Qt 3.1 Whitepaper
Trolltech

wwy, trol | tech. com

Abstract

Thiswhitepapedescribeshe Qt C++ toolkit. Qt supportghe developmentof multiplatform GUI applica
tionswith its “write once compileanywhere”approach.Usinga singlesourcereeandasimplerecompila
tion, applicationscanbewritten for Windows 95to XP, Mac OSX, Linux, Solaris,HP-UX, andmary other
versionsof Unix with X11. Qt applicationscanalsobe compiledto run on Qt/Embedded Qt introducesa
unigqueinter-objectcommunicatiormechanisntalled“signalsandslots’ Qt hasexcellentsupportfor mary

programmingdomains: 2D and 3D graphicsjnternationalizationXML, etc. Qt applicationscanbe built
visually usingQt Designer.

. Introduction
1.1. Executive Summary . . .
.Widgets
2.1. A“Hello” Example . ..
2.2. Built-inWidgets
2.3. Custom Widgets
. SignalsandSlots

Qt 3.1 Whitepaper

Trolltech

ww, trol | tech. com

Contents

31 ASigndsandSlotsExample

3.2. Meta Object Compiler .
. GUI Applications
4.1. Main Window Classes . .

4.2. MultipleDocument Interface e

43. Diadogs
4.4. Dock Windows
45. Settings
4.6. Multithreading
. QtDesigner
51 QtAssistant
5.2. GUI Application Example
. 2D and 3D Graphics
6.1. 2D Graphics
6.2. 3D Graphics
6.3. ASBDExample
.Databases

7.1 ExecutingSQL Commands e

7.2. Data-aware Widgets . . .
. Internationalization
8.1. Unicode
8.2. Text Entry and Rendering

© N o g b~ ww

10
11
12
12
15
15
17
18
18
18
20
21
23
23
26
27
30
31
32

S A

Qt 3.1 Whitepaper T R OL L TECH Page 2

8.3. TranslatingApplications 34
8.4. QtLiNQUISt 35
9. StylesandThemes 36
9.1. Built-in Styles 36
9.2. Style-avareWidgets. e 37
9.3. CustomStyles e 37
10, LayOULS e e 38
10.1. Built-in LayoutManagers. 38
10.2. NeStedLayOutS o . ottt e e e e 39
10.3. CustomLayouts 40
11 EVENtS . .o 41
11.1. EventCreation oo e 41
11.2. EventDelivery e 41
12. Input/OutputandNetworking 42
12. 0. Filel/O . .. e 42
12.2. XML . o e 43
12.3. Inter-Proces€ommunication 43
12.4. Networking e 43
13. CollectionClasses. oo 45
13.1. Value-base®ollections 45
13.2. PointerbasedCollections 46
14. PluginsandDynamicLibraries 46
14,0, PlUgINS. . . . e 46
14.2. DynamicLibraries 47
15. PlatformSpecificCEXtensions e 48
15. 0 ACtiveQt 48
15.2. Motif . . e 49
16. QUSAIChItectUre e e e 49
16.1. MicrosoftWindows 50
16.2. X1d o e 50
16.3. MacOSX 51
16.4. EmbeddediinuX 51
17. Qt'sDevelopmentWorld 51

INAEX . . . e e e e e e e, 52

Qt 3.1 Whitepaper T R OL L TECH Page 3

1. Introduction

Qt is a C++ toolkit for multiplatform GUI and application development. In addition to the
C++ class library, Qt includes tools to make writing applications fast and straightforward. Qt's
multiplatform capabilities and internationalization support ensure that Qt applications reach the
widest possible market.

TheQt C++ toolkit hasbeenat theheartof commerciabpplicationsince1995.Qt is usedby companiess
diverseasAT&T, IBM, NASA, and Xerox,andby numerousmallercompaniegindorganizations.Qt 3.1
retainsthe ease-of-usandpower of earlierversionswhile addingsignificantfunctionality andintroducing
new classesQt'sclassesrefully featuredio reducedeveloperworkload,andprovide consistentnterfaces
to speedearning. Qtis, andalwayshasbeenfully object-oriented.

Thiswhitepapegivesanoverview of Qt'stoolsandfunctionality Eachsectionbeginswith anon-technical
introduction,then presentghe technicaldetailsin increasingdepth. Code extracts,and small complete
applicationsarepresentedTo evaluateQt for 30 days visit http/ /www.trolltech.com

1.1. Executive Summary

Qt includesa rich setof widgets[p. 4] (“controls” in Windows terminology)that provide standardGUI
functionality Qt introducesaninnovative alternatve for inter-objectcommunicationgcalled “signalsand
slots”[p. 9], thatreplacesheold andunsafecallbacktechnigue Qt alsoprovidesacorventionaleventsmodel
[p. 41]for handlingmouseclicks,key pressestc. Qt'smultiplattormGUI applicationgp. 12]canuseall the
userinterfacefunctionality requiredby modernapplicationssuchasmenuscontext menusdraganddrop,
anddockableoolbars.

Intuitive namingcorventionsand a consistenfprogrammingapproachsimplify coding. Qt alsoincludes
Qt Designer [p. 18], atool for graphicallydesigninguserinterfaces.Qt Designer supportsQt’s powerful
layoutdp. 38]in additionto absolutgositioning. Qt Designer canbeusedpurelyfor GUI designprtocreate
entireapplicationswith its built-in C++ codeeditor.

Qt hasexcellent supportfor 2D and 3D graphics[p. 23] Qt is the de-facto standardGUI toolkit for
platform-independer®penGLprogramming.

Qtmakesit possibleo createplatform-independerttatabasapplicationsisingstandaradiatabasep. 30] Qt
includesnativedriversfor Oracle Microsoft SQL Sener, Sybaséddaptive Sener, PostgreSQLMySQL,and
ODBC-compliantdatabasesQt’'s databaséunctionalityis fully integratedwith Qt Designer, which offers
live preview of databaseéata. Qt includesdatabase-specifigidgets,andary built-in or customwidgetcan
bemadedata-avare.

Qt programsave nativelook andfeelonall supporteglatformsusingQt’'sstylesandthemesupporfp. 36]
Froma singlesourcetree,recompilationis all thatis requiredto produceapplicationdor Windows (95,98,
NT4, ME, 2000,XP), Mac OS X, Linux, Solaris,HP-UX, andmary otherversionsof Unix with X11. Qt
applicationganalsobecompiledto runon Qt/EmbeddedQt'sqmake build tool producesnakefilesor. dsp
filesappropriatéo thetargetplatform.

Since Qt's architecture[p. 49] takes advantageof the underlying platform, mary customersuse Qt for
single-platformdevelopmenton Windows, Mac OS X, and Unix becausdhey prefer Qt's approach.Qt

Qt 3.1 Whitepaper T R OULLTETCH Page 4

includes support for important platform-specific features, such as, ActiveX on Windows|p. 48] and Matif on
Unix [p. 49].

Qt uses Unicode throughout and has considerable support for internationalization [p. 33]. Qt includes
Qt Linguist[p. 35] and other toolsto support translators. Applicationscan easily use and mix text in Arabic,
Chinese, English, Hebrew, Japanese, Russian, and other languages supported by Unicode.

Qt includesa variety of domain-specific classes. For example, Qt hasan XML module [p. 43] that includes
SAX and DOM parsers. Objects can be stored in memory using Qt's STL-compatible collection classes
[p.45]. Local and remote file handling using standard protocols are provided by Qt's input/output and
networking classes[p. 42].

Qt applicationscan havetheir functionality extended by pluginsand dynamiclibraries[p. 46]. Pluginsprovide
additional codecs, databasedrivers,imageformats, styles, and widgets. Librariescan offer an unlimited range
of functionality. Pluginsand libraries can be sold as productsin their own right.

Qt isamature C++ toolkit that iswidely used across the world. In addition to Qt's many commercial uses,
the free edition of Qt is the foundation of KDE, the Linux desktop environment. Qt makes application
development a pleasure, with its multiplatform build system, visual form design, and elegant API.

On-line References

http:/ /www.trolltech.com/ references customersd
http:/ /www.trolltech.com/ referenced partners

2. Widgets

Qt hasarich setof widgets(buttonsscroll bars,etc.) that caterfor mostsituations.Qt’swidgets
areflexible and easyto subclasgor specialrequirements.

Qt provides a full set of widgets. Widgets are visual elementsthat are combined to create user interfaces.
Buttons, menus, scroll bars, message boxes, and application windows are all examples of widgets. Qt's
widgets are not arbitrarily divided between “controls’ and “containers’; all widgets can be used both as
controls and as containers. Custom widgets can easily be created by subclassing existing Qt widgets, or
created from scratch on the rare occasion when thisis necessary.

Widgetsareinstances of QWidget or one of itssubclasses, and custom widgets are created by subclassing.

A widget may contain any number of child widgets. Child widgets are shown within the parent widget's
area. A widget with no parent isatop-level widget (a“windov”), and usually hasitsown entry in the desktop
environment’stask bar. Qtimposesno arbitrary limitationsonwidgets. Any widget can beatop-level widget;
any widget can be a child of any other widget. The position of child widgetswithin the parent’sarea can be
set automatically using layout managers[p. 38], or manually if preferred. When a parent widget isdisabled,
hidden, or deleted, the same action isapplied to all itschild widgetsrecursively.

Labels, message boxes, tooltips, etc., are not confined to using a single color, font, and language.
Qt's text-rendering widgets can display multi-language rich text using a subset of HTML. See
“Text Entry and Rendering” [p. 34].

Qt 3.1 Whitepaper T R OL L TECH Page 5

QObject

QTimer

VQDiang | QSpinBox

QLineEdit

Figurel. Anextract from the QWidget classhierarchy

2.1. A “Hello” Example

Hello Qt/

Figure2. Hello Qt!

The compl ete source code for a program that displays“Hello Qt!” follows:

#i ncl ude <qapplication. h>
#i ncl ude <ql abel . h>

int main(int argc, char xxargv)

{
QApplication app(argc, argv);
Q,abel =*hello = new Q.abel ("Hello <i>Q!</i>"
"", 0);
app. set Mai nWdget(hello);
hel | o- >show() ;
return app. exec();
}

2.2. Built-in Widgets

The screenshots below present the main Qt widgets. They are shown using the Windows style.

A& label PBush buﬂonl

Figure3. A QLabel and a QPushButton laid out with a QHBoOx

Qt 3.1 Whitepaper

T R OULLTETCH

QButtohGroup
& Radiol [Checki

 Radio2 [¥ Check2

Figure4. Two QRadioButtons and two QCheckBoxeslaid out with a QButtonGroup

Figure5. A QDateTimeEdit, aQLineEdit, aQTextEdit, and aQComboBox laid out with a QGroupBox

— QiGroupBox
|1905-05-17 H| 031416 3
|aLineEdit

QTextEdit

“Everything T always
he made as simple as

paossible, but not simpler.”
Adbert Einstain

| Combohox text =|

{7 CHm s

| N

Page 6

Figure6. A QDial, a QProgressBar, aQSpinBox, a QScrollBar, aQL CDNumber, and aQSlider laid out withaQGrid

lcon 1 lcon 2

Column 1 Column 2 | Column 3
B QListyiew

& Uitem 1
- Witem 2 Twn Deux

o Tlnema Three Troig
B Witem 4 Four Gluatre
B tem 5 Five Cing

- @ ter & Six Six

(X tem 1

Witem 2

g GListBox

QTableltem | QCheckTahleltem | QComhoTaklelter~

0 |item 1 I~ Check1

1 .‘Q.It-em 2 | Checkz lCombo 2)
z [item 3 ¥ Check 3 '

3 |tem4 T Check4 [Comboa .
« | »

Figure7. A QlconView,aQListView, aQListBox, and aQTablelaid out withaQGrid

Qt 3.1 Whitepaper T R OULLTETCH Page 7

QComboBox, QLineEdit, and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

Widgets that are used to display large amounts of data (e.g. QTable, QListView, and QTextEdit) inherit
QScrollView and can display scroll barsautomatically.

QMainWindow, QM enuBar, and QToolBar are presented in “GUI Applications’ [p. 12]. QM essageBox,
QFileDialog, QTabDialog, QWizard, and other dialogs are presented in “Dialogs’ [p. 15]. QSplitter is
coveredin “Layouts’ [p. 38]. QCanvasand QGLWidget are presented in “ 2D and 3D Graphics’ [p. 23].

The screenshot that shows the QRadioButtons and QCheckBoxes (Figure 4) was produced with the
following code:

parent = new QButtonGoup(2, Q::Vertical, "QButtonG oup");
radi ol = new QRadi oButton("&Radio 1", parent);
radi 02 = new QRadi oButton("R&adi o 2", parent);

radi ol- >set Checked(true);
checkl = new QCheckBox("&Check 1", parent);
check2 = new QCheckBox("C&heck 2", parent);
check2- >set Checked(true);

2.3. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses. To
illustrate subclassing, the complete code for a digital clock widget is presented.

Figure8. Clock widget
The Clock widget isa L CD that displaysthe current time and updatesitself automatically. A colon separator
blinksto indicate the passing seconds.
Incl ock. h, Clock isdefined like this:
#i ncl ude <ql cdnunber. h>
class Cock : public Q.CDNumber

{
public:
Cl ock(QN dget x*parent = 0, const char *name = 0);

pr ot ect ed:
voi d timerEvent(QTi nerEvent xevent);

private:
voi d showTi ne();

bool show ngCol on;

Qt 3.1 Whitepaper T R OL L TECH Page 8

Clock inheritsits LCD functionality from the QL CDNumber widget. It hasa constructor typical of widget
classes, with optional par ent and nare parameters. (Testing and debugging are easier if nane isset.) The
timerEvent() function isinherited from QObject and iscalled at regular intervalsby the system.

Incl ock. cpp, thefunctionsdeclared in cl ock. h areimplemented:
#i ncl ude <qdatetine. h>
#i ncl ude "cl ock. h"

Cl ock:: C ock(QW dget xparent, const char =*name)
Q_.CDNumber (parent, nane), show ngColon(true)

showTi ne() ;
start Timer(1000);

}

void O ock::timerEvent(Qli mer Event *)

showTi ne() ;

voi d d ock: : showTi ne()

{
String time = Qlime::currentTime().toString().left(5);
if (!show ngCol on)
time[2] =" '
di splay(time);
showi ngCol on = ! showi ngCol on;
}

The constructor calls showTime() to initialize the clock with the current time, and tells the system to call
timerEvent() every 1000 millisecondsto refresh the LCD display.

In showTime(), QLCDNumber::display() is called with the current time. The colon is replaced by a space
every other time showTime() is called to make the colon blink.

