Qt 3.1 Whitepaper

Trolltech

wwv. trol | tech. com

Abstract

This whitepaperdescribeghe Qt C++ toolkit. Qt supportsthe developmentof multiplatform GUI
applicationswith its “write once compileanywhere”approach.Usinga singlesourcetreeanda simple
recompilationapplicationsanbewrittenfor Windows95to XP, MacOSX, Linux, Solaris HP-UX,and
mary otherversionsof Unix with X11.Qt applicationsanalsobecompiledto runon Qt/EmbeddedQt
introducesa unigueinter-objectcommunicatiormechanisntalled“signalsandslots’ Qt hasexcellent
supportfor mary programmingdomains: 2D and 3D graphics,internationalization XML, etc. Qt
applicationsanbebuilt visually usingQt Designer.

. Introduction

Qt 3.1 Whitepaper

Trolltech

wwv. trol | tech. com

Contents

11 EXECULIVESUMMAY . . . o ot e e e e e e e e e e e e e

. Widgets

21 A'Helo" Example
22, BUilt-inWIdgets e
23 CustomWidgets e

. Signalsand Slots

3.1 ASigndsandSlotsExample
3.2. MetaObject Compiler

. GUI Applications . . .

41 ManWindow Classes
4.2. MultipleDocument Interface L

4.3. Dialogs
4.4. Dock Windows
4.5. Settings
4.6. Multithreading
. QtDesigner
51 QtAssistant .

5.2. GUI ApplicationExample

. 2D and 3D Graphics . .
6.1. 2D Graphics .
6.2. 3D Graphics .
6.3. A 3D Example
. Databases

7.1, ExecutingSQL Commands
7.2. Dataaware WIdgets

. Internationalization . .
8.1. Unicode . ..

8.2 TextEntryandRendering
8.3. Trandating Applications

8.4. QtLinguist . .
. Stylesand Themes . . .
9.1. Built-in Styles

oo N ook ww

10
11
11
12
14
14
17
17
17
18
19
20
22
22
25
26
29
29
31
32
32
32
33

35
35

Qt 3.1 Whitepaper T R OL L T E C H Page 2

9.2. Style-avareWidgets 35
9.3. CustomStyles 35
10. Layouts e e e 36
10.1. Built-in LayoutManagers e 37
10.2. NestedLayoutS. ot e 37
10.3. CUStOMLAYOULS o e e 39
11 BVeNtS . . e e e 39
11.1.EventCreation 39
11.2. EventDelivery e 39
12. Input/OutputandNetworking e 40
1210 Filel/O . 40
12.2. XML . e 41
12.3. Inter-Proces€ommunication 41
12.4. Networking 42
13. CollectionClasses e 43
13.1. Value-base®ollections 43
13.2. PointerbasedCollections. 44
14. PluginsandDynamicLibraries 44
141 PlUginS . . . oo 44
14.2. DynamicLibraries 45
15. PlatformSpecificEXteNsions e e 46
15.0. ACtiveQt L e 46
15.2. Motif . . a7
16. QUSArChitecture 47
16.1. MicrosoftWindows 48
16.2. XAd o e 48
16.3. MaCOSX . . . 48
16.4. EmbeddedinuUx 49
17. Qt'sDevelopmentWorld 49

INAEX . . e 50

Qt 3.1 Whitepaper T R OL L T E C H Page 3

1. Introduction

Qt isa C++ toolkit for multiplatform GUI and application development. In addition to the
C++ classlibrary, Qt includestool sto makewriting applicationsfast and straightforward. Qt's
multiplatform capabilities and internationalization support ensure that Qt applicationsreach
the widest possible market.

TheQt CG++ toolkit hasbeenattheheartof commerciabpplicationsincel995.Qtis usedoy companies
asdiverseasAT&T, IBM, NASA, and Xerox, andby numeroussmallercompaniesind organizations.
Qt 3.1retainsthe ease-of-usand power of earlierversionswhile addingsignificantfunctionality and
introducingnew classes.Qt’s classesare fully featuredto reducedeveloperworkload, and provide
consisteninterfacedo speedearning. Qtis, andalwayshasbeenfully object-oriented.

Thiswhitepapegivesanoverview of Qt'stoolsandfunctionality Eachsectiornbeginswith anontechni
calintroductionthenpresentshetechnicalletailsin increasinglepth. Codeextracts andsmallcomplete
applicationsarepresentedTo evaluateQt for 30 days visit http/ /www.trolltech.com

1.1. Executive Summary

Qtincludesarich setof widgets[p. 4] (“controls” in Windows terminology)that provide standardGUI
functionality Qtintroducesninnovativealternatvefor inter-objectcommunicationcalled“signalsand
slots”[p. 8], thatreplacegheold andunsafecallbacktechnique.Qt alsoprovidesa conventionalevents
model[p. 39]for handlingmouseclicks,key pressestc. Qt'smultiplatformGUI applicationgp. 11]can
useall the userinterfacefunctionality requiredby modernapplicationssuchasmenuscontet menus,
draganddrop,anddockabletoolbars.

Intuitive namingcorventionsanda consistenprogrammingapproachksimplify coding. Qt alsoincludes
Qt Designer [p. 18] atool for graphicallydesigninguserinterfaces.Qt Designer supportQt'spowerful
layouts[p. 36]in additionto absolutepositioning. Qt Designer canbe usedpurelyfor GUI designor to
createentireapplicationswith its built-in G++ codeeditor.

Qt hasexcellentsupportfor 2D and 3D graphics[p. 22] Qt is the de-facto standardGUI toolkit for
platform-independer®penGLprogramming.

Qtmalesit possiblao createlatformindependerdatabasapplicationsisingstandardlatabasdp. 29]
Qt includesnative driversfor Oracle,Microsoft SQL Sener, SybaseAdaptive Sener, PostgreSQL,
MySQL,andODBC-compliantdatabasesQt'sdatabaséunctionalityis fully integratedwith Qt Design-
er, which offerslive preview of databaséata. Qt includesdatabasapecificwidgets andary built-in or
customwidgetcanbemadedataaware.

Qt programshave native look andfeel on all supportedlatformsusingQt’s stylesandthemessupport
[p. 35] Fromasinglesourcdree recompilatioris all thatisrequiredo produceapplicationgor Windows
(95,98,NT4,ME, 2000,XP), Mac OSX, Linux, SolarisHP-UX,andmary otherversionsof Unix with
X11. Qt applicationscan alsobe compiledto run on Qt/Embedded.Qt's gmake build tool produces
malefilesor . dsp filesappropriatdo thetargetplatform.

SinceQt's architecturdp. 47] takesadwantageof the underlyingplatform, mary customeraiseQt for
single-platformdevelopmenton Windows, Mac OS X, andUnix becausehey preferQt'sapproach.Qt
includessupportfor importantplatform-specifideaturessuchas Active X onWindows|[p. 46]andMotif
onUnix [p.47]

Qt 3.1 Whitepaper T R OL L TECH Page 4

Qt uses Unicode throughout and has considerable support for internationalization [p. 32]. Qt includes
Qt Linguist [p. 34] and other tools to support translators. Applications can easily use and mix text in
Arabic, Chinese, English, Hebrew, Japanese, Russian, and other languages supported by Unicode.

Qt includes a variety of domain-specific classes. For example, Qt has an XML module [p. 41] that
includesSAX and DOM parsers. Objectscan be stored in memory using Qt's STL-compatible collection
classes[p. 43]. Local and remote file handling using standard protocolsare provided by Qt’sinput/output
and networking classes[p. 40].

Qt applications can have their functionality extended by plugins and dynamic libraries [p. 44]. Plugins
provide additional codecs, database drivers, image formats, styles, and widgets. Libraries can offer an
unlimited range of functionality. Pluginsand libraries can be sold as productsin their own right.

