ports)
contact: spot@gtek.com or http://www.gtek.com

The Linux Serial HOWTO

5.5 Intelligent Multiport Serial Boards 42

mailto:info@comtrol.com
http://www.comtrol.com
ftp://tsx-11.mit.edu/pub/linux/packages/comtrol
mailto:mhw@wittsend.com
http://www.computone.com
ftp://ftp.computone.com/PUB/Products/IntelliPortII/Linux/BETA
http://www.wittsend.com/computone/linux-2.2.10-ctone.patch.gz
mailto:majordomo@lazuli.wittsend.com
http://www.cyclades.com/products.html
ftp://ftp.cyclades.com/pub/cyclades
mailto:pccom8@signum.se
ftp://ftp.signum.se/pub/pccom8
http://www.dgii.com
ftp://ftp.dgii.com/drivers/linux
mailto:si@wimpol.demon.co.uk
mailto:fray@krypton.mankato.msus.edu
mailto:sales@equinox.com
http://www.equinox.com
ftp://ftp.equinox.com/library/sst
mailto:spot@gtek.com
http://www.gtek.com

driver status: supported by GTEK
driver location: ftp://ftp.gtek.com/pub

• Hayes ESP (COM−bic; 1 − 8 ports)
contact: Andrew J. Robinson, arobinso@nyx.net or http://www.nyx.net/~arobinso
driver status: Will be supported by Linux kernel (1998). Also supported by author
driver location: http://www.nyx.net/~arobinso and included in Linux kernel since version
2.1.15. Setserial 2.15+ supports.

• Intelligent Serial Interface by Multi−Tech Systems
PCI: 4 or 8 port. ISA 8 port. DTE speed 460.8K
http://www.multitech.com/products/

• Maxpeed SS (Toshiba; 4, 8 and 16 ports)
contact: info@maxpeed.com or http://www.maxpeed.com
driver status: supported by Maxpeed
driver location: ftp://maxpeed.com/pub/ss

• Moxa C218 (12MHz 80286; 8 ports),
Moxa C320 (40MHz TMS320; 8 − 32 ports)
contact: info@moxa.com.tw or http://www.moxa.com.tw
driver status: supported by Moxa
driver location: ftp://ftp.moxa.com.tw/drivers/c218−320/linux

• SDL RISCom/8 (Cirrus Logic CD180; 8 ports)
contact: sales@sdlcomm.com or http://www.sdlcomm.com
driver status: supported by SDL
driver location: ftp://ftp.sdlcomm.com/pub/drivers

• Specialix SX (25MHz T225; 8? − 32 ports),
SIO/XIO (20 MHz Zilog Z280; 4 − 32 ports)
contact: mailto:R.E.Wolff@BitWizard.nl,
http://members.aa.net/~swear/pedia/kerneldocs/specialix.txt
driver status: BETA / Supported by Specialix
driver location: http://www.BitWizard.nl/specialix/
old driver location: ftp://metalab.unc.edu/pub/Linux/kernel/patches/serial

• Stallion EasyIO−4 (4 ports), EasyIO−8 (8 ports), and
EasyConnection (8 − 32 ports) − each with Cirrus Logic CD1400 UARTs,
Stallion (8MHz 80186 CPU; 8 or 16 ports),
Brumby (10/12 MHz 80186 CPU; 4, 8 or 16 ports),
ONboard (16MHz 80186 CPU; 4, 8, 12, 16 or 32 ports),
EasyConnection 8/64 (25MHz 80186 CPU; 8 − 64 ports)
contact: sales@stallion.com or http://www.stallion.com
driver status: supported by Stallion
driver location: ftp://ftp.stallion.com/drivers/ata5/Linux and included in linux
kernel since 1.3.27

A review of Comtrol, Cyclades, Digi, and Stallion products was printed in the June 1995 issue of the Linux
Journal. The article is available at http://www.ssc.com/lj/issue14.

NextPreviousContentsNextPreviousContents

The Linux Serial HOWTO

5.5 Intelligent Multiport Serial Boards 43

ftp://ftp.gtek.com/pub
mailto:arobinso@nyx.net
http://www.nyx.net/~arobinso
http://www.nyx.net/~arobinso
http://www.multitech.com/products/
mailto:info@maxpeed.com
http://www.maxpeed.com
ftp://maxpeed.com/pub/ss
mailto:info@moxa.com.tw
http://www.moxa.com.tw
ftp://ftp.moxa.com.tw/drivers/c218-320/linux
sales@sdlcomm.com
http://www.sdlcomm.com
ftp://ftp.sdlcomm.com/pub/drivers
mailto:R.E.Wolff@BitWizard.nl
http://members.aa.net/~swear/pedia/kerneldocs/specialix.txt
http://www.BitWizard.nl/specialix/
ftp://metalab.unc.edu/pub/Linux/kernel/patches/serial
mailto:sales@stallion.com
http://www.stallion.com
ftp://ftp.stallion.com/drivers/ata5/Linux
http://www.ssc.com/lj/issue14
Serial-HOWTO-6.html
Serial-HOWTO-4.html
Serial-HOWTO-7.html
Serial-HOWTO-5.html

6. Configuring the Serial Port

6.1 PCI Bus Not Yet Supported

The kernel 2.2 serial driver contains no support for the PCI bus. But kernels 2.3 and 2.4 will eventually
support some PCI serial cards (and modem cards). Most PCI cards need special support in the driver. The
driver will read the id number digitally stored on the card to determine how (or if) to support the card. If you
have a PCI card which you are convinced is not a winmodem but it will not work, you can help in attempting
to create a driver for it. To do this you'll need to contact the maintainer of the serial driver, Theodore (Ted) Y.
Ts'o.

You will need to email him a copy of the output of "lspci −vv" with full information about the model and
manufacturer of the PCI modem (or serial port). Then he will try to point you to a test driver which might
work for it. You will then need to get it, compile it and possibly recompile your kernel. Then you will test the
driver to see if it works OK for you and report the results to Ted Ts'o. If you are willing to do all the above
(and this is the latest version of this HOWTO) then email the needed info to him at: mailto:tytso@mit.edu.

PCI modems are not well standardized. Some use main memory for I/O with the PC (ISA ones use the I/O
address space for this). Some require special enabling of the IRQ. The output of "lspci" can help determine if
one can be supported. If the details are not too complex I may find them and put them here in a future
revision.

6.2 Configuring Overview

In many cases, configuring will happen automatically and you have nothing to do. But sometimes you need
to configure (or just want to check out the configuration). If so, first you need to know about the two parts to
configuring the serial port under Linux:

The first part (low−level configuring) is assigning it an IO address, IRQ, and name (such as ttyS2). This
IO−IRQ pair must be set in both the hardware and told to the serial driver. We might just call this "io−irq"
configuring for short. The setserial is used to tell the driver. PnP methods, jumpers, etc, are used to set
the hardware. Details will be supplied later. If you need to configure but don't understand certain details it's
easy to get into trouble.

