
Linux AI & Alife HOWTO



Table of Contents

Linux AI & Alife HOWTO................................................................................................................................1
by John Eikenberry..................................................................................................................................1
1.Introduction...........................................................................................................................................1
2.Traditional Artificial Intelligence.........................................................................................................1
3.Connectionism......................................................................................................................................1
4.Evolutionary Computing.......................................................................................................................1
5.Alife & Complex Systems....................................................................................................................2
6.Autonomous Agents.............................................................................................................................2
7.Programming languages........................................................................................................................2
1. Introduction..........................................................................................................................................2
1.1 Purpose...............................................................................................................................................2
1.2 Where to find this software................................................................................................................2
1.3 Updates and comments......................................................................................................................3
2. Traditional Artificial Intelligence........................................................................................................3
2.1 AI class/code libraries........................................................................................................................3
2.2 AI software kits, applications, etc......................................................................................................5
3. Connectionism...................................................................................................................................13
3.1 Connectionist class/code libraries....................................................................................................13
3.2 Connectionist software kits/applications.........................................................................................18
4. Evolutionary Computing....................................................................................................................24
4.1 EC class/code libraries.....................................................................................................................25
4.2 EC software kits/applications..........................................................................................................31
5. Alife & Complex Systems.................................................................................................................33
5.1 Alife & CS class/code libraries........................................................................................................34
5.2 Alife & CS software kits, applications, etc......................................................................................35
6. Autonomous Agents..........................................................................................................................40
7. Programming languages.....................................................................................................................49

Linux AI & Alife HOWTO

i



Linux AI & Alife HOWTO

by John Eikenberry

Last modified: Jan 2000

This howto mainly contains information about, and links to, various AI related software libraries,
applications, etc. that work on the Linux platform. All of it is (at least) free for personal use. The new master
page for this document is http://zhar.net/gnu−linux/howto/

1.Introduction

• 1.1 Purpose
• 1.2 Where to find this software
• 1.3 Updates and comments

2.Traditional Artificial Intelligence

• 2.1 AI class/code libraries
• 2.2 AI software kits, applications, etc.

3.Connectionism

• 3.1 Connectionist class/code libraries
• 3.2 Connectionist software kits/applications

4.Evolutionary Computing

• 4.1 EC class/code libraries
• 4.2 EC software kits/applications

Linux AI & Alife HOWTO 1

mailto:jae@NOSPAM-zhar.net
mailto:jae@NOSPAM-zhar.net
http://zhar.net/gnu-linux/howto/
AI-Alife-HOWTO-1.html
AI-Alife-HOWTO-2.html
AI-Alife-HOWTO-2.html
AI-Alife-HOWTO-2.html
AI-Alife-HOWTO-3.html
AI-Alife-HOWTO-4.html
AI-Alife-HOWTO-4.html


5.Alife & Complex Systems

• 5.1 Alife & CS class/code libraries
• 5.2 Alife & CS software kits, applications, etc.

6.Autonomous Agents

7.Programming languages

Next Previous Contents Next Previous Contents

1. Introduction

1.1 Purpose

The Linux OS has evolved from its origins in hackerdom to a full blown UNIX, capable of rivaling any
commercial UNIX. It now provides an inexpensive base to build a great workstation. It has shed its hardware
dependencies, having been ported to DEC Alphas, Sparcs, PowerPCs, with others on the way. This potential
speed boost along with its networking support will make it great for workstation clusters. As a workstation it
allows for all sorts of research and development, including artificial intelligence and artificial life.

The purpose of this Mini−Howto is to provide a source to find out about various software packages, code
libraries, and anything else that will help someone get started working with (and find resources for) artificial
intelligence and artificial life. All done with Linux specifically in mind.

1.2 Where to find this software

All this software should be available via the net (ftp || http). The links to where to find it will be provided in
the description of each package. There will also be plenty of software not covered on these pages (which is
usually platform independent) located on one of the resources listed on the links section of the Master Site
(given above).

Linux AI & Alife HOWTO

5.Alife & Complex Systems 2

AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-6.html
AI-Alife-HOWTO-6.html
AI-Alife-HOWTO-7.html
AI-Alife-HOWTO-7.html
AI-Alife-HOWTO-1.html
AI-Alife-HOWTO-2.html
http://zhar.net/gnu-linux/howto/links/
http://zhar.net/gnu-linux/howto/links/


1.3 Updates and comments

If you find any mistakes, know of updates to one of the items below, or have problems compiling and of the
applications, please mail me at: jae@NOSPAM−zhar.net and I'll see what I can do.

If you know of any AI/Alife applications, class libraries, etc. Please email me about them. Include your
name, ftp and/or http sites where they can be found, plus a brief overview/commentary on the software (this
info would make things a lot easier on me... but don't feel obligated ;).

I know that keeping this list up to date and expanding it will take quite a bit of work. So please be patient (I
do have other projects). I hope you will find this document helpful.

Next Previous ContentsNextPreviousContents

2. Traditional Artificial Intelligence

Traditional AI is based around the ideas of logic, rule systems, linguistics, and the concept of rationality. At
its roots are programming languages such as Lisp and Prolog. Expert systems are the largest successful
example of this paradigm. An expert system consists of a detailed knowledge base and a complex rule system
to utilize it. Such systems have been used for such things as medical diagnosis support and credit checking
systems.

2.1 AI class/code libraries

These are libraries of code or classes for use in programming within the artificial intelligence field. They are
not meant as stand alone applications, but rather as tools for building your own applications.

AI Search

♦ FTP site: ftp.icce.rug.nl/pub/peter/

Submitted by: Peter M. Bouthoorn

Linux AI & Alife HOWTO

1.3 Updates and comments 3

mailto=jaezhar.net
mailto:jae@NOSPAM-zhar.net
mailto:jae@NOSPAM-zhar.net
AI-Alife-HOWTO-2.html
AI-Alife-HOWTO-3.html
AI-Alife-HOWTO-1.html
ftp://ftp.icce.rug.nl/pub/peter/
mailto:peter@obelix.icce.rug.nl
mailto:peter@obelix.icce.rug.nl
mailto:peter@obelix.icce.rug.nl


Basically, the library offers the programmer a set of search algorithms that may be used to solve all
kind of different problems. The idea is that when developing problem solving software the
programmer should be able to concentrate on the representation of the problem to be solved and
should not need to bother with the implementation of the search algorithm that will be used to
actually conduct the search. This idea has been realized by the implementation of a set of search
classes that may be incorporated in other software through C++'s features of derivation and
inheritance. The following search algorithms have been implemented:

− depth−first tree and graph search. − breadth−first tree and graph search. − uniform−cost tree and
graph search. − best−first search. − bidirectional depth−first tree and graph search. − bidirectional
breadth−first tree and graph search. − AND/OR depth tree search. − AND/OR breadth tree search.

Peter plans to release a new version of the library soon, which will also be featured in a book about
C++ and AI to appear this year.

Chess In Lisp (CIL)

♦ FTP site: chess.onenet.net/pub/chess/uploads/projects/

The CIL (Chess In Lisp) foundation is a Common Lisp implementaion of all the core functions
needed for development of chess applications. The main purpose of the CIL project is to get AI
researchers interested in using Lisp to work in the chess domain.

DAI

♦ Web site: starship.skyport.net/crew/gandalf/DNET/AI

A library for the Python programming language that provides an object oriented interface to the
CLIPS expert system tool. It includes an interface to COOL (CLIPS Object Oriented Language) that
allows:

♦ Investigate COOL classes
♦ Create and manipulate with COOL instances
♦ Manipulate with COOL message−handler's
♦ Manipulate with Modules

Linux AI & Alife HOWTO

1.3 Updates and comments 4

ftp://chess.onenet.net/pub/chess/uploads/projects/
http://starship.skyport.net/crew/gandalf/DNET/AI/


Nyquist

♦ Web site: www.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/music.html

The Computer Music Project at CMU is developing computer music and interactive performance
technology to enhance human musical experience and creativity. This interdisciplinary effort draws
on Music Theory, Cognitive Science, Artificial Intelligence and Machine Learning, Human
Computer Interaction, Real−Time Systems, Computer Graphics and Animation, Multimedia,
Programming Languages, and Signal Processing. A paradigmatic example of these interdisciplinary
efforts is the creation of interactive performances that couple human musical improvisation with
intelligent computer agents in real−time.

Screamer

♦ Web site: www.cis.upenn.edu/~screamer−tools/home.html

Screamer is an extension of Common Lisp that adds support for nondeterministic programming.
Screamer consists of two levels. The basic nondeterministic level adds support for backtracking and
undoable side effects. On top of this nondeterministic substrate, Screamer provides a comprehensive
constraint programming language in which one can formulate and solve mixed systems of numeric
and symbolic constraints. Together, these two levels augment Common Lisp with practically all of
the functionality of both Prolog and constraint logic programming languages such as CHiP and
CLP(R). Furthermore, Screamer is fully integrated with Common Lisp. Screamer programs can
coexist and interoperate with other extensions to Common Lisp such as CLOS, CLIM and Iterate.

2.2 AI software kits, applications, etc.

These are various applications, software kits, etc. meant for research in the field of artificial intelligence.
Their ease of use will vary, as they were designed to meet some particular research interest more than as an
easy to use commercial package.

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 5

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/music/web/music.html
http://www.cis.upenn.edu/~screamer-tools/home.html


ASA − Adaptive Simulated Annealing

♦ Web site: www.ingber.com/#ASA−CODE
♦ FTP site: ftp.ingber.com/

ASA (Adaptive Simulated Annealing) is a powerful global optimization C−code algorithm especially
useful for nonlinear and/or stochastic systems.

ASA is developed to statistically find the best global fit of a nonlinear non−convex cost−function
over a D−dimensional space. This algorithm permits an annealing schedule for 'temperature' T
decreasing exponentially in annealing−time k, T = T_0 exp(−c k^1/D). The introduction of
re−annealing also permits adaptation to changing sensitivities in the multi−dimensional
parameter−space. This annealing schedule is faster than fast Cauchy annealing, where T = T_0/k, and
much faster than Boltzmann annealing, where T = T_0/ln k.

Babylon

♦ FTP site: ftp.gmd.de/gmd/ai−research/Software/Babylon/

BABYLON is a modular, configurable, hybrid environment for developing expert systems. Its
features include objects, rules with forward and backward chaining, logic (Prolog) and constraints.
BABYLON is implemented and embedded in Common Lisp.

CLEARS

♦ Web site: www.coli.uni−sb.de/~clears/

The CLEARS system is an interactive graphical environment for computational semantics. The tool
allows exploration and comparison of different semantic formalisms, and their interaction with
syntax. This enables the user to get an idea of the range of possibilities of semantic construction, and
also where there is real convergence between theories.

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 6

http://www.ingber.com/#ASA-CODE
ftp://ftp.ingber.com/
ftp://ftp.gmd.de/gmd/ai-research/Software/Babylon/
http://www.coli.uni-sb.de/~clears/


CLIG

♦ Web site: www.ags.uni−sb.de/~konrad/clig.html

CLIG is an interactive, extendible grapher for visualizing linguistic data structures like trees, feature
structures, Discourse Representation Structures (DRS), logical formulas etc. All of these can be
freely mixed and embedded into each other. The grapher has been designed both to be stand−alone
and to be used as an add−on for linguistic applications which display their output in a graphical
manner.

CLIPS

♦ Web site: www.jsc.nasa.gov/~clips/CLIPS.html
♦ FTP site: cs.cmu.edu/afs/cs.cmu.edu/project/ai−repository/ai/areas/expert/systems/clips

CLIPS is a productive development and delivery expert system tool which provides a complete
environment for the construction of rule and/or object based expert systems.

CLIPS provides a cohesive tool for handling a wide variety of knowledge with support for three
different programming paradigms: rule−based, object−oriented and procedural. Rule−based
programming allows knowledge to be represented as heuristics, or "rules of thumb," which specify a
set of actions to be performed for a given situation. Object−oriented programming allows complex
systems to be modeled as modular components (which can be easily reused to model other systems or
to create new components). The procedural programming capabilities provided by CLIPS are similar
to capabilities found in languages such as C, Pascal, Ada, and LISP.

EMA−XPS − A Hybrid Graphic Expert System Shell

♦ Web site: wmwap1.math.uni−wuppertal.de:80/EMA−XPS/

EMA−XPS is a hybrid graphic expert system shell based on the ASCII−oriented shell Babylon 2.3 of
the German National Research Center for Computer Sciences (GMD). In addition to Babylon's
AI−power (object oriented data representation, forward and backward chained rules − collectible into
sets, horn clauses, and constraint networks) a graphic interface based on the X11 Window System
and the OSF/Motif Widget Library has been provided.

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 7

http://www.ags.uni-sb.de/~konrad/clig.html
http://www.jsc.nasa.gov/~clips/CLIPS.html
ftp://cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/areas/expert/systems/clips
http://wmwap1.math.uni-wuppertal.de:80/EMA-XPS/


FOOL & FOX

♦ FTP site: ntia.its.bldrdoc.gov/pub/fuzzy/prog/

FOOL stands for the Fuzzy Organizer OLdenburg. It is a result from a project at the University of
Oldenburg. FOOL is a graphical user interface to develop fuzzy rulebases. FOOL will help you to
invent and maintain a database that specifies the behavior of a fuzzy−controller or something like
that.