Qtisamature C++ toolkit that iswidely used acrosstheworld. Inaddition to Qt’smany commercial uses,
the free edition of Qt isthe foundation of KDE, the Linux desktop environment. Qt makes application
development a pleasure, with its multiplatform build system, visual form design, and elegant API.

On-line References

http/ /www.trolltech.com/ referenced customers
http/ /www.trolltech.com/ referenced partners

2. Widgets

Qt hasa rich setof widgets (buttons,scmoll bars,etc.) that cater for mostsituations. Qt's
widgetsare flexible and easyto subclasgor specialrequirements.

Qt providesafull set of widgets. Widgetsare visual elementsthat are combined to create user interfaces.
Buttons, menus, scroll bars, message boxes, and application windows are all examples of widgets. Qt's
widgets are not arbitrarily divided between “controls” and “containers’; all widgets can be used both as
controlsand as containers. Custom widgets can easily be created by subclassing existing Qt widgets, or
created from scratch on the rare occasion when thisis necessary.

Widgetsareinstancesof QWidget or oneof itssubclasses, and custom widgetsare created by subclassing.

| QObject

QWidget

QSpinBox

| QLineEdit

Figurel. Anextract from the QWidget classhierarchy

A widget may contain any number of child widgets. Child widgetsare shown within the parent widget's
area. A widget with no parent is a top-level widget (a “windawv”), and usually hasits own entry in the
desktop environment’stask bar. Qt imposes no arbitrary limitations on widgets. Any widget can be a
top-level widget; any widget can be achild of any other widget. The position of child widgetswithin the

Qt 3.1 Whitepaper T R OL L T E C H Page 5

parent’s area can be set automatically using layout managers [p. 36], or manually if preferred. When a
parent widget isdisabled, hidden, or deleted, the same actionisapplied to all itschild widgetsrecursively.

Labels, message boxes, tooltips, etc., are not confined to using a single color, font, and language.
Qt's text-rendering widgets can display multi-language rich text using a subset of HTML. See
“Text Entry and Rendering” [p. 32].

2.1. A “Hello” Example

Hello Qt/

Figure2. Hello Qt!

The complete source code for a program that displays“Hello Qt!” follows:

#i ncl ude <qapplication. h>
#i ncl ude <ql abel . h>

int main(int argc, char xxargv)

{
QApplication app(argc, argv);
Q.,abel *hello = new Q.abel ("Hello <i>Q!</i>"
"", 0);
app. set Mai nWdget(hello);
hel | 0- >show() ;
return app. exec();
}

2.2. Built-in Widgets

The screenshots bel ow present the main Qt widgets. They are shown using the Windows style.

& label Push buﬁonl

Figure3. A QLabel and a QPushButton laid out with a QHBox

QButtahGroup
 Radiol [~ Checki

" BRadio2 [V Checkz

Figure4. Two QRadioButtonsand two QCheckBoxeslaid out with a QButtonGroup

Qt 3.1 Whitepaper T R OL L T E C H Page 6

— QGroupBo ————
| 1905-05-17 H|o31418 &
|QLineEdit

QTextEdit
“Everything HiiEl always

he made as simple as
possible, but not simpler.™

Aifert Sirsteity

|Comb0b0x et j

Figure5. A QDateTimeEdit, aQLineEdit, aQTextEdit, and a QComboBox laid out with a QGroupBox

{7 T e
7]

[sa & i B

Figure6. A QDial, aQProgressBar, aQSpinBox, aQScrollBar, aQL CDNumber, and aQSlider laid out with a QGrid

Column 1 IColumn 2 | Column 3 I
B GList¥iew
Dieux
o Rl tem Three Trais
B-Witem 4 Four Quatre
B-{if tem 5 Five Cing
-, ltem & Six Six
[Witer 1 QTableltem |®CheckTabIeItem |QCOmb0‘I’abIeIter ks
Witen 2 0 [tem 1 ™ Check 1
TR 1 _|@temz | Checkz [Combo 2 -
2 |item3 ¥ Check 3
3 |tem4 T~ Check 4 [Combod 5o
| |

Figure7. A QlconView, aQListView, aQListBox, and aQTablelaid out witha QGrid

QComboBox, QLineEdit, and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

Widgetsthat are used to display large amountsof data (e.g. QTable, QListView, and QTextEdit) inherit
QScrollView and can display scroll barsautomatically.

QMainWindow, QMenuBar, and QToolBar are presented in “GUI Applications’ [p. 11]. QMes
sageBox, QFileDialog, QTabDialog, QWizard, and other dialogs are presented in “Dialogs’ [p. 14].
QSplitter is covered in “Layouts’ [p.36]. QCanvas and QGLWidget are presented in
“2D and 3D Graphics’ [p. 22].

The screenshot that shows the QRadioButtons and QCheckBoxes (Figure 4) was produced with the
following code:

Qt 3.1 Whitepaper T R OL L T E C H Page 7

parent = new QButtonGoup(2, Q::Vertical, "QButtonG oup");
radi ol = new QRadi oButton("&Radio 1", parent);
radi 02 = new QRadi oButton("R&adi o 2", parent);

radi ol- >set Checked(true);
checkl = new QCheckBox("&Check 1", parent);
check2 = new QCheckBox("C&heck 2", parent);
check2- >set Checked(true);

2.3. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses.
To illustrate subclassing, the complete code for a digital clock widget is presented.

Figure8. Clock widget

The Clock widget isa LCD that displays the current time and updates itself automatically. A colon
separator blinksto indicate the passing seconds.

Incl ock. h, Clock isdefined like this;
#i ncl ude <qgl cdnunber. h>
class Cock : public Q.CDNumber

{
public:
Cl ock(QN dget =parent = 0, const char *nanme = 0);

pr ot ect ed:
void timerEvent(QlimerEvent xevent);

private:
voi d showTi ne();

bool show ngCol on;
b
Clock inheritsits LCD functionality from the QL CDNumber widget. It has a constructor typical of

widget classes, with optional par ent and nanme parameters. (Testing and debugging areeasier if nane is
set.) ThetimerEvent() function isinherited from QObject andiscalled at regular interval sby the system.

Incl ock. cpp, thefunctionsdeclared in cl ock. h are implemented:
#i ncl ude <qdatetinme. h>
#i ncl ude "cl ock. h"

Cl ock:: C ock(QW dget xparent, const char *nane)
Q.CDNumber (parent, nane), show ngColon(true)

showTi ne() ;
start Timer(1000);

Qt 3.1 Whitepaper T R OL L T E C H Page 8

void O ock::timerEvent(Qli mer Event =)

showTi ne() ;
}
voi d d ock: : showTi ne()
{
QString time = Qlime::currentTime().toString().left(5);
if (!show ngCol on)
time[2] =" '
di splay(time);
showi ngCol on = ! show ngCol on;
}

TheconstructorcallsshovTime()to initialize theclock with thecurrenttime, andtellsthe systento call
timerEvent()every 1000millisecondgo refreshthe LCD display

In shavTime(), QLCDNumber::display(js calledwith thecurrenttime. Thecolonisreplacedy aspace
every othertime shovTime()is calledto make the colonblink.

Thecl ock. h andcl ock. cpp files completelydefineandimplementthe Clock customwidget. This
widgetcanbeusedimmediately:

#i ncl ude <qapplication. h>
#i ncl ude "cl ock. h"

int main(int argc, char xxargv)

{
QApplication app(argc, argv);
G ock *clock = new O ock;
app. set Mai nW dget (cl ock);
cl ock->show();
return app. exec();
}

This exampleprogramcontainsa singlewidget (the clock) andno child widgets. Complex widgetsare
built by combiningwidgetsin layouts.

