
From Power Up To Bash Prompt

Table of Contents

From Power Up To Bash Prompt..1
Greg O'Keefe, gcokeefe@postoffice.utas.edu.au..1
1.Introduction...1
2.Hardware...1
3.Lilo..1
4.The Linux Kernel..1
5.The GNU C Library..2
6.Init...2
7.The Filesystem..2
8.Kernel Daemons..2
9.System Logger..2
10.Getty and Login..2
11.Bash..3
12.Basic Commands..3
13.Building Software From Source...3
14.Conclusion..3
15.Administrivia..3
1. Introduction..3
10. Getty and Login...4
10.1 Configuration...5
10.2 Exercises..5
10.3 More Information...5
11. Bash...5
11.1 Configuration...6
11.2 Exercises..6
11.3 More Information...7
12. Basic Commands...7
13. Building Software From Source..8
13.1 How I Built My System...8
13.2 Random Tips..9
13.3 More Information...10
14. Conclusion...10
15. Administrivia...10
15.1 Copyright...11
15.2 Homepage..11
15.3 Feedback..11
15.4 Acknowledgements..11
15.5 Change History..12

0.5 −> 0.6..12
15.6 TODO..12
2. Hardware..12
2.1 Configuration...13
2.2 Exercises..13
2.3 More Information...13
3. Lilo...14
3.1 Configuration...14
3.2 Exercises..14

From Power Up To Bash Prompt

i

Table of Contents

3.3 More Information...15
4. The Linux Kernel...15
4.1 Configuration...16
4.2 Exercises..16
4.3 More Information...17
5. The GNU C Library...17
5.1 Configuration...18
5.2 Exercises..18
5.3 More Information...18
6. Init..19
6.1 Configuration...20
6.2 Exercises..20
6.3 More Information...21
7. The Filesystem...21
7.1 Configuration...22
7.2 Exercises..22
7.3 More Information...22
8. Kernel Daemons...23
8.1 Configuration...24
8.2 Exercises..24
8.3 More Information...24
9. System Logger...24
9.1 Configuration...24
9.2 Exercises..25
9.3 More Information...25

From Power Up To Bash Prompt

ii

From Power Up To Bash Prompt

Greg O'Keefe, gcokeefe@postoffice.utas.edu.au

v0.6, February 2000

This is a brief description of what happens in a Linux system, from the time that you turn on the power, to the
time that you log in and get a bash prompt. It is organised by package to make it easier for people who want
to build a system from source code. Understanding this will be helpful when you need to solve problems or
configure your system.

1.Introduction

2.Hardware

• 2.1 Configuration
• 2.2 Exercises
• 2.3 More Information

3.Lilo

• 3.1 Configuration
• 3.2 Exercises
• 3.3 More Information

4.The Linux Kernel

• 4.1 Configuration
• 4.2 Exercises
• 4.3 More Information

From Power Up To Bash Prompt 1

From-PowerUp-To-Bash-Prompt-HOWTO-1.html
From-PowerUp-To-Bash-Prompt-HOWTO-2.html
From-PowerUp-To-Bash-Prompt-HOWTO-3.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html

5.The GNU C Library

• 5.1 Configuration
• 5.2 Exercises
• 5.3 More Information

6.Init

• 6.1 Configuration
• 6.2 Exercises
• 6.3 More Information

7.The Filesystem

• 7.1 Configuration
• 7.2 Exercises
• 7.3 More Information

8.Kernel Daemons

• 8.1 Configuration
• 8.2 Exercises
• 8.3 More Information

9.System Logger

• 9.1 Configuration
• 9.2 Exercises
• 9.3 More Information

10.Getty and Login

• 10.1 Configuration
• 10.2 Exercises
• 10.3 More Information

From Power Up To Bash Prompt

5.The GNU C Library 2

From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-6.html
From-PowerUp-To-Bash-Prompt-HOWTO-7.html
From-PowerUp-To-Bash-Prompt-HOWTO-7.html
From-PowerUp-To-Bash-Prompt-HOWTO-8.html
From-PowerUp-To-Bash-Prompt-HOWTO-8.html
From-PowerUp-To-Bash-Prompt-HOWTO-9.html
From-PowerUp-To-Bash-Prompt-HOWTO-9.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html

11.Bash

• 11.1 Configuration
• 11.2 Exercises
• 11.3 More Information

12.Basic Commands

13.Building Software From Source

• 13.1 How I Built My System
• 13.2 Random Tips
• 13.3 More Information

14.Conclusion

15.Administrivia

• 15.1 Copyright
• 15.2 Homepage
• 15.3 Feedback
• 15.4 Acknowledgements
• 15.5 Change History
• 15.6 TODO

Next Previous Contents Next Previous Contents

1. Introduction

I find it frustrating that many things happen inside my Linux machine that I do not understand. If, like me,
you want to really understand your system rather than just knowing how to use it, this document should be a
good place to start. This kind of background knowledge is also needed if you want to be a top notch Linux
problem solver.

I assume that you have a working Linux box, and understand some basic things about Unix and PC hardware.
If not, an excellent place to start learning is Eric S. Raymond's The Unix and Internet Fundamentals
HOWTO It is short, very readable and covers all the basics.

From Power Up To Bash Prompt

11.Bash 3

From-PowerUp-To-Bash-Prompt-HOWTO-11.html
From-PowerUp-To-Bash-Prompt-HOWTO-12.html
From-PowerUp-To-Bash-Prompt-HOWTO-12.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-14.html
From-PowerUp-To-Bash-Prompt-HOWTO-15.html
From-PowerUp-To-Bash-Prompt-HOWTO-1.html
From-PowerUp-To-Bash-Prompt-HOWTO-2.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html

The main thread in this document is how Linux starts itself up. But it also tries to be a more comprehensive
learning resource. I have included exercises in each section. If you actually do some of these, you will learn
much more than you could by just reading. There are also links to source code downloads. The reason for this
is that I hope some readers will undertake the best Linux learning exercise that I know of, which is building a
system from source code, or ``rolling your own''. Giambattista Vico, an Italian philosopher (1668−1744) said
``verum ipsum factum'', understanding arises through making. Thanks to Alex (see acknowledge) for this
quote.