FOX is a small but powerful fuzzy engine which reads this database, reads some input values and
calculates the new control value.

FUF and SURGE

♦ Web site: www.dfki.de/lt/registry/generation/fuf.html
♦ FTP site: ftp.cs.columbia.edu/pub/fuf/

FUF is an extended implementation of the formalism of functional unification grammars (FUGs)
introduced by Martin Kay specialized to the task of natural language generation. It adds the following
features to the base formalism:

♦ Types and inheritance.
♦ Extended control facilities (goal freezing, intelligent backtracking).
♦ Modular syntax.

These extensions allow the development of large grammars which can be processed efficiently and
can be maintained and understood more easily. SURGE is a large syntactic realization grammar of
English written in FUF. SURGE is developed to serve as a black box syntactic generation component
in a larger generation system that encapsulates a rich knowledge of English syntax. SURGE can also
be used as a platform for exploration of grammar writing with a generation perspective.

The Grammar Workbench

♦ Web site: www.cs.kun.nl/agfl/GWB.html

The Grammar Workbench, or GWB for short, is an environment for the comfortable development of
Affix Grammars in the AGFL−formalism. Its purposes are:

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 8

ftp://ntia.its.bldrdoc.gov/pub/fuzzy/prog/
http://www.dfki.de/lt/registry/generation/fuf.html
ftp://ftp.cs.columbia.edu:/pub/fuf/
http://www.cs.kun.nl/agfl/GWB.html


♦ to allow the user to input, inspect and modify a grammar;
♦ to perform consistency checks on the grammar;
♦ to compute grammar properties;
♦ to generate example sentences;
♦ to assist in performing grammar transformations.

GSM Suite

♦ Web site: www.slip.net/~andrewm/gsm/

The GSM Suite is a set of programs for using Finite State Machines in a graphical fashion. The suite
consists of programs that edit, compile, and print state machines. Included in the suite is an editor
program, gsmedit, a compiler, gsm2cc, that produces a C++ implementation of a state machine, a
PostScript generator, gsm2ps, and two other minor programs. GSM is licensed under the GNU Public
License and so is free for your use under the terms of that license.

Illuminator

♦ Web site: documents.cfar.umd.edu/resources/source/illuminator.html

Illuminator is a toolset for developing OCR and Image Understanding applications. Illuminator has
two major parts: a library for representing, storing and retrieving OCR information, heretofore called
dafslib, and an X−Windows "DAFS" file viewer, called illum. Illuminator and DAFS lib were
designed to supplant existing OCR formats and become a standard in the industry. They particularly
are extensible to handle more than just English.

The features of this release:

♦ 5 magnification levels for images
♦ flagged characters and words
♦ unicode support −− American, British, French, German, Greek, Italian, MICR, Norwegian,

Russian, Spanish, Swedish, keyboards
♦ reads DAFS, TIFF's, PDA's (image only)
♦ save to DAFS, ASCII/UTF or Unicode
♦ Entity Viewer − shows properties, character choices, bounding boxes image fragment for a

selected entity, change type, change content, hierarchy mode

Jess, the Java Expert System Shell

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 9

http://www.slip.net/~andrewm/gsm/
http://documents.cfar.umd.edu/resources/source/illuminator.html


♦ Web site: herzberg.ca.sandia.gov/jess/

Jess is a clone of the popular CLIPS expert system shell written entirely in Java. With Jess, you can
conveniently give your applets the ability to 'reason'. Jess is compatible with all versions of Java
starting with version 1.0.2. Jess implements the following constructs from CLIPS: defrules,
deffunctions, defglobals, deffacts, and deftemplates.

learn

♦ FTP site: sunsite.unc.edu/pub/Linux/apps/cai/

Learn is a vocable learning program with memory model.

Otter: An Automated Deduction System

♦ Web site: www−unix.mcs.anl.gov/AR/otter/

Our current automated deduction system Otter is designed to prove theorems stated in first−order
logic with equality. Otter's inference rules are based on resolution and paramodulation, and it
includes facilities for term rewriting, term orderings, Knuth−Bendix completion, weighting, and
strategies for directing and restricting searches for proofs. Otter can also be used as a symbolic
calculator and has an embedded equational programming system.

PVS

♦ Web site: pvs.csl.sri.com/

PVS is a verification system: that is, a specification language integrated with support tools and a
theorem prover. It is intended to capture the state−of−the−art in mechanized formal methods and to
be sufficiently rugged that it can be used for significant applications. PVS is a research prototype: it
evolves and improves as we develop or apply new capabilities, and as the stress of real use exposes
new requirements.

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 10

http://herzberg.ca.sandia.gov/jess/
http://sunsite.unc.edu/pub/Linux/apps/cai/
http://www-unix.mcs.anl.gov/AR/otter/
http://pvs.csl.sri.com/


RIPPER

♦ Web site: www.research.att.com/~wcohen/ripperd.html

Ripper is a system for fast effective rule induction. Given a set of data, Ripper will learn a set of rules
that will predict the patterns in the data. Ripper is written in ASCI C and comes with documentation
and some sample problems.

SNePS

♦ Web site: www.cs.buffalo.edu/pub/sneps/WWW/
♦ FTP site: ftp.cs.buffalo.edu/pub/sneps/

The long−term goal of The SNePS Research Group is the design and construction of a
natural−language−using computerized cognitive agent, and carrying out the research in artificial
intelligence, computational linguistics, and cognitive science necessary for that endeavor. The
three−part focus of the group is on knowledge representation, reasoning, and natural−language
understanding and generation. The group is widely known for its development of the SNePS
knowledge representation/reasoning system, and Cassie, its computerized cognitive agent.

Soar

♦ Web site: bigfoot.eecs.umich.edu/~soar/
♦ FTP site: cs.cmu.edu/afs/cs/project/soar/public/Soar6/

Soar has been developed to be a general cognitive architecture. We intend ultimately to enable the
Soar architecture to:

♦ work on the full range of tasks expected of an intelligent agent, from highly routine to
extremely difficult, open−ended problems

♦ represent and use appropriate forms of knowledge, such as procedural, declarative, episodic,
and possibly iconic

♦ employ the full range of problem solving methods
♦ interact with the outside world and
♦ learn about all aspects of the tasks and its performance on them.

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 11

http://www.research.att.com/~wcohen/ripperd.html
http://www.cs.buffalo.edu/pub/sneps/WWW/
ftp://ftp.cs.buffalo.edu/pub/sneps/
http://bigfoot.eecs.umich.edu/~soar/
ftp://cs.cmu.edu/afs/cs/project/soar/public/Soar6/


In other words, our intention is for Soar to support all the capabilities required of a general intelligent
agent. http://wwwis.cs.utwente.nl:8080/ tcm/index.html

TCM

♦ Web site: wwwis.cs.utwente.nl:8080/~tcm/index.html
♦ FTP site: ftp.cs.vu.nl/pub/tcm/

TCM (Toolkit for Conceptual Modeling) is our suite of graphical editors. TCM contains graphical
editors for Entity−Relationship diagrams, Class−Relationship diagrams, Data and Event Flow
diagrams, State Transition diagrams, Jackson Process Structure diagrams and System Network
diagrams, Function Refinement trees and various table editors, such as a Function−Entity table editor
and a Function Decomposition table editor. TCM is easy to use and performs numerous consistency
checks, some of them immediately, some of them upon request.

WEKA

♦ Web site: lucy.cs.waikato.ac.nz/~ml/

WEKA (Waikato Environment for Knowledge Analysis) is an state−of−the−art facility for applying
machine learning techniques to practical problems. It is a comprehensive software "workbench" that
allows people to analyse real−world data. It integrates different machine learning tools within a
common framework and a uniform user interface. It is designed to support a "simplicity−first"
methodology, which allows users to experiment interactively with simple machine learning tools
before looking for more complex solutions.

NextPreviousContentsNextPreviousContents

Linux AI & Alife HOWTO

2.2 AI software kits, applications, etc. 12

http://wwwis.cs.utwente.nl:8080/~tcm/index.html
ftp://ftp.cs.vu.nl/pub/tcm/
http://lucy.cs.waikato.ac.nz/~ml/
AI-Alife-HOWTO-3.html
AI-Alife-HOWTO-1.html
AI-Alife-HOWTO-4.html
AI-Alife-HOWTO-2.html


3. Connectionism

Connectionism is a technical term for a group of related techniques. These techniques include areas such as
Artificial Neural Networks, Semantic Networks and a few other similar ideas. My present focus is on neural
networks (though I am looking for resources on the other techniques). Neural networks are programs
designed to simulate the workings of the brain. They consist of a network of small mathematical−based
nodes, which work together to form patterns of information. They have tremendous potential and currently
seem to be having a great deal of success with image processing and robot control.

3.1 Connectionist class/code libraries

These are libraries of code or classes for use in programming within the Connectionist field. They are not
meant as stand alone applications, but rather as tools for building your own applications.

ANSI−C Neural Networks

♦ Web site: www.geocities.com/CapeCanaveral/1624/

This site contains ANSC−C source code for 8 types of neural nets, including:

♦ Adaline Network
♦ Backpropagation
♦ Hopfield Model
♦ (BAM) Bidirectional Associative Memory
♦ Boltzmann Machine
♦ Counterpropagation
♦ (SOM) Self−Organizing Map
♦ (ART1) Adaptive Resonance Theory

They were designed to help turn the theory of a particular network model into the design for a
simulator implementation , and to help with embeding an actual application into a particular network
model.

BELIEF

Linux AI & Alife HOWTO

3. Connectionism 13

http://www.geocities.com/CapeCanaveral/1624/


♦ Web site: www.cs.cmu.edu/afs/cs/project/ai−repository/ai/areas/reasonng/probabl/belief/

BELIEF is a Common Lisp implementation of the Dempster and Kong fusion and propagation
algorithm for Graphical Belief Function Models and the Lauritzen and Spiegelhalter algorithm for
Graphical Probabilistic Models. It includes code for manipulating graphical belief models such as
Bayes Nets and Relevance Diagrams (a subset of Influence Diagrams) using both belief functions
and probabilities as basic representations of uncertainty. It uses the Shenoy and Shafer version of the
algorithm, so one of its unique features is that it supports both probability distributions and belief
functions. It also has limited support for second order models (probability distributions on
parameters).

CONICAL

♦ Web site: strout.net/conical/

CONICAL is a C++ class library for building simulations common in computational neuroscience.
Currently its focus is on compartmental modeling, with capabilities similar to GENESIS and
NEURON. A model neuron is built out of compartments, usually with a cylindrical shape. When
small enough, these open−ended cylinders can approximate nearly any geometry. Future classes may
support reaction−diffusion kinetics and more. A key feature of CONICAL is its cross−platform
compatibility; it has been fully co−developed and tested under Unix, DOS, and Mac OS.

IDEAL

♦ Web site: www.rpal.rockwell.com/ideal.html

IDEAL is a test bed for work in influence diagrams and Bayesian networks. It contains various
inference algorithms for belief networks and evaluation algorithms for influence diagrams. It contains
facilities for creating and editing influence diagrams and belief networks.

IDEAL is written in pure Common Lisp and so it will run in Common Lisp on any platform. The
emphasis in writing IDEAL has been on code clarity and providing high level programming
abstractions. It thus is very suitable for experimental implementations which need or extend belief
network technology.

At the highest level, IDEAL can be used as a subroutine library which provides belief network

Linux AI & Alife HOWTO

3. Connectionism 14

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/reasonng/probabl/belief/
http://strout.net/conical/
http://www.rpal.rockwell.com/ideal.html


inference and influence diagram evaluation as a package. The code is documented in a detailed
manual and so it is also possible to work at a lower level on extensions of belief network methods.

IDEAL comes with an optional graphic interface written in CLIM. If your Common Lisp also has
CLIM, you can run the graphic interface.

Matrix Class

♦ FTP site: ftp.cs.ucla.edu/pub/

A simple, fast, efficient C++ Matrix class designed for scientists and engineers. The Matrix class is
well suited for applications with complex math algorithms. As an demonstration of the Matrix class,
it was used to implement the backward error propagation algorithm for a multi−layer feed−forward
artificial neural network.

nunu

♦ Web site: ruby.ddiworld.com/jreed/web/software/nn.html

nunu is a multi−layered, scriptable, back−propagation neural network. It is build to be used for
intensive computation problems scripted in shell scripts. It is written in C++ using the STL. nn is
based on material from the "Introduction to the Theory of Neural Computation" by John Hertz,
Anders Krogh, and Richard G. Palmer, chapter 6.

Pulcinella

♦ Web site: iridia.ulb.ac.be/pulcinella/Welcome.html

Pulcinella is written in CommonLisp, and appears as a library of Lisp functions for creating,
modifying and evaluating valuation systems. Alternatively, the user can choose to interact with
Pulcinella via a graphical interface (only available in Allegro CL). Pulcinella provides primitives to
build and evaluate uncertainty models according to several uncertainty calculi, including probability
theory, possibility theory, and Dempster−Shafer's theory of belief functions; and the possibility
theory by Zadeh, Dubois and Prade's. A User's Manual is available on request.