Developerscan also write customwidgetsfrom scratch. For example,to createan analogclock, it
would be necessaryo draw the clock’s faceandhandsin coderatherthanrelying on the functionality
implementedn abaseclass. Thisapproachs coveredin “2D Graphics[p. 22]

On-line References

http//doc.trolltech.corh3. 1 qwidget.html

3. Signals and Slots

Sgnals and dots provide inter-object communication. They are easy to understand and use,
and arefully supported by Qt Designer.

GUI applicationsrespondto useractions. For example,whena userclicks a menuitem or a toolbar
button, the applicationexecutessomecode. More generallywe want objectsof ary kind to be ableto
communicatevith eachother The programmemustrelateeventsto therelevantcode. Oldertoolkits
usemechanismshatarenot type-safgi.e. arecrash-prone)areinflexible, andarenot object-oriented.

Qt 3.1 Whitepaper T R OL L T E C H Page 9

Trolltech hasinventeda solutioncalled“signalsandslots’ Signalsandslotsis a powerful inter-object
communicationmechanisnthatcanbeusedio completelyreplacehecrudecallbacksandmessagenaps
usedby legagy toolkits. Signalsandslotsareflexible, fully object-orientedandimplementedn C++.

To associatsomecodewith a buttonusingtheold callbackmechanismit is necessaryo passa pointer
to a functionto the button. Whenthe buttonis clicked,the functionis thencalled. Old toolkits do not
ensurghatargumentof theright type aregivento the functionwhenit is called,which makescrashes
morelikely. Anotherproblemwith the callbackapproactis thatit tightly bindsthe GUI elemento the
functionality, makingit difficult to developclassesndependently

/ "\ connect(Object1, signal1, Object2, slot1)

Dbject] connect(Object1, signal1, Object2, slot2)
signali
Briik (" Object2)
signali
N—t
P sloti
P slot2
N——t
(Object3)
signalt | connect(Object1, signal2, Object4, slot1)
(Objectd)
slot1
N—nrt
L) slotl
slot2
—————————P slot3
connect(Object3, signal1, Object4, slot3) N—— S

Figure9. An abstracwiew of somesignalsandslotsconnections

Qt'ssignalsandslotsmechanisnis different. Qt widgetsemit signalswheneventsoccur For examplea
buttonwill emita“clicked” signalwhenit is clicked. The programmercanchoosego connecto asignal
by creatingafunction(calledaslot)andcallingtheconnect(functionto relatethesignalto theslot. Qt's
signalsandslotsmechanisndoesnot requireclassedo have knowledgeof eachother which makesit
mucheasierto develop highly reusableclasses.Signalsandslotsaretype-safewith type errorsbeing
reportedby warningsratherthanby crashes.

For example,f a Quit button’sclicked()signalis connectedo theapplications quit() slot,a usersclick
on Quit makestheapplicationterminate.In code thisis writtenas

connect (button, SIGNAL(clicked()), gApp, SLOT(quit()));

Connectionganbeaddedor removedatary time duringthe executionof a Qt application.

ThesignalsandslotsimplementatiorsmoothlyextendsC++'s syntaxandtakesfull advantageof C++'s
object-orientedeatures.Signalsandslotsaretype-safecanbe overloadedor reimplementeéndmay
appeain thepublic,protectecbr privatesectionf aclass.

Qt 3.1 Whitepaper T R OL L TECH Page 10

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

| Hetvetica [Cronyx] = fope 3 :Iconnect(fontSizeSpinBox, valueChanged(int),

textEdit, setPointSize(int))

int factorial(int n)

I/,/ Recursive, I.e. slow, factorial function =
{

if { n <=1) return 1;

tetiia A * Fadtorialis - 193 connect(textEdit, modificationChanged(bool),
: = customStatusBar, modificationStatus(bool))

|Ln 1, Col 1 |Sa.ved

Figure 10. Anexampleof signalsand slots connections

3.1. A Signals and Slots Example

To benefit from signalsand slots, a classmust inherit from QObject or one of its subclassesand include
the Q_ OBJECT macro in the class' sdefinition. Signalsare declared in thesi gnal s section of the class,
whiledotsaredeclared inthepubl i c sl ot s, prot ect ed sl ot s,or pri vat e sl ot s sections.

Here isan example QObject subclass:
cl ass BankAccount : public QObject

Q _OBJECT
public:

BankAccount () { curBalance = 0; }

int balance() const { return curBal ance; }
public slots:

voi d set Bal ance(int newBal ance);

si gnal s:
voi d bal anceChanged(int newBal ance);

private:
i nt curBal ance;
}s

Inthe style of most G++ classes, the class Bank Account has a constructor, a get function balance(), and
a set function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account has
changed. When asignal isemitted, the dotsit is connected to are executed.

The set functionisdeclaredinthe publ i ¢ sl ot s section, soitisaslot. Slotsare member functionsthat
can be called like any other function and that can also be connected to signals.

Here'sthe implementation of the slot setBalance():
voi d BankAccount:: set Bal ance(i nt newBal ance)
if (newBal ance != curBal ance) {

cur Bal ance = newBal ance;
em t bal anceChanged(curBal ance);

}
The statement

Qt 3.1 Whitepaper T R OL L T E C H Page 11

em t bal anceChanged(curBal ance);

causeghe balanceChanged§ignalto be emittedwith the new currentbalanceasits argument. The
keywordeni t ,likesi gnal s andsl ot s, is providedby Qt andis transformednto standardC++ by the
C++ preprocessor

Heresanexampleof how to connectwo BankAccounts:

BankAccount Xx, V;
connect (&, SIGNAL(bal anceChanged(int)), &y, SLOT(setBal ance(int)));
X. set Bal ance(2450);

Whenthe balancen x is setto 2450,the balanceChangedgjgnalis emitted. The signalis receved by
y’'ssetBalance(3lot,which setsy’sbalanceo 2450.

Oneobjects signalcanbe connectedo mary differentslots,andmary signalscanbe connectedo one
slotin a particularobject. Connectionsremadebetweenrsignalsandslotswhoseparameterbave the
sametypes. A slot canhave fewer parameterghanthesignalandignoretheextra parameters.

3.2. Meta Object Compiler

The signalsand slotsmechanisnis implementedn standardC++. The implementatiorusesthe C++
preprocessaandthe MetaObjectCompiler(noc) includedwith the Qt toolkit.

Thenoc readgheapplications headefilesandgeneratethe necessargodeto supportthe signalsand
slotsmechanismlt is invoked automaticallyby malkefilesgeneratedby gmake. Developersnever have
to editor evenlook atthegeneratedode.

In additionto handlingsignalsandslots,nmoc supportt’s translationmechanismits propertysystem,
and its extendedrun-time type information. The Meta Object Compiler also makes multiplatform
introspectiorof C++ programsgpossible.

On-line References

http//doc.trolltech.corh3.1 object.html
http//doc.trolltech.corh3.Y signalsandslots.html
http//doc.trolltech.corh3.2 moc.html

4. GUI Applications

Building modern GUI applications with Qt is fast and simple, and can be achieved by hand
coding or by using Qt Designer, Qt’svisual design tool.

Qt providesall the classesandfunctionsnecessaryo createmodernGUI applications.Qt canbe used
to createboth “main window” style applicationswvith a menubatr, toolbars,andstatusbar surrounding
a centralarea,and“dialog” style applicationghat usebuttonsandpossiblytabsto presentoptionsand
information. Qt supportdoth SDI (singledocumeninterface)andMDI (multiple documeninterface).
Qtalsosupportsddraganddropandtheclipboard.