Packages are presented in the order in which they appear in the system startup process. This means that if you
install the packages in this order you can reboot after each installation, and see the system get a little closer to
giving you a bash prompt each time. There is a reassuring sense of progress in this.

There are choices to make when putting together a Linux system. These are the same choices that the likes of
Red Hat and Debian must make when creating a distribution. There are often several free packages available
to do the same job. What I describe here are the components that are part of the major Linux distributions. I
choose GNU software if it is available because it is better documented, and causes less headaches. It would
be possible to get a bash prompt without installing everything I mention here. However I want to describe a
base system that can be built on easily, without nasty kludges. For example, one of the init scripts uses awk.
(Don't worry if you don't know what awk is) Rather than hack this out of the script, I just install awk.

I recommend that you first read the main text of each section, skipping the exercises and references. Then
decide how deep an understanding you want to develop, and how much effort you are prepared to put in.
Then start at the beginning again, doing the exercises and additional reading as you go.

Next Previous ContentsNextPreviousContents

10. Getty and Login

Getty is the program that enables you to log in through a serial device such as a virtual terminal, a text
terminal, or a modem. It displays the login prompt. Once you enter your username, getty hands this over to
login which asks for a password, checks it out and gives you a shell.

There are many getty's available, but the util−linux package, which includes login has one called agetty,
which works fine. This package also contains clock, fdformat, mkswap, fdisk, passwd, kill,
setterm, mount, swapon, rdev, renice, hexdump, more (the program) and more (ie more
programs). To keep things simple by minimising the number of packages you have to install, I recommend
using agetty.

From Power Up To Bash Prompt

10. Getty and Login 4

From-PowerUp-To-Bash-Prompt-HOWTO-2.html
From-PowerUp-To-Bash-Prompt-HOWTO-11.html
From-PowerUp-To-Bash-Prompt-HOWTO-9.html

10.1 Configuration

The message that comes on the top of your screen with your login prompt comes from /etc/issue. Gettys
are usually started in /etc/inittab. Login checks user details in /etc/passwd, and if you have
password shadowing, /etc/shadow.

10.2 Exercises

Create a /etc/passwd by hand. Passwords can be set to null, and changed with the program passwd once
you log on. See the man page for this file Use man 5 passwd to get the man page for the file rather than
the man page for the program.

10.3 More Information

The util−linux package contains login and agetty, and lots of other stuff that you will need.

There are lots of other getty's at Many getty's!. getty_ps is the most general one, mingetty is for virtual
terminals only. However, the util−linux package which you need for logon also contains agetty, which
works fine.

NextPreviousContentsNextPreviousContents

11. Bash

If you give login a valid username and password combination, it will check in /etc/passwd to see
which shell to give you. In most cases on a Linux system this will be bash. It is bash's job to read your
commands and see that they are acted on. It is simultaneously a user interface, and a programming language
interpreter.

As a user interface it reads your commands, and executes them itself if they are ``internal'' commands like
cd, or finds and executes a program if they are ``external'' commands like cp or startx. It also does
groovy stuff like keeping a command history, and completing filenames.

We have already seen bash in action as a programming language interpreter. The scripts that init runs to
start the system up are usually shell scripts, and are executed by bash. Having a proper programming
language, along with the usual system utilities available at the command line makes a very powerful
combination, if you know what you are doing. For example (smug mode on) I needed to apply a whole stack

From Power Up To Bash Prompt

10.1 Configuration 5

ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/misc
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/serial/getty
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/serial/getty
From-PowerUp-To-Bash-Prompt-HOWTO-11.html
From-PowerUp-To-Bash-Prompt-HOWTO-9.html
From-PowerUp-To-Bash-Prompt-HOWTO-12.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html

of ``patches'' to a directory of source code the other day. I was able to do this with the following single
command:

for f in /home/greg/sh−utils−1.16*.patch; do patch −p0 < $f; done;

This looks at all the files in my home directory whose names start with sh−utils−1.16 and end with
.patch. It then takes each of these in turn, and sets the variable f to itand executes the commands between
do and done. In this case there were 11 patch files, but there could just as easily have been 3000.

11.1 Configuration

The file /etc/profile controls the system−wide behaviour of bash. What you put in here will affect
everybody who uses bash on your system. It will do things like add directories to the PATH, set your
MAIL directory variable.

The default behaviour of the keyboard often leaves a lot to be desired. It is actually readline that handles this.
Readline is a separate package that handles command line interfaces, providing the command history and
filename completion, as well as some advanced line editing features. It is compiled into bash. By default,
readline is configured using the file .inputrc in your home directory. The bash variable INPUTRC can be
used to override this for bash. For example in Red Hat 6, INPUTRC is set to /etc/inputrc in
/etc/profile. This means that backspace, delete, home and end keys work nicely for everyone.

Once bash has read the system−wide configuration file, it looks for your personal configuration file. It checks
in your home directory for .bash_profile, .bash_login and .profile. It runs the first one of these
it finds. If you want to change the way bash behaves for you, without changing the way it works for others,
do it here. For example, many applications use environment variables to control how they work. I have the
variable EDITOR set to vi so that I can use vi in Midnight Commander (an excellent console based file
manager) instead of its editor.

11.2 Exercises

The basics of bash are easy to learn. But don't stop there: there is an incredible depth to it. get into the habit
of looking for better ways to do things.

Read shell scripts, look up stuff you don't understand.

From Power Up To Bash Prompt

11.1 Configuration 6

11.3 More Information

• Australian Bash mirror
• There is a ``Bash Reference Manual'' with this, which is comprehensive, but heavy going.
• Australian readline mirror You need to download readline separately ((is it an addon type thingy?))
• ((bash tutorials? − if there isn't one around, make one!))
• There is an O'Rielly book on Bash, not sure if it's good.

NextPreviousContentsNextPreviousContents

12. Basic Commands

You do most things in bash by issuing commands. Most of these commands are small programs. I won't say
too much about these. I have just listed the packages that I found I needed. I fear that I may have lost track
slightly of what was really necessary and what wasn't. I will fix this when I rebuild my system to test this
document. There isn't too much baggage in the list. Most of it is needed for a fully functional Linux system
anyway.

Ideally, this list should include all commands specified in The Unix File Heirarchy Standard and everthing
needed to run the basic initscripts that come with the sysvinit dist.