Thecl ock. handcl ock. cpp filescompletely defineand implement the Clock custom widget. Thiswidget
can be used immediately:

#i ncl ude <qapplication. h>
#i ncl ude "cl ock. h"

int main(int argc, char xxargv)

{
QAppl i cation app(argc, argv);
Cl ock *clock = new O ock;
app. set Mai nWdget (cl ock);
cl ock->show) ;
return app. exec();
}

Thisexample program contains a single widget (the clock) and no child widgets. Complex widgetsare built
by combining widgetsin layouts.

Qt 3.1 Whitepaper T R OL L TECH Page 9

Developerscanalsowrite customwidgetsfrom scratch.For example to createananalogclock, it would be
necessarto draw theclock'sfaceandhandsn coderatherthanrelying onthefunctionalityimplementedn
abaseclass. Thisapproachs coveredin “2D Graphics'p. 23]

On-line References

http//doc.trolltech.corh3. 1 qwidget.html

3. Signals and Slots

Sgnals and slots provide inter-object communication. They are easy to understand and use, and
arefully supported by Qt Designer.

GUI applicationgespondo useractions. For example whena userclicks a menuitem or a toolbarbutton,
theapplicationexecutessomecode. More generallywe wantobjectsof any kind to beableto communicate
with eachother The programmemustrelateeventsto the relevant code. Older toolkits usemechanisms
thatarenottype-safdi.e.arecrash-pronejgreinflexible,andarenot object-oriented Trolltechhasinvented
asolutioncalled“signalsandslots’ Signalsandslotsis a powerful inter-objectcommunicatiormechanism
thatcanbeusedio completelyreplacehecrudecallbacksandmessagenapausedby legacy toolkits. Signals
andslotsareflexible, fully object-orientedandimplementedn C++.

To associatsomecodewith a buttonusingthe old callbackmechanismit is necessaryo passa pointerto
afunctionto the button. Whenthe buttonis clicked,the functionis thencalled. Old toolkits do not ensure
thatargumentsf theright typearegivento thefunctionwhenit is called,which makescrashesnorelik ely.
Another problemwith the callbackapproachis thatit tightly bindsthe GUI elementto the functionality,
makingit difficult to developclassesndependently

/ "\ connect(Object1, signal1, Object2, slot1)

el connect(Object1, signal1, Object2, slot2)
signali
b (" Object2)
signali
N—nt
——p slotl
L p slot2
N——S
Object3
signalt | connect(Object1, signal2, Object4, slot1)
ject
(Objectd)
slot1
N——t
L) slotl
slot2
———————Pp slot3
connect(Object3, signal1, Object4, slot3) N— S

Figure9. An abstracview of somesignalsandslotsconnections

Qt 3.1 Whitepaper T R OULLTETCH Page 10

Qt's signals and dots mechanism is different. Qt widgets emit signals when events occur. For example, a
button will emit a*“clicked” signal when it isclicked. The programmer can choose to connect to asignal by
creating afunction (called aslot) and calling the connect() function torelatethe signal tothedot. Qt'ssignals
and slotsmechani sm does not require classesto have knowledge of each other, which makesit much easier to
develop highly reusable classes. Signalsand slotsare type-safe, with type errors being reported by warnings
rather than by crashes.

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user'sclick on
Quit makesthe application terminate. In code, thisiswritten as

connect (button, SIGNAL(clicked()), gApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

[Hetvetica [Crony:q =] [1opt] —Jconnect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

l/f Recursive, I.e. slow, factarial function = ‘
int factoriali int n)
i
if i n <=1) return 1;
return n * factorialf n - 1 3; —] connect(textEdit, modificationChanged(bool),
) = customStatusBar, modificationStatus(bool))

|Ln 1, Col 1 |Sa.ved <

Figure 10. Anexampleof signalsand slots connections

The signals and dots implementation smoothly extends C++'s syntax and takes full advantage of C++'s
object-oriented features. Signalsand slotsaretype-safe, can be overloaded or reimplemented and may appear
in the public, protected or private sectionsof aclass.

3.1. A Signals and Slots Example

To benefit from signalsand dots, a class must inherit from QObject or one of itssubclassesand include the
Q_OBJECT macro in the class's definition. Signals are declared in the si gnal s section of the class, while
slotsaredeclared inthepubl i ¢ sl ot s,protected sl ots,or pri vat e sl ot s sections.

Here isan example QObject subclass:
cl ass BankAccount : public QObject

Q _OBJECT
public:

BankAccount () { curBalance = 0; }

i nt balance() const { return curBal ance; }
public slots:

voi d setBal ance(int newBal ance);

si ghal s:
voi d bal anceChanged(int newBal ance);

Qt 3.1 Whitepaper T R OL L TECH Page 11

private:
i nt curBal ance;
s

In the style of most C++ classes, the classBank Account hasa constructor, aget function balance(), and a set
function setBalance().

The classaso hasa signal balanceChanged(), which announcesthat the balance in the account has changed.
When a signal isemitted, the dotsit is connected to are executed.

Theset functionisdeclared inthepubl i ¢ sl ot s section, soitisasot. Slotsare member functionsthat can
be called like any other function and that can also be connected to signals.

Here'sthe implementation of the slot setBalance():

voi d BankAccount: : set Bal ance(i nt newBal ance)

{
if (newBal ance != curBal ance) {
cur Bal ance = newBal ance;
em t bal anceChanged(curBal ance);
}
}
The statement

em t bal anceChanged(curBal ance);

causes the balanceChanged() signal to be emitted with the new current balance as its argument. The
keyword emi t , like si gnal s and sl ot s, is provided by Qt and is transformed into standard C++ by the
C++ preprocessor.

Here’'san example of how to connect two Bank Accounts:

BankAccount x, v;
connect (&, SIGNAL(bal anceChanged(int)), &y, SLOT(setBal ance(int)));
X. set Bal ance(2450);

When the balancein x is set to 2450, the balanceChanged() signal is emitted. The signal isreceived by y’s
setBalance() slot, which setsy’s balance to 2450.

One object’ssignal can be connected to many different slots, and many signals can be connected to one slot
inaparticular object. Connectionsare made between signalsand slotswhose parametershave the sametypes.
A dot can have fewer parametersthan the signal and ignore the extra parameters.

3.2. Meta Object Compiler

The signals and slots mechanism is implemented in standard CG++. The implementation uses the C++
preprocessor and the Meta Object Compiler (noc) included with the Qt toolkit.

Thenoc readsthe application’sheader files and generatesthe necessary code to support the signalsand slots
mechanism. It isinvoked automatically by makefiles generated by gmake. Devel opers never have to edit or
even look at the generated code.

Qt 3.1 Whitepaper T R OL L TECH Page 12

In addition to handling signals and slots, moc supports Qt’s translation mechanism, its property system, and
its extended run-time type information. The Meta Object Compiler also makes multiplatform introspection
of C++ programspossible.

On-line References

http:/ /doc.trolltech.com/ 3.1/ object.html
http:/ /doc.trolltech.com/ 3.1/ signal sandsl ots.html
http:/ /doc.trolltech.com/ 3.2/ moc.html

4. GUI Applications

Building modern GUI applicationswith Qt isfast and simple,and can be achieved by hand coding
or by using Qt Designer, Qt'svisual design tool.

Qt provides al the classes and functions necessary to create modern GUI applications. Qt can be used to
create both “main window” style applicationswith a menu bar, toolbars, and status bar surrounding a central
area, and “dialog” style applicationsthat use buttonsand possibly tabsto present optionsand information. Qt
supportsboth SDI (single document interface) and M DI (multiple document interface). Qt al so supportsdrag
and drop and the clipboard.

Toolbars can be moved around within the toolbar area, dragged to other areas, or floated as tool palettes.
Thisfunctionality isbuilt in and requires no additional code, although programmers can apply constraintsto
toolbar behavior if required.

Qt simplifies programming. For example, if a menu option, atoolbar button, and a keyboard accelerator al
perform the same action, the action need only be coded once.

Qt also provides message boxes and a full set of standard dialogs to make it easy for applications to ask
the user questions, and to get the user to choose files, folders, fonts, and colors. In practice, a one-line
statement using one of Qt’sstatic convenience functionsisall that isnecessary to present a message box or a
standard dialog.

Qt can platform-independently store application settings, such as user preferences, most recently used files,
window and toolbar positionsand sizes, etc.

4.1. Main Window Classes

4.1.1. The Main Window

The QM ainWindow class provides aframework for typical application main windows.

A main window containsa set of standard widgets. Thetop of the main window is occupied by a menu bar,
beneath which toolbars are laid out. The toolbars can be moved to any toolbar area; main windows have
toolbar areasat thetop, left, right, and bottom. Toolbars can also be dragged out of atoolbar area and floated
asindependent tool palettes. The bottom of the main window, bel ow the bottom toolbar area, isoccupied by a

Qt 3.1 Whitepaper T R OULLTETCH Page 13

statusbar. Thecentral areacontainsany widget for SDI applicationsor aQWor kspacefor MDI applications.
Tooltipsand “What's this?’ help provide balloon help for the user-interface elements.

.f: o QMainWindow T
Help

@8- ~ % m@

RADT Child: 1

»Die Mathematiker sind eine Art
Franzosen: redet man zu ihnen, so
MO Child 2

“Mathematicians are like Frenchmen:
whenever you say something to them, they

translate it into their own language, and at
once it is something entirely different.”

Goelie

Status message Indicatar 1 | Indicator 2 4

Figure11. An application main window

4.1.2. Menus

The QPopupM enu widget presentsmenu itemsto the user in avertical list. Popup menuscan be standalone
(e.g. a context menu), can appear in a menu bar, or can be a sub-menu of another popup menu. Menus can
have tear-off handles.

Each menu item can have anicon, a checkbox, and an accelerator. Menuitemsusually correspond to actions
(e.g. Save). Separator itemsare displayed asaline and are used to group related actionsvisually.

Here'san examplethat createsa File menu with New, Open, and Exit menu items:

QPopupMenu =fil eMenu = new QPopupMenu(this);
fileMenu->insertliten("&New', this, SLOT(newFile()), CTRL+Key N);
fileMenu->insertliten("&pen...", this, SLOT(open()), CTRL+Key O);
fileMenu->i nsert Separator();

fileMenu->insertltenm "E&it", qApp, SLOT(quit()), CTRL+Key Q);

When a menu item is chosen, the corresponding slot is executed.

The QMenuBar class implements a menu bar. It is automatically laid out at the top of its parent widget
(typically a QM ainWindow), splitting its contents across multiple lines if the parent window is not wide
enough. Qt'sbuilt-in layout managers take any menu bar into consideration. On the Macintosh, the menu
bar appearsat the top of the screen as expected.

Here'show to create amenu bar with File, Edit, and Help menus:

QvenuBar xbar = new QvenuBar(this);
bar->insertltem("&File", fileMenu);
bar->insertltenm("&Edit", editMenu);
bar->i nsertltem "&Hel p", hel pMenu);

Qt's menu system is very flible. Menu items can be enabled, disabled, added, or removed dynamically.
Menu itemswith customized appearance and behavior can be created by subclassing QCustomM enultem.

Qt 3.1 Whitepaper T R OULLTETCH Page 14

4.1.3. Toolbars

The QToolButton classimplementsatoolbar button with anicon, a 3D frame, and an optional label. Toggle
toolbar buttons turn features on and off. Other toolbar buttons execute a command. Different icons can
be provided for the active, disabled, and enabled modes, and for the on and off states. If only one icon
is provided, Qt automatically distinguishes the state using visual cues, for example, graying out disabled
buttons. Toolbar buttons can also trigger popup menus.

QToolButtons usualy appear side by side within a QToolBar. An application can have any number of
toolbars, and the user is free to move them around. Toolbars can contain widgets of almost any type, for
example QComboBoxes and QSpinBoxes.

4.1.4. Balloon Help

Modern applications use balloon help to briefly explain the purpose of user-interface elements. Qt provides
two mechanismsfor balloon help: tooltipsand “What's this?" help.

Tooltips are small, usualy yellow, rectanglesthat appear automatically when the mouse pointer hovers over
awidget. Tooltips are often used to explain a toolbar button, since toolbar buttons are rarely displayed with
text labels. Here’'show to set thetooltip of a“Save” toolbar button:

Qrool Ti p: : add(saveButton, "Save");

It isalso possibleto set alonger piece of text to be displayed in the status bar when the tooltip is shown.

“What's this?” helpissimilar to tooltips, except that the user must request it, for exampleby pressing Shift+F1
and then clicking a widget or menu item. “What's this?’ help istypically longer than atooltip. Here’'show
to set the “What's this?” text for a“ Save” toolbar button:

QMhat sThi s: : add(saveButton, "Saves the current file.");

The QToolTip and QWhatsT his classes provide virtual functions that can be reimplemented for more
specialized behavior, such as displaying different text depending on the position of the mouse within the
widget.

4.1.5. Actions

Applicationsusually providethe user with several different waysto perform aparticular action. For example,
most applicationsprovidea® Save” action available from the menu (File|Save), from the toolbar (the “flopy
disk” toolbar button), and as an accelerator (Ctrl+S). The QAction class encapsul atesthis concept. It allows
programmersto define an action in one place.

The following code implements a“ Save” menu item, a“ Save” toolbar button, and a“Sare” accelerator, all
with balloon help:

QAction *saveAct = new QAction("Save", savelcon, "&Save",
CTRL+Key_ S, this);

connect (saveAct, SIGNAL(activated()), this, SLOT(save()));

saveAct - >set What sThis("Saves the current file.");

saveAct - >addTo(fil eMenu);

saveAct - >addTo(tool bar);

Qt 3.1 Whitepaper T R OL L TECH Page 15

In addition to avoiding duplication, using a QAction ensuresthat the state of menu items staysin sync with
the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will disable
any corresponding menu items and toolbar buttons. Similarly, if the user clicks a toggle toolbar button, the
corresponding menu item will be checked or unchecked accordingly.

4.1.6. The Central Widget

The central area of a QMainWindow can contain any widget. For example, a text editor could use a
QTextEdit asits central widget:

Qlext Edit =editor = new Qlext Edi t (mai nW ndow) ;
mai NW ndow >set Cent ral Wdget(editor);

4.2. Multiple Document Interface
Multiple document interface (MDI) is provided by the QWorkspace class, which is typically used as the
central widget of a QM ainWindow.

Child widgets of QWor kspace can be widgets of any type. They are rendered with a frame similar to the
frame around top-level widgets. Functions such as show(), hide(), showMaximized(), and setCaption() work
in the same way for child MDI widgetsasfor ordinary top-level widgets.

QWor kspace provides positioning strategies such as cascade and tile. If achild widget extends outside the
MDI area, scroll bars can be set to appear automatically. If a child widget is maximized, the frame buttons
(e.g. Minimize) are shown in the menu bar.

4.3. Dialogs
Most GUI applications use dialog boxes to interact with the user for certain operations. Qt includes
ready-made dial og classes with convenience functionsfor the most common tasks.