The second part (high−level configuring) is assigning it a speed (such as 38.4K bits/sec), selecting flow
control, etc. This is often done by communication programs such as PPP, minicom, or by getty (which you
may run on the port so that others may log into your computer). However you will need to tell these programs
what speed you want, etc. by using a menu or a configuration file. This high−level configuring may also be
done with the stty program. stty is also useful to view the current status if you're having problems. See
also the section Stty When Linux starts, some effort is made to detect and configure (low−level) a few serial
ports. Exactly what happens depends on your BIOS, hardware, Linux distribution, etc. If the serial ports work
OK, there may be no need for you to do any configuring. Application programs often do the high−level
configuring but you may need to supply them with the required information. With Plug−and−Play serial ports
(often built into an internal modem), the situation has become more complex. Here are cases when you need
to do low−level configuring (set IRQ and IO addresses):

The Linux Serial HOWTO

6. Configuring the Serial Port 44

mailto:tytso@mit.edu

• Plan to use more than 2 serial ports
• Installing a new serial port (such as an internal modem)
• Having problems with serial port(s)

For kernel 2.2+ you may be able to use more that 2 serial ports without low−level configuring by sharing
interrupts. This only works if the serial hardware supports it and may be no easier than low−level
configuring. See Interrupt sharing and Kernels 2.2+

The low−level configuring (setting the IRQ and IO address) seems to cause people more trouble (than
high−level), although for many it's fully automatic and there is no configuring to be done. Thus most all of
this section is on that topic. Until the serial driver knows the correct IRQ and IO address the port will not
work at all. It may not even be found by Linux. Even if it can be found, it may work extremely slow if the
IRQ is wrong. See Extremely Slow: Text appears on the screen slowly after long delays.

In the Wintel world, the IO address and IRQ are called "resources" and we are thus configuring certain
resources. But there are many other types of "resources" so the term has many other meanings. In review, the
low−level configuring consists of putting two values (an IRQ number and IO address) into two places:

1. the device driver (often by running "setserial" at boot−time)
2. memory registers of the serial port hardware itself

You may watch the start−up (= boot−time) messages. They are usually correct. But if you're having
problems, there's a good chance that some of these messages don't show the true configuration of the
hardware (and they are not supposed to). See I/O Address & IRQ: Boot−time messages.

6.3 Common mistakes made re low−level configuring

Here are some common mistakes people make:

• setserial command: They run it (without the "autoconfig" option) and think it has checked out the
hardware (it hasn't).

• setserial messages: They see them displayed on the screen at boot−time, and erroneously think that
the result shows how their hardware is actually configured.

• /proc/interrupts: When their serial device isn't in use they don't see its interrupt there, and erroneously
conclude that their serial port can't be found (or doesn't have an interrupt set).

• /proc/ioports: People think this shows the hardware configuration when it only shows about the same
data (possibly erroneous) as setserial.

6.4 I/O Address & IRQ: Boot−time messages

In many cases your ports will automatically get low−level configured at boot−time (but not always correctly).
To see what is happening, look at the start−up messages on the screen. Don't neglect to check the messages
from the BIOS before Linux is loaded (no examples shown here). These BIOS messages may be frozen by
pressing the Pause key. Use Shift−PageUp to go back to all the messages after they have flash by.
Shift−PageDown will scroll in the opposite direction. The dmesg command may be used at any time to view
some of the messages but it often misses important ones. Here's an example of the start−up messages (as of

The Linux Serial HOWTO

6.3 Common mistakes made re low−level configuring 45

mid 1999). Note that ttyS00 is the same as /dev/ttyS0.

At first you see what was detected (but the irq is only a wild guess):

Serial driver version 4.27 with no serial options enabled
ttyS00 at 0x03f8 (irq = 4) is a 16550A
ttyS01 at 0x02f8 (irq = 3) is a 16550A
ttyS02 at 0x03e8 (irq = 4) is a 16550A

Later you see what was saved, but it's not necessarily correct either:

Loading the saved−state of the serial devices...
/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A
/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A
/dev/ttyS2 at 0x03e8 (irq = 5) is a 16550A

Note that there is a slight disagreement: The first message shows ttyS2 at irq=4 while the second shows it at
irq=5. Your may only have the first message. In most cases the last message is the correct one. But if your
having trouble it may be misleading. Before reading the explanation of all of this complexity in the rest of
this section, you might just try using your serial port and see if it works OK. If so it may not be essential to
read further.

The second message is from the setserial program being run at boot−time. It shows what the device
driver thinks is the correct configuration. But this too could be wrong. For example, the irq could actually be
set to irq=8 in the hardware (both messages wrong). The irq=5 could be there because someone incorrectly
put this into a configuration file (or the like). The fact that Linux sometimes gets IRQs wrong is because it
doesn't probe for IRQs. It just assumes the "standard" ones (first message) or accepts what you told it when
you configured it (second message). Neither of these is necessarily correct. If the serial driver has the wrong
IRQ the serial port is very slow or doesn't seem to work at all.

The first message is a result of Linux probing the serial ports but it doesn't probe for IRQs. If a port shows up
here it exists but the IRQ may be wrong. Linux doesn't check IRQs because doing so is not foolproof. It just
assumes the IRQs are as shown because they are the "standard" values. Your may check them manually with
setserial using the autoconfig and auto_irq options but this isn't guaranteed to be correct.

The data shown by the BIOS messages (which you see at first) is what is set in the hardware. If your serial
port is Plug−and−Play PnP then it's possible that the isapnp will run and change these settings. Look for
messages about this after Linux starts. The last serial port message shown in the example above should agree
with the BIOS messages (as possibly modified by isapnp). If they don't agree then you either need to change
the setting in the port hardware or use setserial to tell the driver what is actually set in the hardware.

Also, if you have Plug−and−Play (PnP) serial ports, Linux will not find them unless the IRQ and IO has been
set inside the hardware by Plug−and−Play software. This is a common reason why the start−up messages do
not show a serial port that physically exists. The PC hardware (a PnP BIOS) may automatically low−level
configure this. PnP configuring will be explained later.

The Linux Serial HOWTO

6.3 Common mistakes made re low−level configuring 46

6.5 What is the current IO address and IRQ of my Serial
Port ?

The previous section indicated how to attempt to do this by looking at the start−up messages. If they give you
sufficient info then you may not need to read this section. If they don't then there are some other ways to look
into this.

There are really two answers to the question "What is my IO and IRQ?" 1. What the device driver thinks has
been set (This is what setserial usually sets and shows). 2. What is actually set in the hardware. They both
should be the same. If they're not it spells trouble since the driver has incorrect info on the physical serial
port. If the driver has the wrong IO address it will try to send data to a non−existing serial port −−or even
worse, to an actual device that is not a serial port. If it has the wrong IRQ the driver will not get interrupt
service requests from the serial port, resulting in a very slow or no response. See Extremely Slow: Text
appears on the screen slowly after long delays. If it has the wrong model of UART there is also apt to be
trouble. To determine if both I0−IRQ pairs are identical you must find out how they are set in both the driver
and the hardware.

What does the device driver think?

This is easy to find out. Just look at the start−up messages or type "setserial −g /dev/ttyS*". If everything
works OK then what it tells you is likely also set in the hardware. There are some other ways to find this info
by looking at "files" in the /proc directory. An important reason for understanding these other ways is to warn
you that they only show what the device driver thinks. Some people view certain "files" in the /proc directory
and erroneously think that what they see is set in the hardware but "it ain't necessarily so".

/proc/ioports will show the IO addresses that the drivers are using. /proc/interrupts shows the IRQs that are
used by drivers of currently running processes (that have devices open). Note that in both cases above you are
only seeing what the driver thinks and not necessarily what is actually set in the hardware. /proc/interrupts
also shows how many interrupts have been issued (often thousands) for each device. You can get a clue from
this because if you see a large number of interrupts that have been issued it means that there is a piece of
hardware somewhere that is using that interrupt. Sometimes a showing of just a few interrupts doesn't mean
that that interrupt is actually being physically generated by any serial port. Thus if you see almost no
interrupts for a port that you're trying to use, that interrupt might not be set in the hardware and it implies that
the driver is using the wrong interrupt. To view /proc/interrupts to check on a program that you're currently
running (such as "minicom") you need to keep the program running while you view it. To do this, try to jump
to a shell without exiting the program.

 What is set in my serial port hardware ?