• GNU fileutils fileutils commands such as cp, dd, ls, ln, mkdir and so on.
• GNU findutils findutils find and locate commands. Find is needed in an init script ((check your notes

on this)).
• textutils? was that needed?? it contains cat, which is nice to have so you can look a files. its GNU
• Gawk gawk GNU's implementation of the awk language. Awk is good for processing records in text

files like the system log. It is needed in an init script ((check your notes on this)).
• grep grep It is needed in an init script ((check your notes on this)).
• sed?? was that needed?? it's a GNU package
• sh−utils contains hostname, stty, true, false, yes, who, sleep
• Net Tools: is probably not completely necessary, since hostname is in sh−utilsnet−tools. The

only thing you *really* need from this package, to get a really basic system up is hostname. But the
other stuff in here such as, ifconfig, netstat and route will be needed when you want to connect your
system to anything else.

• Process Monitoring procps. The main commands in here are ps and top. They enable you to see what
is running on your system. This is useful for a learning exercise.

NextPreviousContentsNextPreviousContents

From Power Up To Bash Prompt

11.3 More Information 7

http://mirror.aarnet.edu.au/pub/gnu/bash
http://mirror.aarnet.edu.au/pub/gnu/readline
From-PowerUp-To-Bash-Prompt-HOWTO-12.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-11.html
http://mirror.aarnet.edu.au/pub/gnu/fileutils/
http://mirror.aarnet.edu.au/pub/gnu/findutils/
http://mirror.aarnet.edu.au/pub/gnu/gawk/
http://mirror.aarnet.edu.au/pub/gnu/grep/
ftp://mirror.aarnet.edu.au/pub/linux/metalab/?????????????????
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/status/ps/
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-11.html
From-PowerUp-To-Bash-Prompt-HOWTO-14.html
From-PowerUp-To-Bash-Prompt-HOWTO-12.html

13. Building Software From Source

So far I have focussed on what the packages do. Here I will offer what clues I can about making a minimal
Linux system from source.

13.1 How I Built My System

There is more than one way to go about building a system. But the way I did it seems to have worked out ok,
so this account may be helpful to you.

I used a dedicated machine − an old Wang 386sx of almost zero dollar value. I did a minimal install of Red
Hat 6.0 to be the ``source'' system, and allocated a ``target'' partition where I built the system. In the old
Wang, I have a 3G hard disk partitioned as follows:

 hda1 480M where I built the system (``target'')
 hda2 20M boot partition for the Red Hat system
 hda3 50M swap
 hda4 2500M extended partition containing hda5
 hda5 2500M Red Hat 6.0 root file system (``source'')

There is no real point in having the logical partition hda5 inside an extended partition, hda4. That's just what
Red Hat's Disk Druid did when I installed. You only need the base Red Hat system, plus development tools
and libraries. It used about 250M of disk space. You could do this exercise with a 1G disk, or a pair of 500M
disks.

Older PC hardware, mostly 486's and earlier, have an annoying limitation in their bios. They can not read
from a hard disk past the first 512M. This is not too much of a problem for Linux, because once it is up, it
does its own disk io. But for Linux to get loaded by these old machines, it has be reside somewhere below
512M. This is why I have both the whole target partition, and the small boot partition for the source system
below the 512M mark.

You may wish to actually use the target system, rather than simply build it for a learning exercise. In this
case, you would need to go a bit beyond what is described in this document. You would need to install
gcc and other development tools so that the system could build itself. Once this was done, you could wipe
the ``source'' system and use its space on the target. Perhaps you could move the /usr directory to it.

The Wang only has 8M of RAM in it. I think this is the main reason that the compile of glibc took 90 hours
(and spanned millenia). It ``only'' took 6 hours on my 486 with 32M. My guess is that if I had 16M in the
Wang, it would have taken 24 to 48 hours. Kernel compiles take about 8 hours.

From Power Up To Bash Prompt

13. Building Software From Source 8

I made an ext2 file system on the target partition using mke2fs, and created directories by hand using
mkdir . I didn't have it at the time, but the Filesystem Heirarchy Standard would have been a good thing to
follow.

In the fstab of the source system, I set up the target partition to be mounted at /mnt/target. Most of the
packages have a configuration option for where they are to be installed. By default, the ``base'' directory for a
package installation is /, ie you want to install it on the system where it is being built. I used these options to
set the base install directory to /mnt/target. For example, to install a GNU package to /mnt/target,
you configure as follows

 ./configure −−prefix=/mnt/target

There is a problem with this approach if some of the packages of the target system are more recent than their
equivalents on the source system. For example, I installed ncurses 5 on the target system, but the source had
4. When compiling, by default the headers and libraries of the source system are used. To fix this you need to
set variables or configuration parameters to tell it where the headers and libraries that you want it to use are.
Sometimes all you can do is hack the Makefile. If you look at the output that is produced while a program
is being compiled, the −I flags tell it where to look for headers, and the −L flags tell it where to look for
libraries. Look for a variable called LDFLAGS. This is probably where you can slip a couple extra of these
flags in, and make it look where you want. For example in the Makefile for the procps package, I got it
to use the right libraries by adding

 −L /mnt/target/lib

LILO is installed in the master boot record by Red Hat. I installed LILO for the target system in the boot
sector of the target partition. I then added the following to /etc/lilo.conf in the source system

other=/dev/hda1
 label=target

and reran lilo. This has the effect that when you first boot, one of the options LILO gives you is ``target''.
If you choose this, you get a second instance of LILO which boots the target system. This might seem crazy,
but it allows the separation of the system you are building from the system you are using to build it with.

13.2 Random Tips

If you have a command called thingy on a Linux system with RPM, and want a clue about where to get the
source from, you can use the command:

 rpm −qif `which thingy`

And if you have a Red Hat source CD, you can install the source code using

From Power Up To Bash Prompt

13.2 Random Tips 9

 rpm −i /mnt/cdrom/SRPMS/what.it.just.said−1.2.srpm

Once you have a bash prompt, the next stage is to get your system able to self replicate. I have not done this
yet, but the following are some of the things you will need to install to do this.

