
Qt 3.1 Whitepaper

Trolltech

www.trolltech.com

Abstract

ThiswhitepaperdescribestheQt C++ toolkit. Qt supportsthedevelopmentof multiplatformGUI applica-
tionswith its “write once,compileanywhere”approach.Usinga singlesourcetreeanda simplerecompila-
tion,applicationscanbewritten for Windows95to XP, MacOSX, Linux, Solaris,HP-UX, andmany other
versionsof Unix with X11.Qt applicationscanalsobecompiledto run on Qt/Embedded.Qt introducesa
uniqueinter-objectcommunicationmechanismcalled“signalsandslots.” Qt hasexcellentsupportfor many
programmingdomains:2D and3D graphics,internationalization,XML, etc. Qt applicationscanbe built
visuallyusingQt Designer.

Qt 3.1 Whitepaper

Trolltech

www.trolltech.com

Contents

1. Introduction . 3

1.1. Executive Summary . 3

2. Widgets . 4

2.1. A “Hello” Example . 5

2.2. Built-in Widgets . 5

2.3. Custom Widgets . 7

3. Signals and Slots . 9

3.1. A Signals and Slots Example . 10

3.2. Meta Object Compiler . 11

4. GUI Applications . 12

4.1. Main Window Classes . 12

4.2. Multiple Document Interface . 15

4.3. Dialogs . 15

4.4. Dock Windows . 17

4.5. Settings . 18

4.6. Multithreading . 18

5. Qt Designer . 18

5.1. Qt Assistant . 20

5.2. GUI Application Example . 21

6. 2D and 3D Graphics . 23

6.1. 2D Graphics . 23

6.2. 3D Graphics . 26

6.3. A 3D Example . 27

7. Databases . 30

7.1. Executing SQL Commands . 31

7.2. Data-aware Widgets . 32

8. Internationalization . 33

8.1. Unicode . 34

8.2. Text Entry and Rendering . 34

Qt 3.1 Whitepaper T R O L L T E C H Page 2

8.3. TranslatingApplications . 34

8.4. Qt Linguist . 35

9. StylesandThemes . 36

9.1. Built-in Styles . 36

9.2. Style-awareWidgets . 37

9.3. CustomStyles . 37

10. Layouts . 38

10.1. Built-in LayoutManagers. 38

10.2. NestedLayouts . 39

10.3. CustomLayouts . 40

11. Events . 41

11.1. EventCreation . 41

11.2. EventDelivery . 41

12. Input/OutputandNetworking . 42

12.1. File I/O . 42

12.2. XML . 43

12.3. Inter-ProcessCommunication . 43

12.4. Networking . 43

13. CollectionClasses. 45

13.1. Value-basedCollections . 45

13.2. Pointer-basedCollections . 46

14. PluginsandDynamicLibraries . 46

14.1. Plugins . 46

14.2. DynamicLibraries . 47

15. PlatformSpecificExtensions . 48

15.1. ActiveQt . 48

15.2. Motif . 49

16. Qt’sArchitecture . 49

16.1. MicrosoftWindows . 50

16.2. X11 . 50

16.3. MacOSX . 51

16.4. EmbeddedLinux . 51

17. Qt’sDevelopmentWorld . 51

Index . 52

Qt 3.1 Whitepaper T R O L L T E C H Page 3

1. Introduction

Qt is a C++ toolkit for multiplatform GUI and application development. In addition to the
C++ class library, Qt includes tools to make writing applications fast and straightforward. Qt’s
multiplatform capabilities and internationalization support ensure that Qt applications reach the
widest possible market.

TheQt C++ toolkit hasbeenat theheartof commercialapplicationssince1995.Qt is usedby companiesas
diverseasAT&T, IBM, NASA, andXerox,andby numeroussmallercompaniesandorganizations.Qt 3.1
retainstheease-of-useandpower of earlierversionswhile addingsignificantfunctionalityandintroducing
new classes.Qt’sclassesarefully featuredto reducedeveloperworkload,andprovideconsistentinterfaces
to speedlearning.Qt is,andalwayshasbeen,fully object-oriented.

Thiswhitepapergivesanoverview of Qt’stoolsandfunctionality. Eachsectionbeginswith anon-technical
introduction,then presentsthe technicaldetailsin increasingdepth. Codeextracts,and small complete
applications,arepresented.To evaluateQt for 30days,visit http:/ /www.trolltech.com.

1.1. Executive Summary

Qt includesa rich set of widgets[p. 4] (“controls” in Windows terminology)that provide standardGUI
functionality. Qt introducesan innovative alternative for inter-objectcommunication,called“signalsand
slots”[p. 9], thatreplacestheoldandunsafecallbacktechnique.Qtalsoprovidesaconventionaleventsmodel
[p. 41]for handlingmouseclicks,key presses,etc. Qt’smultiplatformGUI applications[p. 12]canuseall the
userinterfacefunctionalityrequiredby modernapplications,suchasmenus,context menus,draganddrop,
anddockabletoolbars.

Intuitive namingconventionsand a consistentprogrammingapproachsimplify coding. Qt also includes
Qt Designer [p. 18], a tool for graphicallydesigninguserinterfaces.Qt Designer supportsQt’s powerful
layouts[p. 38]in additiontoabsolutepositioning.Qt Designer canbeusedpurelyfor GUI design,or tocreate
entireapplicationswith its built-in C++ codeeditor.

Qt has excellent support for 2D and 3D graphics[p. 23]. Qt is the de-facto standardGUI toolkit for
platform-independentOpenGLprogramming.

Qt makesit possibletocreateplatform-independentdatabaseapplicationsusingstandarddatabases[p. 30].Qt
includesnativedriversfor Oracle,MicrosoftSQLServer,SybaseAdaptiveServer,PostgreSQL,MySQL,and
ODBC-compliantdatabases.Qt’sdatabasefunctionalityis fully integratedwith Qt Designer, which offers
livepreview of databasedata.Qt includesdatabase-specificwidgets,andany built-in or customwidgetcan
bemadedata-aware.

Qt programshavenativelook andfeelonall supportedplatformsusingQt’sstylesandthemessupport[p. 36].
Froma singlesourcetree,recompilationis all that is requiredto produceapplicationsfor Windows(95,98,
NT4, ME, 2000,XP), Mac OSX, Linux, Solaris,HP-UX, andmany otherversionsof Unix with X11. Qt
applicationscanalsobecompiledtorunonQt/Embedded.Qt’sqmake build toolproducesmakefilesor.dsp
filesappropriateto thetargetplatform.

SinceQt’s architecture[p. 49] takes advantageof the underlyingplatform, many customersuseQt for
single-platformdevelopmenton Windows, Mac OS X, and Unix becausethey prefer Qt’s approach.Qt

Qt 3.1 Whitepaper T R O L L T E C H Page 4

includes support for important platform-specific features, such as, ActiveX on Windows [p. 48] and Motif on
Unix [p. 49].

Qt uses Unicode throughout and has considerable support for internationalization [p. 33]. Qt includes
Qt Linguist[p. 35] and other tools to support translators. Applications can easily use and mix text in Arabic,
Chinese, English, Hebrew, Japanese, Russian, and other languages supported by Unicode.

Qt includes a variety of domain-specific classes. For example, Qt has an XML module [p. 43] that includes
SAX and DOM parsers. Objects can be stored in memory using Qt’s STL-compatible collection classes
[p. 45]. Local and remote file handling using standard protocols are provided by Qt’s input/output and
networking classes [p. 42].

Qt applications can have their functionality extended by plugins and dynamic libraries [p. 46].Plugins provide
additional codecs,database drivers, image formats, styles, and widgets. Libraries can offer an unlimited range
of functionality. Plugins and libraries can be sold as products in their own right.

Qt is a mature C++ toolkit that is widely used across the world. In addition to Qt’s many commercial uses,
the free edition of Qt is the foundation of KDE, the Linux desktop environment. Qt makes application
development a pleasure, with its multiplatform build system, visual form design, and elegant API.

On-line References

http:/ /www.trolltech.com/ references/ customers/
http:/ /www.trolltech.com/ references/ partners/

2. Widgets

Qt hasa rich setof widgets(buttons,scroll bars,etc.) that caterfor mostsituations.Qt’swidgets
areflexibleandeasyto subclassfor specialrequirements.

Qt provides a full set of widgets. Widgets are visual elements that are combined to create user interfaces.
Buttons, menus, scroll bars, message boxes, and application windows are all examples of widgets. Qt’s
widgets are not arbitrarily divided between “controls” and “containers”; all widgets can be used both as
controls and as containers. Custom widgets can easily be created by subclassing existing Qt widgets, or
created from scratch on the rare occasion when this is necessary.

Widgets are instances of QWidget or one of its subclasses, and custom widgets are created by subclassing.

A widget may contain any number of child widgets. Child widgets are shown within the parent widget’s
area. A widget with no parent is a top-level widget (a “window”), and usually has its own entry in the desktop
environment’s task bar. Qt imposes no arbitrary limitations on widgets. Any widget can be a top-level widget;
any widget can be a child of any other widget. The position of child widgets within the parent’s area can be
set automatically using layout managers [p. 38], or manually if preferred. When a parent widget is disabled,
hidden, or deleted, the same action is applied to all its child widgets recursively.

Labels, message boxes, tooltips, etc., are not confined to using a single color, font, and language.
Qt’s text-rendering widgets can display multi-language rich text using a subset of HTML. See
“Text Entry and Rendering” [p. 34].

Qt 3.1 Whitepaper T R O L L T E C H Page 5

QTimer

QObject

QWidget

QDialog

QLabel

QFrame

QLineEdit

QSpinBox

Figure 1. An extract from the QWidget class hierarchy

2.1. A “Hello” Example

Figure 2. Hello Qt!

The complete source code for a program that displays “Hello Qt!” follows:

#include <qapplication.h>
#include <qlabel.h>

int main(int argc, char **argv)
{

QApplication app(argc, argv);
QLabel *hello = new QLabel("Hello <i>Qt!</i>"

"", 0);
app.setMainWidget(hello);
hello->show();
return app.exec();

}

2.2. Built-in Widgets

The screenshots below present the main Qt widgets. They are shown using the Windows style.

Figure 3. A QLabel and a QPushButton laid out with a QHBox

Qt 3.1 Whitepaper T R O L L T E C H Page 6

Figure 4. Two QRadioButtons and two QCheckBoxes laid out with a QButtonGroup

Figure 5. A QDateTimeEdit, a QLineEdit, a QTextEdit, and a QComboBox laid out with a QGroupBox

Figure 6. A QDial, a QProgressBar, a QSpinBox, a QScrollBar, a QLCDNumber, and a QSlider laid out with a QGrid

Figure 7. A QIconView, a QListView, a QListBox, and a QTable laid out with a QGrid

Qt 3.1 Whitepaper T R O L L T E C H Page 7

QComboBox, QLineEdit, and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

Widgets that are used to display large amounts of data (e.g. QTable, QListView, and QTextEdit) inherit
QScrollView and can display scroll bars automatically.

QMainWindow, QMenuBar, and QToolBar are presented in “GUI Applications” [p. 12]. QMessageBox,
QFileDialog, QTabDialog, QWizard, and other dialogs are presented in “Dialogs” [p. 15]. QSplitter is
covered in “Layouts” [p. 38]. QCanvas and QGLWidget are presented in “2D and 3D Graphics” [p. 23].

The screenshot that shows the QRadioButtons and QCheckBoxes (Figure 4) was produced with the
following code:

parent = new QButtonGroup(2, Qt::Vertical, "QButtonGroup");
radio1 = new QRadioButton("&Radio 1", parent);
radio2 = new QRadioButton("R&adio 2", parent);
radio1->setChecked(true);
check1 = new QCheckBox("&Check 1", parent);
check2 = new QCheckBox("C&heck 2", parent);
check2->setChecked(true);

2.3. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses. To
illustrate subclassing, the complete code for a digital clock widget is presented.

Figure 8. Clock widget

The Clock widget is a LCD that displays the current time and updates itself automatically. A colon separator
blinks to indicate the passing seconds.

In clock.h, Clock is defined like this:

#include <qlcdnumber.h>

class Clock : public QLCDNumber
{
public:

Clock(QWidget *parent = 0, const char *name = 0);

protected:
void timerEvent(QTimerEvent *event);

private:
void showTime();

bool showingColon;
};

Qt 3.1 Whitepaper T R O L L T E C H Page 8

Clock inherits its LCD functionality from the QLCDNumber widget. It has a constructor typical of widget
classes, with optional parent and name parameters. (Testing and debugging are easier if name is set.) The
timerEvent() function is inherited from QObject and is called at regular intervals by the system.