How do you find out what IO address and IRQ are actually set in the device hardware? Perhaps the BIOS
messages will tell you some info before Linux starts booting. Use the shift−PageUp key to step back thru the
boot−time messages and look at the very first ones which are from the BIOS. This is how it was before Linux
started. Setserial can't change it but isapnp or pciutils can.

One crude method is try probing with setserial using the "autoconfig" option. You'll need to guess the
addresses to probe at. See What is Setserial. For a PCI serial port, use the "lspci" command (for kernels <2.2
look at /proc/pci). If your serial port is is Plug−and−Play see the next two subsections.

The Linux Serial HOWTO

6.5 What is the current IO address and IRQ of my Serial Port ? 47

For a port set with jumpers, its how the jumpers were set. If the port is not Plug−and−Play (PnP) but has been
setup by using a DOS program then it's set at whatever the person who ran that program set it to.

What is set in my PnP serial port hardware ?

PnP ports don't store their configuration in the hardware when the power is turned off. This is in contrast to
Jumpers (non−PnP) which remain the same with the power off. If you have an ISA PnP port, it can reach a
state where it doesn't have any IO address or IRQ and is in effect disabled. It should still be possible to find
the port using the pnpdump program.

For Plug−and−Play (PnP) on the ISA bus one may try the pnpdump program (part of isapnptools). If
you use the −−dumpregs option then it should tell you the actual IO address and IRQ set in the port. The
address it "trys" is not the device's IO address, but a special

For PnP ports checking on how it's configured under DOS/Windows may not be of much help. Windows
stores its configuration info in its Registry which is not used by Linux. It may supply the BIOS's non−volatile
memory with some info but it may not be kept in sync with the current Window configuration in the Registry
?? If you let a PnP BIOS automatically do the configuring when you start Linux (and have told the BIOS that
you don't have a PnP operating system when running Linux) then Linux should use whatever configuration is
in the BIOS's non−volatile memory.

6.6 Choosing Serial IRQs

If you have a true Plug−and−Play set up where either the OS or a PnP BIOS configures all your devices, then
you don't choose your IRQs. PnP determines what it thinks is best and assigns them. But if you use the tools
in Linux for Plug−and−Play (isapnp and pcitools) then you have to choose. If you already know what IRQ
you want to use you could skip this section except that you may want to know that IRQ 0 has a special use
(see the following paragraph).

IRQ 0 is not an IRQ

While IRQ 0 is actually the timer (in hardware) it has a special meaning for setting a serial port with setserial.
It tells the driver that there is no interrupt for the port and the driver then will use polling methods. This is
quite inefficient but can be tried if there is an interrupt conflict or mis−set interrupt. The advantage of
assigning this is that you don't need to know what interrupt is set in the hardware. It should be used only as a
temporary expedient until you are able to find a real interrupt to use.

 Interrupt sharing and Kernels 2.2+

The general rule is that every device should use a unique IRQ and not share them. But there are situations
where sharing is permitted such as with most multi−port boards. Even when it is permitted, it may not be as
efficient since every time a shared interrupt is given a check must be made to determine where it came from.
Thus if it's feasible, it's nice to allocate every device it's own interrupt.

The Linux Serial HOWTO

What is set in my PnP serial port hardware ? 48

Prior to kernel 2.2, serial IRQs could be shared with each other only for most multiport boards. Starting with
kernel 2.2 serial IRQs may be sometimes shared between all serial ports. In order for sharing to work in 2.2
the kernel must have been compiled with CONFIG_SERIAL_SHARE_IRQ, and the serial port hardware
must support sharing (so that if two serial cards put different voltages on the same interrupt wire, only the
voltage that means "this is an interrupt" will prevail). Thus even if you have 2.2, it may be best to avoid
sharing.

What IRQs to choose?

The serial hardware often has only a limited number of IRQs it can be set at. Also you don't want IRQ
conflicts. So there may not be much of a choice. Your PC may normally come with ttyS0 and ttyS2 at
IRQ 4, and ttyS1 and ttyS3 at IRQ 3. Looking at /proc/interrupts will show which IRQs are
being used by programs currently running. You likely don't want to use one of these. Before IRQ 5 was used
for sound cards, it was often used for a serial port.

Here is how Greg (original author of Serial−HOWTO) set his up in /etc/rc.d/rc.serial. rc.serial is a file (shell
script) which runs at start−up (it may have a different name of location). For versions of "setserial" after 2.15
it's not always done this way anymore but this example does show the choice of IRQs.

/sbin/setserial /dev/ttyS0 irq 3 # my serial mouse
/sbin/setserial /dev/ttyS1 irq 4 # my Wyse dumb terminal
/sbin/setserial /dev/ttyS2 irq 5 # my Zoom modem
/sbin/setserial /dev/ttyS3 irq 9 # my USR modem

Standard IRQ assignments:

 IRQ 0 Timer channel 0 (May mean "no interrupt". See below.)
 IRQ 1 Keyboard
 IRQ 2 Cascade for controller 2
 IRQ 3 Serial port 2
 IRQ 4 Serial port 1
 IRQ 5 Parallel port 2, Sound card
 IRQ 6 Floppy diskette
 IRQ 7 Parallel port 1
 IRQ 8 Real−time clock
 IRQ 9 Redirected to IRQ2
 IRQ 10 not assigned
 IRQ 11 not assigned
 IRQ 12 not assigned
 IRQ 13 Math coprocessor
 IRQ 14 Hard disk controller 1
 IRQ 15 Hard disk controller 2

There is really no Right Thing to do when choosing interrupts. Just make sure it isn't being used by the
motherboard, or any other boards. 2, 3, 4, 5, 7, 10, 11, 12 or 15 are possible choices. Note that IRQ 2 is the
same as IRQ 9. You can call it either 2 or 9, the serial driver is very understanding. If you have a very old
serial board it may not be able to use IRQs 8 and above.

Make sure you don't use IRQs 1, 6, 8, 13 or 14! These are used by your motherboard. You will make her very

The Linux Serial HOWTO

What IRQs to choose? 49

unhappy by taking her IRQs. When you are done, double−check /proc/interrupts when programs that
use interrupts are being run and make sure there are no conflicts.

6.7 Choosing Addresses −−Video card conflict with ttyS3

The IO address of the IBM 8514 video board (and others like it) is allegedly 0x?2e8 where ? is 2, 4, 8, or 9.
This may conflict (but shouldn't it the serial port is well designed) with the IO address of ttyS3 at 0x02e8 if
the serial port ignores the leading 0 hex digit (many do). That is bad news if you try to use ttyS3 at this IO
address.

In most cases you should use the default addresses if feasible. Addresses shown represent the first address of
an 8−byte range. For example 3f8 is really the range 3f8−3ff. Each serial device (as well as other types of
devices that use IO addresses) needs its own unique address range. There should be no overlaps (conflicts).
Here are the default addresses for the serial ports:

ttyS0 address 0x3f8
ttyS1 address 0x2f8
ttyS2 address 0x3e8
ttyS3 address 0x2e8

6.8 Set IO Address & IRQ in the hardware (mostly for PnP)

After it's set in the hardware don't forget to insure that it also gets set in the driver by using setserial. For
non−PnP serial ports they are either set in hardware by jumpers or by running a DOS program ("jumperless")
to set them (it may disable PnP). The rest of this subsection is only for PnP serial ports. Here's a list of the
possible methods of configuring PnP serial ports:

• Using a PnP BIOS CMOS setup menu (usually only for external devices on ttyS0 (Com1) and ttyS1
(Com2))

• Letting a PnP BIOS automatically configure a PnP serial port See Using a PnP BIOS to I0−IRQ
Configure

• Doing nothing if you have both a PnP serial port and a PnP Linux operating system (see
Plug−and−Play−HOWTO).