Screenshotsof some of Qt’sstandard dialogsare presented below. Qt also providesstandard dialogsfor color
selection and printing options.

x

i Cikempiresume.html already exists.
\ Do you want Eo replace it?

Figure12. A QM essageBox

QMessageBox is used to provide the user with information or to present the user with simple choices
(e.g.“Yes” and“No”").

Qt 3.1 Whitepaper T R OLLTECH Page 16

Bz dialogz Ea zhyles
Cdicorwiew [table W : mair qt.pro

[C kemel &= tmp I akefile. win32-dll qt_install.pri
o [tacks @ qt_professional. pri

Clrnetwark 3 widgets gt.dsw qtmain.dsp
i opengl i | workspace qt.nch qtmain.pro
I zql] ml qt.opt £

|4 _
File name: I"Makefile" "Makefile.main' "'qgt.dsp"
Filetype: | Al Files [= Cancel |

Figure13. A QFileDialog

QFileDialog is a sophisticated file selection dialog. It can be used to select single or multiple local or
remote files (e.g. using FTP), and includes functionality such asfile renaming and directory creation. Like
most Qt dialogs, QFileDialog isresizable, which makesit easy to view long file namesand large directories.
Applications can be set to automatically use the native file dialog on Windows and Macintosh.

[Data converter S

Conwverting C:A\database\customers.dat...

NERNRNRNRNRRRNRNR B4

Figure14. A QProgressDialog

QProgressDialog displaysa progress bar and a*“ Cancel” button.

E?Main Window Wizard _Qlll
Setup Toolbar
LCategomny I File ;I
Actions Toolbar
Iew Mews
Open Open
Save Save
Save fs Pririt
Frint <Separator:
Exit Undo

<Separator:

els 16 Lo

Cancel | < Back | Mest » I Help

Figure15. A QWizard

Qt 3.1 Whitepaper T R OL L TECH Page 17

QWizard providesaframework for wizard dialogs.

@5elect Font 5 2 x|
Font Font style Size
Fzzhonggian-m16s | Bold Italic |22
Courier Mew Tur | | Regular 12 ﬂ
Firedsys - Bold 20
Fzzhonggian-ml Gz Italic 72]
Garamaond ;! Bold [talic 24 L‘
— Effectz — Sample

[~ Stikeout
[~ Underine c’f_"(i-" -
= AalBb " 7=
Script
i Hiragana ;I

Cancel |

V.

Figure16. A QFontDialog

QFontDialog isused to select afont.

Dialogs operatein one of three ways:

1. A modal dialog blocksinput to the other visible windowsin the same application. Usersmust closethe
dialog before they can accessany other window in the application.

2. A modeless dialog operatesindependently of other windows.

3. A semi-modal dialog returnscontrol to the caller immediately. These dialogsbehavelike modal dialogs
from the user’spoint of view, but allow the application to continue processing. Thisisparticularly useful
for progressdialogs.

Modal diadogsaretypicaly used like this:
OptionsDi al og di al og(&optionsData);

if (dialog.exec()) {
do_sonet hi ng(optionsData);
}

Programmerscan create their own dialogs by subclassing QDialog, which inherits QWidget.

4.4. Dock Windows

Dock windows are windowsthat the user can move inside atoolbar area or from one toolbar areato another.
Theuser can undock adock window and makeit float ontop of the application or minimizeit. Dock windows
and toolbar areasare provided by the QDockWindow and QDaockAr ea classes.

Qt provides one QDockWindow subclass, QToolBar. QM ainWindow automatically provides four toolbar
areas, one on each side of the central widget.

Qt 3.1 Whitepaper T R OULLTETCH Page 18

Devel operscan create custom dock windowsby instantiating a QDock Window object and by adding widgets
toit. Thewidgetsarelaid out sideby sideif thetoolbar areaishorizontal (e.g. at thetop of the main window)
and above each other if the areaisvertical (e.g. at theleft of the main window).

Dock areas are not bound to QMainWindow; developers can use QDockArea in any custom widget.
Toolbars and other dock windows can be used with any toolbar area.

Some applications, including Qt Designer [p. 18] and Qt Linguist [p. 35], use dock windows extensively.
QDockArea provides operators to save and restore the position of dock windows, so that applications can
easily restore the user’s preferred positions.

4.5. Settings

User settings and other application settings can easily be stored on disk using the QSettings class. On
Windows, QSettings makes use of the system registry; on other platforms, settingsare stored in text files.

A particular setting is stored using a key. For example, the key / Sof t war el nc/ Zooner / Recent Fi | es
might contain alist of recently used files. Booleans, numbers, Unicode strings, and lists of Unicode strings
can be stored.

4.6. Multithreading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one or
many other threadsto perform time-consuming activities such asreading large filesand performing complex
calculations. Qt can be configured to support multithreading, and providesfiv ethreading classes: QThread,
QM utex, QM utexL ocker, QSemaphor e, and QWaitCondition.

On-line References
http//doc.trolltech.com/ 3.1 threads.html

5. Qt Designer

Qt Designer isavisual user-interface design tool and code editor, writtenin Qt. Applicationscan
bewritten entirely as source code, or using Qt Designer to speed up development.

Designing aform with Qt Designer isasimple process. Developersclick atoolbox button representing the
widget they want, then click on aform to placethewidget. Thewidget’spropertiescan then be changed using
the property editor. The precise positionsand sizes of the widgets do not matter. Devel opers select widgets
and apply layoutsto them. For example, some button widgets could be selected and laid out side by side by
choosing the“lay out horizontally” option. Thisapproach makesdesign very fast, and the finished formswill
scale properly to fit whatever window size the end-user prefers. See“Layouts’ [p. 38] for information about
Qt’'sautomatic layouts.

Qt Designer eliminates the time-consuming “compile, link, and run” cycle for user interface design. This
makes it easy to correct or change designs. Qt Designer’s preview options let developers see their forms
in other styles; for example, a Macintosh developer can preview a form in Windows style. Qt Designer

Qt 3.1 Whitepaper T R OLLTECH Page 19

provideslive preview and editing of databasedatathrough itstight integration with Qt’sdatabase classes. See
“Databases’ [p. 30] for more about Qt’s database support.

€ Ot Designer by Trolltech

File Edit Project Search Tools Layout Preview Window Help
D Ecoonrvi g @ KEBAM: VW @l = 8 M
x| —— -
i Lolor | o 1T I i ==
Commeon Widgsts . ua |
Buttons e “Ei_le Edlt HEH_J @Coloﬁool.pm
Com i ' | oy, s '..-:.-: X
%_ T D g H) Cu (%) Q\ = m ColorTool: colortool ui
lews ,
Database el W T i SE i s A b e T e D Color a0k
o I
LineEdit Properties | Signal Handlers
B2y SpinBox Property Value A%
E name ColorToal [ii]
DateEdit ! e
8 oae | enabled [e |
(O ek & Edit ColorTool CEK |aiel [Ffetemed Ficlene:y
) e — minimumSize [124,170]
E’D Date TimeEdit | | woid ColorTeol::fileCpend) e "-maximumSize [327{;7' 32?5;}
@ TextEdit if { lokToClearl)) 3 s!_zeln_c:rement [B DI
== return; ___bageSi_?:e_ _5[_1}. 0]
ComboBoo(paletteForegroun. . | N
Q5tring £n = QFileDislog::getlpenFilelame | e i l:l
ﬂ-= Slider " " ing::null, [paletteBack
pale_t'_teBack |
SerollBer B | ee—
Dial K backgroundOrigin | AncestorOngin
"ColorPalette — File Open™); - Tt
if { fn_isEmptyl)) I fort |MS Shell Dig-8
load{ £n }; ki {Amow
else caption [ColorTool
gtatusBar{)->message | "File COpen zbandoned", + o I
Dimwﬁ S e " iconTest | |
L s mouseTracking |False v
Custom Widgsts Rl - ; =
Ready

Figure17. Qt Designer

Developers can create both “dialog” style applications and “main window” style applications with menus,
toolbars, balloon help, etc. Several form templatesare supplied, and devel operscan createtheir own templates
to ensure consistency across an application or family of applications. Qt Designer uses wizards to make
creating tool bars, menus, and database applicationsasfast and easy aspossible. Programmerscan createtheir
own custom widgetsthat can easily be integrated with Qt Designer.

Qt Designer supports a project-based approach to application development. A project is represented by
a. pro file, which gmake usesto generate makefiles. Devel opers create a new project and then add forms
and source files as required. Developers can completely separate the user interface from the underlying
functionality by subclassing, or they can keep their source code and forms together by editing the forms
sourcedirectly in Qt Designer.

Iconsand other imagesused in the application are automatically shared acrossall formsin a project to reduce
executable size and speed up loading.

Form designsare stored in XML format in . ui filesand converted into C++ header and sourcefilesby ui ¢
(User Interface Compiler). The gmaeke build tool automatically includes build rulesfor ui ¢ in the makefiles
it generates, so developersdo not need to invoke ui ¢ themselves.

Qt 3.1 Whitepaper T R OULLTETCH Page 20

Usually forms are compiled into the executable, but in some situations customers need to modify the
appearance of an application without accessing the source code. Qt supports “dynamic dialogs’: . ui files
that can beloaded at run-time and dynamically converted into fully functional forms. Companiescan supply
application executables along with the customer-modifiable formsin . ui format, and the customer can use
Qt Designer to customize the appearance of the application’sforms. Loading adynamic dialog iseasy:

QDi al og *creditForm= (QDial og *)
QW dget Factory::create("creditformui");

5.1. Qt Assistant

1 Ot Assistant by Trolltech - OBrush Class
File Edit view Go Bookmarks Help

e B3V QQVvEZSD

| Detailed Description ~

x | Bookmarks | Search E] ¥
R L L The GBrush class defines the fill pattem of shapes drawn by a QP ainter.
Searching for; .
b = 1 A brush has a style and a color. One of the brush styles is a custom pattem, which is defined by a QPixmap.
i |
: The brush style defines the fill pattem. The default brush style is NoBrush {depending on how you construct a
Help] [Search] brush). This style tells the painter to not fill shapes. The standard style for filling is SolidPattem.
The brush color defines the color of the fill pattem. The QCalor documentation lists the predefined colors.
Founf:l. DU-U..II'HEHTSZ | Uze the QFen class for specifying line/outline styles.
QPainter Class A
QBrush Class | Bxample:
Themes {Styles)
QFalette Class
| GColorGroup Class GFzinter painter;
| QCanvasPolygonalkem Class QB;ush b:‘j‘-’l? { ?Ellc‘.’ Vi) A/ ?E:!-l':“ SCli.d.r.:ar,t,e:n
QVariant Class pa:?.nzer .beg;n] ;Elnil-‘alll:xt,?)e vice); J;z" paln:hscme;};lngb :
4 . palnter._se rusni{ brush)7 Jf o Set e ye oW rush
gp;ll‘lter.h inchide:Fe: : peinter.setPen! NoPen)5 // do not draw cutline
QIT un?I’Ed' o peinter.drawBect{ 40,30, 200,100); // draw £illed rectangle
extEdit Class peinter setBrush| NecBrush); S¥ do not £ill
Qlconv‘?w Class . painter. setPen| black); // set black pen, 0 pixel width
Gt Tutorial - Chapter 3: With Cani peinter drawBect| 10,10, 30,20 i; // draw rectangle cutline
QWidget Class painter.end(); // painting done
Format of the GDataStream Oper
QLCDMNumber Class
QSimpleRichText Class | See the setShe() function for a complete list of brush styles.
Canvas Control
gpaintdevice h Include File Brush Styles
Style overview -
< I | b
= e

Figure18. Qt Assistant

Qt Designer’s on-line help is provided by the Qt Assistant application. Qt Assistant displays Qt's entire
documentation set, and works in a similar way to a web browser. But unlike web browsers, Qt Assistant

applies a sophisticated indexing algorithm to provide fast full text searching of all the documentation it
presents.

Qt's reference documentation consists of around 1,600 HTML pages (over 2,500 printed pages), which

document Qt’s classes and tools, and which include overviews and introductions to various aspects of Qt
programming.

Qt 3.1 Whitepaper T R OL L TECH Page 21

Developers can deploy Qt Assistant as the help browser for their own applications and their own documen-
tation sets. Qt Assistant integration isachieved using the QAssistantClient class. Qt Assistant rendersQt's
HTML reference documentation using QTextEdit; devel opers can use this class directly to implement their
own help browsersif preferred. QTextEdit supportsasubset of HTML 3.2, and can al so use custom tagsthat
are created with the QStyleSheet class.

5.2. GUI Application Example

— Language
L yyFlexl exer FlexLexer.h
E--Machine — Search Paths
. B-Aircrat aircrath fhomedasminmyets
| i dirplane airplane.h fustfincludes
: “.Helicopter helicapter.h
é---NCurses.ﬁ.pplication cursesapp.h Add Search Path |
--NCursesException etip.h
Q--NCursesFieldType cursesth Remowve Search Path |
© L.plnha Field rursRsfh =l

Update I Close |

Figure 19. Classhierarchy application

The* ClassHierarchy” applicationisaclassic“dialog” style application wherethe user choosessome options,
in this case paths, and then carries out some processing based on those options.

Thecomplete codefor the applicationispresented below. Themai n. cpp filewasproduced by aQt Designer
wizard. Theform wasdesigned in Qt Designer and stored ina. ui file. The. ui fileisconverted into C++
by ui ¢, leaving the devel oper free to focus on the application’sfunctionality.

