

What, Why, How

Jen Linkova aka Furry furry - at -openwall.com Openwall, Inc http://www.openwall.com

Revision 1.0

IPv4 Address Distibution

- 32-bit number
- 4 294 967 296 addresses

2

256 /8 network blocks

Lies, Damned Lies, Statistics

Time Series of Advertised and Unadvertised Addresses

Assigned IPv4 Count

Source: «IPv4 Address Report», http://www.potaroo.net/tools/ipv4/

You have two choices: spend less...

- Address allocation policy for LIR (/19, /20, /21...)
- Address translation (NAT, NAPT):
 - breaks end2end model
 - affects protocols/applications
 - provides a false sense of security

See also:

- RFC 2775 «Internet Transparency»
- RFC 3027 «Protocol Complication with the IP Network Address Translator»
- RFC 2993 «Architectural Implications of NAT»
- Internet-Draft «Security implication of Network Address Translators»

- 340 282 366 920 938 463 463 374 607 431 768 211 456 total addresses
- 2^64 nodes per subnet
- fixed subnet size

Is it still enough?

Assume...:

RIRs request new block every 18 month

Then...

- The block currently assigned by IETF (1/8TH IPv6 space) is about to run out by 2158
- More than 5/8TH IPv6 address space will be still available
- (NB: 000/3 and 111/3 prefixes are reserved for special use)

Source: David Conrad, General Manager, IANA, 2007 http://www.iana.org/about/presentations/conrad-buenosaires-citel-060913.pdf

IPv6 Address Format

X:X:X:X:X:X:X:X where X = 0000 ... FFFF (hex)

- 2001:0DB8:0000:0000:0008:8000:0000:417A
- 2001:DB8:0:0:8:8000:0:417A
- 2001:DB8::8:8000:0:417A
- 2001:DB8:0:0:8:8000::417A
- 2001:db8::8:8000:417A

Examples

Ioopback address

0:0:0:0:0:0:0:1 or ::1

- unspecified address 0:0:0:0:0:0:0:0 or ::
- special exception: IPv4-mapped 0:0:0:0:0:FFFF:192.0.2.1 ::FFFF:192.0.2.1

Find the Mistake

2001:0DB8:0000:0000:FFFF:0CA0:0000:0000

- 1)2001:DB8::FFFF:CA0:0:0
- 2)2001:db8:0:0:FFFF:0CA0:0:0
- 3)2001:DB8::FFFF:CA0:0:0
- 4)2001:db8::FFFF:ca0::
- 5)2001:db8:0:0:FFFF:CA0::

6)2001:db8::FFFF:CA:0:0

IPv6 Address Types

Address Type	Binary Prefix	Prefix	
unspecified	0000 (128 bits)	::/128	
loopback	000001 (128 bits)	::1/128	
link-local unicast	1111 1110 10	FE80::/10	
multicast	1111 1111	FF00::/8	
Global unicast	all other addresses		

- FE80::/10 prefix
- Analogous to IPv4 169.254.0.0/16
- Automatically assigned to an interface
- Valid in the scope of the given link! Not to be routed!
- To be used for
 - auto-address configuration
 - neighbour discovery

Multicast Addresses

- T=0 permanently-assigned ("well-known") address, T=1 non-permanently-assigned ("transient")
- Scope
 - 1 node-local
 - 2 link-local
 - 5 site-local
 - 14 global (Internet)
- •Group ID identififes the mulicast group within the given scope. For example:
 - 1 all nodes (scope = 1,2)
 - 2 all routers (scope = 1,2,5)
 - 101 all NTP servers
- Examples:
 - FF02::101 all NTP-servers on the same link as a sender
 - FF02::2 all routers on the same link as a sender
 - FF05::101 all NTP-servers on the same site as a sender

Global Unicast

Address Type	Binary prefix	Prefix	
unspecified	0000 (128 bits)	::/128	
loopback	000001 (128 bits)	::1/128	
	000011111111111111(96		
Ipv4-mapped	bits)	::FFFF/96	
ULA	1111 110	FC00::/7	
Assigned to RIRs	001	2000::/3	
Global unicast	all other addresses		