Toolbarscanbe moved aroundwithin thetoolbarareadraggedo otherareasor floatedastool palettes.
Thisfunctionalityis built in andrequireshoadditionalcode althoughprogrammersanapplyconstraints
totoolbarbehaior if required.

Qt 3.1 Whitepaper T R OL L T E C H Page 12

Qtsimplifiesprogramming.For exampleif amenuoption,atoolbarbutton,andakeyboardaccelerator
all performthe sameaction,theactionneedonly be codedonce.

Qtalsoprovidesmessagdoxesanda full setof standardlialogsto make it easyfor applicationgo ask
theuserquestionsandto getthe userto choosefiles, folders,fonts,andcolors. In practice,a one-line
statementisingoneof Qt's staticcorveniencdunctionsis all thatis necessaryo presena messag®ox
or astandardlialog.

Qt canplatform-independentlgtoreapplicationsettings suchasuserpreferencesnostrecentlyused
files,window andtoolbarpositionsandsizesgtc.

4.1. Main Window Classes

4.1.1. The Main Window

TheQMainWindow classprovidesa framework for typical applicationmainwindows.

L T QMainWindow
ile Edit Help

Er IR

D] Shild 1

.Die Mathematiker sind eine Art
Franzosen: redet man zu ihnen, so

WD Child 2
“Mathematicians are like Frenchimen:
whenever you say something to them, they
translate it into their own language, and at
ance it is something entirely different.”

Goeline

Stlatus message Indicatar 1 | Indicator 2 4

Figurell. An applicationmainwindow

A mainwindow containsa setof standardvidgets. Thetop of themainwindow is occupiedoy amenu
bar, beneattwhich toolbarsarelaid out. Thetoolbarscanbe movedto ary toolbarareamainwindows
havetoolbarareastthetop,left, right,andbottom. Toolbarscanalsobedraggedutof atoolbarareaand
floatedasindependentool palettes.The bottomof the mainwindow, belov the bottomtoolbarareajs
occupiedoy astatudar Thecentralareacontainsany widgetfor SDI applicationra QWor kspacefor
MDI applications.Tooltipsand“Whats this?”helpprovide balloonhelpfor theuserinterfaceelements.

4.1.2. Menus

The QPopupMenu widget presentamenuitemsto the userin a vertical list. Popupmenuscan be
standalonée.g.acontext menu) canappeain amenubar, or canbeasub-menwf anothepopupmenu.
Menuscanhave tearoff handles.

Eachmenuitem canhave anicon, a checkboxandan acceleratar Menu itemsusually correspondo
actiong(e.g.Save).Separatoitemsaredisplayedasa line andareusedto grouprelatedactionsvisually.

Heresanexamplethatcreates File menuwith New, Open, andExit menuitems:

QPopupMenu *fileMenu = new QPopupMenu(this);

Qt 3.1 Whitepaper T R OL L T E C H Page 13

fileMenu->insertlten("&New', this, SLOT(newFile()), CTRL+Key N);
fileMenu->insertliten("&pen...", this, SLOT(open()), CTRL+Key O);
fileMenu->i nsert Separator();

fileMenu->insertltenm "E&it", qApp, SLOT(quit()), CTRL+Key Q);

Whena menuitemis chosenthecorrespondinglotis executed.

TheQMenuBar classmplementsamenubar. It isautomaticallyaid out atthetop of its parentwidget
(typically aQM ainWindow), splittingits contentsacrossnultiple linesif the parentwindow is notwide
enough.Qt’'shuilt-in layoutmanagertake any menubarinto considerationOntheMacintoshthemenu
barappearstthetop of thescreerasexpected.

Hereshow to createa menubarwith File, Edit,andHelp menus:

QvenuBar x*bar = new QvenuBar(this);
bar->insertltem "&File", fileMenu);
bar->insertltem "&Edit", editMenu);
bar->i nsertltem "&Hel p", hel pMenu)

Qt'smenusystems veryflexible. Menuitemscanbeenableddisabledaddedpr remoreddynamically
Menuitemswith customizedappearancandbehaior canbe createdoy subclassing)CustomM enu-
Item.

4.1.3. Toolbars

The QToolButton classimplementsa toolbar button with anicon, a 3D frame,andan optionallabel.
Toggletoolbarbuttonsturn featureson and off. Othertoolbarbuttonsexecutea command. Different
iconscanbe providedfor theactive, disabledandenablednodesandfor theon andoff states.If only
oneiconis provided,Qt automaticallydistinguisheshe stateusingvisualcuesfor example grayingout
disabledbuttons. Toolbarbuttonscanalsotriggerpopupmenus.

QToolButtons usuallyappearsideby sidewithin a QToolBar. An applicationcanhave ary numberof
toolbars andtheuseris freeto move themaround. Toolbarscancontainwidgetsof almostary type,for
exampleQComboBoxesandQSpinBoxes.

4.1.4. Balloon Help

Modern applicationsuse balloon help to briefly explain the purposeof userinterface elements.Qt
providestwo mechanismgor balloonhelp: tooltipsand“Whats this?”help.

Tooltipsaresmall,usuallyyellow, rectangleshat appearmutomaticallywhenthe mousepointerhovers
over a widget. Tooltips are often usedto explain a toolbar button, sincetoolbar buttonsare rarely
displayedwith text labels. Hereshow to setthetooltip of a“Save” toolbarbutton:

Qrool Ti p: : add(saveButton, "Save");

It is alsopossibleto setalongerpieceof text to bedisplayedn thestatusbarwhenthetooltip is shavn.

“Whats this?” helpis similar to tooltips, exceptthatthe usermustrequestt, for exampleby pressing
Shift+Flandthenclicking awidgetor menuitem. “Whats this?”helpis typically longerthanatooltip.
Hereshow to setthe“Whats this?”text for a“Save” toolbarbutton:

QMhat sThi s: : add(saveButton, "Saves the current file.");

TheQTool Tip andQWhatsT his classegprovide virtual functionsthat canbe reimplementedor more
specializeehaior, suchasdisplayingdifferenttext dependingnthe positionof the mousewithin the
widget.

Qt 3.1 Whitepaper T R OL L TECH Page 14

4.1.5. Actions

Applications usually provide the user with severa different ways to perform a particular action. For
example, most applicationsprovidea“ Save” action availablefrom the menu (File|Save), from the tool bar
(the “flopy disk” toolbar button), and as an accelerator (Ctrl+S). The QAction class encapsulates this
concept. It allows programmersto define an action in one place.

The following code implementsa“ Save” menu item, a“Save” toolbar button, and a*“ Save” accelerator,
all with balloon help:

QAction *saveAct = new QAction("Save", savelcon, "&Save",
CTRL+Key_S, this);

connect (saveAct, SIGNAL(activated()), this, SLOT(save()));

saveAct - >set What sThi s("Saves the current file.");

saveAct - >addTo(fileMenu);

saveAct - >addTo(tool bar);

In addition to avoiding duplication, using a QAction ensuresthat the state of menu items staysin sync
with the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will
disable any corresponding menu items and toolbar buttons. Similarly, if the user clicksatoggle toolbar
button, the corresponding menu item will be checked or unchecked accordingly.

4.1.6. The Central Widget

The central area of a QMainWindow can contain any widget. For example, a text editor could use a
QTextEdit asitscentral widget:

Qlext Edit =*editor = new Qlext Edi t (mai nW ndow) ;
mai NW ndow >set Cent ral Wdget(editor);

4.2. Multiple Document Interface

Multiple document interface (MDI) is provided by the QWor kspace class, which istypically used asthe
central widget of a QM ainWindow.

Child widgets of QWor kspace can be widgets of any type. They are rendered with a frame similar to
the frame around top-level widgets. Functionssuch as show(), hide(), showM aximized(), and setCaption()
work in the sameway for child MDI widgetsasfor ordinary top-level widgets.