The addSearchPath(), removeSearchPath(), and updateHierarchy() functions are all slots. They have been
visually connected to the appropriate buttons using Qt Designer.

voi d C assHi erarchy: : addSear chPat h()

QString path = QFil eDi al og: : get Exi stingDirectory(
Qir::homeDirPath(), this, 0, "Select a Directory");
if (!path.isEmpty() &&
sear chPat hBox->fi ndl ten{path, ExactMatch) == 0)
sear chPat hBox- >i nsertltem(path);

}

voi d O assHi erarchy: : renmpveSear chPat h()

sear chPat hBox- >r enovel t en{ sear chPat hBox->currentltem));

}

voi d C assHi erarchy: : updat eHi erarchy()
{

String fileNaneFilter;

QRegExp cl assDef;

Qt 3.1 Whitepaper T R OL L TECH Page 22

if (language->currentText() == "C++") {
fileNameFilter = "*. h";
cl assDef . set Patt ern(
"\\bclass\\s+([A-Z_a-z0-9] +)\\s*"
"(?2:\\{]:\\s*public\\s+([A-Z_a-z0-9]+))");
} else if (language->currentText() == "Java") {
fileNaneFilter = "* java";
cl assDef . set Patt er n(
"\\bcl ass\\s+([A-Z_a-z0-9] +)\\ s+ext ends\\ s*"
"([A-Z_a-z0-9]+)");
}

dict.clear();
listView >clear();

for (int i =0; i < searchPat hBox->count(); i++) {
Q@ir dir = searchPathBox->text(i);
QStringlist names = dir.entryList(fileNaneFilter);

for (int j =0; j < names.count(); j++) {
QFile file(dir.filePath(names[j]));
if (file.open(lO ReadOnly)
@String content = file.readAl();
int k = 0;
while ((k = classDef.search(content, k)) !'=-1) {
processC assDef (cl assDef.cap(1), classDef.cap(2),
names[j]);
k++;
}
}
}

}

voi d O assHi erarchy:: processC assDef(const QString& derived,
const QString& base, const QString& sourceFile)

QistViemtem rderivedltem = i nsert C ass(derived, sourceFile);
if (!'base.isEmpty()) {

QistViemtem xrbaseltem = i nsertC ass(base, "");

if (derivedltem >parent() == 0) {

I'istView >takelten(derivedlitem);
baseltem >insertltem derivedlitem);
derivedltem >set Text(1, sourceFile);

}

QistViewtem »Cl assHi erarchy: :insertd ass(const QString& nane,
const QString& sourceFile)

if (dict[name] == 0) {
QistViewwtem+item = new QListViemten(|istView naneg,
sourceFile);
item >set Open(true);
dict.insert(nane, item);

return dict[name];

Qt 3.1 Whitepaper T R OULLTETCH Page 23

On-line References

http:/ /doc.trolltech.com/ 3.1/ designer-manual .html

6. 2D and 3D Graphics

Qt provides excellent support for 2D and 3D graphics. Qt's 2D graphics classes support
bitmapped and vector graphics. Animationand collision detection arealso supported. Qt canload
and save a wide and extensible range of image formats. Qt can draw Unicode rich text, rotated
and sheared asrequired. Qtisthede-facto standard GUI toolkit for platform-independent OpenGL
programming.

6.1. 2D Graphics

6.1.1. Images

The QI mage class supportsthe input, output, and manipul ation of imagesin several formats, including BMP,
GIF, JPEG, MNG, PNG, PNM, XBM, and XPM.

Many of Qt’sbuilt-in widgetscan display images, for example, buttons, 1abels, menu items, etc. Here’'show
to display anicon on a push button:

QPushButton xbutton = new QPushButton("&Fi nd Address", parent);
button->setlconSet(Q conSet(Q nmage("find. bmp")));

Q, Find Address

Figure20. Aniconon abutton

QI mage supportsimages with color depthsof 1, 8, and 32 bits. Programmers can manipulate the pixel and
palette data, apply transformations (e.g. rotations and shears), and reduce the color depth with dithering if
desired. Applications can store an “apha channel” in a Qlmage along with the color data for their own
purposes (e.g. transparency and al pha-blending).

The QM ovie class can be used to display animated images.

YIf you arein a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may require
you to license the technol ogy to use GIF.

Qt 3.1 Whitepaper T R OULLTETCH Page 24

6.1.2. Painting

The QPainter provides a platform-independent API for painting widgets. It provides primitives aswell as
advanced functionality such astransformationsand clipping. All Qt’sbuilt-in widgetspaint themselvesusing
QPainter. Programmersinvariably use QPainter when implementing their own custom widgets.

QPainter provides standard functionsto draw points, lines, polygons, ellipses, arcs, Bezier curves, etc. The
following command drawsa 120 x 60 rectangle whose top-left point isat (25, 15), with a 2-pixel wide dashed
red outline;

pai nter.setPen(QPen(red, 2, DashLine));
pai nter.drawRect (25, 15, 120, 60);

By default, the top-left corner of a widget is located at coordinates (0, 0), and the bottom-right corner is
located at (width() — 1, height() — 1). The coordinate system of a QPainter object can be translated, scaled,
rotated, and sheared. The objectsto be drawn can be clipped according to a“window,” and positioned on the
widget using a“viavport.”

@t Example - ¥Form EEar

™ Mdirror

i+ Text o

C Image p(

" Picture

Select funt...l
IHeIIo]

Figure2l. Qt'sxf or mexample showing rotated text

The code below draws a bar-graph custom widget. It uses a QPainter in the reimplementation of
paintEvent(), with the default coordinate system.

voi d Bar Graph: : pai nt Event (QPai nt Event x)

{
QPainter painter(this);

draw _bar (&painter, 0, 39,
draw bar (&painter, 1, 31
draw bar (&painter, 2, 44,
draw _bar (&painter, 3, 68,

.. Di agCrossPattern);
: . BDi agPattern);
.. FDi agPattern);
::SolidPattern);

QQQQ

pai nter.set Pen(black);
pai nter.drawLine(0, 0, 0, height() - 1);
pai nter.drawLi ne(0, height() - 1, width() - 1, height() - 1);

pai nter.set Font (QFont ("Hel vetica", 18));
pai nter.drawlText(rect(), AlignHCenter | AlignTop, "Sales");

Qt 3.1 Whitepaper T R OL L TECH Page 25

voi d Bar Graph: :draw bar(QPainter xpainter, int nonth, int barHeight,
BrushStyl e pattern)

{
pai nter->setPen(blue);
pai nt er->set Brush(@Brush(darkG een, pattern));
pai nter->drawRect(10 + 30 = nmonth, height() - barHeight, 20,
bar Hei ght) ;
}

The widget is drawvn correctly at different sizesbecausehe code usesthe width(), height() and rect()
functions. Thewidgetproduceddy this codeis shavn below.

Sales

2
L]
5
L]

Figure22. Customwidget

QPainter supportsclipping using a region composedof rectanglespolygons,ellipses,and bitmaps.
Comple regionsmaybecreatedy uniting,intersectingsubtractingandXOR’ing simpleregions. Clipping
canbeusedto reducdlicker whenrepainting.

The QColor classstoresa color specifiedby a RGB or HSV triple, or by a hame(e.g. “skyblue”). Qt
programmersan specifyary 24-bit color; Qt automaticallyallocateshe requestectolor in the systems
palette or usesasimilar color on colorlimited displays.

6.1.3. Paint Devices

QPainter canoperateonary “paint device” Thecoderequiredto paintonary supportedieviceisthesame,
regardles®of thedevice. Qt supportghefollowing paintdevices:

* A QPixmap isessentiallyan*“off-screenwidget” Graphicanbepaintedona QPixmap first,andthen
bit-blitted to a QWidget to reducdlicker. Thistechniques called“doublebuffering”

A QPictureis avectorimagethat canbe scaledyotated andshearedyracefully The QPicture class
storesanimageasa list of paint commandgatherthanaspixel data. It supportshe SVG (W3C'’s
Scalablé/ectorGraphics)XML formatfor inputandoutput.

A QPrinter representa physicalprinter. OnWindows,the paintcommandsresentto the Windows
print enginewhich usegheinstalledprinterdrivers. On Unix, PostScripis outputandsentto the print
daemon.

* A QWidget isalsoapaintdevice,asshavn in theearlierbargraphexample.

Qt 3.1 Whitepaper T R OULLTETCH Page 26

6.1.4. Canvas

Score Ck Level | Ships [}
SIJiE Destroyed. Prgstho Iaupgh.

+ » + | » +

- ' - '

+ - 4 + * 4 + * G‘

. } > q | . 4
+ & 4 | + s
- N ¢ + 4»‘9"' 1 +i. ¢
I

\ + & ¢ 1 ® A 4+ T B ," S +

+ + + x
. . .

Figure 23. The KAsteroidsgame written with QCanvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large number of
canvasitemsthat represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvasitemscan
easily be made interactive (e.g. user movable).

Canvasitemsare instances of QCanvasltem subclasses. They are more lightweight than widgets, and they
can be quickly moved, hidden, and shown. QCanvas has efficient support for collision detection, and can
list all the canvasitemsin a given area. QCanvasltem can be subclassed to provide custom item types and
to extend the functionality of existing types.

QCanvasobjectsarerendered by the QCanvasView class. Many QCanvasView objects can show the same
QCanvas, but with different translations, scales, rotations, and shears.

QCanvas isideal for data visualisation. It has been used by customers for drawing road maps and for
presenting network topologies. It isalso suitablefor fast 2D gameswith lots of sprites.

6.2. 3D Graphics

OpenGL" isastandard API for rendering 3D graphics. Qt developerscan use OpenGL to draw 3D graphics
in their GUI applications. Thisisachieved by subclassing QGLWidget, a QWidget subclass, and drawing
with standard OpenGL functionsrather than with QPainter.

Qt's OpenGL module is available on Windows, X11, and Macintosh, and uses the system’s OpenGL library
(or Mesq).

YOpenGL isatrademark of Silicon Graphics, Inc. in the United Statesand other countries.

Qt 3.1 Whitepaper

T R OULLTETCH

Page 27

Qt developers can set the display format of an OpenGL rendering context: single or double buffering, depth
buffer, RGBA or color index mode, al pha channel, overlays, etc. They can also set the colormap manually in

color index mode.

A BrainYoyager DX

File Analysis Options Meshes EEG/MEG YWiew Window Help

===

—

ool4H|EEBE EE Ee

TMIRI Fecponce (% BOLD s1gnan
Lo = powosowoa o

Visual areas. left hemisphere

. 30 Yolume Tools

i~ Swstern coords
w142

p a3

1L

z |13

30 Coords | Resiing | Spatial Tiansf | ValFiend | Tolaiach | Segmentation |

~ Talairach coords

w |0 E|
¥ |0 =
z |0 -

i~ Gettings Lipply |
¥ spp immedistely
Quit
I Show cross —I
™ Show slics fines Surf module |
~ Dptions
Cross lengthe [256 2 Gapsiee: |10 3]
Cosstick: [2 3 Linethick: [T =
I Enablereflobels I~ MucklArangement

Left ‘ . Right

Top ‘ . Bottom

Yy

- Translation

2|

=

i~ Rotation
Wadis pads o Zans

:ILIHIIHI
(R

T

I

2 aBpE ®a | S+ 98

LY

=}
]

P

k2

S

Figure 24. Brain Innovation's BrainVoyager application written in Qt and OpenGL

When using Qt, developerswritein pure OpenGL. Qt also providestwo convenience functions, gl ClearCol-
or() and qglColor(), that accept a QColor argument and work in any mode.

6.3. A 3D Example

The complete code for an application that drawsa 3D box, with slidersto rotate the box around the X, Y, and
Z axes, is presented below.

Qt 3.1 Whitepaper T R OULLTETCH Page 28

1=

o, S

T

Figure25. 3D box

Inbox3d. h, Box3D isdefined like this:;
#i ncl ude <qgl . h>
cl ass Box3D : public QAW dget

Q _OBJECT

public:
Box3D(QW dget xparent = 0, const char x*nane = 0);
~Box30D() ;

public slots:
void setRotationX(int deg) { rotX
void setRotationY(int deg) { rotY
void setRotationZ(int deg) { rotZz

deg; updateG.(); }
deg; updateG.(); }
deg; updateG.(); }

pr ot ect ed:
virtual void initializeG.();
virtual void paintGQ.();
virtual void resize@(int w, int h);
virtual G.uint makeObject();

private:

GLui nt obj ect;
G float rotX, rotY, rotZ

b
Inbox3d. cpp, thefunctionsdeclared in box3d. h are implemented:
#i ncl ude "box3d. h"

Box3D: : Box3D(QW dget =parent, const char *name)
QG_.W dget (parent, nane)
{

obj ect = 0;

rotX =rotY =rotZ = 0.0;
}

Box3D: : ~Box3D()

makeCurrent () ;

Qt 3.1 Whitepaper T R OULLTETCH Page 29

glDeleteLists(object, 1);

}

void Box3D::initializeGL()

{
gglClearColor(darkBlue);
object = makeObject();
glShadeModel(GL_FLAT);

}

void Box3D::paintGL()

{
glClear(GL_COLOR_BUFFER_BIT);
glLoadldentity();
glTranslatef(0.0, 0.0, -10.0);
glRotatef(rotX, 1.0, 0.0, 0.0);
glRotatef(rotY, 0.0, 1.0, 0.0);
glRotatef(rotz, 0.0, 0.0, 1.0);
glCallList(object);

}

void Box3D::resizeGL(int w, int h)

{
glViewport(0, 0, w, h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(-1.0, 10, -10, 10, 5.0, 150);
gIMatrixMode(GL_MODELVIEW);

}

GLuint Box3D::makeObject()

{
GLuint list = glGenLists(1);
gINewList(list, GL_COMPILE);
gglColor(yellow);
glLineWidth(20);
glBegin(GL_LINE_LOOP);
glVertex3f(+1.5, +1.0, +0.8);
glVertex3f(+1.5, +1.0, -0.8);
A |
glEnd();
glEndList();
return list;

}

Inmain.cpp , aBox3D instance and three sliders are created:

#include <gapplication.h>

#include <gslider.h>

#include <qvbox.h>

#include "box3d.h"

void create_slider(QWidget =*parent, Box3D *box3d, const char =*slot)

QsSlider

xslider = new QSlider(

0, 360, 60, O,

Qt 3.1 Whitepaper T R OL L TECH Page 30

Sl ider::Horizontal, parent);
slider->setTickmarks(QSlider::Below);
Qbj ect: : connect (slider, SIGNAL(val ueChanged(int)), box3d, slot);

int main(int argc, char *xargv)

QAppl i cation:: set Col or Spec(QApplication:: CustonCol or);

QAppl i cation app(argc, argv);
if (!'QEFormat::hasOpenG.())
gFatal ("This system has no OpenGL. support");

QvBox =*parent = new QVBox;

par ent - >set Capti on("OpenG. Box");

parent - >set Margi n(11);

par ent - >set Spaci ng(6);

Box3D *box3d = new Box3D(parent);

create_slider(parent, box3d, SLOT(setRotationX(int)));
create_slider(parent, box3d, SLOI(setRotationY(int)));
create_slider(parent, box3d, SLOT(setRotationzZ(int)));

app. set Mai nW dget (parent);
par ent - >resi ze(250, 250);
par ent - >show() ;

return app. exec();

On-line References

http/ /doc.trolltech.com/ 3.1/ coordsys.html
http//doc.trolltech.com/ 3.1/ canvas.html
http/ /doc.trolltech.com/ 3.1/ opengl.html

7. Databases

The Qt SQL modulesimplifiesthe creation of multiplatform GUI databaseapplications. Pro-
grammes caneasilyexecuteSQLstatementsjsedatabasespecificwidgets,and male anywidget
dataaware.

The Qt SQL module provides a multiplatform interface for accessing SQL databases. Qt includes native
driversfor Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL, and ODBC. The
drivers work on all platforms supported by Qt and for which client libraries are available. Programs can
access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statementsautomatically.

Any Qt widget (predefined or custom) can be made data-aware. Qt also includes some database-specific
convenience widgets that simplify the creation of dialogs and windows that present records as formsor in
tables. Data-aware widgets automatically support browsing, updating, and deleting records. Most database
designs require that new records have a unique key that cannot be guessed by Qt, so insertion usually

Qt 3.1 Whitepaper T R OL L TECH Page 31

needs a small amount of code to be written. The programmer can easily force the user to confirm actions,
e.g. deletions.