Unique Local Unicast Addresses (ULA)

FC00::/7 prefix (RFC4193)

For local communications (site or limited set of sites)

- High probability of uniqueness
- Not expected to be routable on Internet
- Well-know prefixes => Easy filtering

If leaked outside – no conflicts with other addresses

- L = 1 the prefix is locally assigned
- L = 0 for future use
- **Global ID** a globally unique prefix identifier
- **Subnet ID** the identifier of a subnet within a site

Pseudo-Random Global ID Algorithm:

- 1) Obtain the current time of day in 64-bit NTP format
- 2) Obtain EUI-64 identifier (from MAC for example) or any suitably unique ID
- 3) Concatenate the time (1) with the system ID (2)
- 4) Compute SHA-1 digest of (3) and use the least significant 40 bits as $_{15}$ Global ID

Interface Identifier How to configure

- Manual configuration
- Autoconfiguration (EUI-64-based interface ID)
- DHCPv6
- Pseudo-random interface ID
- Cryptographically generated ID

Therefore: ::1 – globally assigned EUI-64, but locally assigned MEUI-64

IPv6 Header Format

Total length: 40 bytes

IPv4 Header Format

bits 4	٤ ١	3 1	62	0 32	
version	H. length	TOS	total length		
identification		flags	fragment offset		
Time t	to Live	protocol	header checksum		
32-bit source address					
32-bit destination address					
options					

Total length: 20 bytes + options

modified

IPv6 Header

- Fixed length
- All optional/additional info is encoded in <u>Extension Header(s)</u>
- Is not protected by checksum
- Payload Length instead of <u>Total</u> Length
- "Time To Live" field is replaced by "Hop Limit" one to better reflect its functions

Extension Headers

Extension Headers Processing

All EHs (except for Hop-by-Hop options) are processed by the destination node only!
 Packet is dropped if any extension header isn't

- recognised
- Recommended order of headers (except for Hop-by-Hop Option)

Reserved next header value: 59, «no next header»

Options Headers

Separating Hop-by-hop and Destination is useful:

- not all options are examined along a packet's delivery path
- encryption
- fragmentation
- Hop-by-Hop Options: for every nodes along a path
- Destination Options: for a packet's destination node(s)
- A variable number of variable-length options

TLV-encoding (Type-Length-Value)

- Type: identifier of type of option
- Two highest bits of Type: unrecognised option processing:
 - 00 skip over the option and continue
 - 01 discard the packet
 - 10 discard the packet and send ICMPv6
 - 11 discard the packet and send ICMPv6 only if destination isn't IPv6 multicast address
- Third highest-order bit of Type: whether (1) or not (0) Option Data can change en-route to the final destination
- Length: length of the Option Data, in octets

Fragment Header

Offset: the offset, in 8-octet units, of the data following this header, relative to the start of the Fragmentable Part of the packet

M flag: 1 – more fragments, 0 – last fragment

Control Protocol(s)

- IPv4 Control Protocols:
 - ARP (for Ethernet)
 - ICMP
 - IGMP
- IPv6 Control Protocol:

ICMPv6

(IPv6 Next Header value = 58)

Must be fully implemented & supported!

ICMPv6

Type field:

- 0 127: error messages
- 128 255: informational messages
- Body includes the the start of the invoking packet!
- Must not be fragmented!
- Must not be originated in response to
 - ICMPv6 error or redirect messages
 - multicast/broadcast packets addresses (with some

MULTIfunctions of MULTIcast

- IPv6 node MUST support multicast!
- Broadcast == «all nodes on this link» multicast group
 - don't forget to enable IGMP snooping/GMRP on switches
- All nodes with "similar" addresses share the same solicited-node multicast address
- Solicited-node multicast address format:
 - Globally-assigned prefix FF02::1:FF00:0:/104
 - Iow-order 24 bits of a node address

Example: a node 2001:db8::1:20cd:f345:5432:51d8 joins the multicast group FF02::1:FF00:0:32:51d8

Neighbor Discovery (ND)

- ICMPv6 is used for ND messages
- Multicast is used (unlike ARP)
- To request the link-layer address: neighbor solicitation (NS) query
- To provide some info: neighbor advertisement (NA)
- Soliced flag: S=1 in response to NS
 S=0 «unsolicited» NA
- Information is stored in:
- neighbor cache (NC)
- destination cache (DC)

Information exchange with upper-layer!