QWor kspace provides positioning strategies such as cascade and tile. If achild widget extends outside
the MDI area, scroll bars can be set to appear automatically. If a child widget is maximized, the frame
buttons (e.g. Minimize) are shown in the menu bar.

4.3. Dialogs
Most GUI applications use dialog boxes to interact with the user for certain operations. Qt includes
ready-made dial og classeswith convenience functionsfor the most common tasks.

Screenshotsof some of Qt’sstandard dialogs are presented below. Qt also provides standard dialogsfor
color selection and printing options.

Qt 3.1 Whitepaper T R OLLTETCH Page 15

[

% Ctikempiresume. html already exists.
Do you wank bo replace it?

Figure12. A QM essageBox

QM essageBox is used to provide the user with information or to present the user with simple choices
(eg.“Yes” and “Na").

21 x|
Laok in: I_*j C:/Homeandy/qt/main/src/ j & £ | 8787 B2
[dialogs 0 styles @ qt.plg
Cliconview (] table i @ gt.pro
CIkemel i | trp @ M akefile. win32-dll @ qt_install. pri
T moe [~ tooks B qt.dzp @ qt_professional. pri
Clnetwark widgets qgt.dzw gtmain. dsp
i | opengl i3] workgpace @ qt.nch @ qtmain. pro .
i | zql sl @ gt.opt
4
File name: |"M akefile" "t akefile.main” "'qt.dzp"
File type: I All Files %] j Cancel |
S

Figure 13. A QFileDialog

QFileDialog is a sophisticated file selection dialog. It can be used to select single or multiple local or
remote files (e.g. using FTP), and includes functionality such as file renaming and directory creation.
Like most Qt dialogs, QFileDialog is resizable, which makes it easy to view long file names and large
directories. Applicationscan be set to automatically usethe nativefiledial og on Windowsand Macintosh.

[l Data Converter I e B
Converting C:h\databazeh\customers.dat...

ANINRRRRRNANENENR B4%

Figure14. A QProgressDialog

QProgressDialog displaysa progress bar and a*“Cancel” button.

Qt 3.1 Whitepaper T R OL L T EC H Page 16
Setup Toolbar

Category IFiIe ;I
Actions Toolbar

Mew Mew

Open Open

Save Save

Save s Print

Print <Separator:

Exit

<Separatory

b Lt 1o

Unido

Cancel |

< Back | Mest > I Help

Figure15. A QWizard

QWizard providesaframework for wizard dialogs.

[select Font 2xl
Font Font style Size
Fzzhonggian-m1 Bz EBrold |talic: 22
Courier Mew Tur :I Regular 18 ;I
Fixedsys _I Bold 20
Fzzhonggian-mBs Italic 22 e
Garamand ﬂ Bold Italic 24 @
— Effects — Sample
™ Strkeout
[Underline "/_"(i" b
= AaBb " 7+
Script
| Hiragaha :I
Cancel |
4

QFontDialog isused to select afont.

Dialogs operatein one of three ways:

Figure16. A QFontDialog

1. A modal dialog blocksinput to the other visible windowsin the same application. Usersmust close
the dialog before they can access any other window in the application.

2. A modeless dialog operatesindependently of other windows.

3. A semi-modal dialog returns control to the caller immediately. These dialogs behave like modal
dialogs from the user’s point of view, but allow the application to continue processing. This is
particularly useful for progressdialogs.

Modal diadogsaretypicaly used like this:

OptionsDi al og di al og(&optionsData);

if (dialog.exec()) {

do_sonet hi ng(optionsData);

}

Qt 3.1 Whitepaper T R OL L T E C H Page 17
Programmerscan create their own dialogs by subclassing QDialog, which inherits QWidget.

4.4. Dock Windows

Dock windows are windows that the user can move inside a toolbar area or from one toolbar area to
another. The user can undock a dock window and makeit float on top of the application or minimizeit.
Dock windows and toolbar areasare provided by the QDockWindow and QDockAr ea classes.

Qt provides one QDockWindow subclass, QToolBar. QMainWindow automatically provides four
toolbar areas, one on each side of the central widget.

Developers can create custom dock windows by instantiating a QDockWindow object and by adding
widgetstoit. Thewidgetsarelaid out side by sideif the toolbar areaishorizonta (e.g. at the top of the
main window) and above each other if the areaisvertical (e.g. at theleft of the main window).

Dock areas are not bound to QM ainWindow; developers can use QDockArea in any custom widget.
Toolbarsand other dock windows can be used with any toolbar area.

Some applications, including Qt Designer [p. 18] and Qt Linguist [p. 34], use dock windowsextensively.
QDockArea provides operators to save and restore the position of dock windows, so that applications
can easily restore the user’s preferred positions.

4.5. Settings

User settings and other application settings can easily be stored on disk using the QSettings class. On
Windows, QSettings makesuse of the system registry; on other platforms, settingsare stored in text files.

A particular settingisstored using akey. For example, thekey/ Sof t war el nc/ Zooner / Recent Fi | es
might contain a list of recently used files. Booleans, numbers, Unicode strings, and lists of Unicode
strings can be stored.

4.6. Multithreading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one
or many other threads to perform time-consuming activities such as reading large files and performing
complex calculations. Qt can be configured to support multithreading, and provides fiv e threading
classes: QThread, QMutex, QM utexL ocker, QSemaphor e, and QWaitCondition.

On-line References
http://doc.trolltech.com/ 3.1 threads.html

Qt 3.1 Whitepaper T R OL L T EC H Page 18

5. Qt Designer

Qt Designer isavisual user-interface design tool and code editor, writtenin Qt. Applications
can bewritten entirely as source code, or using Qt Designer to speed up devel opment.

€ Ot Designer by Trolltech

File Edit Project Search Tools Layout Preview Window Help
Common Widgets N s el ||
Buttons e — ..Ei_lE Edlt HEH_J @Coloﬁool.pm
Com iz b | P, T '..-:.-: X
%_ 3 D = n) O (X) Q'\. = 'mCoIorTool:colortool.ui
iews ,
Database Sl Nensemreant et esans e ; |l feoierianl it
Input S - |
LineEdt _Pm'| Sigrial Handlers |
22 SpinBox Property Value A
E name ! il
) Datekdt @ [ColorTaol |
coptied [el |
® TimeEdit E sizeFolicy |Prefemed /Prefeme... |
) minimum Size 1124, 170]
E‘) DateTimeEdit | | void ColorTool::fileCpend) o "-I'I'IENH'ILII'I'ISiZE [327{;? 32?5;}
@ TextEdit if { lokToClear()) s!_zeln_c:rement [B DI
== return; ___bageSi;e_ [0.0] |
CamboBiox paiteForegroun,.. I
2 @5cring fn = QFileDielog: :getOpenFilelame | P T l:l
‘D‘=' Slider GString: snull, B paletteBackgrou... |
p T pale_tjteBac:kgrDu... |
ScrollBar palette [—
Dial :é;L_:__::-al;a:;,e - e B _ backgroundCrigin ;AncestorOrigin
if { Ifn.isEmpty()) & font |MS Shell Dig-8
load{ Zn ;| RN, Ao
else caption [ColorTool
statusBar({)->message| "File Open zbandoned", + o I
Display 5 Line: 12 Col: 13 'H iconText
14 S mouseTracking |False v
Custom Widgsts Sl - ; =
Ready

Figure17. Qt Designer

Designing a form with Qt Designer is a simple process. Developers click a toolbox button represent-
ing the widget they want, then click on a form to place the widget. The widget’s properties can then be
changed using the property editor. The precise positions and sizes of the widgets do not matter. Devel-
opers select widgetsand apply layoutsto them. For example, some button widgets could be selected and
laid out side by side by choosing the “lay out horizontally” option. This approach makes design very
fast, and the finished forms will scale properly to fit whatever window size the end-user prefers. See
“Layouts’ [p. 36] for information about Qt’s automatic layouts.