Qt's SQL module is fully integrated into Qt Designer, which provides templates and wizards to make the
creation of database forms as quick and easy as possible. The wizards can create forms with navigation
buttons, and with update, insert, and delete buttons.

Using the facilitiesthat the Qt SQL module provides, it isstraightforward to create database applicationsthat
use foreign key lookups, present master-detail relationships, and support drill-down.

7.1. Executing SQL Commands

The QSqlQuery classisused to directly execute any SQL statement. It isalso used to navigatetheresult sets
produced by SELECT statements.

In the example below, a query is executed, and the result set navigated using QSglQuery::next():

Q@Sql Query query("SELECT id, surname FROM staff");
while (query.next()) {
cout << "id: " << query.value(0).tolnt()
<< " surname: " << query.value(1).toString() << endl

}

Field values are indexed in the order they appear in the SELECT statement. QSglQuery also provides the
first(), prev(), last(), and seek() navigation functions.

| NSERT, UPDATE, and DELETE are equally simple. Below isan UPDATE example:

@Sl Query query("UPDATE staff SET salary = salary * 1.10"
" WHERE id > 1155 AND id < 8155");
if (query.isActive()) {
cout << "Pay rise given to " << query.nunmRowsAf fected()
<< " staff" << endl

}

Qt's SQL module also supports value binding and prepared queries, for example:

QSql Query query;

query. prepare("INSERT INTO staff (id, surname, salary)"
" VALUES (:id, :surnanme, :salary)"

query. bi ndval ue(":id", 8120);

qguery. bi ndval ue(":surnane", "Bean");

query. bi ndval ue(":salary", 29960.5);

query. exec();

Value binding can be achieved using named binding and named placeholders (as above), or using positional
binding with named or positional placeholders, for example:

QSql Query query;
query. prepare("INSERT INTO staff (id, surname, salary)"
" VALUES (?, 2, ?2)"
Enpl oyeeMap: :iterator it;
for (it = enployeeMap.begin(); it !'= enployeeMap.end(); ++it) {
query. addBi ndval ue(it.data().id());
qguery. addBi ndVal ue(it.key());

Qt 3.1 Whitepaper T R OL L TECH Page 32

guery. addBi ndVval ue(it.data().salary());
query. exec();

Qt’'s binding syntax works with all supported databases, either using the underlying database support or
by emulation.

For programmers who are not comfortable writing raw SQL, the QSglCursor class provides a high-level
interface for browsing and editing recordsin SQL tablesor viewswithout the need to write SQL statements.
For example:

@ql Cursor cur("staff");
while (cur.next()) {
cout << "id: " << cur.value("id").tolnt()
<< " surname: " << cur.value("surnanme").toString() << endl

}

QSqlCursor also supportsthe ordering and filtering that are achieved using the ORDER BY and WHERE clauses
in SQL statements.

Calculated fields are useful both for real calculations (e.g. calculating totals) and for performing foreign key
lookups (e.g. to display namesrather than codes). Cal cul ated fields can be created by subclassing QSqlCur-
sor, adding additional QSqlFieldswith their calculated property set tot r ue, and by reimplementing QSql-
Cursor::calculateField().

Database drivers usualy supply data as strings, regardless of the actual datatype. Qt handles such data
seamlessly using the QVariant class. Database drivers can be asked about the features they support,
including query-size reporting and transactions. The transaction(), commit(), and rollback() functionscan be
used if the database supportstransactions.

7.2. Data-aware Widgets

QDataTable is a QTable that displays records from a result set using a QSglCursor. QDataTable,
like QTable, supports in-place editing. Programmers can force users to confirm all or selected changes
(e.0. deletions) by setting QDataTabl€e s confirmation properties. The editor widget chosen for each type of
data depends on the data type. For example, a QL ineEdit isused for CHAR fields, whereas a QSpinBox is
used for | NTEGERfields. The programmer can override the defaultsby creating a property map for thetable,
which matchesfields (columns) to the editor widget type the programmer prefers.

Records can be updated and deleted without writing any code. Insertions require some code since most
database designs expect new records to be created with a unique key. This can easily be achieved by
generating the key in adlot connected to the QDataTable::beforel nsert() signal.

QDataTable usesintelligent buffering to make the loading of large result sets fast, while keeping the user
interface responsive. For databasesthat are capable of reporting query sizes, the scroll bar dlider isdisplayed
proportionally immediately.

Qt asoincludes QDataBrowser and QDataView to display records asforms, typically with one or perhaps
afew records shown at atime. These classes provide buttons with ready-made connections for navigating
through the records. QDataView is used for read-only data. QDataBrowser is used for editing, and can
provide ready-made insert, update, and delete buttons.

Qt 3.1 Whitepaper T R OL L TECH Page 33

QDataTable and QDataBrowser have both a popup context menu and keyboard shortcuts for editing
records.

Tl T Price [Hotes 4] x|
3 D avid Copperfield 15.98 5 ~ -
— =0 o Title IThe Man in the High Castle
4 |Deadlock || 993 |Hmmm.
5 (s Tmes [1455" 808 s e pice [559
& |indemnity Only 283 [cooibook Author | Dick =]
7 | Oliver Twist |998 |Changed
8 éEitrangEer in a Strange Land | R | il | il | L I
|9 | The Manin the High Castle 1999 |worth reading e | Update I Delete | e |
‘IPI The Man 'whao Japed B33 |4 good boirﬂ
4 4

Figure26. A QDataTableand a QDataBrowser

Programmers can manipul ate data retrieved from the database before it is displayed by implementing a slot
and connecting it to the primelnsert() and primeUpdate() signals. Data can also be manipulated or actions
logged just before changes are written back to the database, for example, converting aforeign key’s display
text into itsID by implementing a slot connected to beforel nsert(), beforeUpdate(), and beforeDel ete().

Developers can create their own formsfor displaying database records. Unlike older toolkitsthat duplicate
their widgetswith data-aware versions, Qt widgets (including custom widgets) can be made data-aware. All
that is necessary is to include the widget in a QSglForm and set up a property map to relate the relevant
database field to the widget that will present and edit the field' sdata.

Master-detail relationships are easily set up by filtering the detail form or table's cursor by the master form
or table’'scurrent record. Drill-down isalso easy to achieve by associating a button, menu item, or keyboard
shortcut with a drill-down form that isinvoked with the current record’skey as a parameter.

Qt's SQL module isfully integrated with Qt Designer. Qt Designer can preview database forms and tables
using live data if desired, allowing developers to browse, delete, and update records. Qt Designer has
templates and wizards to make creating database formsfast and simple.

On-line References
http:/ /doc.trolltech.com/ 3.1/ sgl.html

8. Internationalization

Qt fully supports Unicode, the international standard character set. Programmers can fregly mix
Arabic, English, Hebrew, Japanese, Russian, and other languages supported by Unicode in their
applications. Qt also includes tools to support application translation to help companies reach
international markets.

Qt includes toals to facilitate the translation process. Programmers can easily mark user-visible text that
needs trandation, and a tool extracts this text from the source code. Qt Linguist is an easy-to-use GUI

Qt 3.1 Whitepaper T R OULLTETCH Page 34

application that reads the extracted source texts, and provides the texts with context information ready for
tranglation. When the tranglation is complete, Qt Linguist outputs a trandation file for use by application
programs. Qt Linguist’s documentation provides the relevant information for release managers, translators,
and programmers,

8.1. Unicode

Qt usesthe QString classto store Unicode strings, and usesit throughout the APl and internally. QString
replacesthecrudeconst char * and the 16-bit QChar classreplaceschar. Constructorsand operators
are provided to automatically convert to and from 8-hit strings. Programmers can copy QStrings by value,
sincethey areimplicitly shared (copy on write) [p. 45], which makesthem fast and memory efficient.

QString is more than a 16-bit character string. Functions such as QChar::lower() and QChar::isPunct()
replace tolower() and ispunct() and work over the whole Unicode range. Qt's regular expression engine,
provided by the QRegEXxp class, uses Unicode strings both for the regular expression pattern and the target
string.

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses. Qt uses
QTextCodec for fonts, 1/0, and input methods; programmers can useit for their own purposesaswell.

Qt 3.1 supports 38 different encodings, including Bigb and GBK for Chinese, EUC-JP, JIS, and Shift-JISfor
Japanese, KOI8-R for Russian, and the SO 8859 series; see http://doc.trolltech.com/ 3.1/ gtextcodec.html
for the complete list. Programmers can add their own encodings by providing a charmap or by subclassing
QTextCodec.

8.2. Text Entry and Rendering

Far-Eastern writing systemsrequire many more charactersthan are available on akeyboard. The conversion
from a sequence of key pressesto actual charactersis performed at the window-system level by software
called “input methods.” Qt automatically supportsthe installed input methods.

Qt provides a powerful text-rendering engine for all text that is displayed on screen, from the simplest
label to the most sophisticated rich-text editor. The engine supports advanced features such as special line
breaking behavior, bidirectional writing, and diacritical marks. It rendersmost of theworld’ swriting systems,
including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin, and Vietnamese. Qt
will automatically combine the installed fontsto render multi-language text.

8.3. Translating Applications

Qt providestoolsand functionsto help devel opers provide applicationsin their customers' native languages.

To make a string translatable, simply wrap it in acall to tr() (read “trandate”):
saveButton->set Text(tr("Save"));

tr() attemptsto replace a string literal (e.g. " Save") with a transation if one is available; otherwise it uses
the original text. English can be used asthe source language and Chinese asthe trandated language, or vice
versa. The argument to tr() is converted to Unicode from the application’s default encoding.

Qt 3.1 Whitepaper T R OL L TECH Page 35

tr()’'sgeneral syntax is
Context::tr("source text", "comment")

The “context” isthe name of a QObject subclass. It isusualy omitted, in which case the class containing
thetr() call isused asthe context. The* sourcetext” isthetext to trandate. The*comment” isoptional; along
with the context, it provides additional information to human tranglators.

Trandationsare stored in QTranslator objects, which use disk-based . gmfiles (Qt Messagefiles). Each. gm
file containsthetrandationsfor a particular language. Thelanguage can be chosen at run-time, in accordance
with thelocale or user preferences.

Qt providesthreetoolsfor preparing . gmfiles: | updat e, Qt Linguist and | r el ease.

1. 1 updat e extractsall the (context, source text, comment) triplesfrom the source code, including Qt De-
signer . ui files, and generatesa. t s file (Translation Source file). These files are in human-readable
XML format.

2. Trandatorsuse Qt Linguist to provide trandationsfor the sourcetextsinthe. t s files.
3. Highly compressed . gmfilesare generated by running| r el ease onthe. t s files.

These stepsare repeated as often as necessary during the lifetime of an application. It isperfectly safeto run
| updat e frequently, asit reusesexisting translationsand markstrand ationsfor obsol ete source textswithout
eiminatingthem. | updat e also detectsslight changesin sourcetextsand automatically suggestsappropriate
tranglations. These tranglations are marked as unfinished so that atransator can easily check them.

Qtitself containsabout 400 user-visiblestrings, for which Trolltech provides French and German tranglations.

8.4. Qt Linguist

Qt Linguist isa Qt application that hel pstranslatorstranslate Qt applications.

Trandatorscanedit . t s filesconveniently using Qt Linguist. The. t s file' scontextsarelisted in theleft-hand
side of the application’swindow. Thelist of sourcetextsfor the current context isdisplayed in the top-right
area, along with trandations. By selecting a source text, the translator can enter a trandation, mark it done
or unfinished, and proceed to the next unfinished trandation. Keyboard shortcuts are provided for al the
common navigation options: Done & Next, Next Unfinished, etc. The user interface’s dockable windows
can be reorganized to suit the trandators’ preferences.

Applications often use the same phrases many timesin different sourcetexts. Qt Linguist automaticaly dis
playsintelligent guesses based on previoudly trandated strings and predefined translations at the bottom of
the window. Guesses often serve asa good starting point that hel pstrandatorstranslate similar texts consis
tently. Qt Linguist can optionally validate trand ationsto ensure that acceleratorsand ending punctuation are
translated correctly.

On-line References

http//doc.trolltech.com/ 3.1/ 118n .html
http://doc.trolltech.com/ 3.1/ unicode.html
http:/ /doc.trolltech.com/ 3.1/ scripts.html

Qt 3.1 Whitepaper T R OLLTECH Page 36

http:/ /doc.trolltech.com/ 3.1/ linguist-manual .html

2} Ot Linguist by Trolltech - japanese.ts
File Edit Tranmslation Validation Fhrases View Help

SEe Uise XObh Q. av k% (&R% W

Translation ~

IRY

Undo
? MainWindow AB (105x 148 mm)
¢ (GMessageBox]
4

QPrint Dialog

i

9 e FEeD

Bullet List {Disc)

The first window to appear when launching the application is 2 MainWindow.

Translation
Ea Ly bIA R FEDDEL)

= Phrases and guesses:

Source phrase Translation Definition
Bullet List {Circle} Ba w2k F Guess (Cii=1)
Bullet List {Square) Ealew Ak QERRE) Guess (Cid=2)
\All files. (%) ETDIPILC) Guess (Ciri+3)
List View YAREL— Guess (Cir=4)
Show &hidden filss FEL w4 I EFET(ah) Guess (Cti+5)

194/196 MOD

Figure27. Qt Linguist

9. Styles and Themes

Qt automatically uses the native style for ook and feel. Qt applications respect user preferences
for colors, fonts, sounds, etc. Qt programmers are free to use any of the supplied styles and can
override any preferences. Programmers can modify existing styles or implement their own styles
using Qt’'s powerful style engine.

A style implements the “look and feel” of the user interface on a particular platform. A styleisa QStyle
subclassthat implements basic drawing functions such as“drav aframe,” “drav abutton,” etc. Qt performs
all the widget drawing itself for maximum speed and flibility.

9.1. Built-in Styles

Qt provides the following built-in styles: Windows, Windows XP, Motif, MotifPlus, CDE, Platinum, SGI,
and Mac. By default, Qt usesthe appropriate stylefor the user’ splatform and desktop environment. Thestyle
can also be chosen programmatically, or with the - st yl e command-line option.

Qt 3.1 Whitepaper T R OL L TECH Page 37

|Winu:|u:uws ztyle ﬂ _Mg:utif__s_tyl_e MatifFlus style —] Mac style K

Flatinum ztyle. | ¥] S sfvle | CDE style ..Windnws P shyle v

Figure 28. Comboboxesin the different built-in styles

A styleiscomplemented by atheme, which encapsulatesthe user’s preferencesfor colors, fonts, sounds, etc.
Qt automatically adaptsto the computer’s active theme. For example, Qt supports scroll and fade transition
effectsfor menus and tooltips on Windows.