• GNU make
• GNU egcs
• gdb
• binutils − assembler, linker, etc; bin86 − intel specific versions
• tar, gzip, bzip2
• diff comes from diffutils, patch comes from patch, hehe

13.3 More Information

• There is a mini−howto on building software from source, the Software Building mini−HOWTO.
• There is also a HOWTO on building a Linux system from scratch. It focuses much more on getting

the system built so it can be used, rather than just doing it as a learning exercise. The Linux From
Scratch HOWTO

NextPreviousContentsNextPreviousContents

14. Conclusion

One of the best things about Linux, in my humble opinion, is that you can get inside it and really find out
how it all works. I hope that you enjoy this as much as I do. And I hope that this little note has helped you do
it.

NextPreviousContents Next PreviousContents

15. Administrivia

From Power Up To Bash Prompt

13.3 More Information 10

http://mirror.aarnet.edu.au/linux/LDP/HOWTO/mini/Software-Building.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/mini/Software-Building.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/mini/Software-Building.html
http://mirror.aarnet.edu.au/pub/linux/LDP/HOWTO/Linux-From-Scratch-HOWTO.html
http://mirror.aarnet.edu.au/pub/linux/LDP/HOWTO/Linux-From-Scratch-HOWTO.html
http://mirror.aarnet.edu.au/pub/linux/LDP/HOWTO/Linux-From-Scratch-HOWTO.html
http://mirror.aarnet.edu.au/pub/linux/LDP/HOWTO/Linux-From-Scratch-HOWTO.html
http://mirror.aarnet.edu.au/pub/linux/LDP/HOWTO/Linux-From-Scratch-HOWTO.html
From-PowerUp-To-Bash-Prompt-HOWTO-14.html
From-PowerUp-To-Bash-Prompt-HOWTO-12.html
From-PowerUp-To-Bash-Prompt-HOWTO-15.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-15.html
From-PowerUp-To-Bash-Prompt-HOWTO-13.html
From-PowerUp-To-Bash-Prompt-HOWTO-14.html

15.1 Copyright

This document is copyright (c) 1999, 2000 Greg O'Keefe. You are welcome to use, copy, distribute or modify
it, without charge, under the terms of the GNU General Public Licence. Please acknowledge me if you use
part of this in another document.

15.2 Homepage

The lastest version of this document lives at From Powerup To Bash Prompt

15.3 Feedback

I would like to hear any comments, criticisms and suggestions for improvement that you have. Please send
them to me Greg O'Keefe

15.4 Acknowledgements

Product names are trademarks of the respective holders, and are hereby considered properly acknowledged.

There are some people I want to say thanks to, for helping to make this happen.

Everyone on the learning@TasLUG mailing list

Thanks for reading all my mails and asking interesting questions. You can join this list by
sending a message to majordomo with

 subscribe learning
 in the message body.

Michael Emery

For reminding me about Unios.

Tim Little

For some good clues about /etc/passwd

sPaKr on #linux in efnet

Who sussed out that syslogd needs /etc/services, and introduced me to the phrase

From Power Up To Bash Prompt

15.1 Copyright 11

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://learning.taslug.org.au/power2bash
http://learning.taslug.org.au/power2bash
http://learning.taslug.org.au/power2bash
http://learning.taslug.org.au/power2bash
http://learning.taslug.org.au/power2bash
mailto:gcokeefe@postoffice.utas.edu.au
mailto:gcokeefe@postoffice.utas.edu.au
mailto:majordomo@taslug.org.au

"rolling your own" to describe building a system from source code.

Alex Aitkin

For bringing Vico and his ``verum ipsum factum'' (understanding arises through making) to
my attention.

15.5 Change History

0.5 −> 0.6

• added change history
• added some todos

15.6 TODO

• add links to home sites, not just the aarnet mirror
• add more exercises
• wipe the target system on the Wang, and rebuild, closely following these notes as a test
• check that all packages specified as kernel requirements (state version) are included

Next PreviousContentsNextPreviousContents

2. Hardware

When you first turn on your computer it tests itself to make sure everything is in working order. This is called
the ``Power on self test''. Then a program called the bootstrap loader, located in the ROM BIOS, looks for a
boot sector. A boot sector is the first sector of a disk and has a small program that can load an operating
system. Boot sectors are marked with a magic number 0xAA55 = 43603 at byte 0x1FE = 500. This is how the
hardware can tell whether the sector is a boot sector or not.

The bootstrap loader has a list of places to look for a boot sector. My old machine looks in the primary floppy
drive, then the primary hard drive. More modern machines can also look for a boot sector on a CD−ROM. If
it finds a boot sector, it loads it into memory and passes control to the program that loads the operating
system. On a typical Linux system, this program will be LILO's first stage boot loader. There are many
different ways of setting your system up to boot though. See the LILO User's Guide for details. See section
LILO for a URL.

From Power Up To Bash Prompt

15.5 Change History 12

From-PowerUp-To-Bash-Prompt-HOWTO-14.html
From-PowerUp-To-Bash-Prompt-HOWTO-3.html
From-PowerUp-To-Bash-Prompt-HOWTO-1.html

Obviously there is a lot more to say about what PC hardware does. But this is not the place to say it. See one
of the many good books about PC hardware.

2.1 Configuration

The machine stores some information about itself in its CMOS. This includes what disks and RAM are in the
system. The machine's BIOS contains a program to let you modify these settings. Check the messages on
your screen as the machine is turned on to see how to access it. On my machine, you press the delete key
before it begins loading its operating system.

2.2 Exercises

A good way to learn about PC hardware is to build a machine out of second hand parts. Get at least a 386 so
you can easily run Linux on it. It won't cost much. Ask around, someone might give you some of the parts
you need.

Check out, download compile and make a boot disk for Unios. This is just a bootable "Hello World!"
program, consisting of just over 100 lines of assembler code. It would be good to see it converted to a format
that the GNU assembler as can understand.

Check out the source code for LILO's boot loader.

2.3 More Information

• The Unix and Internet Fundamentals HOWTO, by Eric S. Raymond,
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix−Internet−Fundamentals−HOWTO.html especially
section 3, What happens when you switch on a computer?

• The first chapter of The LILO User's Guide gives an excellent explanation of PC disk partitions and
booting. See LILO for a URL.

• The NEW Peter Norton Programmer's Guide to the IBM PC & PS/2, by Peter Norton and Richard
Wilton, Microsoft Press 1988 There is a newer Norton book, which looks good, but I can't afford it
right now!