Qt Designer eliminatesthetime-consuming “compile, link, and run” cyclefor user interfacedesign. This
makesit easy to correct or change designs. Qt Designer’s preview optionslet developersseetheir forms
in other styles; for example, a Macintosh developer can preview aform in Windows style. Qt Designer
provideslive preview and editing of database datathrough itstight integration with Qt’s database classes.
See " Databases’ [p. 29] for more about Qt’s database support.

Developerscan create both “dialog” styleapplicationsand “ main window” style applicationswith menus,
toolbars, balloon help, etc. Several form templates are supplied, and developers can create their own

Qt 3.1 Whitepaper T R OL L T E C H Page 19

templatesto ensure consistency acrossan application or family of applications. Qt Designer useswizards
to make creating toolbars, menus, and database applications as fast and easy as possible. Programmers
can create their own custom widgetsthat can easily be integrated with Qt Designer.

Qt Designer supports a project-based approach to application development. A project isrepresented by
a. pro file,which gmake usesto generate makefiles. Devel operscreate a new project and then add forms
and source filesasrequired. Developers can completely separate the user interface from the underlying
functionality by subclassing, or they can keep their source code and formstogether by editing the forms’
sourcedirectly in Qt Designer.

Icons and other images used in the application are automatically shared across al formsin a project to
reduce executabl e size and speed up loading.

Form designs are stored in XML format in . ui filesand converted into C++ header and source files by
ui ¢ (User Interface Compiler). The gmake build tool automatically includes build rulesfor ui ¢ in the
makefilesit generates, so developersdo not need to invoke ui ¢ themselves.

Usually forms are compiled into the executable, but in some situations customers need to modify the
appearance of an application without accessing the source code. Qt supports “dynamic dialogs’: . ui
filesthat can be loaded at run-time and dynamically converted into fully functional forms. Companies
can supply application executables along with the customer-modifiable forms in . ui format, and
the customer can use Qt Designer to customize the appearance of the application’s forms. Loading a
dynamic dialog is easy:

Qi al og *creditForm = (QDi al og *)
QW dget Factory::create("creditformui");

5.1. Qt Assistant

Qt Designer’son-line help is provided by the Qt Assistant application. Qt Assistant displays Qt'sentire
documentation set, and worksin a similar way to aweb browser. But unlike web browsers, Qt Assistant
applies a sophisticated indexing algorithm to provide fast full text searching of all the documentation it
presents.

Qt'sreference documentation consists of around 1,600 HTML pages (over 2,500 printed pages), which
document Qt’sclassesand tools, and which include overviews and introductionsto various aspects of Qt
programming.

Developers can deploy Qt Assistant as the help browser for their own applications and their own
documentation sets. Qt Assistant integration isachieved using the QAssistantClient class. Qt Assistant
renders Qt'sHTML reference documentation using QTextEdit; developers can use this classdirectly to
implement their own help browsersif preferred. QTextEdit supportsasubset of HTML 3.2, and can also
use custom tagsthat are created with the QStyleSheet class.

Qt 3.1 Whitepaper T R OL L T EC H Page 20

- Ot Assistant by Trolltech - OBrush Class

File Edit View Go Bookmarks Help
aB OIS Qv ETe®
it 2 Detailed Description i,
% || Bookmarks | Search |E] kil : . :
. (ESEE T W = | The QBrush class defines the fill pattem of shapes drawn by a QPairter.
Searching for:
e | | A brush has a style and a color. One of the brush styles is 2 custom pattem, which is defined by a QPxmap.
______ The brush style defines the fill pattem. The default brush style is NoBrush {depending on how you construct a
[Help] [Search] | brush). This style tells the pairter to not fill shapes. The standard style for filling is SolidPattem.
| The brush color defines the color of the fill pattem. The QColor documentation lists the predefined colors.
.I:_OUHF'..QFJFHTMS: | lse the GPen class for specifying line/outline styles. M
QPainter Class ”~
QBnush Class | Bxample:
Themes {Styles)
3Palette Class
:QCO|DI'GI'DLID Class RPainter painter;
| QCanvasFolygonaltem Class QBx.:uah b:l?lEh': yellc:w_« Ve] ra g ye:!.lc:w sclid.patt.e:n
QVariant Class r.:a:f.nt,er -begin| &Elnj{PE:I.ntDEV:LCE 1 /4 paint scmething
gpainter h Includs File pa:!.nter .getBrush{ brush }; ,—‘_-': set the vellow 'b‘..'uslz
: peinter. // do not draw outline
Ficture - g | painter. drawhect | 40,30, 200,100); // draw filled rectangle
QTextEdt Class painter. setBrush({ NcBrush); A4 do not £i11
| QlconView Class painter.zetPen| black); /f set black pen, 0 pixel width
Gt Tutorial - Chapter 9: With Cani peinter.drawRect| 10,10, 30,20); // draw rectengle cutline
QWidget Class painter.end{); // painting done
Format of the GData Stream Oper
| QLCDNumber Class
QSimpleRich Text Class | See the setSthie(} function for a complete list of brush styles.
Canvas Control
| gpaintdevice h Include File : Brush Styles
Style overview 3
£ - ! >
| | v

Figure18. Qt Assistant

5.2. GUI Application Example

o ClassHierarchy = =

source file Language
I C+ LI

L eyyFlexlexer
E-Machine — search Paths
. B-Aircraft aircrafth fhomesjasmindyer

§---.ﬂ«irplane airplane.h fusrfincludes
! “-Helicopter helicapter.h
é----NCursesApplication cursesapp.h Add Search Path |
--NCursesException etip.h
B NCursesFieldType cursesth Remove Search Path |
: Lo dloha Field rurspsfh LI

Update I Close |

Figure 19. Classhierarchy application

The “Class Hierarchy” application isa classic “dialog” style application where the user chooses some
options, in this case paths, and then carries out some processing based on those options.

The complete code for the application is presented below. The mai n. cpp file was produced by a
Qt Designer wizard. The form was designed in Qt Designer and stored in a. ui file. The. ui fileis
converted into C++ by ui ¢, leaving the developer free to focus on the application’sfunctionality.

The addSearchPath(), removeSearchPath(), and updateHierarchy() functionsareal slots. They havebeen
visually connected to the appropriate buttons using Qt Designer.