• Using isapnp for a PnP serial port non−PCI)
• Using pciutils (pcitools) for the PCI bus

The IO address and IRQ must be set (by PnP) in their registers each time the system is powered on since PnP
hardware doesn't remember how it was set when the power is shut off. A simple way to do this is to let a PnP
BIOS know that you don't have a PnP OS and the BIOS will automatically do this each time you start. This
might cause problems in Windows (which is a PnP OS) if you start Windows with the BIOS thinking that
Windows is not a PnP OS. See Plug−and−Play−HOWTO.

Plug−and−Play was designed to automate this io−irq configuring, but for Linux at present, it has made life

The Linux Serial HOWTO

6.7 Choosing Addresses −−Video card conflict with ttyS3 50

more complicated. The standard kernels for Linux don't support plug−and−play very well. If you use a patch
to the Linux kernel to covert it to a plug−and−play operating system, then all of the above should be handled
automatically by the OS. But when you want to use this to automate configuring devices other that the serial
port, you may find that you'll still have to configure the drivers manually since many Linux drivers are not
written to support a Linux PnP OS. If you use isapnptools or the BIOS for configuring plug−and−play
this will only put the two values into the registers of the serial port section of the modem card and you will
likely still need to set up setserial. None of this is easy or very well documented as of early 1999. See
Plug−and−Play−HOWTO and the isapnptools FAQ.

 Using a PnP BIOS to I0−IRQ Configure

While the explanation of how to use a PnP OS or isapnp for io−irq configuring should come with such
software, this is not the case if you want to let a PnP BIOS do such configuring. Not all PnP BIOS can do
this. The BIOS usually has a CMOS menu for setting up the first two serial ports. This menu may be hard to
find and for an "Award" BIOS it was found under "chipset features setup" There is often little to choose from.
Unless otherwise indicated in a menu, these first two ports normally get set at the standard IO addresses and
IRQs. See Serial Port Device Names & Numbers

Whether you like it or not, when you start up a PC a PnP BIOS starts to do PnP (io−irq) configuring of
hardware devices. It may do the job partially and turn the rest over to a PnP OS (which you probably don't
have) or if thinks you don't have a PnP OS it may fully configure all the PnP devices but not configure the
device drivers. This is what you want but it's not always easy to figure out exactly what the PnP BIOS has
done.

If you tell the BIOS that you don't have a PnP OS, then the PnP BIOS should do the configuring of all PnP
serial ports −−not just the first two. An indirect way to control what the BIOS does (if you have Windows 9x
on the same PC) is to "force" a configuration under Windows. See Plug−and−Play−HOWTO and search for
"forced". It's easier to use the CMOS BIOS menu which may override what you "forced" under Windows.
There could be a BIOS option that can set or disable this "override" capability.

If you add a new PnP device, the BIOS should change its PnP configuration to accommodate it. It could even
change the io−irq of existing devices if required to avoid any conflicts. For this purpose, it keeps a list of
non−PnP devices provided that you have told the BIOS how these non−PnP devices are io−irq configured.
One way to tell the BIOS this is by running a program called ICU under DOS/Windows.

But how do you find out what the BIOS has done so that you set up the device drivers with this info? The
BIOS itself may provide some info, either in it's setup menus of via messages on the screen when you turn on
your computer. See What is set in my serial port hardware?

6.9 Giving the IRQ and IO Address to Setserial

Once you've set the IRQ and IO address in the hardware (or arranged for it to be done by PnP) you also need
to insure that the "setserial" command is run each time you start Linux. See the subsection Boot−time
Configuration

The Linux Serial HOWTO

 Using a PnP BIOS to I0−IRQ Configure 51

6.10 High−level Configuring: stty, etc.

As a rule, your application program will do most (or all) of this. The command which does it is stty. See
Stty

Configuring Flow Control: Hardware Flow Control is Best

See Flow Control for an explanation of it. It's usually better to use hardware flow control rather than software
flow control using Xon/Xoff. To use full hardware flow control you must normally have two wires for it in
the cable between the serial port and the device. If the device is on a card, then it should always be possible to
use hardware flow control.

Many applications (and the getty program) give you an option regarding flow control and will set it for you.
It might even set hardware flow control by default. Like the IRQ and IO address, it must be set both in the
serial driver and the hardware connected to the serial port. How it's set into the hardware is hardware
dependent. Often there is a certain "init string" you send to the hardware device via the serial port from your
PC. For a modem, the communication program should set it in both places.

If a program you use doesn't set flow control in the serial driver, then you may do it yourself using the
stty command. Since the driver doesn't remember the setting after you stop Linux, you could put the stty
command in a file that runs at start−up or when you login (such as /etc/profile for the bash shell). Heres what
you would add for hardware flow control for port ttyS2:

stty crtscts < /dev/ttyS2
or for stty version >= 1.17:
stty −F /dev/ttyS2 crtscts

crtscts stands for a Control setting to use the RTS and CTS pins of the serial port for hardware flow
control. The upper case letters of the last sentence spell: crtscts.

NextPreviousContentsNextPreviousContents

7. Serial Port Devices /dev/ttyS2, etc.

For creating devices in the device directory see

Creating Devices In the /dev directory

The Linux Serial HOWTO

6.10 High−level Configuring: stty, etc. 52

Serial-HOWTO-7.html
Serial-HOWTO-5.html
Serial-HOWTO-8.html
Serial-HOWTO-6.html

7.1 Serial Port Device Names & Numbers

Devices in Linux have major and minor numbers. Each serial port may have 2 possible names in the /dev
directory: ttyS and cua. Their drivers behave slightly differently. The cua device is deprecated and will not be
used in the future. See the Modem−HOWTO section: "The cua Device".

Dos/Windows use the COM name while the setserial program uses tty00, tty01, etc. Don't confuse these
with dev/tty0, dev/tty1, etc. which are used for the console (your PC monitor) but are not serial ports. The dos
names (COM1, etc.) and IO address is shown below for the "standard" case (but yours could be different).

 set− IO
dos serial major minor major minor address
COM1 tty00 /dev/ttyS0 4, 64; /dev/cua0 5, 64 3F8
COM2 tty01 /dev/ttyS1 4, 65; /dev/cua1 5, 65 2F8
COM3 tty02 /dev/ttyS2 4, 66; /dev/cua2 5, 66 3E8
COM4 tty03 /dev/ttyS3 4, 67; /dev/cua3 5, 67 2E8

Note that all distributions should come with ttyS devices (and cua devices until cua is finally abolished). You
can verify this by typing:

linux% ls −l /dev/cua*
linux% ls −l /dev/ttyS*

7.2 Link ttySN to /dev/modem ?

On some installations, two extra devices will be created, /dev/modem for your modem and
/dev/mouse for your mouse. Both of these are symbolic links to the appropriate device in /dev which
you specified during the installation (unless you have a bus mouse, then /dev/mouse will point to the bus
mouse device).

There has been some discussion on the merits of /dev/mouse and /dev/modem. The use of these links is
discouraged. In particular, if you are planning on using your modem for dialin you may run into problems
because the lock files may not work correctly if you use /dev/modem. Use them if you like, but be sure
they point to the right device. However, if you change or remove this link, some applications might need
reconfiguration.

7.3 Notes For Multiport Boards

For board addresses, and IRQs, look at the rc.serial or /etc/rc.boot/0setserial that comes
with the setserial program. It has a lot of detail on multiport boards, including I/O addresses and device
names.