• One of the many books available on upgrading PC's

NextPreviousContentsNextPreviousContents

From Power Up To Bash Prompt

2.1 Configuration 13

http://www.unios.org
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Unix-Internet-Fundamentals-HOWTO.html
From-PowerUp-To-Bash-Prompt-HOWTO-3.html
From-PowerUp-To-Bash-Prompt-HOWTO-1.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html
From-PowerUp-To-Bash-Prompt-HOWTO-2.html

3. Lilo

When the computer loads a boot sector on a normal Linux system, what it loads is actually a part of lilo,
called the ``first stage boot loader''. This is a tiny program who's only job in life is to load and run the
``second stage boot loader''.

The second stage loader gives you a prompt (if it was installed that way) and loads the operating system you
choose.

When your system is up and running, and you run lilo, what you are actually running is the ``map
installer''. This reads the configuration file /etc/lilo.conf and writes the boot loaders, and information
about the operating systems it can load, to the hard disk.

There are lots of different ways to set your system up to boot. What I have just explained is the most obvious
and ``normal'' way, at least for a system who's main operating system is Linux. The Lilo Users' Guide
explains several examples of ``boot concepts''. It is worth reading these, and trying some of them out.

3.1 Configuration

The configuration file for lilo is /etc/lilo.conf. There is a manual page for it: type man
lilo.conf into a shell to see it. The main thing in lilo.conf is one entry for each thing that lilo is set up to
boot. For a Linux entry, this includes where the kernel is, and what disk partition to mount as the root
filesystem. For other operating systems, the main piece of information is which partition to boot from.

3.2 Exercises

DANGER: take care with these exercises. It is easy enough to get something wrong and screw up your master
boot record and make your system unuseable. Make sure you have a working rescue disk, and know how to
use it to fix things up again. See below for a link to tomsrtbt, the rescue disk I use and recommend. The best
precaution is to use a machine that doesn't matter.

Set up lilo on a floppy disk. It doesn't matter if there is nothing other than a kernel on the floppy − you will
get a ``kernel panic'' when the kernel is ready to load init, but at least you will know that lilo is working.

If you like you can press on and see how much of a system you can get going on the floppy. This is probably
the second best Linux learning activity around. See the Bootdisk HOWTO (url below), and tomsrtbt (url
below) for clues.

Get lilo to boot unios (see section hardware exercises for a URL). As an extra challenge, see if you can do
this on a floppy disk.

From Power Up To Bash Prompt

3. Lilo 14

Make a boot−loop. Get lilo in the master boot record to boot lilo in one of the primary partition boot sectors,
and have that boot lilo in the master boot record... Or perhaps use the master boot record and all four primary
partitions to make a five point loop. Fun!

3.3 More Information

• The lilo man page.
• Lilo download, Australian mirror. These directories also contain the ``LILO User's Guide''

lilo−u−21.ps.gz (or a later version). You may already have this document though. Check
/usr/doc/lilo or there abouts. The postscript version is better than the plain text, since it
contains diagrams and tables.

• tomsrtbt the coolest single floppy linux. Makes a great rescue disk.
• The Bootdisk HOWTO

NextPreviousContentsNextPreviousContents

4. The Linux Kernel

The kernel does quite a lot really. I think a fair way of summing it up is that it makes the hardware do what
the programs want, fairly and efficiently.

The processor can only execute one instruction at a time, but Linux systems appear to be running lots of
things simultaneously. The kernel acheives this by switching from task to task really quickly. It makes the
best use of the processor by keeping track of which processes are ready to go, and which ones are waiting for
something like a record from a hard disk file, or some keyboard input. This kernel task is called scheduling.

If a program isn't doing anything, then it doesn't need to be in RAM. Even a program that is doing something,
might have parts that aren't doing anything. The address space of each process is divided into pages. The
Kernel keeps track of which pages of which processes are being used the most. The pages that aren't used so
much can be moved out to the swap partition. When they are needed again, another unused page can be paged
out to make way for it. This is virtual memory management.

If you have ever compiled your own Kernel, you will have noticed that there are many many options for
specific devices. The kernel contains a lot of specific code to talk to diverse kinds of hardware, and present it
all in a nice uniform way to the application programs.

From Power Up To Bash Prompt

3.3 More Information 15

ftp://lrcftp.epfl.ch/pub/linux/local/lilo/
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/boot/lilo/
http://www.toms.net/rb
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Bootdisk-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Bootdisk-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Bootdisk-HOWTO.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html
From-PowerUp-To-Bash-Prompt-HOWTO-2.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-3.html

The Kernel also manages the filesystem, interprocess communication, and a lot of networking stuff.

Once the kernel is loaded, the first thing it does is look for an init program to run.

4.1 Configuration

Most of the configuration of the kernel is done when you build it, using make menuconfig, or make
xconfig in /usr/src/linux/ (or wherever your Linux kernel source is). You can reset the default
video mode, root filesystem, swap device and RAM disk size using rdev. These parameters and more can
also be passed to the kernel from lilo. You can give lilo parameters to pass to the kernel either in lilo.conf, or
at the lilo prompt. For example if you wanted to use hda3 as your root file system instead of hda2, you might
type

 LILO: linux root=/dev/hda3

If you are building a system from source, you can make life a lot simpler by creating a ``monolithic'' kernel.
That is one with no modules. Then you don't have to copy kernel modules to the target system.

NOTE: The System.map file is used by the kernel logger to determine the module names generating
messages. The program top also uses this information. When you copy the kernel to the target system, copy
System.map too.

4.2 Exercises

Think about this: /dev/hda3 is a special type of file that describes a hard disk partition. But it lives on a
file system just like all other files. The kernel wants to know which partition to mount as the root filesystem −
it doesn't have a file system yet. So how can it read /dev/hda3 to find out which partition to mount?

If you haven't already: build your own kernel. Read all the help information for each option.

See how small a kernel you can make that still works. You can learn a lot by leaving the wrong things out!

Read ``The Linux Kernel'' (URL below) and as you do, find the parts of the source code that it refers to. The
book (as I write) refers to kernel version 2.0.33, which is pretty out of date. It might be easier to follow if you
download this old version and read the source there. Its amazing to find bits of C code called ``process'' and
``page''.