Qt 3.1 Whitepaper T R OL L T E C H Page 21

voi d O assHi erarchy: : addSear chPat h()

String path = QFil eDi al og: : get Exi stingDirectory(
Qir::honmeDirPath(), this, 0, "Select a Directory");
if (!path.isEmpty() &&
sear chPat hBox- >fi ndl t en{ pat h, Exact Match) == 0)
sear chPat hBox- >i nsertlten(path);

}

voi d C assHi erarchy: : renmoveSear chPat h()

sear chPat hBox- >r enovel t en{ sear chPat hBox->currentltem());

}
voi d O assHi erarchy: : updat eHi erarchy()
{
QString fil eNaneFilter;
QRegExp cl assDef;
if (language->current Text() == "C++") {
fileNameFilter = "*.h";
cl assDef . set Patt ern(
"\\bclass\\s+([A-Z_a-z0-9] +)\\s*"
"(?2:\\{]:\\'s*public\\s+([A-Z_a-z0-9]+))");
} else if (language->currentText() == "Java") {
fileNameFilter = "*. java";
cl assDef . set Patt er n(
"\\bcl ass\\s+([A-Z_a-z0-9] +)\\ s+ext ends\\ s*"
"([A-Z_a-z0-9]+)");
}
dict.clear();
[istView >clear();
for (int i = 0; i < searchPathBox->count(); i++) {
Q@ir dir = searchPat hBox->text(i);
QStringlist names = dir.entryList(fileNaneFilter);
r (int j =0; j < names.count(); j++) {
QFile file(dir.filePath(names[j]));
if (file. open(lOReadOwa)) {
(ﬁtnng cont ent file.readAll ();
int k = 0;
while ((k = cl assDef.search(content, k)) !'=-1) {
processC assDef (cl assDef.cap(1), classDef.cap(2),
names[j]);
K++;
}
}
}
}
}

voi d C assHi erarchy:: processC assDef(const QString& derived,
const QString& base, const QString& sourceFile)

QistViemtem xderivedltem = i nsertC ass(derived, sourceFile);

if (!base.isEmpty()) {
QistViemtem xrbaseltem = i nsertCl ass(base, "");
if (derivedltem>parent() == 0) {
listView >takeltem(derivedltem);

Qt 3.1 Whitepaper T R OL L T E C H Page 22

baseltem >insertltem derivedltem);
derivedltem >set Text(1, sourceFile);

}

QistViemtem +Cl assHi erarchy: :insertd ass(const QString& nane,

const QString& sourceFile)

if (dict[name] == 0) {
QistViemmtem+item = new QListViemten(|istView nane,
sourceFile);
item >set Open(true);
dict.insert(nane, item);

return dict[name];

On-line References

http:/ /doc.trolltech.com/ 3.1/ designer-manual .html

6. 2D and 3D Graphics

Qt provides excellent support for 2D and 3D graphics. Qt's 2D graphics classes support
bitmapped and vector graphics. Animation and collision detection are also supported. Qt can
load and save a wide and extensible range of image formats. Qt can draw Unicoderich text,
rotated and sheared asrequired. Qt isthe de-facto standard GUI toolkit for platform-indepen-
dent OpenGL programming.

6.1. 2D Graphics

6.1.1. Images

The QI mage class supports the input, output, and manipulation of imagesin several formats, including

BMP, GIFY, JPEG, MNG, PNG, PNM, XBM, and XPM.

Many of Qt's built-in widgets can display images, for example, buttons, |abels, menu items, etc. Here's

how to display an icon on a push button:

QPushButton *button = new QPushButton("&Fi nd Address", parent);
button->setlconSet(Q conSet(Q nage("find. bmp")));

2, Find address

Figure20. Anicon on abutton

Y1f you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may

require you to license the technology to use GIF.

Qt 3.1 Whitepaper T R OL L T E C H Page 23

QI mage supports images with color depths of 1, 8, and 32 bits. Programmers can manipulate the pixel
and palette data, apply transformations (e.g. rotations and shears), and reduce the color depth with
ditheringif desired. Applicationscan storean “alphachannel” in aQl mage alongwith the color datafor
their own purposes (e.g. transparency and a pha-blending).

The QM ovie class can be used to display animated images.

6.1.2. Painting

The QPainter providesa platform-independent API for painting widgets. It provides primitivesaswell
asadvanced functionality such astransformationsand clipping. All Qt’sbuilt-in widgetspaint themselves
using QPainter. Programmersinvariably use QPainter when implementing their own custom widgets.

QPainter provides standard functions to draw points, lines, polygons, ellipses, arcs, Bezier curves, etc.
The following command draws a 120 x 60 rectangle whose top-left point is at (25, 15), with a 2-pixel
wide dashed red outline:

pai nter.setPen(QPen(red, 2, DashLine));
pai nter.drawRect (25, 15, 120, 60);

By default, the top-left corner of a widget islocated at coordinates (0, 0), and the bottom-right corner
islocated at (width() — 1, height() — 1). The coordinate system of a QPainter object can be trandlated,
scaled, rotated, and sheared. The objects to be drawn can be clipped according to a “windav,” and
positioned on the widget using a* vievport.”

BB Ot Example - XForm Bl =ial

J_

™ Miror

& Text

 Image p((

" Picture

Select font... |
IHeIIo Gt

Figure21. Qt'sxf or mexample showing rotated text

The code below draws a bar-graph custom widget. It uses a QPainter in the reimplementation of
paintEvent(), with the default coordinate system.

voi d Bar Graph: : pai nt Event (QPai nt Event *)

{
QPainter painter(this);

draw bar (&painter, 0, 39,
draw bar(&painter, 1, 31
draw bar (&painter, 2, 44,
draw bar (&painter, 3, 68,

.. DiagCrossPattern);
.. BDi agPattern);
.. FDi agPattern);
::SolidPattern);

QQQQ

pai nter.set Pen(black);
pai nter.drawLine(0, 0, 0, height() - 1);
pai nter.drawLi ne(0, height() - 1, width() - 1, height() - 1);

Qt 3.1 Whitepaper T R OL L TECH Page 24

pai nter.set Font(QFont("Helvetica", 18));
pai nter.drawText(rect(), AlignHCenter | AlignTop, "Sales");

}

voi d Bar Graph: :draw bar(QPainter xpainter, int nonth, int barHeight,
BrushStyle pattern)

{
pai nter->set Pen(blue);
pai nt er->set Brush(Brush(darkG een, pattern));
pai nter->drawRect(10 + 30 » nmonth, height() - barHeight, 20,
bar Hei ght) ;
}

The widgetis dravn correctly at different sizesbecausehe codeusesthe width(), height()andrect()
functions. Thewidgetproduceddy this codeis shavn below.

Sales

%%Sl

Figure22. Customwidget

QPainter supportsclipping using a region composedf rectanglespolygons,ellipses,and bitmaps.
Comple regions may be createdby uniting, intersectingsubtractingand XOR’ing simple regions.
Clipping canbeusedto reducdlicker whenrepainting.

The QColor classstoresa color specifiedoy a RGB or HSV triple, or by a name(e.g.“skyblue™). Qt
programmersanspecifyary 24-bit color; Qt automaticallyallocategherequesteaolorin thesystems
palette or usesasimilar color on colorlimited displays.

6.1.3. Paint Devices

QPainter canoperateon ary “paint device!” The coderequiredto painton ary supportedeviceis the
sameregardlesof thedevice. Qt supportdhefollowing paintdevices:

* A QPixmap is essentiallyan“off-screenwidget” Graphicanbepaintedona QPixmap first,and
thenbit-blitted to a QWidget to reduceflicker. Thistechniqués called“doublebuffering”

* A QPictureisavectorimagethatcanbescaledrotatedandshearedracefully TheQPictureclass
storesanimageasalist of paintcommandsatherthanaspixel data. It supportshe SVG (W3C'’s
Scalablé/ectorGraphics)XML formatfor inputandoutput.

* A QPrinter representaphysicalprinter OnWindows,thepaintcommandsresenttotheWindows
print enginewhich usegheinstalledprinterdrivers. On Unix, PostScripis outputandsentto the
print daemon.

« A QWidget isalsoapaintdevice,asshavn in theearlierbargraphexample.

Qt 3.1 Whitepaper T R OL L TECH Page 25

6.1.4. Canvas
Score : Level | Ships]
SIJiE Destroyad. Prgstho Iaupgh.
+ + - +
¥ »
- ' -
+ * 4 + - 4 + * ‘
4 3 . } . $
-+ e " | + :
- A ¢ * o‘h’ + +. t #
1
\ + O) e \ + 7 3 * ,t e +
+ + + x
¥ . .

Figure 23. The KAsteroidsgame written with QCanvas

The QCanvas class provides a high-level interfaceto 2D graphics. It can handle a very large number of
canvasitemsthat represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvasitems
can easily be madeinteractive (e.g. user movable).