Linux AI & Alife HOWTO

3. Connectionism 15

ftp://ftp.cs.ucla.edu/pub/
http://ruby.ddiworld.com/jreed/web/software/nn.html
http://iridia.ulb.ac.be/pulcinella/Welcome.html


S−ElimBel

♦ Web site (???): www.spaces.uci.edu/thiery/elimbel/

S−ElimBel is an algorithm that computes the belief in a Bayesian network, implemented in
MIT−Scheme. This algorithm has the particularity of being rather easy to understand. Moreover, one
can apply it to any kind of Bayesian network − it being singly connected or muliply connected. It is,
however, less powerful than the standard algorithm of belief propagation. Indeed, the computation
has to be reconducted entirely for each new evidence added to the network. Also, one needs to run
the algorithm as many times as one has nodes for which the belief is wanted.

Software for Flexible Bayesian Modeling

♦ Web site: www.cs.utoronto.ca/~radford/fbm.software.html

This software implements flexible Bayesian models for regression and classification applications that
are based on multilayer perceptron neural networks or on Gaussian processes. The implementation
uses Markov chain Monte Carlo methods. Software modules that support Markov chain sampling are
included in the distribution, and may be useful in other applications.

Spiderweb2

♦ Web site: www.cs.nyu.edu/~klap7794/spiderweb2.html

A C++ artificial neual net library. Spiderweb2 is a complete rewrite of the original Spiderweb library,
it has grown into a much more flexible and object−oriented system. The biggest change is that each
neuron object is responsible for its own activations and updates, with the network providing only the
scheduling aspect. This is a very powerful change, and it allows easy modification and
experimentation with various network architectures and neuron types.

Symbolic Probabilistic Inference (SPI)

Linux AI & Alife HOWTO

3. Connectionism 16

http://www.spaces.uci.edu/thiery/elimbel/
http://www.cs.utoronto.ca/~radford/fbm.software.html
http://www.cs.nyu.edu/~klap7794/spiderweb2.html


♦ FTP site: ftp.engr.orst.edu/pub/dambrosi/spi/
♦ Paper (ijar−94.ps): ftp.engr.orst.edu/pub/dambrosi/

Contains Common Lisp function libraries to implement SPI type baysean nets. Documentation is
very limited. Features:

♦ Probabilities, Local Expression Language Utilities, Explanation, Dynamic Models, and a
TCL/TK based GUI.

TresBel

♦ FTP site: iridia.ulb.ac.be/pub/hongxu/software/

Libraries containing (Allegro) Common Lisp code for Belief Functions (aka. Dempster−Shafer
evidential reasoning) as a representation of uncertainty. Very little documentation. Has a limited
GUI.

Various (C++) Neural Networks

♦ Web site: www.dontveter.com/nnsoft/nnsoft.html

Example neural net codes from the book, The Pattern Recognition Basics of AI. These are simple
example codes of these various neural nets. They work well as a good starting point for simple
experimentation and for learning what the code is like behind the simulators. The types of networks
available on this site are: (implemented in C++)

♦ The Backprop Package
♦ The Nearest Neighbor Algorithms
♦ The Interactive Activation Algorithm
♦ The Hopfield and Boltzman machine Algorithms
♦ The Linear Pattern Classifier
♦ ART I
♦ Bi−Directional Associative Memory
♦ The Feedforward Counter−Propagation Network

Linux AI & Alife HOWTO

3. Connectionism 17

ftp://ftp.engr.orst.edu/pub/dambrosi/spi/
ftp://ftp.engr.orst.edu/pub/dambrosi/
ftp://iridia.ulb.ac.be/pub/hongxu/software/
http://www.dontveter.com/nnsoft/nnsoft.html
http://www.dontveter.com/basisofai/basisofai.html
http://www.dontveter.com/basisofai/basisofai.html
http://www.dontveter.com/basisofai/basisofai.html
http://www.dontveter.com/basisofai/basisofai.html
http://www.dontveter.com/basisofai/basisofai.html
http://www.dontveter.com/basisofai/basisofai.html


3.2 Connectionist software kits/applications

These are various applications, software kits, etc. meant for research in the field of Connectionism. Their ease
of use will vary, as they were designed to meet some particular research interest more than as an easy to use
commercial package.

Aspirin − MIGRAINES

(am6.tar.Z on ftp site)

♦ FTP site:
sunsite.unc.edu/pub/academic/computer−science/neural−networks/programs/Aspirin/

The software that we are releasing now is for creating, and evaluating, feed−forward networks such
as those used with the backpropagation learning algorithm. The software is aimed both at the expert
programmer/neural network researcher who may wish to tailor significant portions of the system to
his/her precise needs, as well as at casual users who will wish to use the system with an absolute
minimum of effort.

DDLab

♦ Web site: www.santafe.edu/~wuensch/ddlab.html
♦ FTP site: ftp.santafe.edu/pub/wuensch/

DDLab is an interactive graphics program for research into the dynamics of finite binary networks,
relevant to the study of complexity, emergent phenomena, neural networks, and aspects of theoretical
biology such as gene regulatory networks. A network can be set up with any architecture between
regular CA (1d or 2d) and "random Boolean networks" (networks with arbitrary connections and
heterogeneous rules). The network may also have heterogeneous neighborhood sizes.

GENESIS

♦ Web site: www.bbb.caltech.edu/GENESIS/
♦ FTP site: genesis.bbb.caltech.edu/pub/genesis/

GENESIS (short for GEneral NEural SImulation System) is a general purpose simulation platform

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 18

ftp://sunsite.unc.edu/pub/academic/computer-science/neural-networks/programs/Aspirin/
http://www.santafe.edu/~wuensch/ddlab.html
ftp://ftp.santafe.edu/pub/wuensch/
http://www.bbb.caltech.edu/GENESIS/
ftp://genesis.bbb.caltech.edu/pub/genesis/


which was developed to support the simulation of neural systems ranging from complex models of
single neurons to simulations of large networks made up of more abstract neuronal components.
GENESIS has provided the basis for laboratory courses in neural simulation at both Caltech and the
Marine Biological Laboratory in Woods Hole, MA, as well as several other institutions. Most current
GENESIS applications involve realistic simulations of biological neural systems. Although the
software can also model more abstract networks, other simulators are more suitable for
backpropagation and similar connectionist modeling.

JavaBayes

♦ Web site: www.cs.cmu.edu/People/javabayes/index.html/

The JavaBayes system is a set of tools, containing a graphical editor, a core inference engine and a
parser. JavaBayes can produce:

♦ the marginal distribution for any variable in a network.
♦ the expectations for univariate functions (for example, expected value for variables).
♦ configurations with maximum a posteriori probability.
♦ configurations with maximum a posteriori expectation for univariate functions.

Jbpe

♦ Web site: cs.felk.cvut.cz/~koutnij/studium/jbpe.html

Jbpe is a back−propagation neural network editor/simulator.

Features

♦ Standart back−propagation networks creation.
♦ Saving network as a text file, which can be edited and loaded back.
♦ Saving/loading binary file
♦ Learning from a text file (with structure specified below), number of learning periods /

desired network energy can be specified as a criterion.
♦ Network recall

Neural Network Generator

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 19

http://www.cs.cmu.edu/People/javabayes/index.html/
http://cs.felk.cvut.cz/~koutnij/studium/jbpe.html


♦ Web site: www.idsia.ch/~rafal/research.html
♦ FTP site: >ftp.idsia.ch/pub/rafal

The Neural Network Generator is a genetic algorithm for the topological optimization of feedforward
neural networks. It implements the Semantic Changing Genetic Algorithm and the Unit−Cluster
Model. The Semantic Changing Genetic Algorithm is an extended genetic algorithm that allows fast
dynamic adaptation of the genetic coding through population analysis. The Unit−Cluster Model is an
approach to the construction of modular feedforward networks with a ''backbone'' structure.

NOTE: To compile this on Linux requires one change in the Makefiles. You will need to change
'−ltermlib' to '−ltermcap'.

Neureka ANS (nn/xnn)

♦ Web site: www.bgif.no/neureka/
♦ FTP site: ftp.ii.uib.no/pub/neureka/

nn is a high−level neural network specification language. The current version is best suited for
feed−forward nets, but recurrent models can and have been implemented, e.g. Hopfield nets,
Jordan/Elman nets, etc. In nn, it is easy to change network dynamics. The nn compiler can generate C
code or executable programs (so there must be a C compiler available), with a powerful command
line interface (but everything may also be controlled via the graphical interface, xnn). It is possible
for the user to write C routines that can be called from inside the nn specification, and to use the nn
specification as a function that is called from a C program. Please note that no programming is
necessary in order to use the network models that come with the system (`netpack').

xnn is a graphical front end to networks generated by the nn compiler, and to the compiler itself. The
xnn graphical interface is intuitive and easy to use for beginners, yet powerful, with many
possibilities for visualizing network data.

NOTE: You have to run the install program that comes with this to get the license key installed. It
gets put (by default) in /usr/lib. If you (like myself) want to install the package somewhere other than
in the /usr directory structure (the install program gives you this option) you will have to set up some
environmental variables (NNLIBDIR & NNINCLUDEDIR are required). You can read about these
(and a few other optional variables) in appendix A of the documentation (pg 113).

NEURON

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 20

http://www.idsia.ch/~rafal/research.html
ftp://ftp.idsia.ch/pub/rafal/
http://www.bgif.no/neureka/
ftp://ftp.ii.uib.no/pub/neureka/


♦ Web site: www.neuron.yale.edu/neuron.html
♦ FTP site: ftp.neuron.yale.edu/neuron/unix/

NEURON is an extensible nerve modeling and simulation program. It allows you to create complex
nerve models by connecting multiple one−dimensional sections together to form arbitrary cell
morphologies, and allows you to insert multiple membrane properties into these sections (including
channels, synapses, ionic concentrations, and counters). The interface was designed to present the
neural modeler with a intuitive environment and hide the details of the numerical methods used in the
simulation.

PDP++

♦ Web site: www.cnbc.cmu.edu/PDP++/
♦ FTP site (US): cnbc.cmu.edu/pub/pdp++/
♦ FTP site (Europe): unix.hensa.ac.uk/mirrors/pdp++/

As the field of Connectionist modeling has grown, so has the need for a comprehensive simulation
environment for the development and testing of Connectionist models. Our goal in developing
PDP++ has been to integrate several powerful software development and user interface tools into a
general purpose simulation environment that is both user friendly and user extensible. The simulator
is built in the C++ programming language, and incorporates a state of the art script interpreter with
the full expressive power of C++. The graphical user interface is built with the Interviews toolkit, and
allows full access to the data structures and processing modules out of which the simulator is built.
We have constructed several useful graphical modules for easy interaction with the structure and the
contents of neural networks, and we've made it possible to change and adapt many things. At the
programming level, we have set things up in such a way as to make user extensions as painless as
possible. The programmer creates new C++ objects, which might be new kinds of units or new kinds
of processes; once compiled and linked into the simulator, these new objects can then be accessed
and used like any other.

RNS

♦ Web site: www.cs.cmu.edu/afs/cs/project/ai−repository/ai/areas/neural/systems/rns/

RNS (Recurrent Network Simulator) is a simulator for recurrent neural networks. Regular neural
networks are also supported. The program uses a derivative of the back−propagation algorithm, but
also includes other (not that well tested) algorithms.

Features include

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 21

http://www.neuron.yale.edu/neuron.html
ftp://ftp.neuron.yale.edu/neuron/unix/
http://www.cnbc.cmu.edu/PDP++/
ftp://cnbc.cmu.edu/pub/pdp++/
ftp://unix.hensa.ac.uk/mirrors/pdp++/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/systems/rns/


♦ freely choosable connections, no restrictions besides memory or CPU constraints
♦ delayed links for recurrent networks
♦ fixed values or thresholds can be specified for weights
♦ (recurrent) back−propagation, Hebb, differential Hebb, simulated annealing and more
♦ patterns can be specified with bits, floats, characters, numbers, and random bit patterns with

Hamming distances can be chosen for you
♦ user definable error functions
♦ output results can be used without modification as input

Simple Neural Net (in Python)

♦ Web site: starship.python.net/crew/amk/unmaintained/

Simple neural network code, which implements a class for 3−level networks (input, hidden, and
output layers). The only learning rule implemented is simple backpropagation. No documentation (or
even comments) at all, because this is simply code that I use to experiment with. Includes modules
containing sample datasets from Carl G. Looney's NN book. Requires the Numeric extensions.

SCNN

♦ Web site: apx00.physik.uni−frankfurt.de/e_ag_rt/SCNN/

SCNN is an universal simulating system for Cellular Neural Networks (CNN). CNN are analog
processing neural networks with regular and local interconnections, governed by a set of nonlinear
ordinary differential equations. Due to their local connectivity, CNN are realized as VLSI chips,
which operates at very high speed.