Hack! See if you can make it spit out some extra messages or something.

From Power Up To Bash Prompt

4.1 Configuration 16

4.3 More Information

• /usr/src/linux/README and the contents of
/usr/src/linux/Documentation/ (These may be in some other place on your system)

• The Kernel HOWTO
• The help available when you configure a kernel using make menuconfig or make xconfig
• The Linux Kernel (and other LDP Guides)
• Kernel source download − Australian mirror
• The Linux Kernel home pagedownload Use one of the mirrors listed at kernel.org, because they

are always overloaded.

NextPreviousContentsNextPreviousContents

5. The GNU C Library

The next thing that happens as your computer starts up is that init is loaded and run. However, init, like
almost all programs, uses functions from libraries.

You may have seen an example C program like this:

 main() {
 printf("Hello World!\n");
 }

The program contains no definition of printf, so where does it come from? It comes from the standard C
libraries, on a GNU/Linux system, glibc. If you compile it under Visual C++, then it comes from a Microsoft
implementation of the same standard functions. There are zillions of these standard functions, for math,
string, dates/times memory allocation and so on. Everything in Unix (including Linux) is either written in C
or has to try hard to pretend it is, so everything uses these functions.

If you look in /lib on your linux system you will see lots of files called libsomething.so or
libsomething.a etc. They are libraries of these functions. Glibc is just the GNU implementation of these
functions.

There are two ways programs can use these library functions. If you statically link a program, these library
functions are copied into the executable that gets created. This is what the libsomething.a libraries are
for. If you dynamically link a program (and this is the default), then when the program is running and needs
the library code, it is called from the libsomething.so file.

From Power Up To Bash Prompt

4.3 More Information 17

http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Kernel-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Kernel-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/HOWTO/Kernel-HOWTO.html
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://kernel.mirror.aarnet.edu.au/pub/linux/kernel/
http://www.kernel.org
http://www.kernel.org
ftp://ftp.kernel.org/pub/linux/kernel
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-3.html
From-PowerUp-To-Bash-Prompt-HOWTO-6.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html

The command ldd is your friend when you want to work out which libraries are needed by a particular
program. For example, here are the libraries that bash uses:

 [greg@Curry power2bash]$ ldd /bin/bash
 libtermcap.so.2 => /lib/libtermcap.so.2 (0x40019000)
 libc.so.6 => /lib/libc.so.6 (0x4001d000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)

5.1 Configuration

Some of the functions in the libraries depend on where you are. For example, in Australia we write dates as
dd/mm/yy, but Americans write mm/dd/yy. There is a program that comes with the glibc distribution
called localedef which enables you to set this up.

5.2 Exercises

Use ldd to find out what libraries your favourite applications use.

Use ldd to find out what libraries init uses.

Make a toy library, with just one or two functions in it. The program ar is used to create them, the man page
for ar might be a good place to start investigating how this is done. Write, compile and link a program that
uses this library.

5.3 More Information

• Australian GNU libc mirror. You will also need the linuxthreads and libcrypt addons. If libcrypt is
not there it is because of some US export laws. There will be a README or some such saying where
you can get it from.

• Australian GNU ncurses mirror. Ncurses is a library that provides a lot of text screen capabilities. It
includes the terminfo database, which replaces the termcap file. You can (and probably should)
compile ncurses as a glibc addon.

NextPreviousContentsNextPreviousContents

From Power Up To Bash Prompt

5.1 Configuration 18

http://mirror.aarnet.edu.au/pub/gnu/glibc
http://mirror.aarnet.edu.au/pub/gnu/ncurses
From-PowerUp-To-Bash-Prompt-HOWTO-6.html
From-PowerUp-To-Bash-Prompt-HOWTO-4.html
From-PowerUp-To-Bash-Prompt-HOWTO-7.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html

6. Init

I will only talk about the ``System V'' style of init that Linux systems mostly use. There are alternatives.
Infact, you can put any program you like in /sbin/init, and the kernel will run it when it has finished
loading.

It is inits job to get everthing running the way it should be. It checks that the file systems are ok and mounts
them. It starts up ``daemons'' to log system messages, do networking, serve web pages, listen to your mouse
and so on. It also starts the getty processes that put the login prompts on your virtual terminals.

There is a whole complicated story about switching ``run−levels'', but I'm going to mostly skip that, and just
talk about system start up.

Init reads the file /etc/inittab, which tells it what to do. Typically, the first thing it is told to do is to run
an initialisation script. The program that executes (or interprets) this script is bash, the same program that
gives you a command prompt. In Debian systems, the initialisation script is /etc/init.d/rcS, on Red
Hat, /etc/rc.d/rc.sysinit. This is where the filesystems get checked and mounted, the clock set,
swap space enabled, hostname gets set etc.

Next, another script is called to take us into the default run−level. This just means a set of subsystems to start
up. There is a set of directories /etc/rc.d/rc0.d, /etc/rc.d/rc1.d, ..., /etc/rc.d/rc6.d in
Red Hat, or /etc/rc0.d, /etc/rc1.d, ..., /etc/rc6.d in Debian, which correspond to the
run−levels. If we are going into runlevel 3 on a Debian system, then the script runs all the scripts in
/etc/rc3.d that start with `S' (for start). These scripts are really just links to scripts in another directory
usually called init.d.

So our run−level script was called by init, and it is looking in a directory for scripts starting with `S'. It might
find S10syslog first. The numbers tell the run−level script which order to run them in. So in this case
S10syslog gets run first, since there were no scripts starting with S00 ... S09. But S10syslog is really a
link to /etc/init.d/syslog which is a script to start and stop the system logger. Because the link starts
with an `S', the run−level script knows to execute the syslog script with a ``start'' parameter. There are
corresponding links starting with `K', which specify what to shut down and in what order when leaving the
run−level.

To change what subsystems start up by default, you must set up these links in the rcN.d directory, where N
is the default runlevel set in your inittab.

The last important thing that init does is to start some getty's. These are ``respawned'' which means that if
they stop, init just starts them again. Most distributions come with six virtual terminals. You may want less
than this to save memory, or more so you can leave things running and quickly flick to them as you need
them. You may also want to run a getty for a text terminal or a dial in modem. In this case you will need to
edit the inittab file.