TheWindows XP and Mac stylesare built on top of the native style managers, and are available only on their
native platform. The other stylesare emulated by Qt and are available everywhere.

9.2. Style-aware Widgets

Qt'sbuilt-inwidgetsare style-aware. Custom widgetsand dialogsare almost alwayscombinationsof built-in
widgets and layouts, and are automatically style-aware. On the rare occasionsthat it is necessary to write a
custom widget from scratch, devel operscan use QStyle to draw primitive user-interface elementsrather than
drawing raw rectanglesdirectly.

9.3. Custom Styles
Custom styles are used to provide a distinct ook to an application or family of applications. Custom styles

can be defined by subclassing QStyle, QCommonStyle, or any other descendent of QCommonStyle. It is
easy to make small modificationsto existing styles by reimplementing one or two virtual functionsfrom the

appropriate base class.
QStyle

[QCommonSter}

QMotifStyle A (QwindowsStyle]

QCDEStyle

(QMotifPlusStyle

QMacsStyle

QPIatinumSter]

QSGIStyle QWindowsXPStyle]

Figure29. Thefull QStyle classhierarchy

An application’sstyle can be set like this:

QApplication::setStyle(new MyCustonstyle);

Qt 3.1 Whitepaper T R OL L TECH Page 38

A style can also be compiled asaplugin [p. 46]. Pluginsmake it possibleto preview aform in a custom style
in Qt Designerwithout recompiling Qt or Qt DesignerThe styleof an existing Qt application can be changed
using a style plugin without recompiling the application.

On-line References

http:/ /doc.trolltech.com/ 3.1/ customstyle.html

10. Layouts

Layoutsprovidea powerfulandflexible alternativeto usingfixedsizesand positions.Layoutsfree
programmesfromhavingto performsizeand positioncalculationsandprovideautomaticscaling
to suittheusersscreenjanguage, andfonts.

Qt provides layout managers for organizing child widgets within the parent widget's area. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes. Qt Designeris optimized for
laying out widgets using layout managers.

Mom d'utilisateur: I
kot de passe: I

Connecter
I

Username: |
Password: |

|

Figure 30. English, French, and French with layouts

Layouts are also useful for internationalization. With fix edsizes and positions, the translation text is often
truncated; with layouts, the child widgets are automatically resized.

10.1. Built-in Layout Managers

Qt’sbuilt-in layout managers are QHBoxL ayout, QVBoxL ayout, and QGridL ayout.

| o K | 2 | 3 4
o
| [To0 [o1
= [[
| [zo
e

Figure31l. QHBoxL ayout, QVBoxL ayout, and QGridL ayout

Qt 3.1 Whitepaper T R OL L TECH Page 39

QHBoxL ayout organizesthe managed widgetsin a single horizontal row from left to right. QVBoxL ayout
organizesthe managed widgetsin asingle vertical column from top to bottom. QGridL ayout organizesthe
managed widgetsin agrid of cells; widgets may span multiple cells.

In most cases, Qt’slayout managerspick optimal sizesfor managed widgets so that windowsresize smoothly.
If the defaults are insufficient, devel opers can refine the layout using the following mechanisms:

1. Settingaminimumsize, a maximumsize, or afixed sizefor some child widgets.

2. Adding stretchitemsor spacer items. Stretch or spacer itemsfill empty spacein alayout.

3. Changingthesizepoliciesof thechild widgets. By calling QWidget::setSizePolicy(), programmerscan
fine tune the resize behavior of a child widget. Child widgets can be set to expand, contract, keep the
same size, etc.

4. Changing the child widgets' size hints. QWidget::sizeHint() and QWidget::minimumSizeHint() return
awidget’s preferred size and preferred minimum size based on the contents. Built-in widgets provide
appropriate reimplementations.

5. Setting stretch factors. Stretch factorsallow relative growth of child widgets, e.g. two thirdsof any extra
space made avail able should be alocated to widget A and one third to widget B.

The “spacing” between managed widgets and the “maigin” around the whole layout can also be set by the
programmer. By default, Qt Designer setsindustry-standard values according to the context.

Layoutscan also run right-to-left and bottom-to-top. Right-to-left layoutsare convenient for internationalized
applications supporting right-to-left languages (e.g. Arabic and Hebrew).

10.2. Nested Layouts

Layouts can be nested to arbitrary levels. Here'san example of adialog box, shown at two different sizes:

I International Trader 2x|

Select a county

i International Traders 21l

Canada
France

Italy ;I : Germany Cancel |
Japan Ltaw
Ruszszia apan
C | 2
Urited Kingdam jl _Cored | 0 -
1 liitad Chabas =F Am nited Kingdom
4 T T L2 Help | United States of America

Select a country

Help |

Figure32. Small dialog and large dialog

The dialog usesthree layouts. a QVBoxL ayout that groups the push buttons, a QHBoxL ayout that groups
the country listbox with the push buttons, and a QVBoxL ayout that groupsthe “ Select a country” label with
therest of thewidget. A stretch item maintainsthe gap between the Cancel and Help buttons.

The dialog’swidgets and layouts are created with the following code:

Qt 3.1 Whitepaper T R OULLTETCH Page 40

QVBoxLayout =buttonBox = new QVBoxLayout(6);
buttonBox->addWidget(new QPushButton("OK", this));

buttonBox->addWidget(new QPushButton("Cancel", this));
buttonBox->addStretch(1)

buttonBox->addWidget(new QPushButton("Help", this));
QListBox *countryList = new QListBox(this);
countryList->insertltem("Canada");

L

countryList->insertltem("United States of America");

QHBoxLayout =*middleBox = new QHBoxLayout(11);
middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout =topLevelBox = new QVBoxLayout(this, 6, 11);
topLevelBox->addWidget(new QLabel("Select a country", this));
topLevelBox->addLayout(middleBox);

Qt makeslayouts so easy that programmersrarely use fix edpositioning.

m International Trader &

. -aelect & country

" JCanada oK.

. 4 France

« o Germany Cancel
C o taly

<A dapan

. IRussia
* Y United Kingdam
¢ United States of America

l\.\\\\.\\\\.\\\\.\\\\.\\\\.\|

Figure 33. Layingout aformin Qt Designer

Qt Designer makes layouts even easier. With only 17 mouse clicks, you can create and lay out the widgets
for the dialog shown above.

10.3. Custom Layouts

Developers can define custom layout managers by subclassing QL ayout. The customlayout — example
provided with Qt presents three custom layout managers, BorderLayout , CardLayout , and SimpleFlow
which programmers can use and modify.

Qt asoincludesQSplitter, asplitter bar that end userscan manipulate. 1n somedesign situations, QSplitter
may be preferable to alayout manager.

For complete contral, it is also possible to perform layout manualy in a widget by reimplementing
QWidget::resizeEvent() and by calling QWidget::setGeometry() on each child widget.

On-line References

http:/ /doc.trolltech.com/ 3.1/ layout.html

Qt 3.1 Whitepaper T R OULLTETCH Page 41

http:/ /doc.trolltech.com/ 3.1/ customlayout.html

11. Events

Application objects receive system messages as Qt events. Applications can monitor, filter ,and
respond to events at different levelsof granularity.

In Qt, an event is an object that inherits QEvent. Events are delivered to QObject objects so that they can
respond to them. Programmers can monitor and filter eventsat the application level and at the object level.

11.1. Event Creation

Most eventsare generated by thewindow system and inform widgets, for example, that akey was pressed, that
amouse button was clicked or that the application window wasresized. It isalso possibleto send ssimulated
events to objects programmatically. There are over fifty types of event, of which the most commonly
used are MbuseBut t onPress, MouseBut t onRel ease, MobuseBut t onDbl d i ck, Wieel , KeyPr ess,
KeyRel ease, Pai nt , Resi ze, and O ose. Developers can add their own event types that behave like the
built-in types.

It is usually insufficient merely to know that a key was pressed or that a mouse button was released. The
receiver also needsto know, for example, which key was pressed, which button was released, and where the
mousewaslocated. Thisadditional informationisavailablefrom QEvent subclasses, such asQM ouseEvent,
QKeyEvent, QPaintEvent, QResizeEvent, and QCloseEvent.

11.2. Event Delivery

Qt delivers events by calling the virtual function QObject::event(). For convenience, QWidget::event() for-
wardsthe most common types of event to dedicated handlers, for example, QWidget::mouseRel easeEvent()
and QWidget::keyPressEvent(). Devel opers can easily reimplement these handlers when writing their own
widgets or when specializing existing widgets.

Some events are sent immediately, while others are queued, ready to be dispatched when control returns to
the Qt kernel. Qt uses queueing to optimize certain types of events. For example, multiple paint events are
compressed into a single event to minimize flicker and maximize speed.

Often an object needs to look at another object’s events, e.g. to respond to them or to block them. Thisis
achieved by having a monitoring object call QObject::installEventFilter() on the object that it will monitor.
The monitor’s QObject::eventFilter() virtual function will be called with each event that is destined for the
monitored object before the monitored object receivesthe event.

It'saso possible to filter all the application’s eventsby installing afilter on gApp, the unique QApplication
instance. Such filters are called before any widget-specific filters. It is even possible to reimplement
QApplication::notify(), the event dispatcher, for complete control.

On-line References

http:/ /doc.trolltech.com/ 3.1/ eventsandfilters.html

Qt 3.1 Whitepaper T R OULLTETCH Page 42

http:/ /doc.trolltech.com/ 3.1/ gapplication.html#notify

12. Input/Output and Networking

Qt can load and save data in plain text, XML, and binary format. Qt handles local filesusing its
own classes, and remote files using the FTP and HTTP protocols. Inter-process communication
and socket-based TCP and UDP networking are also fully supported.

12.1. File I/O

Qt provides classes to perform advanced 1/0 on multiple platforms. The QTextStream class has a similar
interface to the standard <i ost r ean® classes, and supports the encodings provided by QTextCodec. The
QDataStream classis used to serialize the basic G+ types and many Qt types in a platform-independent
binary format. For example, the following code writes a Unicode string, a font, and a color to the file
spl ash. dat :

QFile file("splash.dat");
if (file.open(lOWiteOnly)) {
QataStreamout (&file);
out << @tring("SplashWdget Style")
<< QFont ("Times", 18, Qont::Bold)
<< Lol or("skyblue");
}

The data can easily be retrieved and used, for example:

QString str;
QFont font;

Lol or color;

QFile file("splash.dat");

if (file.open(lO ReadOnly)) {
QataStreamin(&ile);
in >> str >> font >> color;

if (str == "SplashWdgetStyle") {
spl ashW dget - >set Font (font);
spl ashW dget - >set Col or (col or);

}

QTextStream and QDataStream operate on any QI ODevice subclass. Qt includes the QFile, QBuffer,
QSocket, and QSock et Device subclasses, and programmerscan implement their own custom devices. QI O-
Devicea so provideslow-level functions such asreadLineg() and writeBlock() that can be used independently
of any stream.

Directories are read and traversed using QDir. QDir can be used to manipulate path names and access the
underlying file system (e.g. create adirectory or delete afile). QFilel nfo provides more detailed information
about afile, such asitssize, permissions, creation time, last modification time, etc.

Qt 3.1 Whitepaper T R OULLTETCH Page 43

The following example liststhe hidden filesin the user’shome directory along with their size, in decreasing
Size order:

Q@ir dir = QDir::home();

dir.setFilter(QDir::Files | QDir::Hidden);
dir.setSorting(QDir::Size | QDir::Reversed);
@StringlList names = dir.entryList();

for (int i =0; i < names.count(); i++) {

QFilelnfo info(dir, nanes[i]);

cout << names[i].latinl() << " " << info.size() << endl;
}

Transparent accessto remote filesis provided by QUrlOperator. In addition to local file system access, Qt
supportsthe FTP and HTTP protocol sand can be extended to support other protocols. For example, filescan
be downloaded using FTP like this:

QUr | Operator op;
op.copy("ftp://ftp.trolltech.com gt/ I NSTALL", "file:/tmp");

URL s can easily be parsed and recomposed using QUr .

Image filesare usually read by creating a QI mage with the file name asargument. Printing text and images
ishandled by QPainter. These classesare described in “2D Graphics’ [p. 23].

12.2. XML

Qt's XML module provides a SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2
Java implementation, with adapted naming conventions. The DOM (Document Object Model) Level 2
implementation follows the W3C recommendation and includes namespace support.

Many Qt applicationsuse XML format to storetheir persistent data. The SAX parser isused for reading data
incrementally and is especially suitable for simple parsing requirements and for very large files. The DOM
parser reads the entire file into a tree structure in memory that can be traversed at will.

12.3. Inter-Process Communication

The QProcessclassisused to start external programs and to communicate with them from a Qt application
in a platform-independent way. Communication is achieved by writing to the external program’s standard
input and potentially by reading its standard output and standard error.

QProcess works asynchronously, reporting the avail ability of data by emitting signals. Qt applications can
connect to the signals to retrieve and process the data, and optionally respond by sending data back to the
external program.

12.4. Networking

Qt providesa multiplatform interface for writing TCP/IP clientsand servers.

The QSocket class provides an asynchronous buffered TCP connection. QSocket isa Ql ODevice, making
it easy to use QTextStream and QDataStream on a socket.

Qt 3.1 Whitepaper T R OULLTETCH Page 44

QSocket isdesigned to work well within aGUI application. A live currency converter application illustrates
this.

Figure 34. Live currency converter
The application usesthefictional protocol CCP (Currency Conversion Protocol) to accessthe latest exchange
ratesfrom a server. Only linesrelated to networking are presented.
socket = new QSocket(this);
connect (socket, SIGNAL(readyRead()),
this, SLOT(updateTargetAnount()));

The socket iscreated in the Converter constructor. Socket communication is asynchronous, and the socket
emitsthe readyRead() signal when there is data available to read.

voi d Converter::convert()

{

@String command = "CONV " + sourceAnpunt->text() + " " +
sourceCurrency->current Text() + " " +
target Currency->current Text() + "\r\n";

socket - >connect ToHost ("ccp. banca-nmoni ca. nu", 123);

socket->writeBl ock(conmand. |l atinl(), conmmand.|ength());
}

The convert() slot iscalled when the user clicksthe Convert button. 1t opensthe connection and sendsa CONV
request (e.g. CONV 100 EURUSD) to port 123 onthe server ccp. banca- nmoni ca. nu. QSocket automatically
uses QDnsto resolve ccp. banca- noni ca. nu to its IP address. All these operations are non-blocking to
keep the user interface responsive.

voi d Converter::updateTar get Anount ()

if (socket->canReadLine()) {
t ar get Amount - >set Text (socket - >readLi ne());
socket - >cl ose();

}

The updateTargetAmount() function is called when the server repliesto the CONV request. It readsthe reply,
updates the display, and closesthe connection.

Simple TCP servers can be implemented by subclassing QSer ver Socket, which works asynchronously like
QSocket. QServer Socket sets up a listening socket that accepts incoming connections, and calls a virtual
function to servethe client.