In clock.cpp, the functions declared in clock.h are implemented:

#include <qdatetime.h>

#include "clock.h"

Clock::Clock(QWidget *parent, const char *name)
: QLCDNumber(parent, name), showingColon(true)

{
showTime();
startTimer(1000);

}

void Clock::timerEvent(QTimerEvent *)
{

showTime();
}

void Clock::showTime()
{

QString time = QTime::currentTime().toString().left(5);
if (!showingColon)

time[2] = ’ ’;
display(time);
showingColon = !showingColon;

}

The constructor calls showTime() to initialize the clock with the current time, and tells the system to call
timerEvent() every 1000 milliseconds to refresh the LCD display.

In showTime(), QLCDNumber::display() is called with the current time. The colon is replaced by a space
every other time showTime() is called to make the colon blink.

The clock.h and clock.cpp files completely define and implement the Clock custom widget. This widget
can be used immediately:

#include <qapplication.h>

#include "clock.h"

int main(int argc, char **argv)
{

QApplication app(argc, argv);
Clock *clock = new Clock;
app.setMainWidget(clock);
clock->show();
return app.exec();

}

This example program contains a single widget (the clock) and no child widgets. Complex widgets are built
by combining widgets in layouts.

Qt 3.1 Whitepaper T R O L L T E C H Page 9

Developerscanalsowrite customwidgetsfrom scratch.For example,to createananalogclock,it wouldbe
necessaryto draw theclock’sfaceandhandsin coderatherthanrelyingonthefunctionalityimplementedin
abaseclass.Thisapproachis coveredin “2D Graphics”[p. 23].

On-line References

http:/ /doc.trolltech.com/ 3.1/ qwidget.html

3. Signals and Slots

Signals and slots provide inter-object communication. They are easy to understand and use, and
are fully supported by Qt Designer.

GUI applicationsrespondto useractions.For example,whena userclicksa menuitem or a toolbarbutton,
theapplicationexecutessomecode.Moregenerally, wewantobjectsof any kind to beableto communicate
with eachother. Theprogrammermustrelateeventsto the relevant code. Older toolkits usemechanisms
thatarenot type-safe(i.e.arecrash-prone),areinflexible,andarenotobject-oriented.Trolltechhasinvented
a solutioncalled“signalsandslots.” Signalsandslotsis a powerful inter-objectcommunicationmechanism
thatcanbeusedtocompletelyreplacethecrudecallbacksandmessagemapsusedby legacy toolkits. Signals
andslotsareflexible, fully object-oriented,andimplementedin C++.

To associatesomecodewith a buttonusingtheold callbackmechanism,it is necessaryto passa pointerto
a functionto thebutton. Whenthebuttonis clicked,thefunctionis thencalled. Old toolkitsdo not ensure
thatargumentsof theright typearegivento thefunctionwhenit is called,whichmakescrashesmorelikely.
Anotherproblemwith the callbackapproachis that it tightly bindsthe GUI elementto the functionality,
makingit difficult to developclassesindependently.

connect(Object3, signal1, Object4, slot3)

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

connect(Object1, signal2, Object4, slot1)

Object3

signal1

slot1

Object4

slot1
slot2
slot3

Object1

signal1
signal2 Object2

signal1

slot1
slot2

Figure 9. An abstractview of somesignalsandslotsconnections

Qt 3.1 Whitepaper T R O L L T E C H Page 10

Qt’s signals and slots mechanism is different. Qt widgets emit signals when events occur. For example, a
button will emit a “clicked” signal when it is clicked. The programmer can choose to connect to a signal by
creating a function (called a slot) and calling the connect() function to relate the signal to the slot. Qt’s signals
and slots mechanism does not require classes to have knowledge of each other, which makes it much easier to
develop highly reusable classes. Signals and slots are type-safe, with type errors being reported by warnings
rather than by crashes.

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user’s click on
Quit makes the application terminate. In code, this is written as

connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

connect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

connect(textEdit, modificationChanged(bool),
customStatusBar, modificationStatus(bool))

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

Figure 10. An example of signals and slots connections

The signals and slots implementation smoothly extends C++’s syntax and takes full advantage of C++’s
object-oriented features. Signals and slots are type-safe, can be overloaded or reimplemented and may appear
in the public, protected or private sections of a class.

3.1. A Signals and Slots Example

To benefit from signals and slots, a class must inherit from QObject or one of its subclasses and include the
Q_OBJECT macro in the class’s definition. Signals are declared in the signals section of the class, while
slots are declared in the public slots, protected slots, or private slots sections.

Here is an example QObject subclass:

class BankAccount : public QObject
{

Q_OBJECT
public:

BankAccount() { curBalance = 0; }
int balance() const { return curBalance; }

public slots:
void setBalance(int newBalance);

signals:
void balanceChanged(int newBalance);

Qt 3.1 Whitepaper T R O L L T E C H Page 11

private:
int curBalance;

};

In the style of most C++ classes, the class BankAccount has a constructor, a get function balance(), and a set
function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account has changed.
When a signal is emitted, the slots it is connected to are executed.

The set function is declared in the public slots section, so it is a slot. Slots are member functions that can
be called like any other function and that can also be connected to signals.

Here’s the implementation of the slot setBalance():

void BankAccount::setBalance(int newBalance)
{

if (newBalance != curBalance) {
curBalance = newBalance;
emit balanceChanged(curBalance);

}
}

The statement

emit balanceChanged(curBalance);

causes the balanceChanged() signal to be emitted with the new current balance as its argument. The
keyword emit, like signals and slots, is provided by Qt and is transformed into standard C++ by the
C++ preprocessor.

Here’s an example of how to connect two BankAccounts:

BankAccount x, y;
connect(&x, SIGNAL(balanceChanged(int)), &y, SLOT(setBalance(int)));
x.setBalance(2450);

When the balance in x is set to 2450, the balanceChanged() signal is emitted. The signal is received by y’s
setBalance() slot, which sets y’s balance to 2450.

One object’s signal can be connected to many different slots, and many signals can be connected to one slot
in a particular object. Connections are made between signals and slots whose parameters have the same types.
A slot can have fewer parameters than the signal and ignore the extra parameters.

3.2. Meta Object Compiler

The signals and slots mechanism is implemented in standard C++. The implementation uses the C++
preprocessor and the Meta Object Compiler (moc) included with the Qt toolkit.

The moc reads the application’s header files and generates the necessary code to support the signals and slots
mechanism. It is invoked automatically by makefiles generated by qmake. Developers never have to edit or
even look at the generated code.

Qt 3.1 Whitepaper T R O L L T E C H Page 12

In addition to handling signals and slots, moc supports Qt’s translation mechanism, its property system, and
its extended run-time type information. The Meta Object Compiler also makes multiplatform introspection
of C++ programs possible.

On-line References

http:/ /doc.trolltech.com/ 3.1/ object.html
http:/ /doc.trolltech.com/ 3.1/ signalsandslots.html
http:/ /doc.trolltech.com/ 3.1/ moc.html

4. GUI Applications

Building modern GUI applications with Qt is fast and simple,and can be achieved by hand coding
or by using Qt Designer,Qt’s visual design tool.

Qt provides all the classes and functions necessary to create modern GUI applications. Qt can be used to
create both “main window” style applications with a menu bar, toolbars, and status bar surrounding a central
area, and “dialog” style applications that use buttons and possibly tabs to present options and information. Qt
supports both SDI (single document interface) and MDI (multiple document interface). Qt also supports drag
and drop and the clipboard.

Toolbars can be moved around within the toolbar area, dragged to other areas, or floated as tool palettes.
This functionality is built in and requires no additional code, although programmers can apply constraints to
toolbar behavior if required.

Qt simplifies programming. For example, if a menu option, a toolbar button, and a keyboard accelerator all
perform the same action, the action need only be coded once.

Qt also provides message boxes and a full set of standard dialogs to make it easy for applications to ask
the user questions, and to get the user to choose files, folders, fonts, and colors. In practice, a one-line
statement using one of Qt’s static convenience functions is all that is necessary to present a message box or a
standard dialog.

Qt can platform-independently store application settings, such as user preferences, most recently used files,
window and toolbar positions and sizes, etc.

4.1. Main Window Classes

4.1.1. The Main Window

The QMainWindow class provides a framework for typical application main windows.

A main window contains a set of standard widgets. The top of the main window is occupied by a menu bar,
beneath which toolbars are laid out. The toolbars can be moved to any toolbar area; main windows have
toolbar areas at the top, left, right, and bottom. Toolbars can also be dragged out of a toolbar area and floated
as independent tool palettes. The bottom of the main window, below the bottom toolbar area, is occupied by a

Qt 3.1 Whitepaper T R O L L T E C H Page 13

status bar. The central area contains any widget for SDI applications or a QWorkspace for MDI applications.
Tooltips and “What’s this?” help provide balloon help for the user-interface elements.

Figure 11. An application main window

4.1.2. Menus

The QPopupMenu widget presents menu items to the user in a vertical list. Popup menus can be standalone
(e.g. a context menu), can appear in a menu bar, or can be a sub-menu of another popup menu. Menus can
have tear-off handles.

Each menu item can have an icon, a checkbox, and an accelerator. Menu items usually correspond to actions
(e.g. Save). Separator items are displayed as a line and are used to group related actions visually.

Here’s an example that creates a File menu with New, Open, and Exit menu items:

QPopupMenu *fileMenu = new QPopupMenu(this);
fileMenu->insertItem("&New", this, SLOT(newFile()), CTRL+Key_N);
fileMenu->insertItem("&Open...", this, SLOT(open()), CTRL+Key_O);
fileMenu->insertSeparator();
fileMenu->insertItem("E&xit", qApp, SLOT(quit()), CTRL+Key_Q);

When a menu item is chosen, the corresponding slot is executed.

The QMenuBar class implements a menu bar. It is automatically laid out at the top of its parent widget
(typically a QMainWindow), splitting its contents across multiple lines if the parent window is not wide
enough. Qt’s built-in layout managers take any menu bar into consideration. On the Macintosh, the menu
bar appears at the top of the screen as expected.

Here’s how to create a menu bar with File, Edit, and Help menus:

QMenuBar *bar = new QMenuBar(this);
bar->insertItem("&File", fileMenu);
bar->insertItem("&Edit", editMenu);
bar->insertItem("&Help", helpMenu);

Qt’s menu system is very flexible. Menu items can be enabled, disabled, added, or removed dynamically.
Menu items with customized appearance and behavior can be created by subclassing QCustomMenuItem.

Qt 3.1 Whitepaper T R O L L T E C H Page 14

4.1.3. Toolbars

The QToolButton class implements a toolbar button with an icon, a 3D frame, and an optional label. Toggle
toolbar buttons turn features on and off. Other toolbar buttons execute a command. Different icons can
be provided for the active, disabled, and enabled modes, and for the on and off states. If only one icon
is provided, Qt automatically distinguishes the state using visual cues, for example, graying out disabled
buttons. Toolbar buttons can also trigger popup menus.

QToolButtons usually appear side by side within a QToolBar. An application can have any number of
toolbars, and the user is free to move them around. Toolbars can contain widgets of almost any type, for
example QComboBoxes and QSpinBoxes.

4.1.4. Balloon Help

Modern applications use balloon help to briefly explain the purpose of user-interface elements. Qt provides
two mechanisms for balloon help: tooltips and “What’s this?” help.

Tooltips are small, usually yellow, rectangles that appear automatically when the mouse pointer hovers over
a widget. Tooltips are often used to explain a toolbar button, since toolbar buttons are rarely displayed with
text labels. Here’s how to set the tooltip of a “Save” toolbar button:

QToolTip::add(saveButton, "Save");

It is also possible to set a longer piece of text to be displayed in the status bar when the tooltip is shown.

“What’s this?” help is similar to tooltips, except that the user must request it, for example by pressing Shift+F1
and then clicking a widget or menu item. “What’s this?” help is typically longer than a tooltip. Here’s how
to set the “What’s this?” text for a “Save” toolbar button:

QWhatsThis::add(saveButton, "Saves the current file.");

The QToolTip and QWhatsThis classes provide virtual functions that can be reimplemented for more
specialized behavior, such as displaying different text depending on the position of the mouse within the
widget.

4.1.5. Actions

Applications usually provide the user with several different ways to perform a particular action. For example,
most applications provide a “Save” action available from the menu (File|Save), from the toolbar (the “floppy
disk” toolbar button), and as an accelerator (Ctrl+S). The QAction class encapsulates this concept. It allows
programmers to define an action in one place.

The following code implements a “Save” menu item, a “Save” toolbar button, and a “Save” accelerator, all
with balloon help:

QAction *saveAct = new QAction("Save", saveIcon, "&Save",
CTRL+Key_S, this);

connect(saveAct, SIGNAL(activated()), this, SLOT(save()));
saveAct->setWhatsThis("Saves the current file.");
saveAct->addTo(fileMenu);
saveAct->addTo(toolbar);

Qt 3.1 Whitepaper T R O L L T E C H Page 15

In addition to avoiding duplication, using a QAction ensures that the state of menu items stays in sync with
the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will disable
any corresponding menu items and toolbar buttons. Similarly, if the user clicks a toggle toolbar button, the
corresponding menu item will be checked or unchecked accordingly.