The Linux Serial HOWTO

7.1 Serial Port Device Names & Numbers 53

7.4 Creating Devices In the /dev directory

If you don't have a device, you will have to create it with the mknod command. Example, suppose you
needed to create devices for ttyS0:

linux# mknod −m 666 /dev/cua0 c 5 64
linux# mknod −m 666 /dev/ttyS0 c 4 64

You can use the MAKEDEV script, which lives in /dev. See the man page for it. This simplifies the making
of devices. For example, if you needed to make the devices for ttyS0 you would type:

linux# cd /dev
linux# ./MAKEDEV ttyS0

This handles the devices creation and should set the correct permissions.

NextPreviousContentsNextPreviousContents

8. Interesting Programs You Should Know About

Most info on getty has been moved to Modem−HOWTO with a little info on the use of getty with directly
connected terminals now found in Text−Terminal−HOWTO.

8.1 Serial Monitoring/Diagnostics Programs

A few Linux programs will monitor various modem control lines and indicate if they are positive (1 or green)
or negative (0 or red).

• modemstat (Only works correctly on Linux PC consoles. Status monitored in a tiny window.
Color−coded and compact. Must kill process to quit.)

• statserial (Info displayed on entire screen)
• serialmon (Doesn't monitor RTS, CTS, DSR but logs other functions)

You may already have them. If not, download them from Serial Software. As of June 1998, I know of no
diagnostic program in Linux for the serial port.

The Linux Serial HOWTO

7.4 Creating Devices In the /dev directory 54

Serial-HOWTO-8.html
Serial-HOWTO-6.html
Serial-HOWTO-9.html
Serial-HOWTO-7.html
http://metalab.unc.edu/pub/Linux/system/serial/
http://metalab.unc.edu/pub/Linux/system/serial/

8.2 Changing Interrupt Priority

• irqtune will give serial port interrupts higher priority to improve performance.
• hdparm for hard−disk tuning may help some more.

8.3 What is Setserial ?

Introduction

Don't ever use setserial with Laptops (PCMCIA). setserial is a program which allows you to tell
the device driver software the I/O address of the serial port, which interrupt (IRQ) is set in the port's
hardware, what type of UART you have, etc. It can also show how the driver is currently set. In addition, it
can probe the hardware (if certain options are given).

If you only have one or two serial ports, they will usually get set up correctly without using setserial.
Otherwise (or if there are problems with the serial port) you will likely need to deal with setserial. Besides the
manual for setserial, check out info in /usr/doc/setserial.../ or the like. It should tell you
how setserial is handled in your distribution of Linux.

Setserial is often run automatically at boot−time by a start−up shell−script. It will only work if the serial
module is loaded. If you should for some reason unload the serial module later on, the changes previously
made by setserial will be forgotten by the kernel (but not by /etc/serial.conf). So setserial must be
run again to reestablish them. In addition to running via a start−up script, something akin to
setserial runs when the serial module is loaded. Thus when you watch the start−up messages on the
screen it may look like it ran twice, and in fact it has.

Setserial can set the time that the port will keep operating after it's closed (in order to output any characters
still in its buffer in main RAM). This is needed at slow baud rates of 1200 or lower. It's also needed at higher
speeds if there are a lot of "flow control" waits.

With appropriate options, setserial can probe (at a given I/O address) for a serial port but you must
guess the I/O address. If you ask it to probe for /dev/ttyS2 for example, it will only probe at the address it
thinks ttyS2 is at. If you tell setserial that ttyS2 is at a different address, then it will probe at that address, etc.
See Probing

Setserial does not set either IRQ's nor I/O addresses in the serial port hardware itself. It's set in the hardware
either by jumpers or by plug−and−play. You must tell setserial these identical values that have been set in the
hardware. Do not just invent some values that you think would be nice to use and then tell them to setserial.
However, if you know the I/O address but don't know the IRQ you may command setserial to attempt to
determine the IRQ.

You can see a list of possible commands to use (but not the one−letter options such as −v for verbose
−−which you should normally use when troubleshooting) by just typing setserial with no arguments.
Note that setserial calls an I/O address a "port". If you type:

The Linux Serial HOWTO

8.2 Changing Interrupt Priority 55

setserial−g /dev/ttyS*

you'll see some info about how that device driver is configured for your ports. Add a "v" to the option "−g" to
see more. But this doesn't tell you if the hardware actually has these values set in it. If fact, you can run
setserial and assign a purely fictitious I/O address, any IRQ, and whatever uart type you would like to have.
Then the next time you type "setserial ..." it will display these bogus values without complaint. Note that
assignments made by setserial are lost when the PC is powered down so it is usually run automatically
somewhere each time that Linux is booted.

 Probing

In order to try to find out if you have a certain piece of serial hardware you must first know (or guess) its I/O
address (or the device driver must have an I/O address for it, likely previously set by setserial). To try to
detect the physical hardware use the −v (verbose) and autoconfig command to setserial. If the
resulting message shows a uart type such as 16550A, then you're OK. If instead it shows "unknown" for the
uart type, then there is supposedly no serial port at all at that I/O address. Some cheap serial ports don't
identify themselves correctly so if you see "unknown" you still might have a serial port there.

Besides auto−probing for uart type, setserial can auto−probe for IRQ's but this doesn't always work right
either. In versions of setserial >= 2.15, your last probe test may be saved and put into the configuration file
/etc/serial.conf which will be used next time you start Linux. The script that runs setserial at
boot−time does not usually probe, but you could change it so that it does. See the next section.

Can Linux Configure The Serial Devices Automagically?

Yes, but ... Your distribution may already do this on startup. But you may want to customize it. It's easy to do
for setserial < 2.15. Just add some lines to the file that runs setserial on start−up. See Old configuration
method: edit a script For example, for ttyS3 you would add:

/sbin/setserial /dev/ttyS3 auto_irq skip_test autoconfig

to the file that runs setserial on startup. Do this for every serial port you want to auto configure. Be sure to
give a device name that really does exist on your machine. In some cases this will not work right due to the
hardware so you may want to assign it an irq and/or a uart type. For example

/sbin/setserial /dev/ttyS3 irq 5 uart 16550A skip_test

For versions >= 2.15 (provided your distribution implemented the change, Redhat didn't) it's much harder to
do since the file that runs setserial on startup, /etc/init.d/setserial or the like was not intended to be edited by
the user. There may be no helpful comments in it like there were in earlier versions.

The Linux Serial HOWTO

 Probing 56

 Boot−time Configuration

When the kernel loads the serial module (or if the "module" is built into the kernel) then only
ttyS{0−3} are auto−detected and the driver is set to IRQs 4 and 3 (regardless of what the hardware is
actually set at). You see this as a boot−time message just like as if setserial had been run.. If you use 3
or more ports, this may result in IRQ conflicts.

To fix such conflicts by telling setserial the true IRQs (or for other reasons) there may be a file somewhere
that runs setserial again. This happens early at boot−time before any process uses the serial port. In fact,
your distribution may have set things up so that the setserial program runs automatically from a start−up
script at boot−time. More info about how to handle this situation should be found in /usr/doc/setserial.../ or
the like.

New configuration method using /etc/serial.conf

Prior to setserial version 2.15, the way to configure setserial was to manually edit the shell−script that ran
setserial at boot−time. Starting with version 2.15 (1999) of setserial this shell−script is not edited but
instead gets its data from a configuration file: /etc/serial.conf. Furthermore not even serial.conf is intended to
be edited. Instead just use setserial on the command line.

Normally, what you changed with the setserial command is saved to the configuration file (serial.conf) when
you shutdown (normally) or reboot. This only works if "###AUTOSAVE### or the like is on the first line of
serial.conf. If you should use setserial experimentally and it doesn't work out right, then don't forget to
redo it so that the experimental settings don't get saved by mistake. The file most commonly used to run
setserial at boot−time (in conformance with the configuration file) is now /etc/init.d/setserial (Debian) or
/etc/init.d/serial (Redhat), or etc., but it also should not normally be edited.