Qt 3.1 Whitepaper T R OL L TECH Page 45

The QSocketDevice class provides a platform-independent wrapper for the native socket APIs. It provides
the underlying functionality for QSocket and QServer Socket, and can be used for UDP.

On-line References

http:/ /doc.trolltech.com/ 3.1/ xml.html
http:/ /doc.trolltech.com/ 3.1/ datastreamformat.html

13. Collection Classes

Collection classes are used to store groups of itemsin memory. Qt provides a set of classes that
are compatiblewith the Standard Template Library (STL), and that work regardless of whether the
compiler supports STL or not.

Applications often need to manage items in memory, for example, groups of images, widgets, or custom
objects. Many C++ compilerssupport the STL, which providesready-made data structuresfor storing items.
Qt provides lists, stacks, queues, and dictionaries with STL-syntax. Qt's collection classes work with both
STL and non-STL compilers.

Qt’srich set of portable collection classes (“ containers’) and associated iterators are heavily used internally,
and are provided as part of the Qt API. Qt’s containersare optimized for speed and memory efficienc yusing
two techniques, “private classes’ and “implicit sharing.” Programmers can also use STL containers on the
platformsthat support them, at the cost of losing Qt’s optimizations.

Template classes usually increase the size of executables dramatically, because the compiler generates
essentially the same code for each specialized type. Qt’s template collection classes reduce code bloat
because they are athin layer over non-template private classes.

13.1. Value-based Collections

Qt provides fiv e value-based collection classes: QMap<Key,T>, QValueList<T>, QValueStack<T>,
QValueVector<T>, and QStringList. They have an interface very similar to the STL containers and are
fully compatible with the STL algorithms. Qt providessome STL-equivalent algorithms: qCopy(), gFind(),
gHeapSort(), etc. On platformswith STL support, Qt provides automatic conversion operators between STL
and Qt containers.

Qt's value-based collection classes are implicitly shared (“copy on write”). Copies of instances of these
classessharethe samedatain memory. The datasharingishandled automatically; if the application modifies
the contents of one of the copied objects, a deep copy of the data is made so that the other objects are | ft
unchanged. When an object is copied, only a pointer is passed and a reference count incremented, which is
much faster than actually copying the data and also saves memory.

Sharing is used wherever it makes sense: in Qt's value-based collection classes, and in QBitmap, QBrush,
QCursor, QFont, QlconSet, QPalette, QPen, QPicture, QPixmap, QRegion, QRegEXp, QString, etc.
Programmers can safely and efficiently copy objects of these classes by value, avoiding the risks related
to using pointers and hand optimization. In particular, the implicitly shared QString class makes string
processing easy and fast.

Qt 3.1 Whitepaper T R OULLTETCH Page 46

Qt aso provides the low-level QM emArray<T> class with its subclasses QBitArray, QByteArray, and
QPointArray. These classes are very efficient for handling basic “plain old data’ types.

13.2. Pointer-based Collections

Qt provides many low-level, generic, pointer-based collection classes: QDict<Key,T>, QPtrList<T>,
QPtrQueue<T>, QPtrStack<T>, QPtrVector<T>, and QCache<T>. These classes store pointers rather
than values. They are especialy useful for storing pointersto QWidgets and QObjects. The pointer-based
collection classes can optionally take ownership of the objects they contain and automatically delete them
when the collection is destroyed.

On-line References

http:/ /doc.trolltech.com/ 3.1/ gtl.html
http:/ /doc.trolltech.com/ 3.1/ collections.html
http:/ /doc.trolltech.com/ 3.1/ shclass.html

14. Plugins and Dynamic Libraries

Qt can access functions from dynamic libraries platform-independently. Qt also supports plugins,
which allow devel opersto create and distribute codecs, database drivers,image format converters,
styles, and custom widgets as independent components.

14.1. Plugins

Converting a Qt codec, database driver, image format converter, style, or custom widget into a plugin is
achieved by subclassing the appropriate plugin base class, implementing a few simple functions, and adding
amacro.

For example, if a developer has created a QStyle subclass caled Copper Style that they want to make
available asa plugin, they would create a subclasslikethis:

cl ass CopperStylePlugin : public QStylePlugin
public:

Copper Styl ePlugin() { }

~Copper Styl ePlugin() { }

@St ringlLi st keys() const {
return QStringlList() << "CopperStyle";

}
Style xcreate(const QString& key) {
if (key == "CopperStyle")
return new Copper Styl e;
return O;
}

Qt 3.1 Whitepaper T R OULLTETCH Page 47

Q EXPORT_PLUGQ N(Copper Styl ePlugin)
Thenew stylecanbesetlik e this:
QApplication::setStyle(QStyleFactory::create("CopperStyle"));

Databasdrivers,codecscustomwidgets,andimageformatsthat aresuppliedaspluginsaredetectedand
usedby theapplicationautomatically

Companiesilreadyprovide Qt componenti sourceform, asprecompileddynamiclibrariesor asplugins.

Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5 B 7
5 9 10 11 1z 13 14
15 1718 19 20 21
22 23 24 25 26 27 2@
29 30 3

Figure 35. Oneof KlardlvdalendDatalonsultsmary commerciacomponents

On-line References

http//doc.trolltech.corh3. 1 plugins-havto.html

14.2. Dynamic Libraries

TheQLibrary classprovidesmultiplatformdynamiclibrary loading,a morepowerful mechanisnthanthe
morerestrictive build-timelinking.

Below is anexampleof themostbasicway to dynamicallyloadanduseallibrary. The exampleattemptdo
obtaina pointerto thepri nt _str symbolfrom thenyl i b library (myl i b. dl | onWindows,myl i b. so
on Unix).

typedef void (StrFunc)(const char =*str);

Q.ibrary lib("nylib");
StrFunc *func = (StrFunc *) lib.resolve("print_str");
if (func)

func("Hello world!'");

Calling a function this way is not type-safeand only symbolswith C linkage are supporteddueto C++
namemangling).

Qt 3.1 Whitepaper T R OULLTETCH Page 48

15. Platform Specific Extensions

In addition to being completeinitself, Qt provides some platfor m-specific extensionsto assist devel-
opersin certain contexts. The ActiveQt extension allows devel opersto use ActiveX controlswithin
their Qt applications,and also allowsthemto maketheir Qt applicationsinto ActiveX servers. The
Motif extension helps developersmigrateto Qt by supporting Qt and Motif coexistence.

15.1. ActiveQt

ActiveX is built on Microsoft’'s COM technology. It allows applications and libraries to use components
provided by component servers, and to be component serversin their own right. Qt/Windows's ActiveQt
modul e allows devel opers to make their applicationsinto ActiveX servers, and to make use of the ActiveX
controls provided by other applications.

ActiveQt seamlessly integrates ActiveX into Qt: ActiveX properties, methods, and events become Qt
properties, slots, and signals. Thisapproach makesit straightforward for Qt devel operstowork with ActiveX
using a familiar programming paradigm and insulates them from all the different kinds of generated code
that isnormally part of an ActiveX implementation.

Here'show to register Internet Explorer for use asan ActiveX component:
#defi ne CLSID I nternet Expl orer "{8856F961-340A- 11D0- A96B- 00C04FD705A2} "

QAXW dget +activeX = new QAxW dget(this);
activeX->setControl (CLSID I nternet Explorer);

If we want to track the user’suse of the component, we could watch how itstitle changes:

connect (activeX, SIGNAL(TitleChange(const QString&)),
this, SLOT(setTitle(const QString&)));

ActiveQt automatically handlesthe conversions between ActiveX and Qt datatypes.

ActiveQt also supportsthe dynamicCall() function to control an ActiveX component:

activeX->dynam cCal | ("Navi gate(const QString& ",
"http://doc.trolltech.conm);

Thelower-level | Dispatch interface isalso supported.

Making a Qt application into an ActiveX server issimple. If weonly need to export asingleclass, little more
is required than the inclusion of the qaxf act ory. h header and writing out the QAXFACTORY_DEFAULT
macro. Once the class is compiled, its properties, slots, and signals become ActiveX properties, methods,
and events to ActiveX clients. ActiveQt also provides the QAxFactory::isServer() function that can be
called to determineif the applicationisbeing runinitsown right or being used asan ActiveX control, so that
developers can control which functionality isavailablein which context.

On-line References

Qt 3.1 Whitepaper T R OULLTETCH Page 49

http:/ /doc.trolltech.com/ 3.1/ activegt.html

15.2. Motif

Many large Unix applications have been written using Matif, a toolkit that is no longer being developed.
Migrating an entire Motif application isamajor task, and like any large development effort, has significant
risks. Trolltech’ssolution for customerswho are locked in to Motif isthe Qt/Motif extension.

The Qt/Motif extension enables developers to migrate their Motif applications piece by piece, as part of
routine maintenance and development. This minimizes the resources required for migration, and also
minimizes the risks. This migration can be achieved because the Qt/Moatif module supports a mixed-code
environment. Developerscan continue to usethe Motif event loop if they wish, or switch to Qt’sevent loop.
Modality, timers, and socket notifiersall work correctly in the mixed-code environment. For example, when
adialog requires maintenance, it can be replaced by a Qt dialog which will probably be easier and faster to
create and maintain using Qt Designer{p. 18].

On-line References

http:/ /doc.trolltech.com/ 3.1/ motif-extension.html

16. Qt’s Architecture

Qt'sfunctionalityis built onthelow-level APIsof theplatformsit supports.ThismalesQt flexible
and efficient.

Qt isan “emulating” multiplatform toolkit. All widgets are drawn by Qt, and programmers can extend or
customize them by reimplementing virtual functions. Qt's widgets accurately emulate the look and feel of
the supported platforms, asdescribed in “ Stylesand Themes® [p. 36]. Thistechnique also enablesdevel opers
to derive their own custom stylesto provide a distinct ook for their applications.

Qt Application Source Code
Qt API
Qt/Windows Qt/X11 Qt/Macintosh QtEmbedded
GDI Xlib Carbon

MS-Windows Unix/Linux Mac OS X Embedded Linux

Figure36. Qt'sArchitecture

Qt uses the low-level APIs of the different platforms it supports. This differs from traditional “layered”
multiplatform toolkits that are thin wrappers over single-platform toolkits (e.g. MFC on Windows and
Motif on X11). Layered toolkits are usually slow, since every function call to the library results in many
additional calls down through the different API layers. Layered toolkits are limited by the infleibilities of

Qt 3.1 Whitepaper T R OL L TECH Page 50

the underlyingtoolkits, and usually behave dlightly differently on the different platformsthey support, leading
to obscure bugsin applications.

Qt is professionally supported, and takes advantage of the available platforms. Microsoft Windows, X11,
Mac OS X, and Embedded Linux. Using a single source tree, a Qt application can be converted into an
executable simply by recompiling on the target platforms. Although Qt isa multiplatform toolkit, customers
have found it to be easier to learn and more productive than platform-specific toolkits. Many customersuse
Qt for single-platform development, preferring Qt’sfully object-oriented approach.

16.1. Microsoft Windows

Qt/Windows uses the Win32 API and GDI for events and drawing primitives. Qt does not use MFC or any
other toolkit. In particular, Qt does not use the inflexible “common controls,” but rather provides its own
more powerful, customizable widgets. (For non-specialized uses, Qt usesthe native Windows file and print
dialogs.)

With Qt, the same executable works on Windows 95, 98, NT4, ME, 2000, and XP. Qt performs a run-time
check for the Windows version, and uses the most advanced capabalities available. For example, only
Windows NT4, 2000, and X P support rotated text natively; Qt rendersrotated text on al Windows versions,
and usesthe native support where available. Asthisexample demonstrates, Qt developersareinsulated from
differencesin the Windows APIs.

Qt supports the Microsoft accessibility interfaces. Unlike Windows's common controls, Qt widgets can be
extended without losing the accessibility information of the base widget. Custom widgets can also provide
accessibility.

Qt also supports multiple screens on Microsoft Windows.

Qt/Windows customers create Qt applications using Microsoft Visual C++ and Borland C++.

16.2. X11

Qt/X11usesXlibtocommunicatewith the X server directly. Qt doesnot use Xt (X Toolkit), Motif, Athena, or
any other toolkit. Qt applicationsautomatically adapt to the user’ swindow manager or desktop environment,
and have a native look and feel under Matif, SGI, CDE, GNOME, and KDE. This contrastswith most other
Unix toolkits, which lock usersinto their own ook and feel.

Qt provides full Unicode support [p. 34]. Qt applications automatically support both Unicode and non-Uni-
codefonts. Qt combinesmultiple X fontstorender multi-lingual text. Qt'sfont handlingisintelligent enough
to search dl theinstalled fontsfor charactersunavailablein the current font.

Qt takes advantage of X extensions where they are available. Qt supports the RENDER extension for
anti-aliased fonts and apha-blending. Qt provides on-the-spot editing for X Input Methods. Qt supports
multiple screens both with traditional multi-head and with Xinerama.

Qt supportsthefollowing versionsof Unix: AlX,BSDI, FreeBSD, HP-UX, Irix, Linux, NetBSD, OpenBSD,
Solaris, Trué4, and UnixWare. See http:/ /www.trolltech.com/ productd platforms for an up-to-date list of
supported compilersand operating system versions.

Qt 3.1 Whitepaper T R OL L TECH Page 51

16.3. Mac OS X

Since version 3.0, Qt supports Mac OS X using the Carbon API. Qt/Mac createsa new market for customers
who sell Qt applications.

Qt introduces layouts and straightforward internationalization support to the Macintosh. Qt handles files
and asynchronous socket input/output in the event loop. Qt provides solid database support. Developers
can create Macintosh applications using a modern object-oriented API that includes comprehensive
documentation and full source code.

Macintosh developers can create applications on their favorite platform and broaden their market hugely
simply by recompiling on, for example, Windows.

Qt/Mac also brings some technical benefits to Macintosh development, for example, standard OpenGL,
straightforward internationalization, and powerful visual design with Qt Designer.

16.4. Embedded Linux

QUt/Embedded provides its own windowing environment and writes directly to the Linux frame buffer.
Qt/Embedded eliminates the need for an X server, and runs faster and with a lower memory footprint than
X11-based embedded Linux devices.

Qt/Embedded uses apha-blending for image painting and anti-aliased scalable TrueType and Typel fonts.
Trolltech also offersa compl ete environment for embedded devices, called Qtopia. The Qtopia environment
includesaprogram launcher, asuite of applications, and librariesto support application development. It also
hasfleible input handling, including hand-writing recognition, apickboard, and avirtual keyboard; it iseasy
towrite new input methods. Qtopiaisthe standard environment used by Sharp’sZaurusPDAS. By selectively
choosing features, the memory demandsof Qt/Embedded can be tuned to between 800 KB and 3MB in ROM.