From Power Up To Bash Prompt

6. Init 19

6.1 Configuration

/etc/inittab is the top level configuration file for init.

The rcN.d directories, where N = 0, 1, ..., 6 determine what subsystems are started.

Somewhere in one of the scripts invoked by init, the mount −a command will be issued. This means mount
all the file systems that are supposed to be mounted. The file /etc/fstab defines what is supposed to be
mounted. If you want to change what gets mounted where when your system starts up, this is the file you will
need to edit. There is a man page for fstab.

6.2 Exercises

Find the rcN.d directory for the default run−level of your system and do a ls −l to see what the files are
links to.

Change the number of gettys that run on your system.

Remove any subsystems that you don't need from your default run−level.

See how little you can get away with starting.

Set up a floppy disk with lilo, a kernel and a statically linked "hello world" program called
/sbin/init and watch it boot up and say hello.

Watch carefully as your system starts up, and take notes about what it tells you is happening. Or print a
section of your system log /var/log/messages from start up time. Then starting at inittab, walk
through all the scripts and see what code does what. You can also put extra start up messages in, such as

 echo "Hello, I am rc.sysinit"

This is a good exercise in learning Bash shell scripting too, some of the scripts are quite complicated. Have a
good Bash reference handy.

From Power Up To Bash Prompt

6.1 Configuration 20

6.3 More Information

• Australian Sys V init mirror
• Sys V init download
• There are man pages for the inittab and fstab files. Type (eg) man inittab into a shell to

see it.
• The Linux System Administrators Guide has a good section on init.

NextPreviousContentsNextPreviousContents

7. The Filesystem

In this section, I will be using the word ``filesystem'' in two different ways. There are filesystems on disk
partitions and other devices, and there is the filesystem as it is presented to you by a running Linux system. In
Linux, you ``mount'' a disk filesystem onto the system's filesystem.

In the previous section I mentioned that init scripts check and mount the filesystems. The commands that do
this are fsck and mount respectively.

A hard disk is just a big space that you can write ones and zeros on. A filesystem imposes some structure on
this, and makes it look like files within directories within directories... Each file is represented by an inode,
which says who's file it is, when it was created and where to find its contents. Directories are also represented
by inodes, but these say where to find the inodes of the files that are in the directory. If the system wants to
read /home/greg/bigboobs.jpeg, it first finds the inode for the root directory / in the ``superblock'',
then finds the inode for the directory home in the contents of /, then finds the inode for the directory greg,
then the inode for bigboobs.jpeg which will tell it which disk blocks to read.

If we add some data to the end of a file, it could happen that the data is written before the inode is updated to
say that the new blocks belong to the file, or vice versa. If the power cuts out at this point, the filesystem will
be broken. It is this kind of thing that fsck attempts to detect and repair.

The mount command takes a filesystem on a device, and adds it to the heirarchy that you see when you use
your system. Usually, the kernel mounts its root file system read−only. The mount command is used to
remount it read−write after fsck has checked that it is ok.

Linux supports other kinds of filesystem too: msdos, vfat, minix and so on. The details of the specific kind of
filesystem are abstracted away by the virtual file system (VFS). I won't go into any detail on this though.
There is a discussion of it in ``The Linux Kernel'' (see The Linux Kernel for a url)

From Power Up To Bash Prompt

6.3 More Information 21

http://mirror.aarnet.edu.au/pub/linux/metalab/system/daemons/init
http://sunsite.unc.edu/pub/Linux/system/daemons/init
http://mirror.aarnet.edu.au/linux/LDP/LDP/
From-PowerUp-To-Bash-Prompt-HOWTO-7.html
From-PowerUp-To-Bash-Prompt-HOWTO-5.html
From-PowerUp-To-Bash-Prompt-HOWTO-8.html
From-PowerUp-To-Bash-Prompt-HOWTO-6.html

7.1 Configuration

There are parameters to the command mke2fs which creates ext2 filesystems. These control the size of
blocks, the number of inodes and so on. Check the mke2fs man page for details.

What gets mounted where on your filesystem is controlled by the /etc/fstab file. It also has a man page.

7.2 Exercises

Make a very small filesystem, and view it with a hex viewer. Identify inodes, superblocks and file contents.

I believe there are tools that give you a graphical view of a filesystem. Find one, try it out, and email me the
url and a review!

Check out the ext2 filesystem code in the Kernel.

7.3 More Information

• Chapter 9 of the LDP book ``The Linux Kernel'' is an excellent description of filesystems. You can
find it at the Australian LDP mirror

• The mount command is part of the util−linux package, there is a link to it in Login and Getty.
• man pages for mount, fstab, fsck and mke2fs
• EXT2 File System Utilities ext2fsprogs home page ext2fsprogs Australian mirror. There is also a

Ext2fs−overview document here, although it is out of date, and not as readable as chapter 9 of ``The
Linux Kernel''

• MAKEDEV This is a script to make all the device files in /dev
• Unix File System Standard This describes what should go where in a Unix file system, and why. It

also has minimum requirements for the contents of /bin, /sbin and so on. This is a good reference
if your goal is to make a minimal yet complete system.

NextPreviousContentsNextPreviousContents

From Power Up To Bash Prompt

7.1 Configuration 22

http://mirror.aarnet.edu.au/linux/LDP/LDP/
http://web.mit.edu/tytso/www/linux/e2fsprogs.html
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/filesystems/ext2/
ftp://mirror.aarnet.edu.au/pub/linux/metalab/system/admin/
ftp://tsx-11.mit.edu/pub/linux/docs/linux-standards/fsstnd/
ftp://tsx-11.mit.edu/pub/linux/docs/linux-standards/fsstnd/
ftp://tsx-11.mit.edu/pub/linux/docs/linux-standards/fsstnd/
ftp://tsx-11.mit.edu/pub/linux/docs/linux-standards/fsstnd/
From-PowerUp-To-Bash-Prompt-HOWTO-8.html
From-PowerUp-To-Bash-Prompt-HOWTO-6.html
From-PowerUp-To-Bash-Prompt-HOWTO-9.html
From-PowerUp-To-Bash-Prompt-HOWTO-7.html

8. Kernel Daemons

Unfortunately, this section contains more conjectures and questions than facts. Perhaps you can help?