To disable a port, use setserial to set it to "uart none". The format of /etc/serial.conf appears to be just
like that of the parameters placed after "setserial" on the command line with one line for each port. If you
don't use autosave, you may edit /etc/serial.conf manually. For 2.15, the Debian distribution installs the
system with autosave enabled, but Redhat 6.0 just had a file /usr/doc/setserial−2.15/rc.serial which you have
to move to /etc/init.d/.

BUG: As of July 1999 there is a bug/problem since with ###AUTOSAVE### only the setserial parameters
displayed by "setserial −G /dev/ttyS?" (where ? = 0, 1, 2, ...) get saved but the other parameters don't get
saved. This will only affect a small minority of users since the parameters not saved are seldom used anyway.
It's been reported as a bug and may be fixed by now.

In order to force the current settings set by setserial to be saved to the configuration file (serial.conf) without
shutting down, do what normally happens when you shutdown: Run the shell−script
/etc/init.d/{set}serial stop. The "stop" command will save the current configuration but the
serial ports still keep working OK.

I some cases you may wind up with both the old and new configuration methods installed but hopefully only
one of them runs at boot−time. Debian labeled obsolete files with "...pre−2.15".

The Linux Serial HOWTO

 Boot−time Configuration 57

 Old configuration method: edit a script

Prior to 2.15 (1999) there was no /etc/serial.conf file to configure setserial. Thus you need to find the file that
runs "setserial" at boot time and edit it. If it doesn't exist, you need to create one (or place the commands in a
file that runs early at boot−time). If such a file is currently being used it's likely somewhere in the /etc
directory−tree. But Redhat <6.0 has supplied it in /usr/doc/setserial/ although you need to move it to the /etc
tree before using it. You might use "locate" to try to find such a file. For example, you could type: locate
"*serial*".

What you are looking for could be named rc.serial, or 0setserial (Debian). If such a file is supplied, it should
contain a number of commented−out examples. By uncommenting some of these and/or modifying them, you
should be able to set things up correctly. Make sure that you are using a valid path for setserial, and a
valid device name. You could do a test by executing this file manually (just type its name as the super−user)
to see if it works right. Testing like this is a lot faster than doing repeated reboots to get it right. Of course
you can also test a single setserial command by just typing it on the command line.

The script /etc/rc.d/rc.serial was commonly used in the past. The Debian distribution used
/etc/rc.boot/0setserial. Another file once used is /etc/rc.d/rc.local but it's not a good
idea to use this since it may not be run early enough. It's been reported that other processes may try to open
the serial port before rc.local runs resulting in serial communication failure.

IRQs

By default, both ttyS0 and ttyS2 share IRQ 4, while ttyS0 and ttyS3 share IRQ 3. But sharing serial interrupts
is not permitted unless you: 1. have kernel 2.2 or better, and 2. you've complied in support for this, and 3.
your serial hardware supports it. See

Interrupt sharing and Kernels 2.2+

If you only have two serial ports, ttyS0 and ttyS1, you're still OK since IRQ sharing conflicts don't exist for
non−existent devices.

If you add an internal modem and retain ttyS0 and ttyS1, then you should attempt to find an unused IRQ and
set it both on your serial port (or modem card) and then use setserial to assign it to your device driver. If IRQ
5 is not being used for a sound card, this may be one you can use for a modem. To set the IRQ in hardware
you may need to use isapnp, a PnP BIOS, or patch Linux to make it PnP. To help you determine which spare
IRQ's you might have, type "man setserial" and search for say: "IRQ 11".

8.4 Stty

The Linux Serial HOWTO

 Old configuration method: edit a script 58

Introduction

stty does much of the configuration of the serial port but since application programs (and the getty
program) often handle it, you may not need to use it much. It's handy if your having problems or want to see
how the port is set up. Try typing ``stty −a'' at your terminal/console to see how it's now set. Also try typing it
without the −a (all) for a short listing which shows how it's set different than normal. Don't try to learn all the
setting unless you want to become a serial guru. Most of the defaults should work OK and some of the
settings are needed only for certain obsolete dumb terminals made in the 1970's (but not much after that)

Whereas setserial only deals with actual serial ports, stty is used both for serial ports and for virtual
terminals such as the standard Linux text interface at a PC monitor. For the PC monitor, many of the stty
settings are meaningless. Changing the baud rate, etc. doesn't appear to actually do anything.

Here are some of the items stty configures: speed (bits/sec), parity, bits/byte, # of stop bits, strip 8th bit?,
modem control signals, flow control, break signal, end−of−line markers, change case, padding, beep if buffer
overrun?, echo, allow background tasks to write to terminal?, define special (control) characters (such as
what key to press for interrupt). See the stty man or info page for more details. Also see the man page:
termios which covers the same options set by stty but (as of mid 1999) covers features which the stty man
page fails to mention.

With some implementations of getty (getty_ps package), the commands that one would normally give to stty
are typed into a getty configuration file: /etc/gettydefs. Even without this configuration file, the getty
command line may be sufficient to set things up so that you don't need stty."')

One may write C programs which change the stty configuration, etc. Looking at some of the documentation
for this may help one better understand the use of the stty command (and its many possible arguments).
Serial−Programming−HOWTO is useful. The manual page: termios contains a description of the C−language
structure (of type termios) which stores the stty configuration in computer memory. Many of the flag names
in this C−structure are almost the same (and do the same thing) as the arguments to the stty command.

Using stty for a "foreign" terminal

Using stty to inspect or configure the terminal that you are currently using is easy. Doing it for a different
(foreign) terminal or serial port is tricky. For example, let's say you are at the PC monitor (tty1) and want to
use stty for the serial port ttyS2. You need to use the redirection operator <. First, be warned that if there is
a terminal on ttyS2 and a shell running on that terminal, then what you see will likely be deceptive and trying
to set it will not work. See Two Interfaces at a Terminal to understand it.

Type ``stty −a < /dev/ttyS2'' to look at the settings of ttyS2. Use the same redirection operator < to set ttyS2.
This makes ttyS2 the standard input to stty. This gives the stty program a link to the "file" ttyS2 so that it may
"read" it. But instead of reading the bytes sent to ttyS2 as one might expect, it uses the link to find the
configuration settings of the port so that it may read or change them. Some people try to use ``stty ... >
/dev/ttyS2'' to set the terminal. This will not do it. Instead, it takes the message normal displayed by the stty
command for the terminal you are on (say tty1) and sends this message to ttyS2. But it doesn't change any
settings for ttyS2.

Here's another problem with the redirection operator. Sometimes when trying to use stty, the command hangs
and nothing happens (you don't get a prompt for a next command even after hitting <return>). This is likely

The Linux Serial HOWTO

Introduction 59

due to the port being stuck because it's waiting for one of the modem control lines to be asserted. For
example, unless you've set "clocal" to ignore modem control lines, then if no CD signal is asserted the port
will not open and stty will not work for it. A similar situation seems to exist for hardware flow control. If the
cable for the port doesn't even have a conductor for the pin that needs to be asserted then there is no easy way
to stop the hang.

One way to try to get out of the above hang is to use a program on the port that will force it to operate even if
the control lines say not to. Then hopefully this program might set the port so it doesn't need the control
signal in the future in order to open: clocal or −crtscts. To use "minicom" to do this you have to reconfigure
minicom for another ttyS, etc, and then exit it and restart it. Since you then have to reconfigure minicom
again, it may be simpler to just reboot the PC.

Versions starting with 1.17 (still not released as of mid 1999) will no longer need to use redirection (<) but
instead will use ``stty ... −F /dev/ttyS2'' (or −−file instead of F) etc. This should force the port to open and
avoid the 2nd problem with redirection.