See the Qt/Embedded whitepaper for a complete technical overview.

17. Qt's Development World

Companies and developers from around the world are joining the Qt development community every day.
They have recognized that Qt’sarchitecturelendsitself to rapid application development. These developers,
whether they are targeting one or many platforms, are benefiting from Qt’s consistent and straightforward
API, and from Qt’s powerful tools such asqnmake and Qt Designer.

Qt has an active and helpful user community who communicate using the gt - i nt er est mailing list. See
http:/ /lists.trolltech.com/ gt-interest/ to subscribeor to browsethearchive. Qt customersreceiveour monthly
developers newsletter, Qt Quarterly; see http//doc.trolltech.com/ qo/ .

Qt’sextensive documentation isavailable on-line at http://doc.trolltech.com.

Developers can evaluate Qt, with support, for 30 days on their preferred platform. See
http:/ /www.trolltech.com for details.

For further information, email info@trolltech.com.

mailto:info@trolltech.com

Index

About box, 15

Accelerator, 14, 35

Accessibility, 50

Action, 14

ActiveQt, 48

ActiveX, 48

AlX, 50

Algorithm, 45

Alpha-blending, 50,
51

Alphachannel, 23, 27

Animation, 23, 26

Anti-aliased font, 50,
51

Appearance Manager,
36

Aqua, 36

Arabic, 34,39

Array, 46

Assistant, 17, 20

Asynchronousl|/O, 43,
44

Athena, 50

Auto-deletion, 46

Automatic layout, 38

Balloon help, 14

Bezier curve, 24

Bidirectional writing,
34

Big5, 34

Binary serialization,
42

Bitmap, 23, 25

Bloat problem, 45

BMP, 23

BorderLayout, 40

Borland C++, 50

Box layout, 5, 39

BSDI, 50

Button, 5

Cache, 46

Calculated field, 32

Calendar, 47

Callback, 10

Canvas, 26

Caption, 15
Carbon, 51
CardLayout, 40
Cascade, 15
CDE, 36
Central area, 13
Central widget, 15, 17
char, 34
Charmap, 34
Charset, 34
Checkbox, 5, 7
Child widget, 4, 15,
38
Chinese, 34
clicked(), 10
Clipboard, 12
Clipping, 24, 25
Clock, 7
Code bloat problem,
45
Codec, 34, 50
Collection class, 45
Coallision testing, 26
Color, 25, 36
Color didog, 15
Colormap, 27
COM, 48
Combobox, 5
Comment, 35
Commit, 32
Common controls, 50
Common Desktop
Environment, 36
Communication, 10
Compiler features, 11
Component, 10
Configuration, 18
connect(), 10
Connection, 10, 14
Container, 45
Context, 35
Context menu, 13, 33
Control, 4
Coordinate, 24
Copy on write, 45

52

Custom canvasitem,
26

Custom dock window,
18

Custom 1/O device,
42

Custom layout, 40

Custom style, 37

Custom tag, 21

Custom widget, 7, 19,
24,31, 37

Cyrillic, 34

Database, 19, 30

Datatable, 32

Data visualisation, 26

Date, 5

Defaults, 18

Default widget size,
38

Delete, 46

Designer, 8, 18, 31, 33,
35,38, 39,40

Diacritical mark, 34

Dial, 6

Dialog, 15

Dictionary, 46

Directory, 16, 42

DLL, 47

Dock window, 17

Documentation, 20,
51

DOM, 43

Double buffering, 25,
27

Drag and drop, 12

Drawing, 24, 36, 41

Drill-down, 33

Druid, 17

.dsp, 4

Dynamic library, 47

Editor, 5

Embedded Linux, 50,
51

Emitting asignal, 11

Emulation, 36, 49

Encoding, 34

English, 34

Error, 15

EUC-JP, 34

Evaluation, 51

Event, 10, 24, 41

exec(), 5

Fade effect, 37

Fatal error, 15

Filediaog, 16, 50

Fixed positioning, 40

Flicker, 25, 41

Flow layout, 40

Font, 34, 36, 38, 50,
51

Font dialog, 15

Foreign key, 32, 33

Form, 33

Frame, 15

Frame buffer, 51

FreeBSD, 50

French, 35

FTP, 43

Game, 26

GBK, 34

GCC, 50

GDI, 50

Geometry, 4, 38

German, 35

GIF, 23

GL, 26

Graph, 26

Graphics, 23

Greek, 34

Grid layout, 39

GUI application, 12

Guide, 20,51

Hebrew, 34, 39

height(), 24, 25

Help browser, 20

Hierarchical tree
view, 6

Hover help, 14

HP-UX, 50

HSV, 25

Qt 3.1 Whitepaper

HTML, 4,21

HTTP, 43

Icon, 13,14, 23

Icon view, 6

Image, 23, 25

Implicit sharing, 34,
45

Inheriting, 7, 10, 13,
19, 26, 32, 34, 36,
37,40, 44, 46

Input method, 34, 51

Input/output, 42

Input validation, 7

Interface emulation,
36, 49

Internationalization,
34,38

Introspection, 12

iostream, 42

IPC, 43

Irix, 50

SO 8859, 34

Iterator, 45

Japanese, 34, 35

Java, 43

JS 34

JPEG, 23

Key, 31

Keyboard, 34, 41

KOI8-R, 34

Korean, 34

Label, 5

Language, 34, 38

Latin, 34

Layered toolkits, 50

Layout, 4, 38

LCD,6,7

Library, 47

Line breaking, 34

Lineeditor, 5

Linguist, 18, 35

Linking, 47

Linux, 50

List, 45, 46

List box, 6

Listview, 6

Locale, 35

T R OULLTETCH

Localization, 34

Look and fed, 36, 49,
50

Irelease, 35

lupdate, 35

Macintosh, 13, 26, 36,
50

Magic, 12

Mailing list, 51

Main window, 12

Makefile, 4, 11, 19

Manual, 20, 51

Manual layout, 40

Map, 45

Margin, 39

Master-detail, 33

Maximum size, 39

MDI, 13,15

Memory array, 46

Memory constraints,
51

Menu bar, 13, 14

Mesa, 26

Message box, 15

Message map, 10

Messaging, 41

Metafile, 25

Meta Object Compil-
er, 11

MFC, 10, 50

Microsoft SQL Serv-
er, 30

Microsoft Visual C++,
50

Microsoft Windows,
26, 36, 48, 50

Minimum size, 39

MNG, 23

moc, 11

Modal dialog, 17

Model, 24

Motif, 10, 36, 49, 50

MotifPlus, 36

Mouse, 41

Movie, 23

Multi-line editor, 5

Multipledocument in-
terface, 13,15
Multiple screens, 50
Multithreading, 18
MySQL, 30
Name of widget, 8
Native dialog, 15
NetBSD, 50
Networking, 43
Notebook, 17
notify(), 41
Object-oriented pro-
gramming, 10
OcCl, 30
ODBC, 30
OpenBSD, 50
OpenGL, 26,51
Oracle, 30
Overlay, 27
Ownership, 46
Painting, 24, 41
Palette, 23, 25, 37
Parent widget, 4, 8, 38
Picture, 23, 25
Pixmap, 25
Plain old data, 46
Platforms, 50
Platinum, 36
Plugin, 38
PNG, 23
PNM, 23
Pointer-based collec-
tion, 46
Popup menu, 13, 33
Positioning, 38
PostgreSQL, 30
Preferences, 18, 36
Preferred size, 39
Prepared queries, 31
Preprocessor, 11
Primary key, 31
Print dialog, 15, 50
Printer, 25
Private class, 45
.pro, 19
Process, 43
Progressbar, 6, 16

Page 53

Property, 12
Property box, 17
Push button, 5
QAction, 14
QApplication, 5, 37,
41,47
QAquastyle, 37
QAssistantClient, 20
QBitArray, 46
QBitmap, 45
QBrush, 45
QBuffer, 42
QButtonGroup, 5
QByteArray, 46
QCache, 46
QCanvas, 26
QCanvasltem, 26
QCanvasView, 26
QCDEStyle, 37
QChar, 34
QCheckBox, 5,7
QCloseEvent, 41
QCalor, 25, 27
QComboBox, 5, 7
QCommonStyle, 37
qCopy(), 45
QCursor, 45
QCustomM enultem,
13
QDataBrowser, 32
QDataStream, 42
QDataTable, 32
QDataView, 32
QDateTimekEdit, 5
QDid, 6
QDidog, 4,17
QDict, 46
QDir, 42
QDns, 44
QDockArea, 17
QDockWindow, 17
QEvent, 41
QFile, 42
QFileDialog, 16
QFilelnfo, 42
gFind(), 45
QFont, 45

Qt 3.1 Whitepaper

QFontDialog, 15
QFrame, 4
gglClearCoalor(), 27
gglColor(), 27
QGLWidget, 26
QGridLayout, 6, 38
QGroupBox, 5
QHBoxLayout, 5, 38
gHeapSort(), 45
QlconSet, 45
QlconView, 6
Qlmage, 23
QlODevice, 42, 43
QKeyEvent, 41
QLabedl, 4,5
QLayout, 40
QLCDNumber, 6,7
QLibrary, 47
QLineEdit, 4,5, 7
QListBox, 6
QListView, 6,7
.gm, 35
QMacStyle, 37
OMainWindow, 12
gmake, 4, 11, 19
QMap, 45
QMemArray, 46
OQMenuBar, 13
QMessageBox, 15
QMotifPlusStyle, 37
QMotifStyle, 37
OQOMouseEvent, 41
QMovie, 23
OQMutex, 18
QObject, 4, 10, 35, 41,
46
QPainter, 24
QPaintEvent, 41
QPalette, 45
QPen, 45
QPicture, 25, 45
QPixmap, 25, 45
QPlatinumStyle, 37
QPointArray, 46
QPopupMenu, 13
QPrinter, 25
QProcess, 43

T R OULLTETCH

QProgressBar, 6
QProgressDiaog, 16
QPtrList, 46
QPtrQueue, 46
QPtrStack, 46
QPtrVector, 46
QPushButton, 5
QRadioButton, 5, 7
QRegEXp, 7, 34, 45
QRegion, 45
QResizeEvent, 41
QScrollBar, 6
QScrollView, 7
QSemaphore, 18
QServerSocket, 44
QSettings, 18
QSGlstyle, 37
QSlider, 6
QSocket, 42, 43
QSocketDevice, 42,
45
QSpinBox, 4, 6,7
QSplitter, 40
QSqlCursor, 32
QSqlField, 32
QSqlForm, 33
QSqlQuery, 31
QStatusBar, 12
QSstring, 34, 42, 45
QStringList, 45
QStyle, 37,46
QStyleShest, 21
QTabDiaog, 17
QTable, 6,7
Qt Assistant, 20
Qt Designer, 8, 18, 31,
33, 35,38, 39,40
QTextCodec, 34, 42
QTextEdit, 5,7, 15, 21
QTextStream, 42
QThread, 18
QTimer, 4
QTL, 45
Qt Linguist, 18, 35
QToolBar, 14, 17
QToolButton, 14
QToolTip, 14

QTrandator, 35
Qt Template Library,
45
Query, 31
Queue, 46
quit(), 10
Qurl, 43
QUrlOperator, 43
Qvadlidator, 7
QValuelList, 45
QValueStack, 45
QValueVector, 45
QVariant, 32
QVBoxLayout, 38
QWaitCondition, 18
QWheatsThis, 14
QWidget, 4, 17, 25,
46
QWindowsStyle, 37
QWindowsX PStyle,
37
QWizard, 17
QWorkspace, 13, 15
Radio button, 5, 7
Rapid application de-
velopment, 51
rect(), 25
Reference counting,
45
Reference documen-
tation, 20, 51
Registry, 18
Regular expression, 7,
34
Relative growth, 39
RENDER, 50
Repainting, 41
Repositioning, 38
Resizing, 38, 41
Reusability, 10
RGB, 25
Rich text, 4
Right-to-left lan-
guages, 34, 39
Rollback, 32
Rotation, 24, 25, 26,
50

Page 54

RTTI, 12

Run-time type infor-
mation, 12

SAX, 43

Scale, 24, 25, 26

Scroll bar, 6, 7

Scroll effect, 37

Scroll view, 6,7

SDI, 13

SELECT, 31

Semi-modal dialog,
17

Separator item, 13

Seridization, 42

Settings, 18, 36

SGl, 36

Shared library, 47

Sharing, 34, 45

Shear, 24, 25, 26

Shift-JIS, 34

Signal, 9

SimpleFlow, 40

Single document in-
terface, 13

Size, 38

Size policy, 39

Slider, 6

Slot, 9

Socket, 42

Solaris, 50

Sound, 36

Sourcetext, 35

Spacer item, 39

Spacing, 39

Spin box, 6

Splitter, 40

Spreadsheet, 6

Sprite, 26

SQL, 30

Stack, 45, 46

Standard TemplateLi-
brary, 45

Statusbar, 12, 13

STL, 45

Stream, 42

Stretch, 39

Stretch factor, 39

Qt 3.1 Whitepaper

String, 34, 45

Style, 36, 49

Subclassing, 7, 10, 13,
19, 26, 32, 34, 36,
37,40, 44, 46

Sub-menu, 13

Support, 51

SVG, 25

Sybase, 30

System registry, 18

System sound, 36

Table, 6, 32

Tab widget, 17

TCP, 43

TDS, 30

Tear-off handle, 13

Template, 45

Text editor, 5

Text rendering, 34

Text trandation, 34

Theme, 36, 49

Tile, 15

Time, 5

Timer, 8

Toggle button, 14

Toolbar, 12, 13, 14, 17

Tooltip, 14, 37

tr(), 34

Transaction, 32

Transformation, 23,
24, 26,50

Transition effect, 37

Trandlation, 12, 34

Transparency, 23

Treeview, 6

Tru64, 50

1s,35

Type safety, 10

UDP, 43, 45

.ui, 19,35

uic, 19

Unicode, 18, 34, 42,
50

Unisys, 23

Unix, 49, 50

UnixWare, 50

URL, 43

T R OULLTETCH

User input, 7

User settings, 18, 36

Validation, 7

Value-based collec-
tion, 45

Variable binding, 31

Variant type, 32

Vector, 45, 46

Vietnamese, 34

View, 32

Viewport, 24

Visual C++,50

Visualisation, 26

W3C, 25, 43

Warning, 15

What'sthis?, 14

Wheel mousg, 41

Widget, 4, 25

Widget style, 36, 49

width(), 24, 25

Window, 15, 24

Windows, 26, 36, 48,
50

Windows XP, 36, 50

Wizard, 17, 33

Workspace, 13, 15

World matrix, 24, 50

Writing system, 34

XBM, 23

X extensions, 50

XIM, 50

Xinerama, 50

Xlib, 50

XML, 19, 25, 35,43

XP, 36, 50

XPM, 23

Xt, 50

X Window System,
26, 49, 50

Page 55