4.1.6. The Central Widget

The central area of a QMainWindow can contain any widget. For example, a text editor could use a
QTextEdit as its central widget:

QTextEdit *editor = new QTextEdit(mainWindow);
mainWindow->setCentralWidget(editor);

4.2. Multiple Document Interface

Multiple document interface (MDI) is provided by the QWorkspace class, which is typically used as the
central widget of a QMainWindow.

Child widgets of QWorkspace can be widgets of any type. They are rendered with a frame similar to the
frame around top-level widgets. Functions such as show(), hide(), showMaximized(), and setCaption() work
in the same way for child MDI widgets as for ordinary top-level widgets.

QWorkspace provides positioning strategies such as cascade and tile. If a child widget extends outside the
MDI area, scroll bars can be set to appear automatically. If a child widget is maximized, the frame buttons
(e.g. Minimize) are shown in the menu bar.

4.3. Dialogs

Most GUI applications use dialog boxes to interact with the user for certain operations. Qt includes
ready-made dialog classes with convenience functions for the most common tasks.

Screenshots of some of Qt’s standard dialogs are presented below. Qt also provides standard dialogs for color
selection and printing options.

Figure 12. A QMessageBox

QMessageBox is used to provide the user with information or to present the user with simple choices
(e.g. “Yes” and “No”).

Qt 3.1 Whitepaper T R O L L T E C H Page 16

Figure 13. A QFileDialog

QFileDialog is a sophisticated file selection dialog. It can be used to select single or multiple local or
remote files (e.g. using FTP), and includes functionality such as file renaming and directory creation. Like
most Qt dialogs, QFileDialog is resizable, which makes it easy to view long file names and large directories.
Applications can be set to automatically use the native file dialog on Windows and Macintosh.

Figure 14. A QProgressDialog

QProgressDialog displays a progress bar and a “Cancel” button.

Figure 15. A QWizard

Qt 3.1 Whitepaper T R O L L T E C H Page 17

QWizard provides a framework for wizard dialogs.

Figure 16. A QFontDialog

QFontDialog is used to select a font.

Dialogs operate in one of three ways:

1. A modal dialog blocks input to the other visible windows in the same application. Users must close the
dialog before they can access any other window in the application.

2. A modeless dialog operates independently of other windows.

3. A semi-modal dialog returns control to the caller immediately. These dialogs behave like modal dialogs
from the user’s point of view, but allow the application to continue processing. This is particularly useful
for progress dialogs.

Modal dialogs are typically used like this:

OptionsDialog dialog(&optionsData);
if (dialog.exec()) {

do_something(optionsData);
}

Programmers can create their own dialogs by subclassing QDialog, which inherits QWidget.

4.4. Dock Windows

Dock windows are windows that the user can move inside a toolbar area or from one toolbar area to another.
The user can undock a dock window and make it float on top of the application or minimize it. Dock windows
and toolbar areas are provided by the QDockWindow and QDockArea classes.

Qt provides one QDockWindow subclass, QToolBar. QMainWindow automatically provides four toolbar
areas, one on each side of the central widget.

Qt 3.1 Whitepaper T R O L L T E C H Page 18

Developers can create custom dock windows by instantiating a QDockWindow object and by adding widgets
to it. The widgets are laid out side by side if the toolbar area is horizontal (e.g. at the top of the main window)
and above each other if the area is vertical (e.g. at the left of the main window).

Dock areas are not bound to QMainWindow; developers can use QDockArea in any custom widget.
Toolbars and other dock windows can be used with any toolbar area.

Some applications, including Qt Designer [p. 18] and Qt Linguist [p. 35], use dock windows extensively.
QDockArea provides operators to save and restore the position of dock windows, so that applications can
easily restore the user’s preferred positions.

4.5. Settings

User settings and other application settings can easily be stored on disk using the QSettings class. On
Windows, QSettings makes use of the system registry; on other platforms, settings are stored in text files.

A particular setting is stored using a key. For example, the key /SoftwareInc/Zoomer/RecentFiles

might contain a list of recently used files. Booleans, numbers, Unicode strings, and lists of Unicode strings
can be stored.

4.6. Multithreading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one or
many other threads to perform time-consuming activities such as reading large files and performing complex
calculations. Qt can be configured to support multithreading, and provides fiv ethreading classes: QThread,
QMutex, QMutexLocker, QSemaphore, and QWaitCondition.

On-line References

http:/ /doc.trolltech.com/ 3.1/ threads.html

5. Qt Designer

Qt Designer is a visual user-interface design tool and code editor, written in Qt. Applications can
be written entirely as source code, or using Qt Designer to speed up development.

Designing a form with Qt Designer is a simple process. Developers click a toolbox button representing the
widget they want, then click on a form to place the widget. The widget’s properties can then be changed using
the property editor. The precise positions and sizes of the widgets do not matter. Developers select widgets
and apply layouts to them. For example, some button widgets could be selected and laid out side by side by
choosing the “lay out horizontally” option. This approach makes design very fast, and the finished forms will
scale properly to fit whatever window size the end-user prefers. See “Layouts” [p. 38] for information about
Qt’s automatic layouts.

Qt Designer eliminates the time-consuming “compile, link, and run” cycle for user interface design. This
makes it easy to correct or change designs. Qt Designer’s preview options let developers see their forms
in other styles; for example, a Macintosh developer can preview a form in Windows style. Qt Designer

Qt 3.1 Whitepaper T R O L L T E C H Page 19

provides live preview and editing of database data through its tight integration with Qt’s database classes. See
“Databases” [p. 30] for more about Qt’s database support.

Figure 17. Qt Designer

Developers can create both “dialog” style applications and “main window” style applications with menus,
toolbars, balloon help, etc. Several form templates are supplied, and developers can create their own templates
to ensure consistency across an application or family of applications. Qt Designer uses wizards to make
creating toolbars, menus, and database applications as fast and easy as possible. Programmers can create their
own custom widgets that can easily be integrated with Qt Designer.

Qt Designer supports a project-based approach to application development. A project is represented by
a .pro file, which qmake uses to generate makefiles. Developers create a new project and then add forms
and source files as required. Developers can completely separate the user interface from the underlying
functionality by subclassing, or they can keep their source code and forms together by editing the forms’
source directly in Qt Designer.

Icons and other images used in the application are automatically shared across all forms in a project to reduce
executable size and speed up loading.

Form designs are stored in XML format in .ui files and converted into C++ header and source files by uic
(User Interface Compiler). The qmake build tool automatically includes build rules for uic in the makefiles
it generates, so developers do not need to invoke uic themselves.

Qt 3.1 Whitepaper T R O L L T E C H Page 20

Usually forms are compiled into the executable, but in some situations customers need to modify the
appearance of an application without accessing the source code. Qt supports “dynamic dialogs”: .ui files
that can be loaded at run-time and dynamically converted into fully functional forms. Companies can supply
application executables along with the customer-modifiable forms in .ui format, and the customer can use
Qt Designer to customize the appearance of the application’s forms. Loading a dynamic dialog is easy:

QDialog *creditForm = (QDialog *)
QWidgetFactory::create("creditform.ui");

5.1. Qt Assistant

Figure 18. Qt Assistant

Qt Designer’s on-line help is provided by the Qt Assistant application. Qt Assistant displays Qt’s entire
documentation set, and works in a similar way to a web browser. But unlike web browsers, Qt Assistant
applies a sophisticated indexing algorithm to provide fast full text searching of all the documentation it
presents.

Qt’s reference documentation consists of around 1,600 HTML pages (over 2,500 printed pages), which
document Qt’s classes and tools, and which include overviews and introductions to various aspects of Qt
programming.

Qt 3.1 Whitepaper T R O L L T E C H Page 21

Developers can deploy Qt Assistant as the help browser for their own applications and their own documen-
tation sets. Qt Assistant integration is achieved using the QAssistantClient class. Qt Assistant renders Qt’s
HTML reference documentation using QTextEdit; developers can use this class directly to implement their
own help browsers if preferred. QTextEdit supports a subset of HTML 3.2, and can also use custom tags that
are created with the QStyleSheet class.

5.2. GUI Application Example

Figure 19. Class hierarchy application

The “Class Hierarchy” application is a classic “dialog” style application where the user chooses some options,
in this case paths, and then carries out some processing based on those options.

The complete code for the application is presented below. The main.cpp file was produced by a Qt Designer
wizard. The form was designed in Qt Designer and stored in a .ui file. The .ui file is converted into C++
by uic, leaving the developer free to focus on the application’s functionality.

The addSearchPath(), removeSearchPath(), and updateHierarchy() functions are all slots. They have been
visually connected to the appropriate buttons using Qt Designer.

void ClassHierarchy::addSearchPath()
{

QString path = QFileDialog::getExistingDirectory(
QDir::homeDirPath(), this, 0, "Select a Directory");

if (!path.isEmpty() &&
searchPathBox->findItem(path, ExactMatch) == 0)
searchPathBox->insertItem(path);

}

void ClassHierarchy::removeSearchPath()
{

searchPathBox->removeItem(searchPathBox->currentItem());
}

void ClassHierarchy::updateHierarchy()
{

QString fileNameFilter;
QRegExp classDef;

Qt 3.1 Whitepaper T R O L L T E C H Page 22

if (language->currentText() == "C++") {
fileNameFilter = "*.h";
classDef.setPattern(

"\\bclass\\s+([A-Z_a-z0-9]+)\\s*"
"(?:\\{|:\\s*public\\s+([A-Z_a-z0-9]+))");

} else if (language->currentText() == "Java") {
fileNameFilter = "*.java";
classDef.setPattern(

"\\bclass\\s+([A-Z_a-z0-9]+)\\s+extends\\s*"
"([A-Z_a-z0-9]+)");

}

dict.clear();
listView->clear();

for (int i = 0; i < searchPathBox->count(); i++) {
QDir dir = searchPathBox->text(i);
QStringList names = dir.entryList(fileNameFilter);

for (int j = 0; j < names.count(); j++) {
QFile file(dir.filePath(names[j]));
if (file.open(IO_ReadOnly)) {

QString content = file.readAll();
int k = 0;
while ((k = classDef.search(content, k)) != -1) {

processClassDef(classDef.cap(1), classDef.cap(2),
names[j]);

k++;
}

}
}

}
}

void ClassHierarchy::processClassDef(const QString& derived,
const QString& base, const QString& sourceFile)

{
QListViewItem *derivedItem = insertClass(derived, sourceFile);

if (!base.isEmpty()) {
QListViewItem *baseItem = insertClass(base, "");
if (derivedItem->parent() == 0) {

listView->takeItem(derivedItem);
baseItem->insertItem(derivedItem);
derivedItem->setText(1, sourceFile);

}
}

}

QListViewItem *ClassHierarchy::insertClass(const QString& name,
const QString& sourceFile)

{
if (dict[name] == 0) {

QListViewItem *item = new QListViewItem(listView, name,
sourceFile);

item->setOpen(true);
dict.insert(name, item);

}
return dict[name];

Qt 3.1 Whitepaper T R O L L T E C H Page 23

}

On-line References

http:/ /doc.trolltech.com/ 3.1/ designer-manual.html

6. 2D and 3D Graphics

Qt provides excellent support for 2D and 3D graphics. Qt’s 2D graphics classes support
bitmapped and vector graphics. Animation and collision detection are also supported. Qt can load
and save a wide and extensible range of image formats. Qt can draw Unicode rich text, rotated
and sheared as required. Qt is the de-facto standard GUI toolkit for platform-independent OpenGL
programming.

6.1. 2D Graphics

6.1.1. Images

The QImage class supports the input, output, and manipulation of images in several formats, including BMP,
GIF★, JPEG, MNG, PNG, PNM, XBM, and XPM.

Many of Qt’s built-in widgets can display images, for example, buttons, labels, menu items, etc. Here’s how
to display an icon on a push button:

QPushButton *button = new QPushButton("&Find Address", parent);
button->setIconSet(QIconSet(QImage("find.bmp")));

Figure 20. An icon on a button

QImage supports images with color depths of 1, 8, and 32 bits. Programmers can manipulate the pixel and
palette data, apply transformations (e.g. rotations and shears), and reduce the color depth with dithering if
desired. Applications can store an “alpha channel” in a QImage along with the color data for their own
purposes (e.g. transparency and alpha-blending).

The QMovie class can be used to display animated images.

★If you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may require
you to license the technology to use GIF.

Qt 3.1 Whitepaper T R O L L T E C H Page 24

6.1.2. Painting

The QPainter provides a platform-independent API for painting widgets. It provides primitives as well as
advanced functionality such as transformations and clipping. All Qt’s built-in widgets paint themselves using
QPainter. Programmers invariably use QPainter when implementing their own custom widgets.