If you issue the ps aux command, you will see something like the following:

USER PID %CPU %MEM SIZE RSS TTY STAT START TIME COMMAND
root 1 0.1 8.0 1284 536 ? S 07:37 0:04 init [2]
root 2 0.0 0.0 0 0 ? SW 07:37 0:00 (kflushd)
root 3 0.0 0.0 0 0 ? SW 07:37 0:00 (kupdate)
root 4 0.0 0.0 0 0 ? SW 07:37 0:00 (kpiod)
root 5 0.0 0.0 0 0 ? SW 07:37 0:00 (kswapd)
root 52 0.0 10.7 1552 716 ? S 07:38 0:01 syslogd −m 0
root 54 0.0 7.1 1276 480 ? S 07:38 0:00 klogd
root 56 0.3 17.3 2232 1156 1 S 07:38 0:13 −bash
root 57 0.0 7.1 1272 480 2 S 07:38 0:01 /sbin/agetty 38400 tt
root 64 0.1 7.2 1272 484 S1 S 08:16 0:01 /sbin/agetty −L ttyS1
root 70 0.0 10.6 1472 708 1 R Sep 11 0:01 ps aux

This is a list of the processes running on the system. Note that init is process number one. Processes 2, 3, 4
and 5 are kflushd, kupdate, kpiod and kswapd. There is something strange here though: notice that in both the
virtual storage size (SIZE) and the Real Storage Size (RSS) columns, these processes have zeroes. How can a
process use no memory? These processes are really part of the kernel. The kernel does not show up on
process lists at all, and you can only work out what memory it is using by subtracting the memory available
from the amount on your system. The brackets around the command name could signify that these are kernel
processes(?)

kswapd moves parts of programs that are not currently being used from real storage (ie RAM) to the swap
space (ie hard disk). kflushd writes data from buffers to disk. This allows things to run faster. What
programs write can be kept in memory, in a buffer, then written to disk in larger more efficient chunks. I
don't know what kupdate and kpiod are for.

This is where my knowledge ends. What do these last two daemons do? Why do kernel daemons get explicit
process numbers rather than just being anonymous bits of kernel code? Does init actually start them, or are
they already running when init arrives on the scene?

I put a script to mount /proc and do a ps aux in /sbin/init. Process 1 was the script itself, and
processess 2, 3, 4 and 5 were the kernel daemons just as under the real init. The kernel must put these
processes there, because my script certainly didn't!

From Power Up To Bash Prompt

8. Kernel Daemons 23

8.1 Configuration

I don't know of any configuration for these kernel daemons.

8.2 Exercises

Find out what these processes are for, how they work, and write a new ``Kernel Daemons'' section for this
document and send it to me!

8.3 More Information

The Linux Documentation Project's ``The Linux Kernel'' (see The Linux Kernel for url), and the kernel
source code are all I can think of.

NextPreviousContentsNextPreviousContents

9. System Logger

Init starts the syslogd and klogd daemons. They write messages to logs. The kernel's messages are
handled by klogd, while syslogd handles log messages from other processes. The main log is
/var/log/messages. This is a good place to look if something is going wrong with your system. Often
there will be a valuable clue in there.

9.1 Configuration

The file /etc/syslog.conf tells the loggers what messages to put where. Messages are identified by
which service they come from, and what priority level they are. This configuration file consists of lines that
say messages from service x with priority y go to z, where z is a file, tty, printer, remote host or whatever.

NOTE: Syslog requires the /etc/services file to be present. The services file allocates ports. I am not
sure whether syslog needs a port allocated so that it can do remote logging, or whether even local logging is
done through a port.

From Power Up To Bash Prompt

8.1 Configuration 24

From-PowerUp-To-Bash-Prompt-HOWTO-9.html
From-PowerUp-To-Bash-Prompt-HOWTO-7.html
From-PowerUp-To-Bash-Prompt-HOWTO-10.html
From-PowerUp-To-Bash-Prompt-HOWTO-8.html

9.2 Exercises

Have a look at your system log. Find a message you don't understand, and find out what it means.

Send all your log messages to a tty. (set it back to normal once done)

9.3 More Information

Australian sysklogd Mirror

NextPreviousContents

From Power Up To Bash Prompt

9.2 Exercises 25

http://mirror.aarnet.edu.au/pub/linux/metalab/system/daemons/
From-PowerUp-To-Bash-Prompt-HOWTO-10.html
From-PowerUp-To-Bash-Prompt-HOWTO-8.html

	Table of Contents
	From Power Up To Bash Prompt
	Greg O'Keefe, gcokeefe@postoffice.utas.edu.au
	1.Introduction
	2.Hardware
	3.Lilo
	4.The Linux Kernel
	5.The GNU C Library
	6.Init
	7.The Filesystem
	8.Kernel Daemons
	9.System Logger
	10.Getty and Login
	11.Bash
	12.Basic Commands
	13.Building Software From Source
	14.Conclusion
	15.Administrivia
	1. Introduction
	10. Getty and Login
	10.1 Configuration
	10.2 Exercises
	10.3 More Information
	11. Bash
	11.1 Configuration
	11.2 Exercises
	11.3 More Information
	12. Basic Commands
	13. Building Software From Source
	13.1 How I Built My System
	13.2 Random Tips
	13.3 More Information
	14. Conclusion
	15. Administrivia
	15.1 Copyright
	15.2 Homepage
	15.3 Feedback
	15.4 Acknowledgements
	15.5 Change History
	0.5 -> 0.6

	15.6 TODO
	2. Hardware
	2.1 Configuration
	2.2 Exercises
	2.3 More Information
	3. Lilo
	3.1 Configuration
	3.2 Exercises
	3.3 More Information
	4. The Linux Kernel
	4.1 Configuration
	4.2 Exercises
	4.3 More Information
	5. The GNU C Library
	5.1 Configuration
	5.2 Exercises
	5.3 More Information
	6. Init
	6.1 Configuration
	6.2 Exercises
	6.3 More Information
	7. The Filesystem
	7.1 Configuration
	7.2 Exercises
	7.3 More Information
	8. Kernel Daemons
	8.1 Configuration
	8.2 Exercises
	8.3 More Information
	9. System Logger
	9.1 Configuration
	9.2 Exercises
	9.3 More Information