Semantic Networks in Python

♦ Web site: strout.net/info/coding/python/ai/index.html

The semnet.py module defines several simple classes for building and using semantic networks. A
semantic network is a way of representing knowledge, and it enables the program to do simple

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 22

http://starship.python.net/crew/amk/unmaintained/
http://apx00.physik.uni-frankfurt.de/e_ag_rt/SCNN/
http://strout.net/info/coding/python/ai/index.html


reasoning with very little effort on the part of the programmer.

The following classes are defined:

♦ Entity: This class represents a noun; it is something which can be related to other things, and
about which you can store facts.

♦ Relation: A Relation is a type of relationship which may exist between two entities. One
special relation, "IS_A", is predefined because it has special meaning (a sort of logical
inheritance).

♦ Fact: A Fact is an assertion that a relationship exists between two entities.

With these three object types, you can very quickly define knowledge about a set of objects, and
query them for logical conclusions.

SNNS

♦ Web site: www.informatik.uni−stuttgart.de/ipvr/bv/projekte/snns/
♦ FTP site: ftp.informatik.uni−stuttgart.de/pub/SNNS/

Stuttgart Neural Net Simulator (version 4.1). An awesome neural net simulator. Better than any
commercial simulator I've seen. The simulator kernel is written in C (it's fast!). It supports over 20
different network architectures, has 2D and 3D X−based graphical representations, the 2D GUI has
an integrated network editor, and can generate a separate NN program in C. SNNS is very powerful,
though a bit difficult to learn at first. To help with this it comes with example networks and tutorials
for many of the architectures. ENZO, a supplementary system allows you to evolve your networks
with genetic algorithms.

There is a debian package of SNNS available. So just get it (and use alien to convert it to RPM if you
need to).

SPRLIB/ANNLIB

♦ Web site: www.ph.tn.tudelft.nl/~sprlib/

SPRLIB (Statistical Pattern Recognition Library) was developed to support the easy construction and
simulation of pattern classifiers. It consist of a library of functions (written in C) that can be called
from your own program. Most of the well−known classifiers are present (k−nn, Fisher, Parzen, ....),

Linux AI & Alife HOWTO

3.2 Connectionist software kits/applications 23

http://www.informatik.uni-stuttgart.de/ipvr/bv/projekte/snns/
ftp://ftp.informatik.uni-stuttgart.de/pub/SNNS/
http://cgi.debian.org/cgi-bin/search_packages.pl?keywords=snns&amp;searchon=names&amp;version=stable&amp;release=all
http://cgi.debian.org/cgi-bin/search_packages.pl?keywords=snns&amp;searchon=names&amp;version=stable&amp;release=all
http://cgi.debian.org/cgi-bin/search_packages.pl?keywords=snns&amp;searchon=names&amp;version=stable&amp;release=all
http://cgi.debian.org/cgi-bin/search_packages.pl?keywords=snns&amp;searchon=names&amp;version=stable&amp;release=all
http://kitenet.net/programs/alien/
http://www.ph.tn.tudelft.nl/~sprlib/


as well as error estimation and dataset generation routines.

ANNLIB (Artificial Neural Networks Library) is a neural network simulation library based on the
data architecture laid down by SPRLIB. The library contains numerous functions for creating,
training and testing feed−forward networks. Training algorithms include back−propagation,
pseudo−Newton, Levenberg−Marquardt, conjugate gradient descent, BFGS.... Furthermore, it is
possible − due to the datastructures' general applicability − to build Kohonen maps and other more
exotic network architectures using the same data types.

TOOLDIAG

♦ Web site: www.inf.ufes.br/~thomas/www/home/tooldiag.html
♦ FTP site: ftp.inf.ufes.br/pub/tooldiag/

TOOLDIAG is a collection of methods for statistical pattern recognition. The main area of
application is classification. The application area is limited to multidimensional continuous features,
without any missing values. No symbolic features (attributes) are allowed. The program in
implemented in the 'C' programming language and was tested in several computing environments.

NextPreviousContentsNextPreviousContents

4. Evolutionary Computing

Evolutionary computing is actually a broad term for a vast array of programming techniques, including
genetic algorithms, complex adaptive systems, evolutionary programming, etc. The main thrust of all these
techniques is the idea of evolution. The idea that a program can be written that will evolve toward a certain
goal. This goal can be anything from solving some engineering problem to winning a game.

Linux AI & Alife HOWTO

4. Evolutionary Computing 24

http://www.inf.ufes.br/~thomas/www/home/tooldiag.html
ftp://ftp.inf.ufes.br/pub/tooldiag/
AI-Alife-HOWTO-4.html
AI-Alife-HOWTO-2.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-3.html


4.1 EC class/code libraries

These are libraries of code or classes for use in programming within the evolutionary computation field. They
are not meant as stand alone applications, but rather as tools for building your own applications.

daga

♦ Web site: GARAGe.cps.msu.edu/software/software−index.html

daga is an experimental release of a 2−level genetic algorithm compatible with the GALOPPS GA
software. It is a meta−GA which dynamically evolves a population of GAs to solve a problem
presented to the lower−level GAs. When multiple GAs (with different operators, parameter settings,
etc.) are simultaneously applied to the same problem, the ones showing better performance have a
higher probability of surviving and "breeding" to the next macro−generation (i.e., spawning new
"daughter"−GAs with characteristics inherited from the parental GA or GAs. In this way, we try to
encourage good problem−solving strategies to spread to the whole population of GAs.

FORTRAN GA

♦ Web site: www.staff.uiuc.edu/~carroll/ga.html

This program is a FORTRAN version of a genetic algorithm driver. This code initializes a random
sample of individuals with different parameters to be optimized using the genetic algorithm
approach, i.e. evolution via survival of the fittest. The selection scheme used is tournament selection
with a shuffling technique for choosing random pairs for mating. The routine includes binary coding
for the individuals, jump mutation, creep mutation, and the option for single−point or uniform
crossover. Niching (sharing) and an option for the number of children per pair of parents has been
added. More recently, an option for the use of a micro−GA has been added.

GAGS

♦ Web site: kal−el.ugr.es/gags.html
♦ FTP site: kal−el.ugr.es/GAGS/

Linux AI & Alife HOWTO

4.1 EC class/code libraries 25

http://GARAGe.cps.msu.edu/software/software-index.html
http://www.staff.uiuc.edu/~carroll/ga.html
http://kal-el.ugr.es/gags.html
ftp://kal-el.ugr.es/GAGS/


Genetic Algorithm application generator and class library written mainly in C++. As a class library,
and among other thing, GAGS includes:

♦ A chromosome hierarchy with variable length chromosomes. Genetic operators: 2−point
crossover, uniform crossover, bit−flip mutation, transposition (gene interchange between 2
parts of the chromosome), and variable−length operators: duplication, elimination, and
random addition.

♦ Population level operators include steady state, roulette wheel and tournament selection.
♦ Gnuplot wrapper: turns gnuplot into a iostreams−like class.
♦ Easy sample file loading and configuration file parsing.

As an application generator (written in PERL), you only need to supply it with an ANSI−C or C++
fitness function, and it creates a C++ program that uses the above library to 90% capacity, compiles
it, and runs it, saving results and presenting fitness thru gnuplot.

GAlib: Matthew's Genetic Algorithms Library

♦ Web Site: lancet.mit.edu/ga/
♦ FTP site: lancet.mit.edu/pub/ga/
♦ Register GAlib at: lancet.mit.edu/ga/Register.html

GAlib contains a set of C++ genetic algorithm objects. The library includes tools for using genetic
algorithms to do optimization in any C++ program using any representation and genetic operators.
The documentation includes an extensive overview of how to implement a genetic algorithm as well
as examples illustrating customizations to the GAlib classes.

GALOPPS

♦ Web site: GARAGe.cps.msu.edu/software/software−index.html
♦ FTP site: garage.cps.msu.edu/pub/GA/galopps/

GALOPPS is a flexible, generic GA, in 'C'. It was based upon Goldberg's Simple Genetic Algorithm
(SGA) architecture, in order to make it easier for users to learn to use and extend.

GALOPPS extends the SGA capabilities several fold:

♦ (optional) A new Graphical User Interface, based on TCL/TK, for Unix users, allowing easy
running of GALOPPS 3.2 (single or multiple subpopulations) on one or more processors.
GUI writes/reads "standard" GALOPPS input and master files, and displays graphical output

Linux AI & Alife HOWTO

4.1 EC class/code libraries 26

http://lancet.mit.edu/ga/
ftp://lancet.mit.edu/pub/ga/
http://lancet.mit.edu/ga/Register.html
http://GARAGe.cps.msu.edu/software/software-index.html
ftp://garage.cps.msu.edu/pub/GA/galopps/


(during or after run) of user−selected variables.
♦ 5 selection methods: roulette wheel, stochastic remainder sampling, tournament selection,

stochastic universal sampling, linear−ranking−then−SUS.
♦ Random or superuniform initialization of "ordinary" (non−permutation) binary or

non−binary chromosomes; random initialization of permutation−based chromosomes; or
user−supplied initialization of arbitrary types of chromosomes.

♦ Binary or non−binary alphabetic fields on value−based chromosomes, including different
user−definable field sizes.

♦ 3 crossovers for value−based representations: 1−pt, 2−pt, and uniform, all of which operate
at field boundaries if a non−binary alphabet is used.

♦ 4 crossovers for order−based reps: PMX, order−based, uniform order−based, and cycle.
♦ 4 mutations: fast bitwise, multiple−field, swap and random sublist scramble.
♦ Fitness scaling: linear scaling, Boltzmann scaling, sigma truncation, window scaling, ranking.
♦ Plus a whole lot more....

GAS

♦ Web site: starship.skyport.net/crew/gandalf
♦ FTP site: ftp.coe.uga.edu/users/jae/ai

GAS means "Genetic Algorithms Stuff".

GAS is freeware.

Purpose of GAS is to explore and exploit artificial evolutions. Primary implementation language of
GAS is Python. The GAS software package is meant to be a Python framework for applying genetic
algorithms. It contains an example application where it is tried to breed Python program strings. This
special problem falls into the category of Genetic Programming (GP), and/or Automatic
Programming. Nevertheless, GAS tries to be useful for other applications of Genetic Algorithms as
well.

GECO

♦ FTP site: ftp://ftp.aic.nrl.navy.mil/pub/galist/src/

GECO (Genetic Evolution through Combination of Objects), an extendible object−oriented tool−box
for constructing genetic algorithms (in Lisp). It provides a set of extensible classes and methods
designed for generality. Some simple examples are also provided to illustrate the intended use.

Linux AI & Alife HOWTO

4.1 EC class/code libraries 27

http://starship.python.net/crew/gandalf/
ftp://ftp.coe.uga.edu/users/jae/ai/
ftp://ftp.aic.nrl.navy.mil/pub/galist/src/


GPdata

♦ FTP site: ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/gp−code/
♦ Documentation (GPdata−icga−95.ps): cs.ucl.ac.uk/genetic/papers/

GPdata−3.0.tar.gz (C++) contains a version of Andy Singleton's GP−Quick version 2.1 which has
been extensively altered to support:

♦ Indexed memory operation (cf. teller)
♦ multi tree programs
♦ Adfs
♦ parameter changes without recompilation
♦ populations partitioned into demes
♦ (A version of) pareto fitness

This ftp site also contains a small C++ program (ntrees.cc) to calculate the number of different there
are of a given length and given function and terminal set.

gpjpp Genetic Programming in Java

♦ [Dead Link] Web site: http://www.turbopower.com/~kimk/gpjpp.asp
♦ Anyone who knows where to find gpjpp, please let me know.

gpjpp is a Java package I wrote for doing research in genetic programming. It is a port of the gpc++
kernel written by Adam Fraser and Thomas Weinbrenner. Included in the package are four of Koza's
standard examples: the artificial ant, the hopping lawnmower, symbolic regression, and the boolean
multiplexer. Here is a partial list of its features:

♦ graphic output of expression trees
♦ efficient diversity checking
♦ Koza's greedy over−selection option for large populations
♦ extensible GPRun class that encapsulates most details of a genetic programming test
♦ more robust and efficient streaming code, with automatic checkpoint and restart built into the

GPRun class
♦ an explicit complexity limit that can be set on each GP
♦ additional configuration variables to allow more testing without recompilation
♦ support for automatically defined functions (ADFs)
♦ tournament and fitness proportionate selection
♦ demetic grouping
♦ optional steady state population
♦ subtree crossover
♦ swap and shrink mutation

Linux AI & Alife HOWTO

4.1 EC class/code libraries 28

ftp://ftp.cs.bham.ac.uk/pub/authors/W.B.Langdon/gp-code/
ftp://cs.ucl.ac.uk/genetic/papers/


GP Kernel

♦ Web site (???): www.emk.e−technik.th−darmstadt.de/~thomasw/gp.html

The GP kernel is a C++ class library that can be used to apply genetic programming techniques to all
kinds of problems. The library defines a class hierarchy. An integral component is the ability to
produce automatically defined functions as found in Koza's "Genetic Programming II". Technical
documentation (postscript format) is included. There is also a short introduction into genetic
programming.