QPainter provides standard functions to draw points, lines, polygons, ellipses, arcs, Bezier curves, etc. The
following command draws a 120 × 60 rectangle whose top-left point is at (25, 15), with a 2-pixel wide dashed
red outline:

painter.setPen(QPen(red, 2, DashLine));
painter.drawRect(25, 15, 120, 60);

By default, the top-left corner of a widget is located at coordinates (0, 0), and the bottom-right corner is
located at (width() − 1, height() − 1). The coordinate system of a QPainter object can be translated, scaled,
rotated, and sheared. The objects to be drawn can be clipped according to a “window,” and positioned on the
widget using a “viewport.”

Figure 21. Qt’s xform example showing rotated text

The code below draws a bar-graph custom widget. It uses a QPainter in the reimplementation of
paintEvent(), with the default coordinate system.

void BarGraph::paintEvent(QPaintEvent *)
{

QPainter painter(this);

draw_bar(&painter, 0, 39, Qt::DiagCrossPattern);
draw_bar(&painter, 1, 31, Qt::BDiagPattern);
draw_bar(&painter, 2, 44, Qt::FDiagPattern);
draw_bar(&painter, 3, 68, Qt::SolidPattern);

painter.setPen(black);
painter.drawLine(0, 0, 0, height() - 1);
painter.drawLine(0, height() - 1, width() - 1, height() - 1);

painter.setFont(QFont("Helvetica", 18));
painter.drawText(rect(), AlignHCenter | AlignTop, "Sales");

}

Qt 3.1 Whitepaper T R O L L T E C H Page 25

void BarGraph::draw_bar(QPainter *painter, int month, int barHeight,
BrushStyle pattern)

{
painter->setPen(blue);
painter->setBrush(QBrush(darkGreen, pattern));
painter->drawRect(10 + 30 * month, height() - barHeight, 20,

barHeight);
}

The widget is drawn correctly at different sizesbecausethe codeusesthe width(), height() and rect()
functions.Thewidgetproducedby thiscodeis shown below.

Figure 22. Customwidget

QPainter supportsclipping using a region composedof rectangles,polygons,ellipses,and bitmaps.
Complex regionsmaybecreatedbyuniting,intersecting,subtracting,andXOR’ing simpleregions.Clipping
canbeusedto reduceflicker whenrepainting.

The QColor classstoresa color specifiedby a RGB or HSV triple, or by a name(e.g. “skyblue”). Qt
programmerscanspecifyany 24-bit color; Qt automaticallyallocatesthe requestedcolor in the system’s
palette,or usesasimilarcoloroncolor-limited displays.

6.1.3. Paint Devices

QPainter canoperateonany “paint device.” Thecoderequiredto paintonany supporteddeviceis thesame,
regardlessof thedevice. Qt supportsthefollowing paintdevices:

• A QPixmap isessentiallyan“off-screenwidget.” GraphicscanbepaintedonaQPixmap first,andthen
bit-blitted to a QWidget to reduceflicker. Thistechniqueis called“doublebuffering.”

• A QPicture is a vectorimagethatcanbescaled,rotated,andshearedgracefully. TheQPicture class
storesan imageasa list of paint commandsratherthanaspixel data. It supportsthe SVG (W3C’s
ScalableVectorGraphics)XML formatfor inputandoutput.

• A QPrinter representsa physicalprinter. On Windows,thepaintcommandsaresentto theWindows
print engine,whichusestheinstalledprinterdrivers. OnUnix, PostScriptisoutputandsentto theprint
daemon.

• A QWidget is alsoapaintdevice,asshown in theearlierbar-graphexample.

Qt 3.1 Whitepaper T R O L L T E C H Page 26

6.1.4. Canvas

Figure 23. The KAsteroids game written with QCanvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large number of
canvas items that represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvas items can
easily be made interactive (e.g. user movable).

Canvas items are instances of QCanvasItem subclasses. They are more lightweight than widgets, and they
can be quickly moved, hidden, and shown. QCanvas has efficient support for collision detection, and can
list all the canvas items in a given area. QCanvasItem can be subclassed to provide custom item types and
to extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can show the same
QCanvas, but with different translations, scales, rotations, and shears.

QCanvas is ideal for data visualisation. It has been used by customers for drawing road maps and for
presenting network topologies. It is also suitable for fast 2D games with lots of sprites.

6.2. 3D Graphics

OpenGL★ is a standard API for rendering 3D graphics. Qt developers can use OpenGL to draw 3D graphics
in their GUI applications. This is achieved by subclassing QGLWidget, a QWidget subclass, and drawing
with standard OpenGL functions rather than with QPainter.

Qt’s OpenGL module is available on Windows, X11, and Macintosh, and uses the system’s OpenGL library
(or Mesa).

★OpenGL is a trademark of Silicon Graphics, Inc. in the United States and other countries.

Qt 3.1 Whitepaper T R O L L T E C H Page 27

Qt developers can set the display format of an OpenGL rendering context: single or double buffering, depth
buffer, RGBA or color index mode, alpha channel, overlays, etc. They can also set the colormap manually in
color index mode.

Figure 24. Brain Innovation’s BrainVoyager application written in Qt and OpenGL

When using Qt, developers write in pure OpenGL. Qt also provides two convenience functions, qglClearCol-
or() and qglColor(), that accept a QColor argument and work in any mode.

6.3. A 3D Example

The complete code for an application that draws a 3D box, with sliders to rotate the box around the X, Y, and
Z axes, is presented below.

Qt 3.1 Whitepaper T R O L L T E C H Page 28

Figure 25. 3D box

In box3d.h, Box3D is defined like this:

#include <qgl.h>

class Box3D : public QGLWidget
{

Q_OBJECT
public:

Box3D(QWidget *parent = 0, const char *name = 0);
~Box3D();

public slots:
void setRotationX(int deg) { rotX = deg; updateGL(); }
void setRotationY(int deg) { rotY = deg; updateGL(); }
void setRotationZ(int deg) { rotZ = deg; updateGL(); }

protected:
virtual void initializeGL();
virtual void paintGL();
virtual void resizeGL(int w, int h);
virtual GLuint makeObject();

private:
GLuint object;
GLfloat rotX, rotY, rotZ;

};

In box3d.cpp, the functions declared in box3d.h are implemented:

#include "box3d.h"

Box3D::Box3D(QWidget *parent, const char *name)
: QGLWidget(parent, name)

{
object = 0;
rotX = rotY = rotZ = 0.0;

}

Box3D::~Box3D()
{

makeCurrent();

Qt 3.1 Whitepaper T R O L L T E C H Page 29

glDeleteLists(object, 1);
}

void Box3D::initializeGL()
{

qglClearColor(darkBlue);
object = makeObject();
glShadeModel(GL_FLAT);

}

void Box3D::paintGL()
{

glClear(GL_COLOR_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0.0, 0.0, -10.0);
glRotatef(rotX, 1.0, 0.0, 0.0);
glRotatef(rotY, 0.0, 1.0, 0.0);
glRotatef(rotZ, 0.0, 0.0, 1.0);
glCallList(object);

}

void Box3D::resizeGL(int w, int h)
{

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 15.0);
glMatrixMode(GL_MODELVIEW);

}

GLuint Box3D::makeObject()
{

GLuint list = glGenLists(1);
glNewList(list, GL_COMPILE);
qglColor(yellow);
glLineWidth(2.0);

glBegin(GL_LINE_LOOP);
glVertex3f(+1.5, +1.0, +0.8);
glVertex3f(+1.5, +1.0, -0.8);
/* … */
glEnd();

glEndList();
return list;

}

In main.cpp , a Box3D instance and three sliders are created:

#include <qapplication.h>
#include <qslider.h>
#include <qvbox.h>

#include "box3d.h"

void create_slider(QWidget * parent, Box3D * box3d, const char * slot)
{

QSlider * slider = new QSlider(0, 360, 60, 0,

Qt 3.1 Whitepaper T R O L L T E C H Page 30

QSlider::Horizontal, parent);
slider->setTickmarks(QSlider::Below);
QObject::connect(slider, SIGNAL(valueChanged(int)), box3d, slot);

}

int main(int argc, char **argv)
{

QApplication::setColorSpec(QApplication::CustomColor);
QApplication app(argc, argv);
if (!QGLFormat::hasOpenGL())

qFatal("This system has no OpenGL support");

QVBox *parent = new QVBox;
parent->setCaption("OpenGL Box");
parent->setMargin(11);
parent->setSpacing(6);
Box3D *box3d = new Box3D(parent);
create_slider(parent, box3d, SLOT(setRotationX(int)));
create_slider(parent, box3d, SLOT(setRotationY(int)));
create_slider(parent, box3d, SLOT(setRotationZ(int)));

app.setMainWidget(parent);
parent->resize(250, 250);
parent->show();
return app.exec();

}

On-line References

http:/ /doc.trolltech.com/ 3.1/ coordsys.html
http:/ /doc.trolltech.com/ 3.1/ canvas.html
http:/ /doc.trolltech.com/ 3.1/ opengl.html

7. Databases

TheQt SQL modulesimplifiesthe creationof multiplatformGUI databaseapplications. Pro-
grammerscaneasilyexecuteSQLstatements,usedatabase-specificwidgets,andmakeanywidget
data-aware.

The Qt SQL module provides a multiplatform interface for accessing SQL databases. Qt includes native
drivers for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL, and ODBC. The
drivers work on all platforms supported by Qt and for which client libraries are available. Programs can
access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget (predefined or custom) can be made data-aware. Qt also includes some database-specific
convenience widgets that simplify the creation of dialogs and windows that present records as forms or in
tables. Data-aware widgets automatically support browsing, updating, and deleting records. Most database
designs require that new records have a unique key that cannot be guessed by Qt, so insertion usually

Qt 3.1 Whitepaper T R O L L T E C H Page 31

needs a small amount of code to be written. The programmer can easily force the user to confirm actions,
e.g. deletions.

Qt’s SQL module is fully integrated into Qt Designer, which provides templates and wizards to make the
creation of database forms as quick and easy as possible. The wizards can create forms with navigation
buttons, and with update, insert, and delete buttons.

Using the facilities that the Qt SQL module provides, it is straightforward to create database applications that
use foreign key lookups, present master-detail relationships, and support drill-down.

7.1. Executing SQL Commands

The QSqlQuery class is used to directly execute any SQL statement. It is also used to navigate the result sets
produced by SELECT statements.

In the example below, a query is executed, and the result set navigated using QSqlQuery::next():

QSqlQuery query("SELECT id, surname FROM staff");
while (query.next()) {

cout << "id: " << query.value(0).toInt()
<< " surname: " << query.value(1).toString() << endl;

}

Field values are indexed in the order they appear in the SELECT statement. QSqlQuery also provides the
first(), prev(), last(), and seek() navigation functions.

INSERT, UPDATE, and DELETE are equally simple. Below is an UPDATE example:

QSqlQuery query("UPDATE staff SET salary = salary * 1.10"
" WHERE id > 1155 AND id < 8155");

if (query.isActive()) {
cout << "Pay rise given to " << query.numRowsAffected()

<< " staff" << endl;
}

Qt’s SQL module also supports value binding and prepared queries, for example:

QSqlQuery query;
query.prepare("INSERT INTO staff (id, surname, salary)"

" VALUES (:id, :surname, :salary)"
query.bindValue(":id", 8120);
query.bindValue(":surname", "Bean");
query.bindValue(":salary", 29960.5);
query.exec();

Value binding can be achieved using named binding and named placeholders (as above), or using positional
binding with named or positional placeholders, for example:

QSqlQuery query;
query.prepare("INSERT INTO staff (id, surname, salary)"

" VALUES (?, ?, ?)"
EmployeeMap::iterator it;
for (it = employeeMap.begin(); it != employeeMap.end(); ++it) {

query.addBindValue(it.data().id());
query.addBindValue(it.key());

Qt 3.1 Whitepaper T R O L L T E C H Page 32

query.addBindValue(it.data().salary());
query.exec();

}

Qt’s binding syntax works with all supported databases, either using the underlying database support or
by emulation.

For programmers who are not comfortable writing raw SQL, the QSqlCursor class provides a high-level
interface for browsing and editing records in SQL tables or views without the need to write SQL statements.
For example:

QSqlCursor cur("staff");
while (cur.next()) {

cout << "id: " << cur.value("id").toInt()
<< " surname: " << cur.value("surname").toString() << endl;

}

QSqlCursor also supports the ordering and filtering that are achieved using the ORDER BY and WHERE clauses
in SQL statements.

Calculated fields are useful both for real calculations (e.g. calculating totals) and for performing foreign key
lookups (e.g. to display names rather than codes). Calculated fields can be created by subclassing QSqlCur-
sor, adding additional QSqlFields with their calculated property set to true, and by reimplementing QSql-
Cursor::calculateField().

Database drivers usually supply data as strings, regardless of the actual datatype. Qt handles such data
seamlessly using the QVariant class. Database drivers can be asked about the features they support,
including query-size reporting and transactions. The transaction(), commit(), and rollback() functions can be
used if the database supports transactions.