 Two interfaces at a terminal

When using a shell (such as bash) with command−line−editing enabled there are two different terminal
interfaces (what you see when you type stty −a). When you type at the command line you have a temporary
"raw" interface (or raw mode) where each character is read by the command−line−editor as you type it. Once
you hit the <return> key, the command−line−editor is exited and the terminal interface is changed to the
nominal "cooked" interface (cooked mode) for the terminal. This cooked mode lasts until the next prompt is
sent to the terminal. Note that one never types anything to this cooked mode but what was typed in raw mode
becomes cooked mode as soon as one hits the <return> key.

When a prompt is sent to the terminal the terminal goes from "cooked" to "raw" mode (just like it does when
you start an editor since you are starting the command−line editor). The settings for the "raw" mode are based
only on the basic settings taken from the "cooked" mode. Raw mode keeps these setting but changes several
other settings in order to change the mode to "raw". It is not at all based on the settings used in the previous
"raw" mode. Thus if one uses stty to change settings for the raw mode, such settings will be lost as soon as
one hits the <return> key at the terminal that has supposedly been "set".

Now when one types stty to look at the terminal interface, one may either get a view of the cooked mode or
the raw mode. You need to figure out which one you're looking at. It you use stty from another terminal to
deal with a terminal that is displaying a command line, then the view is that of the raw mode. Any changes
made will only be made to the raw mode and will be lost when someone presses <return> at the terminal you
tried to "set". But if you type a stty command at your terminal (without using < for redirection) and then hit
<return> it's a different story. The <return> puts the terminal in cooked mode. Your changes are saved and
will still be there when the terminal goes back into raw mode (unless of course it's a setting not allowed in
raw mode).

This situation can create problems. For example, suppose you corrupt your terminal interface and to restore it
you go to another terminal and "stty sane <dev/ttyS1" to restore it. It will not work! Of course you can try to
type "stty sane ..." at the terminal that is corrupted but you can't see what you typed. All the above not only
applies to dumb terminals but to virtual terminals used on a PC Monitor as well as to the terminal windows in
X. In other words, it applies to almost everyone who uses Linux. Luckily, a file that runs stty at boot−time
will likely deal with a terminal (or serial port with no terminal) that has no shell running on it so there's no
problem.

The Linux Serial HOWTO

 Two interfaces at a terminal 60

 Where to put the stty command ?

Should you need to have stty set up the serial interface each time the computer starts up then you need to
put the stty command in a file that will be executed each time the computer is started up (Linux boots). It
should be run before the serial port is used (including running getty on the port). There are many possible
places to put it. If it gets put in more than one place and you only know about (or remember) one of those
places, then a conflict is likely. So make sure to document what you do.

One place to put it would be in the same file that runs setserial when the system is booted. The location is
distribution and version dependent. It would seem best to put it after the setserial command so that the low
level stuff is done first. If you have directories in the /etc tree where every file in them is executed at
boot−time (System V Init) then you could create a file named "stty" for this purpose.

8.5 What is isapnp ?

isapnp is a program to configure Plug−and−Play (PnP) devices on the ISA bus including internal modems.
It comes in a package called "isapnptools" and includes another program, "pnpdump" which finds all your
ISA PnP devices and shows you options for configuring them in a format which may be added to the PnP
configuration file: /etc/isapnp.conf. The isapnp command may be put into a startup file so that it runs each
time you start the computer and thus will configure ISA PnP devices. It is able to do this even if your BIOS
doesn't support PnP. See Plug−and−Play−HOWTO.

NextPreviousContentsNextPreviousContents

9. Speed (Flow Rate)

By "speed" we really mean the "data flow rate" but almost everybody incorrectly calls it speed. The speed is
measured in bits/sec (or baud). Speed is set using the "stty" command or by a program which uses the serial
port. See Stty

9.1 Can't Set a High Enough Speed

You need to find out the highest speed supported by your hardware. As of late 1998 most hardware only
supported speeds up to 115.2K bps. A few 56K internal modems support 230.4K bps. Recent Linux kernels
support high speeds (over 115.2K) but you might have difficulty using it because of one or both of the
following reasons:

1. The application program (or stty) will not accept the high speed.
2. Setserial has a default speed of 115,200 (but this default is easy to change)

The Linux Serial HOWTO

 Where to put the stty command ? 61

Serial-HOWTO-9.html
Serial-HOWTO-7.html
Serial-HOWTO-10.html
Serial-HOWTO-8.html

 How speed is set in hardware: the divisor and baud_base

Here's a list of commonly used divisors and their corresponding speeds (assuming a maximum speed of
115,200): 1 (115.2K), 2 (57.6K), 3 (38.4K), 6 (19.2K), 12 (9.6K), 24 (4.8K), 48 (2.4K), 96 (1.2K), etc. The
serial driver sets the speed in the hardware by sending the hardware only a "divisor" (a positive integer). This
"divisor" divides the maximum speed of the hardware resulting in a slower speed (except a divisor of 1
obviously tells the hardware to run at maximum speed).

Normally, if you specify a speed of 115.2K (in your communication program or by stty) then the serial driver
sets the port hardware to divisor 1 which obviously sets the highest speed. If you happen to have hardware
with a maximum speed of say 230.4K, then specifying 115.2K will result in divisor 1 and will actually give
you 230.4K. This is double the speed that you set. In fact, for any speed you set, the actual speed will be
double. If you had hardware that could run at 460.8K then the actual speed would be quadruple what you set.

Work−arounds for setting speed

To correct this accounting (but not always fix the problem) you may use "setserial" to change the baud_base
to the actual maximal speed of your port such as 230.4K. Then if you set the speed (by your application or by
stty) to 230.4K, a divisor of 1 will be used and you'll get the same speed as you set. PROBLEM: stty and
many communication programs (as of mid 1999) still have 115.2K as their maximum speed setting and will
not let you set 230.4K, etc. So in these cases one solution is not to change anything with setserial but
mentally keep in mind that the actual speed is always double what you set.

There's another work−around which is not much better. To use it you set the baud_base (with setserial) to the
maximal speed of your hardware. This corrects the accounting so that if you set say 115.2K you actually get
115.2K. Now you still have to figure out how to set the highest speed if your communication program (or the
like) will not let you do it. Fortunately, setserial has a way to do this: use the "spd_cust" parameter with
"divisor 1". Then when you set the speed to 38400 in a communication program, the divisor will be set to 1 in
the port and it will operate at maximum speed. For example:
setserial /dev/ttyS2 spd_cust baud_base 230400 divisor 1
Don't try using "divisor" for any other purpose other than the special use illustrated above (with spd_cust).

If there are two or more high speeds that you want to use that your communication program can't set, then it's
not quite as easy as above. But the same principles apply. You could just keep the default baud_base and
understand that when you set a speed you are really only setting a divisor. So your actual speed will always
be your maximum speed divided by whatever divisor is set by the serial driver. See How speed is set in
hardware: the divisor and baud_base

Crystal frequency is not baud_base

Note that the baud_base setting is usually much lower than the frequency of the crystal oscillator in the
hardware since the crystal frequency is often divided by 16 in the hardware to get the actual top speed. The
reason the crystal frequency needs to be higher is so that this high crystal speed can be used to take a number
of samples of each bit to determine if it's a 1 or a 0.

The Linux Serial HOWTO

 How speed is set in hardware: the divisor and baud_base 62

9.2 Higher Serial Throughput

If you are seeing slow throughput and serial port overruns on a system with (E)IDE disk drives, you can get
hdparm. This is a utility that can modify (E)IDE parameters, including unmasking other IRQs during a disk
IRQ. This will improve responsiveness and will help eliminate overruns. Be sure to read the man page very
carefully, since some drive/controller combinations don't like this and may corrupt the filesystem.