Functionality includes; Automatically defined functions (ADFs), tournament and fitness
proportionate selection, demetic grouping, optional steady state genetic programming kernel, subtree
crossover, swap and shrink mutation, a way of changing every parameter of the system without
recompilation, capacity for multiple populations, loading and saving of populations and genetic
programs, standard random number generator, internal parameter checks.

lil−gp

♦ Web site: GARAGe.cps.msu.edu/software/software−index.html#lilgp
♦ FTP site: garage.cps.msu.edu/pub/GA/lilgp/

patched lil−gp *

♦ Web site: www.cs.umd.edu/users/seanl/gp/

lil−gp is a generic 'C' genetic programming tool. It was written with a number of goals in mind:
speed, ease of use and support for a number of options including:

♦ Generic 'C' program that runs on UNIX workstations
♦ Support for multiple population experiments, using arbitrary and user settable topologies for

exchange, for a single processor (i.e., you can do multiple population gp experiments on your
PC).

♦ lil−gp manipulates trees of function pointers which are allocated in single, large memory
blocks for speed and to avoid swapping.

* The patched lil−gp kernel is strongly−typed, with modifications on multithreading, coevolution,
and other tweaks and features.

Linux AI & Alife HOWTO

4.1 EC class/code libraries 29

http://www.emk.e-technik.th-darmstadt.de/~thomasw/gp.html
http://GARAGe.cps.msu.edu/software/software-index.html#lilgp
ftp://garage.cps.msu.edu/pub/GA/lilgp/
http://www.cs.umd.edu/users/seanl/gp/


PGAPack

Parallel Genetic Algorithm Library

♦ Web site: www.mcs.anl.gov/~levine/PGAPACK/
♦ FTP site: ftp.mcs.anl.gov/pub/pgapack/

PGAPack is a general−purpose, data−structure−neutral, parallel genetic algorithm library. It is
intended to provide most capabilities desired in a genetic algorithm library, in an integrated,
seamless, and portable manner. Key features are in PGAPack V1.0 include:

♦ Callable from Fortran or C.
♦ Runs on uniprocessors, parallel computers, and workstation networks.
♦ Binary−, integer−, real−, and character−valued native data types.
♦ Full extensibility to support custom operators and new data types.
♦ Easy−to−use interface for novice and application users.
♦ Multiple levels of access for expert users.
♦ Parameterized population replacement.
♦ Multiple crossover, mutation, and selection operators.
♦ Easy integration of hill−climbing heuristics.
♦ Extensive debugging facilities.
♦ Large set of example problems.
♦ Detailed users guide.

PIPE

♦ Web site: www.idsia.ch/~rafal/research.html
♦ FTP site: ftp.idsia.ch/pub/rafal

Probabilistic Incremental Program Evolution (PIPE) is a novel technique for automatic program
synthesis. The software is written in C. It

♦ is easy to install (comes with an automatic installation tool).
♦ is easy to use: setting up PIPE_V1.0 for different problems requires a minimal amount of

programming. User−written, application− independent program parts can easily be reused.
♦ is efficient: PIPE_V1.0 has been tuned to speed up performance.
♦ is portable: comes with source code (optimized for SunOS 5.5.1).
♦ is extensively documented(!) and contains three example applications.
♦ supports statistical evaluations: it facilitates running multiple experiments and collecting

results in output files.
♦ includes testing tool for testing generalization of evolved programs.
♦ supports floating point and integer arithmetic.
♦ has extensive output features.
♦ For lil−gp users: Problems set up for lil−gp 1.0 can be easily ported to PIPE_v1.0. The

Linux AI & Alife HOWTO

4.1 EC class/code libraries 30

http://www.mcs.anl.gov/~levine/PGAPACK/
ftp://ftp.mcs.anl.gov/pub/pgapack/
http://www.idsia.ch/~rafal/research.html
ftp://ftp.idsia.ch/pub/rafal/


testing tool can also be used to process programs evolved by lil−gp 1.0.

Sugal

♦ Web site: www.trajan−software.demon.co.uk/sugal.htm

Sugal [soo−gall] is the SUnderland Genetic ALgorithm system. The aim of Sugal is to support
research and implementation in Genetic Algorithms on a common software platform. As such, Sugal
supports a large number of variants of Genetic Algorithms, and has extensive features to support
customization and extension.

4.2 EC software kits/applications

These are various applications, software kits, etc. meant for research in the field of evolutionary computing.
Their ease of use will vary, as they were designed to meet some particular research interest more than as an
easy to use commercial package.

ADATE

♦ Web site: www−ia.hiof.no/~rolando/adate_intro.html

ADATE (Automatic Design of Algorithms Through Evolution) is a system for automatic
programming i.e., inductive inference of algorithms, which may be the best way to develop artificial
and general intelligence.

The ADATE system can automatically generate non−trivial and novel algorithms. Algorithms are
generated through large scale combinatorial search that employs sophisticated program
transformations and heuristics. The ADATE system is particularly good at synthesizing symbolic,
functional programs and has several unique qualities.

Linux AI & Alife HOWTO

4.2 EC software kits/applications 31

http://www.trajan-software.demon.co.uk/sugal.htm
http://www-ia.hiof.no/~rolando/adate_intro.html


esep & xesep

♦ Web site(esep): www.iit.edu/~linjinl/esep.html
♦ Web site(xesep): www.iit.edu/~linjinl/xesep.html

This is a new scheduler, called Evolution Scheduler, based on Genetic Algorithms and Evolutionary
Programming. It lives with original Linux priority scheduler.This means you don't have to reboot to
change the scheduling policy. You may simply use the manager program esep to switch between
them at any time, and esep itself is an all−in−one for scheduling status, commands, and
administration. We didn't intend to remove the original priority scheduler; instead, at least, esep
provides you with another choice to use a more intelligent scheduler, which carries out natural
competition in an easy and effective way.

Xesep is a graphical user interface to the esep (Evolution Scheduling and Evolving Processes). It's
intended to show users how to start, play, and feel the Evolution Scheduling and Evolving Processes,
including sub−programs to display system status, evolving process status, queue status, and evolution
scheduling status periodically in as small as one mini−second.

Corewar VM

♦ Web site: www.jedi.claranet.fr/

This is a virtual machine written in Java (so it is a virtual machine for another virtual machine !) for a
Corewar game.

FSM−Evolver

♦ Web site (???): pages.prodigy.net/czarneckid

A Java (jdk−v1.0.2+) code library that is used to evolve finite state machines. The problem included
in the package is the Artificial Ant problem. You should be able to compile the .java files and then
run: java ArtificialAnt.

GPsys

Linux AI & Alife HOWTO

4.2 EC software kits/applications 32

http://www.iit.edu/~linjinl/esep.html
http://www.iit.edu/~linjinl/xesep.html
http://www.jedi.claranet.fr/
http://pages.prodigy.net/czarneckid/


♦ Web site: www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html

GPsys (pronounced gipsys) is a Java (requires Java 1.1 or later) based Genetic Programming system
developed by Adil Qureshi. The software includes documentation, source and executables.

Feature Summary:

♦ Steady State engine
♦ ADF support
♦ Strongly Typed

1. supports generic functions and terminals
2. has many built−in primitives
3. includes indexed memory

♦ Save/Load feature

1. can save/load current generation to/from a file
2. data stored in GZIP compression format to minimise disk requirements
3. uses serialisable objects for efficiency

♦ Fully Documented
♦ Example Problems

1. Lawnmower (including GUI viewer)
2. Symbolic Regression

♦ Totally Parameterised
♦ Fully Object Oriented and Extensible
♦ High Performance
♦ Memory Efficient

NextPreviousContentsNextPreviousContents

5. Alife & Complex Systems

Alife takes yet another approach to exploring the mysteries of intelligence. It has many aspects similar to EC
and Connectionism, but takes these ideas and gives them a meta−level twist. Alife emphasizes the
development of intelligence through emergent behavior of complex adaptive systems. Alife stresses the social
or group based aspects of intelligence. It seeks to understand life and survival. By studying the behaviors of
groups of 'beings' Alife seeks to discover the way intelligence or higher order activity emerges from
seemingly simple individuals. Cellular Automata and Conway's Game of Life are probably the most

Linux AI & Alife HOWTO

5. Alife & Complex Systems 33

http://www.cs.ucl.ac.uk/staff/A.Qureshi/gpsys.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-3.html
AI-Alife-HOWTO-6.html
AI-Alife-HOWTO-4.html


commonly known applications of this field. Complex Systems (abbreviated CS) are very similar to alife in
the way the are approached, just more general in definition (ie. alife is a type of complex system). Usually
complex system software takes the form of a simulator.

5.1 Alife & CS class/code libraries

These are libraries of code or classes for use in programming within the artificial life field. They are not
meant as stand alone applications, but rather as tools for building your own applications.

CASE

♦ Web site: www.iu.hioslo.no/~cell/
♦ FTP site: ftp.iu.hioslo.no/pub/

CASE (Cellular Automaton Simulation Environment) is a C++ toolkit for visualizing discrete models
in two dimensions: so−called cellular automata. The aim of this project is to create an integrated
framework for creating generalized cellular automata using the best, standardized technology of the
day.

John von Neumann Universal Constructor

♦ Web site: alife.santafe.edu/alife/software/jvn.html
♦ FTP site: alife.santafe.edu/pub/SOFTWARE/jvn/

The universal constructor of John von Neumann is an extension of the logical concept of universal
computing machine. In the cellular environment proposed by von Neumann both computing and
constructive universality can be achieved. Von Neumann proved that in his cellular lattice both a
Turing machine and a machine capable of producing any other cell assembly, when fed with a
suitable program, can be embedded. He called the latter machine a ''universal constructor'' and
showed that, when provided with a program containing its own description, this is capable of
self−reproducing.

Linux AI & Alife HOWTO

5.1 Alife & CS class/code libraries 34

http://www.iu.hioslo.no/~cell/
ftp://ftp.iu.hioslo.no/pub/
http://alife.santafe.edu/alife/software/jvn.html
ftp://alife.santafe.edu/pub/SOFTWARE/jvn/


Swarm

♦ Web site: www.santafe.edu/projects/swarm
♦ FTP site: ftp.santafe.edu/pub/swarm

The swarm Alife simulation kit. Swarm is a simulation environment which facilitates development
and experimentation with simulations involving a large number of agents behaving and interacting
within a dynamic environment. It consists of a collection of classes and libraries written in
Objective−C and allows great flexibility in creating simulations and analyzing their results. It comes
with three demos and good documentation.

Swarm 1.0 is out. It requires libtclobjc and BLT 2.1 (both available at the swarm site).

5.2 Alife & CS software kits, applications, etc.

These are various applications, software kits, etc. meant for research in the field of artificial life. Their ease of
use will vary, as they were designed to meet some particular research interest more than as an easy to use
commercial package.

BugsX

♦ FTP site: ftp.de.uu.net/pub/research/ci/Alife/packages/bugsx/

Display and evolve biomorphs. It is a program which draws the biomorphs based on parametric plots
of Fourier sine and cosine series and let's you play with them using the genetic algorithm.

The Cellular Automata Simulation System

♦ Web site: www.cs.runet.edu/~dana/ca/cellular.html

Linux AI & Alife HOWTO

5.2 Alife & CS software kits, applications, etc. 35

http://www.santafe.edu/projects/swarm/
ftp://ftp.santafe.edu/pub/swarm/
ftp://ftp.de.uu.net/pub/research/ci/Alife/packages/bugsx/
http://www.cs.runet.edu/~dana/ca/cellular.html


The system consists of a compiler for the Cellang cellular automata programming language, along
with the corresponding documentation, viewer, and various tools. Cellang has been undergoing
refinement for the last several years (1991−1995), with corresponding upgrades to the compiler.
Postscript versions of the tutorial and language reference manual are available for those wanting
more detailed information. The most important distinguishing features of Cellang, include support
for:

♦ any number of dimensions;
♦ compile time specification of each dimensions size; cell neighborhoods of any size (though

bounded at compile time) and shape;
♦ positional and time dependent neighborhoods;
♦ associating multiple values (fields), including arrays, with each cell;
♦ associating a potentially unbounded number of mobile agents [ Agents are mobile entities

based on a mechanism of the same name in the Creatures system, developed by Ian
Stephenson (ian@ohm.york.ac.uk).] with each cell; and

♦ local interactions only, since it is impossible to construct automata that contain any global
control or references to global variables.

dblife & dblifelib

♦ FTP site: ftp.cc.gatech.edu/ac121/linux/games/amusements/life/

dblife: Sources for a fancy Game of Life program for X11 (and curses). It is not meant to be
incredibly fast (use xlife for that:−). But it IS meant to allow the easy editing and viewing of Life
objects and has some powerful features. The related dblifelib package is a library of Life objects to
use with the program.

dblifelib: This is a library of interesting Life objects, including oscillators, spaceships, puffers, and
other weird things. The related dblife package contains a Life program which can read the objects in
the Library.