7.2. Data-aware Widgets

QDataTable is a QTable that displays records from a result set using a QSqlCursor. QDataTable,
like QTable, supports in-place editing. Programmers can force users to confirm all or selected changes
(e.g. deletions) by setting QDataTable’s confirmation properties. The editor widget chosen for each type of
data depends on the data type. For example, a QLineEdit is used for CHAR fields, whereas a QSpinBox is
used for INTEGER fields. The programmer can override the defaults by creating a property map for the table,
which matches fields (columns) to the editor widget type the programmer prefers.

Records can be updated and deleted without writing any code. Insertions require some code since most
database designs expect new records to be created with a unique key. This can easily be achieved by
generating the key in a slot connected to the QDataTable::beforeInsert() signal.

QDataTable uses intelligent buffering to make the loading of large result sets fast, while keeping the user
interface responsive. For databases that are capable of reporting query sizes, the scroll bar slider is displayed
proportionally immediately.

Qt also includes QDataBrowser and QDataView to display records as forms, typically with one or perhaps
a few records shown at a time. These classes provide buttons with ready-made connections for navigating
through the records. QDataView is used for read-only data. QDataBrowser is used for editing, and can
provide ready-made insert, update, and delete buttons.

Qt 3.1 Whitepaper T R O L L T E C H Page 33

QDataTable and QDataBrowser have both a popup context menu and keyboard shortcuts for editing
records.

Figure 26. A QDataTable and a QDataBrowser

Programmers can manipulate data retrieved from the database before it is displayed by implementing a slot
and connecting it to the primeInsert() and primeUpdate() signals. Data can also be manipulated or actions
logged just before changes are written back to the database, for example, converting a foreign key’s display
text into its ID by implementing a slot connected to beforeInsert(), beforeUpdate(), and beforeDelete().

Developers can create their own forms for displaying database records. Unlike older toolkits that duplicate
their widgets with data-aware versions, Qt widgets (including custom widgets) can be made data-aware. All
that is necessary is to include the widget in a QSqlForm and set up a property map to relate the relevant
database field to the widget that will present and edit the field’ sdata.

Master-detail relationships are easily set up by filtering the detail form or table’s cursor by the master form
or table’s current record. Drill-down is also easy to achieve by associating a button, menu item, or keyboard
shortcut with a drill-down form that is invoked with the current record’s key as a parameter.

Qt’s SQL module is fully integrated with Qt Designer. Qt Designer can preview database forms and tables
using live data if desired, allowing developers to browse, delete, and update records. Qt Designer has
templates and wizards to make creating database forms fast and simple.

On-line References

http:/ /doc.trolltech.com/ 3.1/ sql.html

8. Internationalization

Qt fully supports Unicode, the international standard character set. Programmers can freely mix
Arabic, English, Hebrew, Japanese, Russian, and other languages supported by Unicode in their
applications. Qt also includes tools to support application translation to help companies reach
international markets.

Qt includes tools to facilitate the translation process. Programmers can easily mark user-visible text that
needs translation, and a tool extracts this text from the source code. Qt Linguist is an easy-to-use GUI

Qt 3.1 Whitepaper T R O L L T E C H Page 34

application that reads the extracted source texts, and provides the texts with context information ready for
translation. When the translation is complete, Qt Linguist outputs a translation file for use by application
programs. Qt Linguist’s documentation provides the relevant information for release managers, translators,
and programmers.

8.1. Unicode

Qt uses the QString class to store Unicode strings, and uses it throughout the API and internally. QString
replaces the crude const char * and the 16-bit QChar class replaces char. Constructors and operators
are provided to automatically convert to and from 8-bit strings. Programmers can copy QStrings by value,
since they are implicitly shared (copy on write) [p. 45], which makes them fast and memory efficient.

QString is more than a 16-bit character string. Functions such as QChar::lower() and QChar::isPunct()
replace tolower() and ispunct() and work over the whole Unicode range. Qt’s regular expression engine,
provided by the QRegExp class, uses Unicode strings both for the regular expression pattern and the target
string.

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses. Qt uses
QTextCodec for fonts, I/O, and input methods; programmers can use it for their own purposes as well.

Qt 3.1 supports 38 different encodings, including Big5 and GBK for Chinese, EUC-JP, JIS, and Shift-JIS for
Japanese, KOI8-R for Russian, and the ISO 8859 series; see http:/ /doc.trolltech.com/ 3.1/ qtextcodec.html
for the complete list. Programmers can add their own encodings by providing a charmap or by subclassing
QTextCodec.

8.2. Text Entry and Rendering

Far-Eastern writing systems require many more characters than are available on a keyboard. The conversion
from a sequence of key presses to actual characters is performed at the window-system level by software
called “input methods.” Qt automatically supports the installed input methods.

Qt provides a powerful text-rendering engine for all text that is displayed on screen, from the simplest
label to the most sophisticated rich-text editor. The engine supports advanced features such as special line
breaking behavior, bidirectional writing, and diacritical marks. It renders most of the world’s writing systems,
including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin, and Vietnamese. Qt
will automatically combine the installed fonts to render multi-language text.

8.3. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers’native languages.

To make a string translatable, simply wrap it in a call to tr() (read “translate”):

saveButton->setText(tr("Save"));

tr() attempts to replace a string literal (e.g. "Save") with a translation if one is available; otherwise it uses
the original text. English can be used as the source language and Chinese as the translated language, or vice
versa. The argument to tr() is converted to Unicode from the application’s default encoding.

Qt 3.1 Whitepaper T R O L L T E C H Page 35

tr()’s general syntax is

Context::tr("source text", "comment")

The “context” is the name of a QObject subclass. It is usually omitted, in which case the class containing
the tr() call is used as the context. The “source text” is the text to translate. The “comment” is optional; along
with the context, it provides additional information to human translators.

Translations are stored in QTranslator objects, which use disk-based .qm files (Qt Message files). Each .qm
file contains the translations for a particular language. The language can be chosen at run-time, in accordance
with the locale or user preferences.

Qt provides three tools for preparing .qm files: lupdate, Qt Linguist and lrelease.

1. lupdate extracts all the (context, source text, comment) triples from the source code, including Qt De-
signer .ui files, and generates a .ts file (Translation Source file). These files are in human-readable
XML format.

2. Translators use Qt Linguist to provide translations for the source texts in the .ts files.

3. Highly compressed .qm files are generated by running lrelease on the .ts files.

These steps are repeated as often as necessary during the lifetime of an application. It is perfectly safe to run
lupdate frequently, as it reuses existing translations and marks translations for obsolete source texts without
eliminating them. lupdate also detects slight changes in source texts and automatically suggests appropriate
translations. These translations are marked as unfinished so that a translator can easily check them.

Qt itself contains about 400 user-visible strings, for which Trolltech provides French and German translations.

8.4. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications.

Translators can edit .ts files conveniently using Qt Linguist. The .ts file’ scontexts are listed in the left-hand
side of the application’s window. The list of source texts for the current context is displayed in the top-right
area, along with translations. By selecting a source text, the translator can enter a translation, mark it done
or unfinished, and proceed to the next unfinished translation. Keyboard shortcuts are provided for all the
common navigation options: Done & Next, Next Unfinished, etc. The user interface’s dockable windows
can be reorganized to suit the translators’preferences.

Applications often use the same phrases many times in different source texts. Qt Linguist automatically dis-
plays intelligent guesses based on previously translated strings and predefined translations at the bottom of
the window. Guesses often serve as a good starting point that helps translators translate similar texts consis-
tently. Qt Linguist can optionally validate translations to ensure that accelerators and ending punctuation are
translated correctly.

On-line References

http:/ /doc.trolltech.com/ 3.1/ i18n .html
http:/ /doc.trolltech.com/ 3.1/ unicode.html
http:/ /doc.trolltech.com/ 3.1/ scripts.html

Qt 3.1 Whitepaper T R O L L T E C H Page 36

http:/ /doc.trolltech.com/ 3.1/ linguist-manual.html

Figure 27. Qt Linguist

9. Styles and Themes

Qt automatically uses the native style for look and feel. Qt applications respect user preferences
for colors, fonts, sounds, etc. Qt programmers are free to use any of the supplied styles and can
override any preferences. Programmers can modify existing styles or implement their own styles
using Qt’s powerful style engine.

A style implements the “look and feel” of the user interface on a particular platform. A style is a QStyle
subclass that implements basic drawing functions such as “draw a frame,” “draw a button,” etc. Qt performs
all the widget drawing itself for maximum speed and flexibility.

9.1. Built-in Styles

Qt provides the following built-in styles: Windows, Windows XP, Motif, MotifPlus, CDE, Platinum, SGI,
and Mac. By default, Qt uses the appropriate style for the user’s platform and desktop environment. The style
can also be chosen programmatically, or with the -style command-line option.

Qt 3.1 Whitepaper T R O L L T E C H Page 37

Figure 28. Comboboxes in the different built-in styles

A style is complemented by a theme, which encapsulates the user’s preferences for colors, fonts, sounds, etc.
Qt automatically adapts to the computer’s active theme. For example, Qt supports scroll and fade transition
effects for menus and tooltips on Windows.

The Windows XP and Mac styles are built on top of the native style managers, and are available only on their
native platform. The other styles are emulated by Qt and are available everywhere.

9.2. Style-aware Widgets

Qt’s built-in widgets are style-aware. Custom widgets and dialogs are almost always combinations of built-in
widgets and layouts, and are automatically style-aware. On the rare occasions that it is necessary to write a
custom widget from scratch, developers can use QStyle to draw primitive user-interface elements rather than
drawing raw rectangles directly.

9.3. Custom Styles

Custom styles are used to provide a distinct look to an application or family of applications. Custom styles
can be defined by subclassing QStyle, QCommonStyle, or any other descendent of QCommonStyle. It is
easy to make small modifications to existing styles by reimplementing one or two virtual functions from the
appropriate base class.

QStyle

QCommonStyle

QMotifStyle QWindowsStyle

QCDEStyle QMacStyle

QMotifPlusStyle QPlatinumStyle

QSGIStyle QWindowsXPStyle

Figure 29. The full QStyle class hierarchy

An application’s style can be set like this:

QApplication::setStyle(new MyCustomStyle);

Qt 3.1 Whitepaper T R O L L T E C H Page 38

A style can also be compiled as a plugin [p. 46]. Plugins make it possible to preview a form in a custom style
in Qt Designerwithout recompiling Qt or Qt Designer.The style of an existing Qt application can be changed
using a style plugin without recompiling the application.

On-line References

http:/ /doc.trolltech.com/ 3.1/ customstyle.html

10. Layouts

Layoutsprovidea powerfulandflexiblealternativeto usingfixedsizesandpositions.Layoutsfree
programmersfromhavingtoperformsizeandpositioncalculations,andprovideautomaticscaling
to suit theuser’sscreen,language,andfonts.

Qt provides layout managers for organizing child widgets within the parent widget’s area. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes. Qt Designeris optimized for
laying out widgets using layout managers.

Figure 30. English, French, and French with layouts

Layouts are also useful for internationalization. With fix edsizes and positions, the translation text is often
truncated; with layouts, the child widgets are automatically resized.

10.1. Built-in Layout Managers

Qt’s built-in layout managers are QHBoxLayout, QVBoxLayout, and QGridLayout.

Figure 31. QHBoxLayout, QVBoxLayout, and QGridLayout

Qt 3.1 Whitepaper T R O L L T E C H Page 39

QHBoxLayout organizes the managed widgets in a single horizontal row from left to right. QVBoxLayout
organizes the managed widgets in a single vertical column from top to bottom. QGridLayout organizes the
managed widgets in a grid of cells; widgets may span multiple cells.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that windows resize smoothly.
If the defaults are insufficient, developers can refine the layout using the following mechanisms:

1. Setting a minimum size, a maximum size, or a fixed size for some child widgets.

2. Adding stretch items or spacer items. Stretch or spacer items fill empty space in a layout.

3. Changing the size policies of the child widgets. By calling QWidget::setSizePolicy(), programmers can
fine tune the resize behavior of a child widget. Child widgets can be set to expand, contract, keep the
same size, etc.

4. Changing the child widgets’ size hints. QWidget::sizeHint() and QWidget::minimumSizeHint() return
a widget’s preferred size and preferred minimum size based on the contents. Built-in widgets provide
appropriate reimplementations.

5. Setting stretch factors. Stretch factors allow relative growth of child widgets, e.g. two thirds of any extra
space made available should be allocated to widget A and one third to widget B.

The “spacing” between managed widgets and the “margin” around the whole layout can also be set by the
programmer. By default, Qt Designer sets industry-standard values according to the context.

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient for internationalized
applications supporting right-to-left languages (e.g. Arabic and Hebrew).

10.2. Nested Layouts

Layouts can be nested to arbitrary levels. Here’s an example of a dialog box, shown at two different sizes:

Figure 32. Small dialog and large dialog

The dialog uses three layouts: a QVBoxLayout that groups the push buttons, a QHBoxLayout that groups
the country listbox with the push buttons, and a QVBoxLayout that groups the “Select a country” label with
the rest of the widget. A stretch item maintains the gap between the Cancel and Help buttons.