ND-proxy

- The target host or a ND-proxy could respond to NS query.
- Nodes should give preference to non-proxy NA
- Flag «O» (override)
 - ND-proxy: O=0 (REACHABLE -> STALE)
 - target host: O=1 (Neighbor Cache is updated)

ARP is Dead, Long Live ND!

- Much more than ARP (see Router Discovery and redirects)
- Reducing network load (multicast vs broadcast)
- Improving robustness of packet delivery
 - Neighbor unreachability detection (incl. half-link failures detection)
 - Notification from/to upper-layer!

Anycast

- The same "anycast" address is assigned to a group of interfaces (nodes)
- A packet sent to an anycast address is delivered to the "nearest" interface (node) having this address
- Allow to increase the service reliability

•

• Allocated from the unicast address space

IPv6 Node Configuration

- IPv6 address configuration:
 - Interface ID

manual

auto (stateful or stateless)

- Network ID
 - manual

auto (stateful or stateless)

pre-defined well-known prefix (link-local, FE80::/10)

additional parameters (routes, e.g.)

Interface Autoconfiguration

- Modified EUI-64 constructed from MAC
 - see next slides for some alternatives
- What about collisions?
 - duplicate MAC addresses
 - duplicate interface ID (manual configuration, e.g.)
- Neighbor Discovery locates the owner of given IP address
- Duplicate Address Detection (DAD) based on ND

Duplicate Address Detection

1. Node X is going to assign IP address A on its interface "I"

2. Interface "I" joins the multicast groups:

1. FF02::1 ("all nodes")

2. FF02::1:FF00:0:A' (the solicited-node multicast address «all nodes with IP = A»)

3. Is there any NS queries? (*dst ip* = *FF02::1:FF00:0:A*, *src ip* = *::*)

4. X sends NS query (*dst ip* = *FF02::1:FF00:0:A*, *src ip* = *::*)

5. Is there any NA (*flag* S = 0) sent to address FF02::1?

6. In case of events 3 or 5 - the address isn't unique!

7. Else – the address is unique

Must be performed on all unicast addresses (except for anycast)
StateLess Address Auto Configuration (SLAAC)

- Link-local address is already here:
 - well-know network ID
 - modified EUI-64 as interface ID
 - DAD to ensure uniqueness
- Ready to communicate with neighbors!
- What's next?
 - other IPv6 network IDs (global, e.g.)
 - default gateway(s)
 - routing table

Routers have this info already!

Your Router Is Your Neighbor!

- Neighbor Discovery (RFC4861)
- Routers join the "all routers" multicast group FF02::2
- Cliens send a «Router Solicitation» query (RS)
- Routers send out «Router Advertisiment» messages (RA)
 - periodically
 - in response to the RS query

Router Advertisement

bits	8	10	ט	16	32		
type = 134			code = 0		checksum		
hop limit	M	0	reserved		router lifetime		
reachable time							
retransmit timer							
options (variable length)							

Src IP = link-local, Dst IP = the source IP of the RS query or FF02::1

 M,O flags: indicate that addresses (M) or other configuration info (O) is available via DHCPv6

Router lifetime (in seconds) – the lifetime associated with the default router (0 - the router isn't default router, shouldn't appear on the default router list)
Reachable time (millisecs) – how long the neighbor is reachable after receiving a reachability confirmation (NC record goes from Reachable -> Stale then)

 Retransmit timer (millisecs) – the interval between retransmitted NS messages

RA: possible options

Additional configuration info:

Prefixes

- prefix ID and length
- Lifetime
- usage: for stateless configuration or destination cache
- MTU
- Link-layer address of the interface from which RA is sent

NB: Unmatched advertised parameters could lead to unstable network!