Drone

♦ Web site: pscs.physics.lsa.umich.edu/Software/Drone/

Drone is a tool for automatically running batch jobs of a simulation program. It allows sweeps over
arbitrary sets of parameters, as well as multiple runs for each parameter set, with a separate random
seed for each run. The runs may be executed either on a single computer or over the Internet on a set

Linux AI & Alife HOWTO

5.2 Alife & CS software kits, applications, etc. 36

ftp://ftp.cc.gatech.edu/ac121/linux/games/amusements/life/
http://pscs.physics.lsa.umich.edu/Software/Drone/


of remote hosts. Drone is written in Expect (an extension to the Tcl scripting language) and runs
under Unix. It was originally designed for use with the Swarm agent−based simulation framework,
but Drone can be used with any simulation program that reads parameters from the command line or
from an input file.

EcoLab

♦ Web site: parallel.acsu.unsw.edu.au/rks/ecolab.html

EcoLab is a system that implements an abstract ecology model. It is written as a set of Tcl/Tk
commands so that the model parameters can easily be changed on the fly by means of editing a script.
The model itself is written in C++.

Game Of Life (GOL)

♦ Web site: www.arrakeen.demon.co.uk/downloads.html
♦ FTP site: metalab.unc.edu/pub/Linux/science/ai/life

GOL is a simulator for conway's game of life (a simple cellular automata), and other simple rule sets.
The emphasis here is on speed and scale, in other words you can setup large and fast simulations.

LEE

♦ Web site: dollar.biz.uiowa.edu/~fil/LEE/
♦ FTP site: dollar.biz.uiowa.edu/pub/fil/LEE/

LEE (Latent Energy Environments) is both an Alife model and a software tool to be used for
simulations within the framework of that model. We hope that LEE will help understand a broad
range of issues in theoretical, behavioral, and evolutionary biology. The LEE tool described here
consists of approximately 7,000 lines of C code and runs in both Unix and Macintosh platforms.

Linux AI & Alife HOWTO

5.2 Alife & CS software kits, applications, etc. 37

http://parallel.acsu.unsw.edu.au/rks/ecolab.html
http://www.arrakeen.demon.co.uk/downloads.html
ftp://metalab.unc.edu/pub/Linux/science/ai/life/
http://dollar.biz.uiowa.edu/~fil/LEE/
ftp://dollar.biz.uiowa.edu/pub/fil/LEE/


Net−Life & ZooLife

♦ FTP site: ftp.coe.uga.edu/users/jae/alife/

*(netlife−2.0.tar.gz contains both Net−Life and ZooLife)

Net−Life is a simulation of artificial−life, with neural "brains" generated via slightly random
techniques. Net−Life uses artificial neural nets and evolutionary algorithms to breed artificial
organisms that are similar to single cell organisms. Net−life uses asexual reproduction of its fittest
individuals with a chance of mutation after each round to eventually evolve successful life−forms.

ZooLife is a simulation of artificial−life. ZooLife uses probabilistic methods and evolutionary
algorithms to breed artificial organisms that are similar to plant/animal zoo organisms. ZooLife uses
asexual reproduction with a chance of mutation.

POSES++

♦ Web site: www.tu−chemnitz.de/ftp−home/pub/Local/simulation/poses++/www/index.html

The POSES++ software tool supports the development and simulation of models. Regarding the
simulation technique models are suitable reproductions of real or planned systems for their simulative
investigation.

In all industrial sectors or branches POSES++ can model and simulate any arbitrary system which is
based on a discrete and discontinuous behaviour. Also continuous systems can mostly be handled like
discrete systems e.g., by quantity discretion and batch processing.

Primordial Soup

♦ Web site: alife.santafe.edu/alife/software/psoup.html

Primordial Soup is an artificial life program. Organisms in the form of computer software loops live
in a shared memory space (the "soup") and self−reproduce. The organisms mutate and evolve,
behaving in accordance with the principles of Darwinian evolution.

Linux AI & Alife HOWTO

5.2 Alife & CS software kits, applications, etc. 38

ftp://ftp.coe.uga.edu/users/jae/alife/
http://www.tu-chemnitz.de/ftp-home/pub/Local/simulation/poses++/www/index.html
http://alife.santafe.edu/alife/software/psoup.html


The program may be started with one or more organisms seeding the soup. Alternatively, the system
may be started "sterile", with no organisms present. Spontaneous generation of self−reproducing
organisms has been observed after runs as short as 15 minutes.

Tierra

♦ Web site: www.hip.atr.co.jp/~ray/tierra/tierra.html
♦ FTP site: alife.santafe.edu/pub/SOFTWARE/Tierra/
♦ Alternate
♦ FTP site: ftp.cc.gatech.edu/ac121/linux/science/biology/

Tierra's written in the C programming language. This source code creates a virtual computer and its
operating system, whose architecture has been designed in such a way that the executable machine
codes are evolvable. This means that the machine code can be mutated (by flipping bits at random) or
recombined (by swapping segments of code between algorithms), and the resulting code remains
functional enough of the time for natural (or presumably artificial) selection to be able to improve the
code over time.

TIN

♦ FTP site: ftp.coe.uga.edu/users/jae/alife/

This program simulates primitive life−forms, equipped with some basic instincts and abilities, in a
2D environment consisting of cells. By mutation new generations can prove their success, and thus
passing on "good family values".

The brain of a TIN can be seen as a collection of processes, each representing drives or impulses to
behave a certain way, depending on the state/perception of the environment ( e.g. presence of food,
walls, neighbors, scent traces) These behavior process currently are : eating, moving, mating,
relaxing, tracing others, gathering food and killing. The process with the highest impulse value takes
control, or in other words: the tin will act according to its most urgent need.

XLIFE

Linux AI & Alife HOWTO

5.2 Alife & CS software kits, applications, etc. 39

http://www.hip.atr.co.jp/~ray/tierra/tierra.html
ftp://alife.santafe.edu/pub/SOFTWARE/Tierra/
ftp://ftp.cc.gatech.edu/ac121/linux/science/biology/
ftp://ftp.coe.uga.edu/users/jae/alife/


♦ FTP site: ftp.cc.gatech.edu/ac121/linux/games/amusements/life/

This program will evolve patterns for John Horton Conway's game of Life. It will also handle general
cellular automata with the orthogonal neighborhood and up to 8 states (it's possible to recompile for
more states, but very expensive in memory). Transition rules and sample patterns are provided for the
8−state automaton of E. F. Codd, the Wireworld automaton, and a whole class of `Prisoner's
Dilemma' games.

Xtoys

♦ Web site: penguin.phy.bnl.gov/www/xtoys.html

xtoys contains a set of cellular automata simulators for X windows. Programs included are:

♦ xising −−− a two dimensional Ising model simulator,
♦ xpotts −−− the two dimensional Potts model,
♦ xautomalab −−− a totalistic cellular automaton simulator,
♦ xsand −−− for the Bak, Tang, Wiesenfeld sandpile model,
♦ xwaves −−− demonstrates three different wave equations,
♦ schrodinger −−− play with the Scrodinger equation in an adjustable potential.

NextPreviousContentsNextPreviousContents

6. Autonomous Agents

Also known as intelligent software agents or just agents, this area of AI research deals with simple
applications of small programs that aid the user in his/her work. They can be mobile (able to stop their
execution on one machine and resume it on another) or static (live in one machine). They are usually specific
to the task (and therefore fairly simple) and meant to help the user much as an assistant would. The most
popular (ie. widely known) use of this type of application to date are the web robots that many of the
indexing engines (eg. webcrawler) use.

AgentK

Linux AI & Alife HOWTO

6. Autonomous Agents 40

ftp://ftp.cc.gatech.edu/ac121/linux/games/amusements/life/
http://penguin.phy.bnl.gov/www/xtoys.html
AI-Alife-HOWTO-6.html
AI-Alife-HOWTO-4.html
AI-Alife-HOWTO-7.html
AI-Alife-HOWTO-5.html


♦ FTP site: ftp.csd.abdn.ac.uk/pub/wdavies/agentk

This package synthesizes two well−known agent paradigms: Agent−Oriented Programming, Shoham
(1990), and the Knowledge Query & Manipulation Language, Finin (1993). The initial
implementation of AOP, Agent−0, is a simple language for specifying agent behaviour. KQML
provides a standard language for inter−agent communication. Our integration (which we have called
Agent−K) demonstrates that Agent−0 and KQML are highly compatible. Agent−K provides the
possibility of inter−operable (or open) software agents, that can communicate via KQML and which
are programmed using the AOP approach.

Agent

♦ FTP site: www.cpan.org/modules/by−category/23_Miscellaneous_Modules/Agent/

The Agent is a prototype for an Information Agent system. It is both platform and language
independent, as it stores contained information in simple packed strings. It can be packed and shipped
across any network with any format, as it freezes itself in its current state.

D'Agent (was AGENT TCL)

♦ Web site: agent.cs.dartmouth.edu/software/agent2.0/
♦ FTP site: ftp.cs.dartmouth.edu/pub/agents/

A transportable agent is a program that can migrate from machine to machine in a heterogeneous
network. The program chooses when and where to migrate. It can suspend its execution at an
arbitrary point, transport to another machine and resume execution on the new machine. For example,
an agent carrying a mail message migrates first to a router and then to the recipient's mailbox. The
agent can perform arbitrarily complex processing at each machine in order to ensure that the message
reaches the intended recipient.

Aglets Workbench

♦ Web site: www.trl.ibm.co.jp/aglets/

Linux AI & Alife HOWTO

6. Autonomous Agents 41

ftp://ftp.csd.abdn.ac.uk/pub/wdavies/agentk
http://www.cpan.org/modules/by-category/23_Miscellaneous_Modules/Agent/
http://agent.cs.dartmouth.edu/software/agent2.0/
ftp://ftp.cs.dartmouth.edu/pub/agents/
http://www.trl.ibm.co.jp/aglets/


An aglet is a Java object that can move from one host on the Internet to another. That is, an aglet that
executes on one host can suddenly halt execution, dispatch to a remote host, and resume execution
there. When the aglet moves, it takes along its program code as well as its state (data). A built−in
security mechanism makes it safe for a computer to host untrusted aglets. The Java Aglet API
(J−AAPI) is a proposed public standard for interfacing aglets and their environment. J−AAPI
contains methods for initializing an aglet, message handling, and dispatching, retracting,
deactivating/activating, cloning, and disposing of the aglet. J−AAPI is simple, flexible, and stable.
Application developers can write platform−independent aglets and expect them to run on any host
that supports J−AAPI.

Ara

♦ Web site: www.uni−kl.de/AG−Nehmer/Projekte/Ara/index_e.html

Ara is a platform for the portable and secure execution of mobile agents in heterogeneous networks.
Mobile agents in this sense are programs with the ability to change their host machine during
execution while preserving their internal state. This enables them to handle interactions locally which
otherwise had to be performed remotely. Ara's specific aim in comparison to similar platforms is to
provide full mobile agent functionality while retaining as much as possible of established
programming models and languages.

JAFMAS

♦ Web site: www.ececs.uc.edu/~abaker/JAFMAS

JAFMAS provides a framework to guide the coherent development of multiagent systems along with
a set of classes for agent deployment in Java. The framework is intended to help beginning and
expert developers structure their ideas into concrete agent applications. It directs development from a
speech−act perspective and supports multicast and directed communication, KQML or other
speech−act performatives and analysis of multiagent system coherency and consistency.

Only four of the provided Java classes must be extended for any application. Provided examples of
the N−Queens and Supply Chain Integration use only 567 and 1276 lines of additional code
respectively for implementation.

Linux AI & Alife HOWTO

6. Autonomous Agents 42

http://www.uni-kl.de/AG-Nehmer/Projekte/Ara/index_e.html
http://www.ececs.uc.edu/~abaker/JAFMAS/


JATLite

♦ Web site: java.stanford.edu/java_agent/html/

JATLite is providing a set of java packages which makes easy to build multi−agent systems using
Java. JATLite provides only light−weight, small set of packages so that the developers can handle all
the packages with little efforts. For flexibility JATLite provides four different layers from abstract to
Router implementation. A user can access any layer we are providing. Each layer has a different set
of assumptions. The user can choose an appropriate layer according to the assumptions on the layer
and user's application. The introduction page contains JATLite features and the set of assumptions
for each layer.

Java(tm) Agent Template

♦ Web site: cdr.stanford.edu/ABE/JavaAgent.html

The JAT provides a fully functional template, written entirely in the Java language, for constructing
software agents which communicate peer−to−peer with a community of other agents distributed over
the Internet. Although portions of the code which define each agent are portable, JAT agents are not
migratory but rather have a static existence on a single host. This behavior is in contrast to many
other "agent" technologies. (However, using the Java RMI, JAT agents could dynamically migrate to
a foreign host via an agent resident on that host). Currently, all agent messages use KQML as a
top−level protocol or message wrapper. The JAT includes functionality for dynamically exchanging
"Resources", which can include Java classes (e.g. new languages and interpreters, remote services,
etc.), data files and information inlined into the KQML messages.