The dialog’s widgets and layouts are created with the following code:

Qt 3.1 Whitepaper T R O L L T E C H Page 40

QVBoxLayout * buttonBox = new QVBoxLayout(6);
buttonBox->addWidget(new QPushButton("OK", this));
buttonBox->addWidget(new QPushButton("Cancel", this));
buttonBox->addStretch(1);
buttonBox->addWidget(new QPushButton("Help", this));

QListBox * countryList = new QListBox(this);
countryList->insertItem("Canada");
/* … */
countryList->insertItem("United States of America");

QHBoxLayout * middleBox = new QHBoxLayout(11);
middleBox->addWidget(countryList);
middleBox->addLayout(buttonBox);

QVBoxLayout * topLevelBox = new QVBoxLayout(this, 6, 11);
topLevelBox->addWidget(new QLabel("Select a country", this));
topLevelBox->addLayout(middleBox);

Qt makes layouts so easy that programmers rarely use fix edpositioning.

Figure 33. Laying out a form in Qt Designer

Qt Designer makes layouts even easier. With only 17 mouse clicks, you can create and lay out the widgets
for the dialog shown above.

10.3. Custom Layouts

Developers can define custom layout managers by subclassing QLayout. The customlayout example
provided with Qt presents three custom layout managers, BorderLayout , CardLayout , and SimpleFlow ,
which programmers can use and modify.

Qt also includes QSplitter, a splitter bar that end users can manipulate. In some design situations, QSplitter
may be preferable to a layout manager.

For complete control, it is also possible to perform layout manually in a widget by reimplementing
QWidget::resizeEvent() and by calling QWidget::setGeometry() on each child widget.

On-line References

http:/ /doc.trolltech.com/ 3.1/ layout.html

Qt 3.1 Whitepaper T R O L L T E C H Page 41

http:/ /doc.trolltech.com/ 3.1/ customlayout.html

11. Events

Application objects receive system messages as Qt events. Applications can monitor, filter ,and
respond to events at different levels of granularity.

In Qt, an event is an object that inherits QEvent. Events are delivered to QObject objects so that they can
respond to them. Programmers can monitor and filter events at the application level and at the object level.

11.1. Event Creation

Most events are generated by the window system and inform widgets, for example, that a key was pressed, that
a mouse button was clicked or that the application window was resized. It is also possible to send simulated
events to objects programmatically. There are over fifty types of event, of which the most commonly
used are MouseButtonPress, MouseButtonRelease, MouseButtonDblClick, Wheel, KeyPress,
KeyRelease, Paint, Resize, and Close. Developers can add their own event types that behave like the
built-in types.

It is usually insufficient merely to know that a key was pressed or that a mouse button was released. The
receiver also needs to know, for example, which key was pressed, which button was released, and where the
mouse was located. This additional information is available from QEvent subclasses,such as QMouseEvent,
QKeyEvent, QPaintEvent, QResizeEvent, and QCloseEvent.

11.2. Event Delivery

Qt delivers events by calling the virtual function QObject::event(). For convenience, QWidget::event() for-
wards the most common types of event to dedicated handlers, for example, QWidget::mouseReleaseEvent()
and QWidget::keyPressEvent(). Developers can easily reimplement these handlers when writing their own
widgets or when specializing existing widgets.

Some events are sent immediately, while others are queued, ready to be dispatched when control returns to
the Qt kernel. Qt uses queueing to optimize certain types of events. For example, multiple paint events are
compressed into a single event to minimize flicker and maximize speed.

Often an object needs to look at another object’s events, e.g. to respond to them or to block them. This is
achieved by having a monitoring object call QObject::installEventFilter() on the object that it will monitor.
The monitor’s QObject::eventFilter() virtual function will be called with each event that is destined for the
monitored object before the monitored object receives the event.

It’s also possible to filter all the application’s events by installing a filter on qApp, the unique QApplication
instance. Such filters are called before any widget-specific filters. It is even possible to reimplement
QApplication::notify(), the event dispatcher, for complete control.

On-line References

http:/ /doc.trolltech.com/ 3.1/ eventsandfilters.html

Qt 3.1 Whitepaper T R O L L T E C H Page 42

http:/ /doc.trolltech.com/ 3.1/ qapplication.html#notify

12. Input/Output and Networking

Qt can load and save data in plain text, XML, and binary format. Qt handles local files using its
own classes, and remote files using the FTP and HTTP protocols. Inter-process communication
and socket-based TCP and UDP networking are also fully supported.

12.1. File I/O

Qt provides classes to perform advanced I/O on multiple platforms. The QTextStream class has a similar
interface to the standard <iostream> classes, and supports the encodings provided by QTextCodec. The
QDataStream class is used to serialize the basic C++ types and many Qt types in a platform-independent
binary format. For example, the following code writes a Unicode string, a font, and a color to the file
splash.dat:

QFile file("splash.dat");
if (file.open(IO_WriteOnly)) {

QDataStream out(&file);
out << QString("SplashWidgetStyle")

<< QFont("Times", 18, QFont::Bold)
<< QColor("skyblue");

}

The data can easily be retrieved and used, for example:

QString str;
QFont font;
QColor color;

QFile file("splash.dat");
if (file.open(IO_ReadOnly)) {

QDataStream in(&file);
in >> str >> font >> color;

if (str == "SplashWidgetStyle") {
splashWidget->setFont(font);
splashWidget->setColor(color);

}
}

QTextStream and QDataStream operate on any QIODevice subclass. Qt includes the QFile, QBuffer,
QSocket, and QSocketDevice subclasses, and programmers can implement their own custom devices. QIO-
Device also provides low-level functions such as readLine() and writeBlock() that can be used independently
of any stream.

Directories are read and traversed using QDir. QDir can be used to manipulate path names and access the
underlying file system (e.g. create a directory or delete a file). QFileInfo provides more detailed information
about a file, such as its size, permissions, creation time, last modification time, etc.

Qt 3.1 Whitepaper T R O L L T E C H Page 43

The following example lists the hidden files in the user’s home directory along with their size, in decreasing
size order:

QDir dir = QDir::home();
dir.setFilter(QDir::Files | QDir::Hidden);
dir.setSorting(QDir::Size | QDir::Reversed);
QStringList names = dir.entryList();

for (int i = 0; i < names.count(); i++) {
QFileInfo info(dir, names[i]);
cout << names[i].latin1() << " " << info.size() << endl;

}

Transparent access to remote files is provided by QUrlOperator. In addition to local file system access, Qt
supports the FTP and HTTP protocols and can be extended to support other protocols. For example, files can
be downloaded using FTP like this:

QUrlOperator op;
op.copy("ftp://ftp.trolltech.com/qt/INSTALL", "file:/tmp");

URLs can easily be parsed and recomposed using QUrl.

Image files are usually read by creating a QImage with the file name as argument. Printing text and images
is handled by QPainter. These classes are described in “2D Graphics” [p. 23].

12.2. XML

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2
Java implementation, with adapted naming conventions. The DOM (Document Object Model) Level 2
implementation follows the W3C recommendation and includes namespace support.

Many Qt applications use XML format to store their persistent data. The SAX parser is used for reading data
incrementally and is especially suitable for simple parsing requirements and for very large files. The DOM
parser reads the entire file into a tree structure in memory that can be traversed at will.

12.3. Inter-Process Communication

The QProcess class is used to start external programs and to communicate with them from a Qt application
in a platform-independent way. Communication is achieved by writing to the external program’s standard
input and potentially by reading its standard output and standard error.

QProcess works asynchronously, reporting the availability of data by emitting signals. Qt applications can
connect to the signals to retrieve and process the data, and optionally respond by sending data back to the
external program.

12.4. Networking

Qt provides a multiplatform interface for writing TCP/IP clients and servers.

The QSocket class provides an asynchronous buffered TCP connection. QSocket is a QIODevice, making
it easy to use QTextStream and QDataStream on a socket.

Qt 3.1 Whitepaper T R O L L T E C H Page 44

QSocket is designed to work well within a GUI application. A live currency converter application illustrates
this:

Figure 34. Live currency converter

The application uses the fictional protocol CCP (Currency Conversion Protocol) to access the latest exchange
rates from a server. Only lines related to networking are presented.

socket = new QSocket(this);
connect(socket, SIGNAL(readyRead()),

this, SLOT(updateTargetAmount()));

The socket is created in the Converter constructor. Socket communication is asynchronous, and the socket
emits the readyRead() signal when there is data available to read.

void Converter::convert()
{

QString command = "CONV " + sourceAmount->text() + " " +
sourceCurrency->currentText() + " " +
targetCurrency->currentText() + "\r\n";

socket->connectToHost("ccp.banca-monica.nu", 123);
socket->writeBlock(command.latin1(), command.length());

}

The convert() slot is called when the user clicks the Convert button. It opens the connection and sends a CONV
request (e.g.CONV 100 EUR USD) to port 123 on the server ccp.banca-monica.nu. QSocket automatically
uses QDns to resolve ccp.banca-monica.nu to its IP address. All these operations are non-blocking to
keep the user interface responsive.

void Converter::updateTargetAmount()
{

if (socket->canReadLine()) {
targetAmount->setText(socket->readLine());
socket->close();

}
}

The updateTargetAmount() function is called when the server replies to the CONV request. It reads the reply,
updates the display, and closes the connection.

Simple TCP servers can be implemented by subclassing QServerSocket, which works asynchronously like
QSocket. QServerSocket sets up a listening socket that accepts incoming connections, and calls a virtual
function to serve the client.

Qt 3.1 Whitepaper T R O L L T E C H Page 45

The QSocketDevice class provides a platform-independent wrapper for the native socket APIs. It provides
the underlying functionality for QSocket and QServerSocket, and can be used for UDP.

On-line References

http:/ /doc.trolltech.com/ 3.1/ xml.html
http:/ /doc.trolltech.com/ 3.1/ datastreamformat.html

13. Collection Classes

Collection classes are used to store groups of items in memory. Qt provides a set of classes that
are compatible with the Standard Template Library (STL),and that work regardless of whether the
compiler supports STL or not.

Applications often need to manage items in memory, for example, groups of images, widgets, or custom
objects. Many C++ compilers support the STL, which provides ready-made data structures for storing items.
Qt provides lists, stacks, queues, and dictionaries with STL-syntax. Qt’s collection classes work with both
STL and non-STL compilers.

Qt’s rich set of portable collection classes (“containers”) and associated iterators are heavily used internally,
and are provided as part of the Qt API. Qt’s containers are optimized for speed and memory efficienc yusing
two techniques, “private classes” and “implicit sharing.” Programmers can also use STL containers on the
platforms that support them, at the cost of losing Qt’s optimizations.

Template classes usually increase the size of executables dramatically, because the compiler generates
essentially the same code for each specialized type. Qt’s template collection classes reduce code bloat
because they are a thin layer over non-template private classes.

13.1. Value-based Collections

Qt provides fiv e value-based collection classes: QMap<Key,T>, QValueList<T>, QValueStack<T>,
QValueVector<T>, and QStringList. They have an interface very similar to the STL containers and are
fully compatible with the STL algorithms. Qt provides some STL-equivalent algorithms: qCopy(), qFind(),
qHeapSort(), etc. On platforms with STL support, Qt provides automatic conversion operators between STL
and Qt containers.

Qt’s value-based collection classes are implicitly shared (“copy on write”). Copies of instances of these
classes share the same data in memory. The data sharing is handled automatically; if the application modifies
the contents of one of the copied objects, a deep copy of the data is made so that the other objects are left
unchanged. When an object is copied, only a pointer is passed and a reference count incremented, which is
much faster than actually copying the data and also saves memory.

Sharing is used wherever it makes sense: in Qt’s value-based collection classes, and in QBitmap, QBrush,
QCursor, QFont, QIconSet, QPalette, QPen, QPicture, QPixmap, QRegion, QRegExp, QString, etc.
Programmers can safely and efficiently copy objects of these classes by value, avoiding the risks related
to using pointers and hand optimization. In particular, the implicitly shared QString class makes string
processing easy and fast.

Qt 3.1 Whitepaper T R O L L T E C H Page 46

Qt also provides the low-level QMemArray<T> class with its subclasses QBitArray, QByteArray, and
QPointArray. These classes are very efficient for handling basic “plain old data” types.

13.2. Pointer-based Collections

Qt provides many low-level, generic, pointer-based collection classes: QDict<Key,T>, QPtrList<T>,
QPtrQueue<T>, QPtrStack<T>, QPtrVector<T>, and QCache<T>. These classes store pointers rather
than values. They are especially useful for storing pointers to QWidgets and QObjects. The pointer-based
collection classes can optionally take ownership of the objects they contain and automatically delete them
when the collection is destroyed.