How to secure ND

- ND takes place on-link (between adjacent nodes)
- ND messages are not to be routed
- Routers decrement TTL (Hop Count)
- TTL < 255 may mean 'the packet was routed' (NB: «0 – 1=255»!!)
- Generalized TTL Security Mechanism (GTSM) (RFC5082)

How to secure ND (cont.)

- One of major threats: address spoofing attacks
- How to authenticate NA?
- Cryptography is our friend!
- Symmetric: key protection is an issue
- Asymmetric:
 - key distribution is an issue.
 - how to authenticate the peer?

Give me the place to stand, and I shall move the earth

- Neighbor IP address is already known!
- IP address can be used to authenticate the peer
- IP and public key are associated
- Public key is attached to ND message
- Public key is verified against IP address
- Cryptographically Generated Addresses (CGA, RFC3972)

Cryptographically Generated Address

- 1.A private/public key pair is generated for a node
- 2.Interface ID is calculated as an public key fingerprint
- 3. Subnet prefix and interface ID are concatenated
- 4.Duplicate Address Detection is performed (CGA is recalculated if necessary – up to 3 times)
- **5**.CGA parameter is formed:
 - IPv6 address
 - Public key
 - Some additional parameters
- 6.DNS and other records are updated..

<u>The random modifier allows to change the fingerprint (IP address) periodically</u>

CGA Verification

- 1. The verifier know the sender IP address (CGA)
- 2. The verifier gets the sender public key from CGA parameter
- 3. The verifier checks the association between IPv6 CGA and the corresponding pubic key
- 4. After then, the digital signature of ND message is verified

No PKI, CA or trusted servers is needed!

SEcure Neihgbor Discovery (SEND, RFC3971) describes Neighbor Discovery threats and protection

SEND: SLAAC protection

- Router Advertisement IP address can be spoofed
- RA IP is unknown => GCA can not be used
- Routers ARE authorised to act as routers
- Routers MAY be authorised to advertise prefixes
- Routers are given certificates from a trust anchor
- The hosts are configured with trust anchor(s)

Big Brother is watching you!

- MAC addresses are globally unique (in most cases)
- SLAAC: Interface ID is derived from MAC
- Users are mobile (home office internet-cafe – business trips – travels – office - home..):
 - network prefixes are changing
 - interface ID remains constant over time!
- User can be identified and tracked!

Privacy Extensions for SLAAC

- Task: provide privacy for users
- Requirements: do not broke SLAAC
- Approach: change the interface ID over time
- Interface ID must be locally (on-link) unique
- Interface ID can be random
- Duplicate Address Detection ensures uniqueness
- In case of collision a new random address is generated

Default Address Selection

- There are a number of ways to assign IPv6 addresses
- Requirements may be conflicting:
- Corporate environment: easily identification of a node
- Internet-connectivity: privacy is an issue
- IPv6 nodes are multi-addressed usually (+link-local)
- What address to choose for communication?
- See RFC5220 «Problem Statement for Default Address Selection in Multi-Prefix Environments: Operational Issues of RFC 3484 Default Rules»

Fragmentation

"Fragmentation considered harmful"

- Inefficient use of resources of hosts, routers and bandwidth
- Degraded performance due to loss of fragments
- Reassembly is difficult

Why fragmentation?

- MTU mismatch along the packet path (!tunnels!)
- TCP/IP implementations

Blocking PMTUD leads to packets disappearing into "black hole"

IPv6 Fragmentation

By the source host only, not by routers along the packet's path!