Java−To−Go

♦ Web site: ptolemy.eecs.berkeley.edu/dgm/javatools/java−to−go/

Java−To−Go is an experimental infrastructure that assists in the development and experimentation of
mobile agents and agent−based applications for itinerative computing (itinerative computing: the set
of applications that requires site−to−site computations. The main emphasis here is on a
easy−to−setup environment that promotes quick experimentation on mobile agents.

Linux AI & Alife HOWTO

6. Autonomous Agents 43

http://java.stanford.edu/java_agent/html/
http://cdr.stanford.edu/ABE/JavaAgent.html
http://ptolemy.eecs.berkeley.edu/dgm/javatools/java-to-go/


Kafka

♦ Web site: www.fujitsu.co.jp/hypertext/free/kafka/

Kafka is yet another agent library designed for constructing multi−agent based distributed
applications. Kafka is a flexible, extendable, and easy−to−use java class library for programmers who
are familiar with distributed programming. It is based on Java's RMI and has the following added
features:

♦ Runtime Reflection: Agents can modify their behaviour (program codes) at runtime. The
behaviour of the agent is represented by an abstract class Action. It is useful for remote
maintenance or installation services.

♦ Remote Evaluation: Agents can receive and evaluate program codes (classes) with or without
the serialized object. Remote evaluation is a fundamental function of a mobile agent and is
thought to be a push model of service delivery.

♦ Distributed Name Service: Agents have any number of logical names that don't contain the
host name. These names can be managed by the distributed directories.

♦ Customizable security policy: a very flexible, customizable, 3−layered security model is
implemented in Kafka.

♦ 100% Java and RMI compatible: Kafka is written completely in Java. Agent is a Java RMI
server object itself. So, agents can directly communicate with other RMI objects.

Khepera Simulator

♦ Web site: diwww.epfl.ch/lami/team/michel/khep−sim/

Khepera Simulator is a public domain software package written by Olivier MICHEL during the
preparation of his Ph.D. thesis, at the Laboratoire I3S, URA 1376 of CNRS and University of
Nice−Sophia Antipolis, France. It allows to write your own controller for the mobile robot Khepera
using C or C++ languages, to test them in a simulated environment and features a nice colorful X11
graphical interface. Moreover, if you own a Khepera robot, it can drive the real robot using the same
control algorithm. It is mainly oriented toward to researchers studying autonomous agents.

Mole

♦ Web site: www.informatik.uni−stuttgart.de/ipvr/vs/projekte/mole.html

Linux AI & Alife HOWTO

6. Autonomous Agents 44

http://www.fujitsu.co.jp/hypertext/free/kafka/
http://diwww.epfl.ch/lami/team/michel/khep-sim/index.html
http://diwww.epfl.ch/lami/team/michel/
http://diwww.epfl.ch/lami/team/michel/
http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html


Mole is an agent system supporting mobile agents programmed in Java. Mole's agents consist of a
cluster of objects, which have no references to the outside, and as a whole work on tasks given by the
user or another agent. They have the ability to roam a network of "locations" autonomously. These
"locations" are an abstraction of real, existing nodes in the underlying network. They can use
location−specific resources by communicating with dedicated agents representing these services.
Agents are able to use services provided by other agents and to provide services as well.

Odyssey

♦ Web site: www.genmagic.com/agents/

Odyssey is General Magic's initial implementation of mobile agents in 100% pure Java. The Odyssey
class libraries enable you to develop your own mobile agent applications. Use mobile agents to
access data, make decisions and notify users. Your agent−enabled applications may also take full
advantage of the Java platform and use other third party libraries, for example, to access remote
CORBA objects or to access relational databases using JDBC. To see how it's done, take a look at the
sample applications included as part of the Odyssey download.

Penguin!

♦ FTP site:
www.perl.org/CPAN/modules/by−category/23_Miscellaneous_Modules/Penguin/FSG/

Penguin is a Perl 5 module. It provides you with a set of functions which allow you to:

♦ send encrypted, digitally signed Perl code to a remote machine to be executed.
♦ receive code and, depending on who signed it, execute it in an arbitrarily secure, limited

compartment.

The combination of these functions enable direct Perl coding of algorithms to handle safe internet
commerce, mobile information−gathering agents, "live content" web browser helper apps, distributed
load−balanced computation, remote software update, distance machine administration, content−based
information propagation, Internet−wide shared−data applications, network application builders, and
so on.

SimRobot

Linux AI & Alife HOWTO

6. Autonomous Agents 45

http://www.genmagic.com/agents/
http://www.perl.org/CPAN/modules/by-category/23_Miscellaneous_Modules/Penguin/FSG/


♦ Web site: www.informatik.uni−bremen.de/~simrobot/
♦ FTP site: ftp.uni−bremen.de/pub/ZKW/INFORM/simrobot/

SimRobot is a program for simulation of sensor based robots in a 3D environment. It is written in
C++, runs under UNIX and X11 and needs the graphics toolkit XView.

♦ Simulation of robot kinematics
♦ Hierarchically built scene definition via a simple definition language
♦ Various sensors built in: camera, facette eye, distance measurement, light sensor, etc.
♦ Objects defined as polyeders
♦ Emitter abstractly defined; can be interpreted e.g. as light or sound
♦ Camera images computed according to the raytracing or Z−buffer algorithms known from

computer graphics
♦ Specific sensor/motor software interface for communicating with the simulation
♦ Texture mapping onto the object surfaces: bitmaps in various formats
♦ Comprehensive visualization of the scene: wire frame w/o hidden lines, sensor and actor

values
♦ Interactive as well as batch driven control of the agents and operation in the environment
♦ Collision detection
♦ Extendability with user defined object types
♦ Possible socket communication to e.g. the Khoros image processing software

TclRobots

♦ FTP site: ftp.neosoft.com/pub/tcl/sorted/games/tclrobots−2.0/
♦ Redhat Patch: ftp.coe.uga.edu/users/jae/ai/tclrobots−redhat.patch
♦ RPMs (search at): http://rufus.w3.org/

TclRobots is a programming game, similar to 'Core War'. To play TclRobots, you must write a Tcl
program that controls a robot. The robot's mission is to survive a battle with other robots. Two, three,
or four robots compete during a battle, each running different programs (or possibly the same
program in different robots.) Each robot is equipped with a scanner, cannon, drive mechanism. A
single match continues until one robot is left running. Robots may compete individually, or combine
in a team oriented battle. A tournament can be run with any number of robot programs, each robot
playing every other in a round−robin fashion, one−on−one. A battle simulator is available to help
debug robot programs.

The TclRobots program provides a physical environment, imposing certain game parameters to
which all robots must adhere. TclRobots also provides a view on a battle, and a controlling user
interface. TclRobots requirements: a wish interpreter built from Tcl 7.4 and Tk 4.0.

Linux AI & Alife HOWTO

6. Autonomous Agents 46

http://www.informatik.uni-bremen.de/~simrobot/
ftp://ftp.uni-bremen.de/pub/ZKW/INFORM/simrobot/
ftp://ftp.neosoft.com/pub/tcl/sorted/games/tclrobots-2.0/
ftp://ftp.coe.uga.edu/users/jae/ai/tclrobots-redhat.patch
http://rufus.w3.org/


The Tocoma Project

♦ Web site: www.tacoma.cs.uit.no/

An agent is a process that may migrate through a computer network in order to satisfy requests made
by clients. Agents are an attractive way to describe network−wide computations.

The TACOMA project focuses on operating system support for agents and how agents can be used to
solve problems traditionally addressed by operating systems. We have implemented a series of
prototype systems to support agents.

TACOMA Version 1.2 is based on UNIX and TCP. The system supports agents written in C, Tcl/Tk,
Perl, Python, and Scheme (Elk). It is implemented in C. This TACOMA version has been in public
domain since April 1996.

We are currently focusing on heterogeneity, fault−tolerance, security and management issues. Also,
several TACOMA applications are under construction. We implemented StormCast 4.0, a wide−area
network weather monitoring system accessible over the internet, using TACOMA and Java. We are
now in the process of evaluating this application, and plan to build a new StormCast version to be
completed by June 1997.

Virtual Secretary Project (ViSe)

(Tcl/Tk)

♦ Web site: www.cs.uit.no/DOS/Virt_Sec

The motivation of the Virtual Secretary project is to construct user−model−based intelligent software
agents, which could in most cases replace human for secretarial tasks, based on modern mobile
computing and computer network. The project includes two different phases: the first phase (ViSe1)
focuses on information filtering and process migration, its goal is to create a secure environment for
software agents using the concept of user models; the second phase (ViSe2) concentrates on agents'
intelligent and efficient cooperation in a distributed environment, its goal is to construct cooperative
agents for achieving high intelligence. (Implemented in Tcl/TclX/Tix/Tk)

Linux AI & Alife HOWTO

6. Autonomous Agents 47

http://www.tacoma.cs.uit.no/
http://www.cs.uit.no/DOS/Virt_Sec/


VWORLD

♦ Web site: zhar.net/gnu−linux/projects/vworld/

Vworld is a simulated environment for research with autonomous agents written in prolog. It is
currently in something of an beta stage. It works well with SWI−prolog, but should work with
Quitnus−prolog with only a few changes. It is being designed to serve as an educational tool for class
projects dealing with prolog and autonomous agents. It comes with three demo worlds or
environments, along with sample agents for them. There are two versions now. One written for
SWI−prolog and one written for LPA−prolog. Documentation is roughly done (with a
student/professor framework in mind), and a graphical interface is planned.

WebMate

♦ Web site: www.cs.cmu.edu/~softagents/webmate/

WebMate is a personal agent for World−Wide Web browsing and searching. It accompanies you
when you travel on the internet and provides you what you want.

Features include:

♦ Searching enhancement, including parallel search, searching keywords refinement using our
relevant keywords extraction technology, relevant feedback, etc.

♦ Browsing assistant, including learning your current interesting, recommending you new
URLs according to your profile and selected resources, monitoring bookmarks of Netscape
or IE, sending the current browsing page to your friends, etc.

♦ Offline browsing, including downloading the following pages from the current page for
offline browsing.

♦ Filtering HTTP header, including recording http header and all the transactions between your
browser and WWW servers, etc.

♦ Checking the HTML page to find the errors or dead links, etc.
♦ Programming in Java, independent of operating system, runing in multi−thread.

NextPreviousContents Next PreviousContents

Linux AI & Alife HOWTO

6. Autonomous Agents 48

http://zhar.net/gnu-linux/projects/vworld/
http://www.cs.cmu.edu/~softagents/webmate/
AI-Alife-HOWTO-7.html
AI-Alife-HOWTO-5.html
AI-Alife-HOWTO-6.html


7. Programming languages

While any programming language can be used for artificial intelligence/life research, these are programming
languages which are used extensively for, if not specifically made for, artificial intelligence programming.

Allegro CL

♦ Web site: www.franz.com

Franz Inc's free linux version of their lisp development environment. You can download it or they
will mail you a CD free (you don't even have to pay for shipping). It is generally considered to be one
of the better lisp platforms.

B−Prolog

♦ Web site: www.sci.brooklyn.cuny.edu/~zhou/bprolog.html
♦ Web site: www.cad.mse.kyutech.ac.jp/people/zhou/bprolog.html

B−Prolog is a compact and complete CLP system that runs Prolog and CLP(FD) programs. An
emulator−based system, B−Prolog has a performance comparable with SICStus−Prolog.

♦ In addition to Edinburgh−style programs, B−Prolog accepts canonical−form programs that
can be compiled into more compact and faster code than standard Prolog programs.

♦ B−Prolog includes an interpreter and provides an interactive interface through which users
can consult, list, compile, load, debug and run programs. The command editor facilitates
reuse old commands.

♦ B−Prolog provides a bi−directional interface with C and Java.> resources in C and Java such
as Graphics and sockets, and also makes it possible for a Prolog program to be embadded in
a C and Java applications.

♦ B−Prolog supports most of the built−ins in ISO Prolog.
♦ B−Prolog supports the delaying (co−routining) mechanism, which can be used to implement

concurrency, test−and−generate search algorithms, and most importantly constraint
propagation algorithms.

♦ B−Prolog has an efficient constraint compiler for constraints> over finite−domains and
Booleans.

♦ B−Prolog supports the tabling mechanism, which has proven effective for applications
including parsing, problem solving, theorem proving, and deductive databases.

Linux AI & Alife HOWTO

7. Programming languages 49

http://www.franz.com/
http://www.sci.brooklyn.cuny.edu/~zhou/bprolog.html
http://www.cad.mse.kyutech.ac.jp/people/zhou/bprolog.html


ECoLisp

♦ Web site (???): www.di.unipi.it/~attardi/software.html

ECoLisp (Embeddable Common Lisp) is an implementation of Common Lisp designed for being
embeddable into C based applications. ECL uses standard C calling conventions for Lisp compiled
functions, which allows C programs to easily call Lisp functions and viceversa. No foreign function
interface is required: data can be exchanged between C and Lisp with no need for conversion. ECL is
based on a Common Runtime Support (CRS) which provides basic facilities for memory managment,
dynamic loading and dumping of binary images, support for multiple threads of execution. The CRS
is built into a library that can be linked with the code of the application. ECL is modular: main
modules are the program development tools (top level, debugger, trace, stepper), the compiler, and
CLOS. A native implementation of CLOS is available in ECL: one can configure ECL with or
without CLOS. A runtime version of ECL can be built with just the modules which are required by
the application. The ECL compiler compiles from Lisp to C, and then invokes the GCC compiler to
produce binaries.