On-line References

http:/ /doc.trolltech.com/ 3.1/ qtl.html
http:/ /doc.trolltech.com/ 3.1/ collections.html
http:/ /doc.trolltech.com/ 3.1/ shclass.html

14. Plugins and Dynamic Libraries

Qt can access functions from dynamic libraries platform-independently. Qt also supports plugins,
which allow developers to create and distribute codecs,database drivers, image format converters,
styles, and custom widgets as independent components.

14.1. Plugins

Converting a Qt codec, database driver, image format converter, style, or custom widget into a plugin is
achieved by subclassing the appropriate plugin base class, implementing a few simple functions, and adding
a macro.

For example, if a developer has created a QStyle subclass called CopperStyle that they want to make
available as a plugin, they would create a subclass like this:

class CopperStylePlugin : public QStylePlugin
{
public:

CopperStylePlugin() { }
~CopperStylePlugin() { }

QStringList keys() const {
return QStringList() << "CopperStyle";

}

QStyle *create(const QString& key) {
if (key == "CopperStyle")

return new CopperStyle;
return 0;

}
};

Qt 3.1 Whitepaper T R O L L T E C H Page 47

Q_EXPORT_PLUGIN(CopperStylePlugin)

Thenew stylecanbesetlike this:

QApplication::setStyle(QStyleFactory::create("CopperStyle"));

Databasedrivers,codecs,customwidgets,andimageformatsthataresuppliedaspluginsaredetectedand
usedby theapplicationautomatically.

CompaniesalreadyprovideQt componentsin sourceform,asprecompileddynamiclibrariesor asplugins.

Figure 35. Oneof KlarälvdalensDatakonsult’smany commercialcomponents

On-line References

http:/ /doc.trolltech.com/ 3.1/ plugins-howto.html

14.2. Dynamic Libraries

TheQLibrary classprovidesmultiplatformdynamiclibrary loading,a morepowerful mechanismthanthe
morerestrictivebuild-timelinking.

Below is anexampleof themostbasicway to dynamicallyloadandusea library. Theexampleattemptsto
obtaina pointerto theprint_str symbolfrom themylib library (mylib.dll on Windows,mylib.so
onUnix).

typedef void (StrFunc)(const char *str);

QLibrary lib("mylib");
StrFunc *func = (StrFunc *) lib.resolve("print_str");
if (func)

func("Hello world!");

Calling a function this way is not type-safe,andonly symbolswith C linkagearesupported(dueto C++
namemangling).

Qt 3.1 Whitepaper T R O L L T E C H Page 48

15. Platform Specific Extensions

In addition to being complete in itself,Qt provides some platform-specific extensions to assist devel-
opers in certain contexts. The ActiveQt extension allows developers to use ActiveX controls within
their Qt applications,and also allows them to make their Qt applications into ActiveX servers. The
Motif extension helps developers migrate to Qt by supporting Qt and Motif coexistence.

15.1. ActiveQt

ActiveX is built on Microsoft’s COM technology. It allows applications and libraries to use components
provided by component servers, and to be component servers in their own right. Qt/Windows’s ActiveQt
module allows developers to make their applications into ActiveX servers, and to make use of the ActiveX
controls provided by other applications.

ActiveQt seamlessly integrates ActiveX into Qt: ActiveX properties, methods, and events become Qt
properties, slots, and signals. This approach makes it straightforward for Qt developers to work with ActiveX
using a familiar programming paradigm and insulates them from all the different kinds of generated code
that is normally part of an ActiveX implementation.

Here’s how to register Internet Explorer for use as an ActiveX component:

#define CLSID_InternetExplorer "{8856F961-340A-11D0-A96B-00C04FD705A2}"

QAxWidget *activeX = new QAxWidget(this);
activeX->setControl(CLSID_InternetExplorer);

If we want to track the user’s use of the component, we could watch how its title changes:

connect(activeX, SIGNAL(TitleChange(const QString&)),
this, SLOT(setTitle(const QString&)));

ActiveQt automatically handles the conversions between ActiveX and Qt datatypes.

ActiveQt also supports the dynamicCall() function to control an ActiveX component:

activeX->dynamicCall("Navigate(const QString&)",
"http://doc.trolltech.com");

The lower-level IDispatch interface is also supported.

Making a Qt application into an ActiveX server is simple. If we only need to export a single class, little more
is required than the inclusion of the qaxfactory.h header and writing out the QAXFACTORY_DEFAULT

macro. Once the class is compiled, its properties, slots, and signals become ActiveX properties, methods,
and events to ActiveX clients. ActiveQt also provides the QAxFactory::isServer() function that can be
called to determine if the application is being run in its own right or being used as an ActiveX control, so that
developers can control which functionality is available in which context.

On-line References

Qt 3.1 Whitepaper T R O L L T E C H Page 49

http:/ /doc.trolltech.com/ 3.1/ activeqt.html

15.2. Motif

Many large Unix applications have been written using Motif, a toolkit that is no longer being developed.
Migrating an entire Motif application is a major task, and like any large development effort, has significant
risks. Trolltech’s solution for customers who are locked in to Motif is the Qt/Motif extension.

The Qt/Motif extension enables developers to migrate their Motif applications piece by piece, as part of
routine maintenance and development. This minimizes the resources required for migration, and also
minimizes the risks. This migration can be achieved because the Qt/Motif module supports a mixed-code
environment. Developers can continue to use the Motif event loop if they wish, or switch to Qt’s event loop.
Modality, timers, and socket notifiers all work correctly in the mixed-code environment. For example, when
a dialog requires maintenance, it can be replaced by a Qt dialog which will probably be easier and faster to
create and maintain using Qt Designer[p. 18].

On-line References

http:/ /doc.trolltech.com/ 3.1/ motif-extension.html

16. Qt’s Architecture

Qt’sfunctionalityis built onthelow-levelAPIsof theplatformsit supports.ThismakesQt flexible
andefficient.

Qt is an “emulating” multiplatform toolkit. All widgets are drawn by Qt, and programmers can extend or
customize them by reimplementing virtual functions. Qt’s widgets accurately emulate the look and feel of
the supported platforms, as described in “Styles and Themes” [p. 36]. This technique also enables developers
to derive their own custom styles to provide a distinct look for their applications.

Qt Application Source Code

Qt API

Qt/Windows Qt/X11 Qt/Macintosh Qt/Embedded

GDI Xlib Carbon

MS-Windows Unix/Linux Mac OS X Embedded Linux

Figure 36. Qt’s Architecture

Qt uses the low-level APIs of the different platforms it supports. This differs from traditional “layered”
multiplatform toolkits that are thin wrappers over single-platform toolkits (e.g. MFC on Windows and
Motif on X11). Layered toolkits are usually slow, since every function call to the library results in many
additional calls down through the different API layers. Layered toolkits are limited by the inflexibilities of

Qt 3.1 Whitepaper T R O L L T E C H Page 50

the underlying toolkits, and usually behave slightly differently on the different platforms they support, leading
to obscure bugs in applications.

Qt is professionally supported, and takes advantage of the available platforms: Microsoft Windows, X11,
Mac OS X, and Embedded Linux. Using a single source tree, a Qt application can be converted into an
executable simply by recompiling on the target platforms. Although Qt is a multiplatform toolkit, customers
have found it to be easier to learn and more productive than platform-specific toolkits. Many customers use
Qt for single-platform development, preferring Qt’s fully object-oriented approach.

16.1. Microsoft Windows

Qt/Windows uses the Win32 API and GDI for events and drawing primitives. Qt does not use MFC or any
other toolkit. In particular, Qt does not use the inflexible “common controls,” but rather provides its own
more powerful, customizable widgets. (For non-specialized uses, Qt uses the native Windows file and print
dialogs.)

With Qt, the same executable works on Windows 95, 98, NT4, ME, 2000, and XP. Qt performs a run-time
check for the Windows version, and uses the most advanced capabalities available. For example, only
Windows NT4, 2000, and XP support rotated text natively; Qt renders rotated text on all Windows versions,
and uses the native support where available. As this example demonstrates, Qt developers are insulated from
differences in the Windows APIs.

Qt supports the Microsoft accessibility interfaces. Unlike Windows’s common controls, Qt widgets can be
extended without losing the accessibility information of the base widget. Custom widgets can also provide
accessibility.

Qt also supports multiple screens on Microsoft Windows.

Qt/Windows customers create Qt applications using Microsoft Visual C++ and Borland C++.

16.2. X11

Qt/X11uses Xlib to communicate with the X server directly. Qt does not use Xt (X Toolkit), Motif, Athena, or
any other toolkit. Qt applications automatically adapt to the user’s window manager or desktop environment,
and have a native look and feel under Motif, SGI, CDE, GNOME, and KDE. This contrasts with most other
Unix toolkits, which lock users into their own look and feel.

Qt provides full Unicode support [p. 34]. Qt applications automatically support both Unicode and non-Uni-
code fonts. Qt combines multiple X fonts to render multi-lingual text. Qt’s font handling is intelligent enough
to search all the installed fonts for characters unavailable in the current font.

Qt takes advantage of X extensions where they are available. Qt supports the RENDER extension for
anti-aliased fonts and alpha-blending. Qt provides on-the-spot editing for X Input Methods. Qt supports
multiple screens both with traditional multi-head and with Xinerama.

Qt supports the following versions of Unix: AIX, BSDI, FreeBSD, HP-UX, Irix, Linux, NetBSD, OpenBSD,
Solaris, Tru64, and UnixWare. See http:/ /www.trolltech.com/ products/ platforms/ for an up-to-date list of
supported compilers and operating system versions.

Qt 3.1 Whitepaper T R O L L T E C H Page 51

16.3. Mac OS X

Since version 3.0, Qt supports Mac OS X using the Carbon API. Qt/Mac creates a new market for customers
who sell Qt applications.

Qt introduces layouts and straightforward internationalization support to the Macintosh. Qt handles files
and asynchronous socket input/output in the event loop. Qt provides solid database support. Developers
can create Macintosh applications using a modern object-oriented API that includes comprehensive
documentation and full source code.

Macintosh developers can create applications on their favorite platform and broaden their market hugely
simply by recompiling on, for example, Windows.

Qt/Mac also brings some technical benefits to Macintosh development, for example, standard OpenGL,
straightforward internationalization, and powerful visual design with Qt Designer.

16.4. Embedded Linux

Qt/Embedded provides its own windowing environment and writes directly to the Linux frame buffer.
Qt/Embedded eliminates the need for an X server, and runs faster and with a lower memory footprint than
X11-based embedded Linux devices.

Qt/Embedded uses alpha-blending for image painting and anti-aliased scalable TrueType and Type1 fonts.
Trolltech also offers a complete environment for embedded devices, called Qtopia. The Qtopia environment
includes a program launcher, a suite of applications, and libraries to support application development. It also
has flexible input handling, including hand-writing recognition, a pickboard, and a virtual keyboard; it is easy
to write new input methods. Qtopia is the standard environment used by Sharp’s Zaurus PDAs. By selectively
choosing features, the memory demands of Qt/Embedded can be tuned to between 800 KBand 3 MBin ROM.

See the Qt/Embedded whitepaper for a complete technical overview.

17. Qt’s Development World

Companies and developers from around the world are joining the Qt development community every day.
They have recognized that Qt’s architecture lends itself to rapid application development. These developers,
whether they are targeting one or many platforms, are benefiting from Qt’s consistent and straightforward
API, and from Qt’s powerful tools such as qmake and Qt Designer.

Qt has an active and helpful user community who communicate using the qt-interest mailing list. See
http:/ /lists.trolltech.com/ qt-interest/ to subscribe or to browse the archive. Qt customers receive our monthly
developers’newsletter, Qt Quarterly; see http:/ /doc.trolltech.com/ qq/ .

Qt’s extensive documentation is available on-line at http:/ /doc.trolltech.com.

Developers can evaluate Qt, with support, for 30 days on their preferred platform. See
http:/ /www.trolltech.com for details.