- No "Don't Fragment" bit anymore
- Minimum MTU = 1280 bytes
- If a packet size > MTU, the packet is dropped, ICMPv6 is sent

How to choose a packet's size:

- Always fragment to 1280 bytes (1232 bytes of payload)
- Use PMTUD, store MTU value in Destination Cache (DC)
- Applications can access IPv6 layer using API (Berkley sockets, e.g: see RFC3542)

Socket Option	Description	
IPV6_USE_MIN_MTU	Disable PMTUD, use minimum MTU = 1280 bytes	
IPV6_PATHMTU	Retrieve the current MTU value for the socket	
IPV6_RECVPATHMTU	Enable the receipt of the current MTU from recvfrom()	
IPV6_DONTFRAG	Disable the inserting of a fragment header	51

IPv6 & DNS

New Resource Record introduced: AAAA

furry:~ furry\$ dig www.kame.net aaaa www.kame.net. IN AAAA 2001:200::8002:203:47ff:fea5:3085 **Reverse Delegation:**

- the pseudo-domain ipv6.arpa
- Each label is a *nibble* (4 bits, one hex number)

Example:

PTR RR for an IPv6 address 2001:db8::20:219f:bd8c:17af

f.a.7.1.c.8.d.b.f.9.2.1.0.2.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ipv6.arpa. PTR

Don't forget to use \$ORIGIN to simplify your DNS zone file!

Migration

- Dual-stack nodes (IPv6+IPv4)
 - most workstations are IPv6-enabled
 - Windows: prefers IPv6 in some cases
 - uncontrolled connectivity is a security issue!
- Tunnels: connection of IPv6 domains via IPv4 clouds
- Address translations: interconnection between IPv6 and IPv4 domains

Tunnelling

- 6to4 the most common IPv6 over IPv4 tunnelling protocol. Tunnel endpoints must have public IPv4 addresses
- Teredo encapsulating IPv6 inside IPv4/UDP
 - NAT-T is supported
 - Globally unique IPv6 address is assigned to each endpoint
 - Windows Vista: enabled, but not active by default (teredo.ipv6.microsoft.com)

Can be a security issue!!

Tunnel brokers

- A service to provide encapsulated connectivity
- See RFC3053 "IPv6 Tunnel Broker" for details
- Extensive list can be found at: http://en.wikipedia.org/wiki/List of IPv6 tunnel brokers

Address Translation: NAT64

- http://tools.ietf.org/html/draft-bagnulo-behave-nat64-02
- Packet headers are translated according to Stateless IP/ICMP Translation Algorithm (SIIT)
- IPv6 {address + port} is mapped into IPv4 {address + port}
- IPv4 addresses are mapped into IPv6 addresses as Pref64::IPv4 (Pref64 is an /96 IPv6 address pool)

Fragmentation & NAT64

- IPv4 minimum MTU: 68 bytes
- IPv6 minimum MTU: 1280 bytes
- IPv4-node may originate ICMP "too big" with MTU < 1280</p>
- What IPv6-node can do?
 - include a Fragment header or
 - reduce the size of subsequent packets

IPv6 Advantages

- More efficient address space allocation
- End-to-end addressing; no NAT anymore!
- Fragmentation only by the source host
- Routers do not calculate header checksum (speedup!)
- Multicasting instead of broadcasting
- Built-in security mechanisms
- Single control protocol (ICMPv6)
- Auto-configuration
- Modular headers structure

Myths and Legends «How can I remember....»

- Use the Force (of DNS), Luke!
- Manual configuration: easy-readable addresses
- Use a compact notation (a lot of network prefixes to choose from)

Just compare:

furry:~ furry\$ dig www.ipv6porn.co.nz aaaa www.ipv6porn.co.nz.3324 IN AAAA 2002:3cea:4c32::1 (17 chars) www.ipv6porn.co.nz.3324 IN AAAA 2001:388:f000::285 (18 chars) furry:~ furry\$ dig www.ipv6porn.co.nz a www.ipv6porn.co.nz.10000 IN A 60.234.76.50 (12 chars)

Myths and Legends «I don't want it, I don't need it...»

- IPv6 is already here!
- Spontaneous self-organised and uncontrolled IPv6 networks are security issues
- Better be pro-active rather than reactive
- IPv6 is becoming more popular: get ready to meet it!