Gödel

♦ Web page: www.cs.bris.ac.uk/~bowers/goedel.html

Gödel is a declarative, general−purpose programming language in the family of logic programming
languages. It is a strongly typed language, the type system being based on many−sorted logic with
parametric polymorphism. It has a module system. Gödel supports infinite precision integers, infinite
precision rationals, and also floating−point numbers. It can solve constraints over finite domains of
integers and also linear rational constraints. It supports processing of finite sets. It also has a flexible
computation rule and a pruning operator which generalizes the commit of the concurrent logic
programming languages. Considerable emphasis is placed on Gödel's meta− logical facilities which
provide significant support for meta−programs that do analysis, transformation, compilation,
verification, debugging, and so on.

LIFE

♦ Web page: www.isg.sfu.ca/life

LIFE (Logic, Inheritance, Functions, and Equations) is an experimental programming language
proposing to integrate three orthogonal programming paradigms proven useful for symbolic

Linux AI & Alife HOWTO

7. Programming languages 50

http://www.di.unipi.it/~attardi/software.html
http://www.cs.bris.ac.uk/~bowers/goedel.html
http://www.isg.sfu.ca/life


computation. From the programmer's standpoint, it may be perceived as a language taking after logic
programming, functional programming, and object−oriented programming. From a formal
perspective, it may be seen as an instance (or rather, a composition of three instances) of a Constraint
Logic Programming scheme due to Hoehfeld and Smolka refining that of Jaffar and Lassez.

CLisp (Lisp)

♦ FTP site: sunsite.unc.edu/pub/Linux/devel/lang/lisp/

CLISP is a Common Lisp implementation by Bruno Haible and Michael Stoll. It mostly supports the
Lisp described by Common LISP: The Language (2nd edition) and the ANSI Common Lisp standard.
CLISP includes an interpreter, a byte−compiler, a large subset of CLOS (Object−Oriented Lisp) , a
foreign language interface and, for some machines, a screen editor.

The user interface language (English, German, French) is chosen at run time. Major packages that
run in CLISP include CLX & Garnet. CLISP needs only 2 MB of memory.

CMU Common Lisp

♦ Web page: www.mv.com/users/pw/lisp/index.html
♦ FTP site: sunsite.unc.edu/pub/Linux/devel/lang/lisp/

CMU Common Lisp is a public domain "industrial strength" Common Lisp programming
environment. Many of the X3j13 changes have been incorporated into CMU CL. Wherever possible,
this has been done so as to transparently allow the use of either CLtL1 or proposed ANSI CL.
Probably the new features most interesting to users are SETF functions, LOOP and the
WITH−COMPILATION−UNIT macro.

GCL (Lisp)

♦ FTP site: sunsite.unc.edu/pub/Linux/devel/lang/lisp/

Linux AI & Alife HOWTO

7. Programming languages 51

ftp://sunsite.unc.edu/pub/Linux/devel/lang/lisp/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/clm/clm.html
http://www.mv.com/users/pw/lisp/index.html
ftp://sunsite.unc.edu/pub/Linux/devel/lang/lisp/
ftp://sunsite.unc.edu/pub/Linux/devel/lang/lisp/


GNU Common Lisp (GCL) has a compiler and interpreter for Common Lisp. It used to be known as
Kyoto Common Lisp. It is very portable and extremely efficient on a wide class of applications. It
compares favorably in performance with commercial Lisps on several large theorem−prover and
symbolic algebra systems. It supports the CLtL1 specification but is moving towards the proposed
ANSI definition. GCL compiles to C and then uses the native optimizing C compilers (e.g., GCC). A
function with a fixed number of args and one value turns into a C function of the same number of
args, returning one value, so GCL is maximally efficient on such calls. It has a conservative garbage
collector which allows great freedom for the C compiler to put Lisp values in arbitrary registers.

It has a source level Lisp debugger for interpreted code, with display of source code in an Emacs
window. Its profiling tools (based on the C profiling tools) count function calls and the time spent in
each function.

GNU Prolog

♦ Web site: pauillac.inria.fr/~diaz/gnu−prolog/
♦ Web site: www.gnu.org/software/prolog/prolog.html

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by
Daniel Diaz.

GNU Prolog accepts Prolog+constraint programs and produces native binaries (like gcc does from a
C source). The obtained executable is then stand−alone. The size of this executable can be quite
small since GNU Prolog can avoid to link the code of most unused built−in predicates. The
performances of GNU Prolog are very encouraging (comparable to commercial systems).

Beside the native−code compilation, GNU Prolog offers a classical interactive interpreter (top−level)
with a debugger.

The Prolog part conforms to the ISO standard for Prolog with many extensions very useful in
practice (global variables, OS interface, sockets,...).

GNU Prolog also includes an efficient constraint solver over Finite Domains (FD). This opens
contraint logic pogramming to the user combining the power of constraint programming to the
declarativity of logic programming.

Mercury

♦ Web page: www.cs.mu.oz.au/research/mercury/

Linux AI & Alife HOWTO

7. Programming languages 52

http://pauillac.inria.fr/~diaz/gnu-prolog/
http://www.gnu.org/software/prolog/prolog.html
http://www.cs.mu.oz.au/research/mercury/


Mercury is a new, purely declarative logic programming language. Like Prolog and other existing
logic programming languages, it is a very high−level language that allows programmers to
concentrate on the problem rather than the low−level details such as memory management. Unlike
Prolog, which is oriented towards exploratory programming, Mercury is designed for the
construction of large, reliable, efficient software systems by teams of programmers. As a
consequence, programming in Mercury has a different flavor than programming in Prolog.

Mozart

♦ Web page: www.mozart−oz.org/

The Mozart system provides state−of−the−art support in two areas: open distributed computing and
constraint−based inference. Mozart implements Oz, a concurrent object−oriented language with
dataflow synchronization. Oz combines concurrent and distributed programming with logical
constraint−based inference, making it a unique choice for developing multi−agent systems. Mozart is
an ideal platform for both general−purpose distributed applications as well as for hard problems
requiring sophisticated optimization and inferencing abilities. We have developed applications in
scheduling and time−tabling, in placement and configuration, in natural language and knowledge
representation, multi−agent systems and sophisticated collaborative tools.

BinProlog

♦ FTP site(source): clement.info.umoncton.ca/BinProlog

BinProlog is a fast and compact Prolog compiler, based on the transformation of Prolog to binary
clauses. The compilation technique is similar to the Continuation Passing Style transformation used
in some ML implementations. BinProlog 5.00 is also probably the first Prolog system featuring
dynamic recompilation of asserted predicates (a technique similar to the one used in some object
oriented languages like SELF 4.0), and a very efficient segment preserving copying heap garbage
collector.

BinProlog is no longer maintained. It has turned into a commercial app. :(

SWI Prolog

Linux AI & Alife HOWTO

7. Programming languages 53

http://www.mozart-oz.org/
ftp://clement.info.umoncton.ca/BinProlog/


♦ Web page: www.swi.psy.uva.nl/projects/SWI−Prolog/
♦ FTP site: swi.psy.uva.nl/pub/SWI−Prolog/

SWI is a free version of prolog in the Edinburgh Prolog family (thus making it very similar to
Quintus and many other versions). With: a large library of built in predicates, a module system,
garbage collection, a two−way interface with the C language, plus many other features. It is meant as
a educational language, so it's compiled code isn't the fastest. Although it similarity to Quintus allows
for easy porting.

XPCE is freely available in binary form for the Linux version of SWI−prolog. XPCE is an object
oriented X−windows GUI development package/environment.

Kali Scheme

♦ Web site: www.neci.nj.nec.com/PLS/Kali.html

Kali Scheme is a distributed implementation of Scheme that permits efficient transmission of
higher−order objects such as closures and continuations. The integration of distributed
communication facilities within a higher−order programming language engenders a number of new
abstractions and paradigms for distributed computing. Among these are user−specified
load−balancing and migration policies for threads, incrementally−linked distributed computations,
agents, and parameterized client−server applications. Kali Scheme supports concurrency and
communication using first−class procedures and continuations. It integrates procedures and
continuations into a message−based distributed framework that allows any Scheme object (including
code vectors) to be sent and received in a message.

RScheme

♦ Web site: www.rosette.com/~donovan/rs/rscheme.html
♦ FTP site: ftp.rosette.com/pub/rscheme

RScheme is an object−oriented, extended version of the Scheme dialect of Lisp. RScheme is freely
redistributable, and offers reasonable performance despite being extraordinarily portable. RScheme
can be compiled to C, and the C can then compiled with a normal C compiler to generate machine
code. By default, however, RScheme compiles to bytecodes which are interpreted by a (runtime)
virtual machine. This ensures that compilation is fast and keeps code size down. In general, we
recommend using the (default) bytecode code generation system, and only compiling your
time−critical code to machine code. This allows a nice adjustment of space/time tradeoffs. (see web

Linux AI & Alife HOWTO

7. Programming languages 54

http://www.swi.psy.uva.nl/projects/SWI-Prolog/
ftp://swi.psy.uva.nl/pub/SWI-Prolog/
http://www.neci.nj.nec.com/PLS/Kali.html
http://www.rosette.com/~donovan/rs/rscheme.html
ftp://ftp.rosette.com/pub/rscheme/


site for details)

Scheme 48

♦ Web site: www.neci.nj.nec.com/homepages/kelsey/

Scheme 48 is a Scheme implementation based on a virtual machine architecture. Scheme 48 is
designed to be straightforward, flexible, reliable, and fast. It should be easily portable to 32−bit
byte−addressed machines that have POSIX and ANSI C support. In addition to the usual Scheme
built−in procedures and a development environment, library software includes support for hygienic
macros (as described in the Revised^4 Scheme report), multitasking, records, exception handling,
hash tables, arrays, weak pointers, and FORMAT. Scheme 48 implements and exploits an
experimental module system loosely derived from Standard ML and Scheme Xerox. The
development environment supports interactive changes to modules and interfaces.

SCM (Scheme)

♦ Web site: www−swiss.ai.mit.edu/~jaffer/SCM.html
♦ FTP site: swiss−ftp.ai.mit.edu:/archive/scm/

SCM conforms to the Revised^4 Report on the Algorithmic Language Scheme and the IEEE P1178
specification. Scm is written in C. It uses the following utilities (all available at the ftp site).

♦ SLIB (Standard Scheme Library) is a portable Scheme library which is intended to provide
compatibility and utility functions for all standard Scheme implementations, including SCM,
Chez, Elk, Gambit, MacScheme, MITScheme, scheme−>C, Scheme48, T3.1, and VSCM,
and is available as the file slib2c0.tar.gz. Written by Aubrey Jaffer.

♦ JACAL is a symbolic math system written in Scheme, and is available as the file
jacal1a7.tar.gz.

♦ Interfaces to standard libraries including REGEX string regular expression matching and the
CURSES screen management package.

♦ Available add−on packages including an interactive debugger, database, X−window
graphics, BGI graphics, Motif, and Open−Windows packages.

♦ A compiler (HOBBIT, available separately) and dynamic linking of compiled modules.

Linux AI & Alife HOWTO

7. Programming languages 55

http://www.neci.nj.nec.com/homepages/kelsey/
http://www-swiss.ai.mit.edu/~jaffer/SCM.html
ftp://swiss-ftp.ai.mit.edu:/archive/scm/


Shift

♦ Web site: www.path.berkeley.edu/shift/

Shift is a programming language for describing dynamic networks of hybrid automata. Such systems
consist of components which can be created, interconnected and destroyed as the system evolves.
Components exhibit hybrid behavior, consisting of continuous−time phases separated by
discrete−event transitions. Components may evolve independently, or they may interact through their
inputs, outputs and exported events. The interaction network itself may evolve.

Next PreviousContents

Linux AI & Alife HOWTO

7. Programming languages 56

http://www.path.berkeley.edu/shift/
AI-Alife-HOWTO-6.html

	Table of Contents
	Linux AI & Alife HOWTO
	by John Eikenberry
	1.Introduction
	2.Traditional Artificial Intelligence
	3.Connectionism
	4.Evolutionary Computing
	5.Alife & Complex Systems
	6.Autonomous Agents
	7.Programming languages
	1. Introduction
	1.1 Purpose
	1.2 Where to find this software
	1.3 Updates and comments
	2. Traditional Artificial Intelligence
	2.1 AI class/code libraries
	2.2 AI software kits, applications, etc.
	3. Connectionism
	3.1 Connectionist class/code libraries
	3.2 Connectionist software kits/applications
	4. Evolutionary Computing
	4.1 EC class/code libraries
	4.2 EC software kits/applications
	5. Alife & Complex Systems
	5.1 Alife & CS class/code libraries
	5.2 Alife & CS software kits, applications, etc.
	6. Autonomous Agents
	7. Programming languages