For further information, email info@trolltech.com.

mailto:info@trolltech.com

Index

About box, 15
Accelerator, 14, 35
Accessibility, 50
Action, 14
ActiveQt, 48
ActiveX, 48
AIX, 50
Algorithm, 45
Alpha-blending, 50,

51
Alpha channel, 23, 27
Animation, 23, 26
Anti-aliased font, 50,

51
Appearance Manager,

36
Aqua, 36
Arabic, 34, 39
Array, 46
Assistant, 17, 20
Asynchronous I/O, 43,

44
Athena, 50
Auto-deletion, 46
Automatic layout, 38
Balloon help, 14
Bezier curve, 24
Bidirectional writing,

34
Big5, 34
Binary serialization,

42
Bitmap, 23, 25
Bloat problem, 45
BMP, 23
BorderLayout, 40
Borland C++, 50
Box layout, 5, 39
BSDI, 50
Button, 5
Cache, 46
Calculated field, 32
Calendar, 47
Callback, 10
Canvas, 26

Caption, 15
Carbon, 51
CardLayout, 40
Cascade, 15
CDE, 36
Central area, 13
Central widget, 15, 17
char, 34
Charmap, 34
Charset, 34
Checkbox, 5, 7
Child widget, 4, 15,

38
Chinese, 34
clicked(), 10
Clipboard, 12
Clipping, 24, 25
Clock, 7
Code bloat problem,

45
Codec, 34, 50
Collection class, 45
Collision testing, 26
Color, 25, 36
Color dialog, 15
Colormap, 27
COM, 48
Combobox, 5
Comment, 35
Commit, 32
Common controls, 50
Common Desktop

Environment, 36
Communication, 10
Compiler features, 11
Component, 10
Configuration, 18
connect(), 10
Connection, 10, 14
Container, 45
Context, 35
Context menu, 13, 33
Control, 4
Coordinate, 24
Copy on write, 45

Custom canvas item,
26

Custom dock window,
18

Custom I/O device,
42

Custom layout, 40
Custom style, 37
Custom tag, 21
Custom widget, 7, 19,

24, 31, 37
Cyrillic, 34
Database, 19, 30
Data table, 32
Data visualisation, 26
Date, 5
Defaults, 18
Default widget size,

38
Delete, 46
Designer, 8, 18, 31, 33,

35, 38, 39, 40
Diacritical mark, 34
Dial, 6
Dialog, 15
Dictionary, 46
Directory, 16, 42
DLL, 47
Dock window, 17
Documentation, 20,

51
DOM, 43
Double buffering, 25,

27
Drag and drop, 12
Drawing, 24, 36, 41
Drill-down, 33
Druid, 17
.dsp, 4
Dynamic library, 47
Editor, 5
Embedded Linux, 50,

51
Emitting a signal, 11
Emulation, 36, 49

Encoding, 34
English, 34
Error, 15
EUC-JP, 34
Evaluation, 51
Event, 10, 24, 41
exec(), 5
Fade effect, 37
Fatal error, 15
File dialog, 16, 50
Fixed positioning, 40
Flicker, 25, 41
Flow layout, 40
Font, 34, 36, 38, 50,

51
Font dialog, 15
Foreign key, 32, 33
Form, 33
Frame, 15
Frame buffer, 51
FreeBSD, 50
French, 35
FTP, 43
Game, 26
GBK, 34
GCC, 50
GDI, 50
Geometry, 4, 38
German, 35
GIF, 23
GL, 26
Graph, 26
Graphics, 23
Greek, 34
Grid layout, 39
GUI application, 12
Guide, 20, 51
Hebrew, 34, 39
height(), 24, 25
Help browser, 20
Hierarchical tree

view, 6
Hover help, 14
HP-UX, 50
HSV, 25

52

Qt 3.1 Whitepaper T R O L L T E C H Page 53

HTML, 4, 21
HTTP, 43
Icon, 13, 14, 23
Icon view, 6
Image, 23, 25
Implicit sharing, 34,

45
Inheriting, 7, 10, 13,

19, 26, 32, 34, 36,
37, 40, 44, 46

Input method, 34, 51
Input/output, 42
Input validation, 7
Interface emulation,

36, 49
Internationalization,

34, 38
Introspection, 12
iostream, 42
IPC, 43
Irix, 50
ISO 8859, 34
Iterator, 45
Japanese, 34, 35
Java, 43
JIS, 34
JPEG, 23
Key, 31
Keyboard, 34, 41
KOI8-R, 34
Korean, 34
Label, 5
Language, 34, 38
Latin, 34
Layered toolkits, 50
Layout, 4, 38
LCD, 6, 7
Library, 47
Line breaking, 34
Line editor, 5
Linguist, 18, 35
Linking, 47
Linux, 50
List, 45, 46
List box, 6
List view, 6
Locale, 35

Localization, 34
Look and feel, 36, 49,

50
lrelease, 35
lupdate, 35
Macintosh, 13, 26, 36,

50
Magic, 12
Mailing list, 51
Main window, 12
Makefile, 4, 11, 19
Manual, 20, 51
Manual layout, 40
Map, 45
Margin, 39
Master-detail, 33
Maximum size, 39
MDI, 13, 15
Memory array, 46
Memory constraints,

51
Menu bar, 13, 14
Mesa, 26
Message box, 15
Message map, 10
Messaging, 41
Meta-file, 25
Meta Object Compil-

er, 11
MFC, 10, 50
Microsoft SQL Serv-

er, 30
Microsoft Visual C++,

50
Microsoft Windows,

26, 36, 48, 50
Minimum size, 39
MNG, 23
moc, 11
Modal dialog, 17
Model, 24
Motif, 10, 36, 49, 50
MotifPlus, 36
Mouse, 41
Movie, 23
Multi-line editor, 5

Multiple document in-
terface, 13, 15

Multiple screens, 50
Multithreading, 18
MySQL, 30
Name of widget, 8
Native dialog, 15
NetBSD, 50
Networking, 43
Notebook, 17
notify(), 41
Object-oriented pro-

gramming, 10
OCI, 30
ODBC, 30
OpenBSD, 50
OpenGL, 26, 51
Oracle, 30
Overlay, 27
Ownership, 46
Painting, 24, 41
Palette, 23, 25, 37
Parent widget, 4, 8, 38
Picture, 23, 25
Pixmap, 25
Plain old data, 46
Platforms, 50
Platinum, 36
Plugin, 38
PNG, 23
PNM, 23
Pointer-based collec-

tion, 46
Popup menu, 13, 33
Positioning, 38
PostgreSQL, 30
Preferences, 18, 36
Preferred size, 39
Prepared queries, 31
Preprocessor, 11
Primary key, 31
Print dialog, 15, 50
Printer, 25
Private class, 45
.pro, 19
Process, 43
Progress bar, 6, 16

Property, 12
Property box, 17
Push button, 5
QAction, 14
QApplication, 5, 37,

41, 47
QAquaStyle, 37
QAssistantClient, 20
QBitArray, 46
QBitmap, 45
QBrush, 45
QBuffer, 42
QButtonGroup, 5
QByteArray, 46
QCache, 46
QCanvas, 26
QCanvasItem, 26
QCanvasView, 26
QCDEStyle, 37
QChar, 34
QCheckBox, 5, 7
QCloseEvent, 41
QColor, 25, 27
QComboBox, 5, 7
QCommonStyle, 37
qCopy(), 45
QCursor, 45
QCustomMenuItem,

13
QDataBrowser, 32
QDataStream, 42
QDataTable, 32
QDataView, 32
QDateTimeEdit, 5
QDial, 6
QDialog, 4, 17
QDict, 46
QDir, 42
QDns, 44
QDockArea, 17
QDockWindow, 17
QEvent, 41
QFile, 42
QFileDialog, 16
QFileInfo, 42
qFind(), 45
QFont, 45

Qt 3.1 Whitepaper T R O L L T E C H Page 54

QFontDialog, 15
QFrame, 4
qglClearColor(), 27
qglColor(), 27
QGLWidget, 26
QGridLayout, 6, 38
QGroupBox, 5
QHBoxLayout, 5, 38
qHeapSort(), 45
QIconSet, 45
QIconView, 6
QImage, 23
QIODevice, 42, 43
QKeyEvent, 41
QLabel, 4, 5
QLayout, 40
QLCDNumber, 6, 7
QLibrary, 47
QLineEdit, 4, 5, 7
QListBox, 6
QListView, 6, 7
.qm, 35
QMacStyle, 37
QMainWindow, 12
qmake, 4, 11, 19
QMap, 45
QMemArray, 46
QMenuBar, 13
QMessageBox, 15
QMotifPlusStyle, 37
QMotifStyle, 37
QMouseEvent, 41
QMovie, 23
QMutex, 18
QObject, 4, 10, 35, 41,

46
QPainter, 24
QPaintEvent, 41
QPalette, 45
QPen, 45
QPicture, 25, 45
QPixmap, 25, 45
QPlatinumStyle, 37
QPointArray, 46
QPopupMenu, 13
QPrinter, 25
QProcess, 43

QProgressBar, 6
QProgressDialog, 16
QPtrList, 46
QPtrQueue, 46
QPtrStack, 46
QPtrVector, 46
QPushButton, 5
QRadioButton, 5, 7
QRegExp, 7, 34, 45
QRegion, 45
QResizeEvent, 41
QScrollBar, 6
QScrollView, 7
QSemaphore, 18
QServerSocket, 44
QSettings, 18
QSGIStyle, 37
QSlider, 6
QSocket, 42, 43
QSocketDevice, 42,

45
QSpinBox, 4, 6, 7
QSplitter, 40
QSqlCursor, 32
QSqlField, 32
QSqlForm, 33
QSqlQuery, 31
QStatusBar, 12
QString, 34, 42, 45
QStringList, 45
QStyle, 37, 46
QStyleSheet, 21
QTabDialog, 17
QTable, 6, 7
Qt Assistant, 20
Qt Designer, 8, 18, 31,

33, 35, 38, 39, 40
QTextCodec, 34, 42
QTextEdit, 5, 7, 15, 21
QTextStream, 42
QThread, 18
QTimer, 4
QTL, 45
Qt Linguist, 18, 35
QToolBar, 14, 17
QToolButton, 14
QToolTip, 14

QTranslator, 35
Qt Template Library,

45
Query, 31
Queue, 46
quit(), 10
QUrl, 43
QUrlOperator, 43
QValidator, 7
QValueList, 45
QValueStack, 45
QValueVector, 45
QVariant, 32
QVBoxLayout, 38
QWaitCondition, 18
QWhatsThis, 14
QWidget, 4, 17, 25,

46
QWindowsStyle, 37
QWindowsXPStyle,

37
QWizard, 17
QWorkspace, 13, 15
Radio button, 5, 7
Rapid application de-

velopment, 51
rect(), 25
Reference counting,

45
Reference documen-

tation, 20, 51
Registry, 18
Regular expression, 7,

34
Relative growth, 39
RENDER, 50
Repainting, 41
Repositioning, 38
Resizing, 38, 41
Reusability, 10
RGB, 25
Rich text, 4
Right-to-left lan-

guages, 34, 39
Rollback, 32
Rotation, 24, 25, 26,

50

RTTI, 12
Run-time type infor-

mation, 12
SAX, 43
Scale, 24, 25, 26
Scroll bar, 6, 7
Scroll effect, 37
Scroll view, 6, 7
SDI, 13
SELECT, 31
Semi-modal dialog,

17
Separator item, 13
Serialization, 42
Settings, 18, 36
SGI, 36
Shared library, 47
Sharing, 34, 45
Shear, 24, 25, 26
Shift-JIS, 34
Signal, 9
SimpleFlow, 40
Single document in-

terface, 13
Size, 38
Size policy, 39
Slider, 6
Slot, 9
Socket, 42
Solaris, 50
Sound, 36
Source text, 35
Spacer item, 39
Spacing, 39
Spin box, 6
Splitter, 40
Spreadsheet, 6
Sprite, 26
SQL, 30
Stack, 45, 46
Standard Template Li-

brary, 45
Status bar, 12, 13
STL, 45
Stream, 42
Stretch, 39
Stretch factor, 39

Qt 3.1 Whitepaper T R O L L T E C H Page 55

String, 34, 45
Style, 36, 49
Subclassing, 7, 10, 13,

19, 26, 32, 34, 36,
37, 40, 44, 46

Sub-menu, 13
Support, 51
SVG, 25
Sybase, 30
System registry, 18
System sound, 36
Table, 6, 32
Tab widget, 17
TCP, 43
TDS, 30
Tear-off handle, 13
Template, 45
Text editor, 5
Text rendering, 34
Text translation, 34
Theme, 36, 49
Tile, 15
Time, 5
Timer, 8
Toggle button, 14
Toolbar, 12, 13, 14, 17
Tooltip, 14, 37
tr(), 34
Transaction, 32
Transformation, 23,

24, 26, 50
Transition effect, 37
Translation, 12, 34
Transparency, 23
Tree view, 6
Tru64, 50
.ts, 35
Type safety, 10
UDP, 43, 45
.ui, 19, 35
uic, 19
Unicode, 18, 34, 42,

50
Unisys, 23
Unix, 49, 50
UnixWare, 50
URL, 43

User input, 7
User settings, 18, 36
Validation, 7
Value-based collec-

tion, 45
Variable binding, 31
Variant type, 32
Vector, 45, 46
Vietnamese, 34
View, 32
Viewport, 24
Visual C++, 50
Visualisation, 26
W3C, 25, 43
Warning, 15
What’s this?, 14
Wheel mouse, 41
Widget, 4, 25
Widget style, 36, 49
width(), 24, 25
Window, 15, 24
Windows, 26, 36, 48,

50
Windows XP, 36, 50
Wizard, 17, 33
Workspace, 13, 15
World matrix, 24, 50
Writing system, 34
XBM, 23
X extensions, 50
XIM, 50
Xinerama, 50
Xlib, 50
XML, 19, 25, 35, 43
XP, 36, 50
XPM, 23
Xt, 50
X Window System,

26, 49, 50