Also have a look at a utility called irqtune that will change the IRQ priority of a device, for example the
serial port that your modem is on. This may improve the serial throughput on your system. The
irqtune FAQ is at http://www.best.com/~cae/irqtune

NextPreviousContents

The Linux Serial HOWTO

9.2 Higher Serial Throughput 63

http://www.best.com/~cae/irqtune
Serial-HOWTO-10.html
Serial-HOWTO-8.html

	Table of Contents
	The Linux Serial HOWTO
	David S.Lawyer dave@lafn.org original by Greg Hankins
	1.Introduction
	2.How the Hardware Transfers Bytes
	3.Serial Port Basics
	4.Is the Serial Port Obsolete?
	5.Multiport Serial Boards/Cards/Adapters
	6.Configuring the Serial Port
	7.Serial Port Devices /dev/ttyS2, etc.
	8.Interesting Programs You Should Know About
	9.Speed (Flow Rate)
	10.Communications Programs And Utilities
	11.Serial Tips And Miscellany
	12.Troubleshooting
	13.Interrupt Problem Details
	14.What Are UARTs? How Do They Affect Performance?
	15.Pinout and Signals
	16.Voltage Waveshapes
	17.Other Serial Devices (not async EIA-232)
	18.Other Sources of Information
	1. Introduction
	1.1 Copyright, Disclaimer, & Credits
	Copyright
	Disclaimer
	Credits

	1.2 Release Notes
	1.3 New Versions of this Serial-HOWTO
	1.4 Related HOWTO's re the Serial Port
	1.5 Feedback
	1.6 What is a Serial Port?
	10. Communications Programs And Utilities
	10.1 List of Software
	10.2 kermit and zmodem
	11. Serial Tips And Miscellany
	11.1 Line Drivers
	11.2 Known Defective Hardware
	 Avoiding IO Address Conflicts with Certain Video Boards
	Problem with AMD Elan SC400 CPU (PC-on-a-chip)

	11.3 What Are Lock Files ?
	12. Troubleshooting
	12.1 Serial Electrical Test Equipment
	Breakout Gadgets, etc.
	Measuring Voltages
	Taste Voltage

	12.2 Serial Monitoring/Diagnostics
	12.3 The following subsections are in both the Serial and Modem HOWTOs:
	12.4 My Serial Port is Physically There but Can't be Found
	12.5 Extremely Slow: Text appears on the screen slowly after long delays
	12.6 Somewhat Slow: I expected it to be a few times faster
	12.7 The Startup Screen Show Wrong IRQs for the Serial Ports.
	12.8 "Cannot open /dev/ttyS?: Permission denied"
	12.9 "Operation not supported by device" for ttyS?
	12.10 "Cannot create lockfile. Sorry"
	12.11 "Device /dev/ttyS? is locked."
	12.12 "/dev/ttyS?: Device or resource busy"
	12.13 Troubleshooting Tools
	13. Interrupt Problem Details
	13.1 Types of interrupt problems
	13.2 Symptoms of Mis-set or Conflicting Interrupts
	13.3 Mis-set Interrupts
	13.4 Interrupt Conflicts
	13.5 Resolving Interrupt Problems
	14. What Are UARTs? How Do They Affect Performance?
	14.1 Introduction to UARTS
	14.2 Two Types of UARTs
	14.3 FIFOs
	14.4 UART Model Numbers
	15. Pinout and Signals
	15.1 Pinout
	15.2 Signals May Have No Fixed Meaning
	15.3 Cabling Between Serial Ports
	15.4 RTS/CTS and DTR/DSR Flow Control
	The DTR and DSR Pins

	15.5 Preventing a Port From Opening
	16. Voltage Waveshapes
	16.1 Voltage for a Bit
	16.2 Voltage Sequence for a Byte
	16.3 Parity Explained
	16.4 Forming a Byte (Framing)
	16.5 How "Asynchronous" is Synchronized
	17. Other Serial Devices (not async EIA-232)
	17.1 Successors to EIA-232
	17.2 EIA-422-A (balanced) and EIA-423-A (unbalanced)
	17.3 EIA-485
	17.4 EIA-530
	17.5 EIA-612/613
	17.6 The Universal Serial Bus (USB)
	17.7 Synchronization & Synchronous
	Defining Asynchronous vs Synchronous
	Synchronous Communication

	18. Other Sources of Information
	18.1 Books
	18.2 Serial Software
	18.3 Linux Documents
	18.4 Usenet newsgroups:
	18.5 Serial Mailing List
	18.6 Internet
	2. How the Hardware Transfers Bytes
	2.1 Transmitting
	2.2 Receiving
	2.3 The Large Serial Buffers
	3. Serial Port Basics
	3.1 What is a Serial Port ?
	Intro to Serial
	Pins and Wires
	RS-232 or EIA-232, etc.

	3.2 IO Address & IRQ
	3.3 Names: ttyS0, ttyS1, etc.
	3.4 Interrupts
	3.5 Data Flow (Speeds)
	3.6 Flow Control
	Example of Flow Control
	Symptoms of No Flow Control
	Hardware vs. Software Flow Control

	3.7 Data Flow Path; Buffers
	3.8 Complex Flow Control Example
	3.9 Serial Software: Device Driver Module
	4. Is the Serial Port Obsolete?
	4.1 Introduction
	4.2 EIA-232 Cable Is Low Speed & Short Distance
	4.3 Inefficient Interface to the Computer
	5. Multiport Serial Boards/Cards/Adapters
	5.1 Intro to Multiport Serial
	5.2 Making "devices" in the /dev directory
	5.3 Standard PC Serial Boards
	5.4 Dumb Multiport Serial Boards (with 8250/16450/16550A UART's)
	5.5 Intelligent Multiport Serial Boards
	6. Configuring the Serial Port
	6.1 PCI Bus Not Yet Supported
	6.2 Configuring Overview
	6.3 Common mistakes made re low-level configuring
	6.4 I/O Address & IRQ: Boot-time messages
	6.5 What is the current IO address and IRQ of my Serial Port ?
	What does the device driver think?
	 What is set in my serial port hardware ?
	What is set in my PnP serial port hardware ?

	6.6 Choosing Serial IRQs
	IRQ 0 is not an IRQ
	 Interrupt sharing and Kernels 2.2+
	What IRQs to choose?

	6.7 Choosing Addresses --Video card conflict with ttyS3
	6.8 Set IO Address & IRQ in the hardware (mostly for PnP)
	 Using a PnP BIOS to I0-IRQ Configure

	6.9 Giving the IRQ and IO Address to Setserial
	6.10 High-level Configuring: stty, etc.
	Configuring Flow Control: Hardware Flow Control is Best

	7. Serial Port Devices /dev/ttyS2, etc.
	7.1 Serial Port Device Names & Numbers
	7.2 Link ttySN to /dev/modem ?
	7.3 Notes For Multiport Boards
	7.4 Creating Devices In the /dev directory
	8. Interesting Programs You Should Know About
	8.1 Serial Monitoring/Diagnostics Programs
	8.2 Changing Interrupt Priority
	8.3 What is Setserial ?
	Introduction
	 Probing
	Can Linux Configure The Serial Devices Automagically?
	 Boot-time Configuration
	New configuration method using /etc/serial.conf
	 Old configuration method: edit a script
	IRQs

	8.4 Stty
	Introduction
	Using stty for a "foreign" terminal
	 Two interfaces at a terminal
	 Where to put the stty command ?

	8.5 What is isapnp ?
	9. Speed (Flow Rate)
	9.1 Can't Set a High Enough Speed
	 How speed is set in hardware: the divisor and baud_base
	Work-arounds for setting speed
	Crystal frequency is not baud_base

	9.2 Higher Serial Throughput