Canvas items are instances of QCanvasltem subclasses. They are more lightweight than widgets, and
they can be quickly moved, hidden, and shown. QCanvas has efficient support for collision detection,
and can list al the canvasitemsin agiven area. QCanvasltem can be subclassed to provide customitem
types and to extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can show the
same QCanvas, but with different translations, scales, rotations, and shears.

QCanvasisidea for data visualisation. It has been used by customersfor drawing road maps and for
presenting network topologies. It isalso suitablefor fast 2D gameswith lots of sprites.

6.2. 3D Graphics

OpenGL" is a standard API for rendering 3D graphics. Qt developers can use OpenGL to draw 3D
graphicsin their GUI applications. Thisis achieved by subclassing QGLWidget, a QWidget subclass,
and drawing with standard OpenGL functionsrather than with QPainter.

Qt's OpenGL module is available on Windows, X11, and Macintosh, and uses the system’s OpenGL
library (or Mesa).

Qt developers can set the display format of an OpenGL rendering context: single or double buffering,
depth buffer, RGBA or color index mode, apha channel, overlays, etc. They can also set the colormap
manually in color index mode.

YOpenGL isatrademark of Silicon Graphics, Inc. in the United States and other countries.

Qt 3.1 Whitepaper T R OL L TECH Page 26

When using Qt, developers write in pure OpenGL. Qt also provides two convenience functions,
gglClearColor() and gglColor(), that accept a QColor argument and work in any mode.

& BrainYoyager QX - =18 x|
Fle Analysis Options Meshes EEG/MEG Yiew Window Help
|0 |

—|

arlteBE (*aDawn

oo4E HE BT EEE

Yisual areas, left hemisphere
£t

2
a2
[|
as
(3
3D Volume Toals) 2l x|
30 Coords |Haslc\ng | Spatial Transt | Yol Rend | Talsiach | Seamentation | e Bt
i~ System coords — Salings———————————— ot 3 W & wadis padis 2 ads
w 12 2 ¥ fpply rmedistely et it 2l =] | = =[N =< Mlll=
Buit = = = = = z
w |203 = ™ Showeross —I ™ = S = Iz =
Talairach coods —— — Option; 271] 49 0 211 I 57
% |0 3: Cross length; | 256 £ Gap size; |10 3: Frant . . Back
¥ |0 a: Cross thick.: |2 33 Line thick.: |1 33
= |0 3: I Enablereflabek [~ Muckli Arangement
B2 4

Figure24. Brain Innovation’s BrainVoyager application written in Qt and OpenGL

6.3. A 3D Example

= openct oo RI=TEY

Figure25. 3D box

Qt 3.1 Whitepaper T R OL L T E C H Page 27

The complete code for an application that draws a 3D box, with slidersto rotate the box around the X, Y,
and Z axes, is presented below.

Inbox3d. h, Box3D isdefined like this:
#i ncl ude <qgl . h>
cl ass Box3D : public QAW dget

Q _OBJECT

public:
Box3D(QW dget xparent = 0, const char x*nane = 0);
~Box3D() ;

public slots:
voi d setRotationX(int deg) { rotX
voi d setRotationY(int deg) { rotY
void setRotationZ(int deg) { rotz

deg; updateG.(); }
deg; updateG.(); }
deg; updateG.(); }

pr ot ect ed:
virtual void initializeG/();
virtual void paintGQ();
virtual void resize@(int w, int h);
virtual G.uint makeQbject();

private:
GLui nt obj ect;
GL.float rotX, rotY, rotZ

}s
Inbox3d. cpp, the functionsdeclared in box3d. h are implemented:

#i ncl ude "box3d. h"

Box3D: : Box3D(QW dget =parent, const char *name)
QG.W dget (parent, nane)
{

obj ect = 0;
rotX =rotY =rotZ = 0.0;
}

Box3D: : ~Box3DX()

makeCurrent () ;
gl Del eteLi sts(object, 1);
}

void Box3D::initializeG./()

ggl C ear Col or (darkBl ue);
obj ect = makeoj ect ();
gl ShadeModel (GL_FLAT);

}

voi d Box3D: : pai nt G()

{
glCear(G._COLOR BUFFER BIT);
gl Loadl dentity();

gl Translatef(0.0, 0.0, -10.0);
gl Rotatef(rotX, 1.0, 0.0, 0.0);
gl Rotatef(rotY, 0.0, 1.0, 0.0);
gl Rotatef(rotz, 0.0, 0.0, 1.0);

gl Cal |l Li st (object);

Qt 3.1 Whitepaper T R OL L T E C H Page 28

}
void Box3D::resizeGL(int w, int h)
{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 5.0, 15.0);
glMatrixMode(GL_MODELVIEW);
}
GLuint Box3D::makeObject()
{
GLuint list = glGenLists(1)
gINewList(list, GL_COMPILE);
gglColor(yellow);
glLineWidth(20);
glBegin(GL_LINE_LOOP);
glVertex3f(+1.5, +1.0, +0.8);
glVertex3f(+1.5, +1.0, -0.8);
*
glEnd();
glEndList();
return list;
}

In main.cpp , aBox3D instance and three sliders are created:
#include <qapplication.h>
#include <gslider.h>
#include <qvbox.h>

#include "box3d.h"

void create_slider(QWidget =*parent, Box3D *box3d, const char =*slot)
{

QSlider *slider = new QSlider(0, 360, 60, O,

QSlider::Horizontal, parent);

slider->setTickmarks(QsSlider::Below);

QOhbject::connect(slider, SIGNAL (valueChanged(int)), box3d, slot);
}
int main(int argc, char =x=xargv)
{

QApplication::setColorSpec(QApplication::CustomColor);

QApplication app(argc, argv);
if (!'QGLFormat::hasOpenGL())
gFatal("This system has no OpenGL support");

QVBox *parent = new QVBox;

parent->setCaption("OpenGL Box");

parent->setMargin(11);

parent->setSpacing(6);

Box3D *box3d = new Box3D(parent);

create_slider(parent, box3d, SLOT(setRotationX(int)));
create_slider(parent, box3d, SLOT(setRotationY(int)));
create_slider(parent, box3d, SLOT(setRotationZ(int)));

app.setMainWidget(parent);
parent->resize(250, 250);
parent->show();

Qt 3.1 Whitepaper T R OL L T E C H Page 29

return app. exec();

On-line References

http:/ /doc.trolltech.com/ 3.1/ coordsys.html
http:/ /doc.trolltech.com/ 3.1/ canvas.html
http:/ /doc.trolltech.com/ 3.1/ opengl.html

7. Databases

The Qt SQL module simplifiesthe creation of multiplatform GUI databaseapplications.
Programmes caneasilyexecuteSQLstatementsjsedatabase-specifiwidgetsand malke any
widget data-awae.

The Qt SQL module providesa multiplatform interface for accessing SQL databases. Qt includesnative
driversfor Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL, and ODBC.
Thedriverswork on all platforms supported by Qt and for which client librariesare available. Programs
can access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget (predefined or custom) can be made data-aware. Qt also includes some database-specific
convenience widgets that simplify the creation of dialogs and windows that present records as forms
or in tables. Data-aware widgets automatically support browsing, updating, and deleting records. Most
database designs require that new records have a unique key that cannot be guessed by Qt, so insertion
usually needsa small amount of codeto bewritten. The programmer can easily force the user to confirm
actions, e.g. deletions.

Qt'sSQL moduleisfully integrated into Qt Designerwhich providestemplates and wizardsto make the
creation of database formsas quick and easy as possible. The wizards can create formswith navigation
buttons, and with update, insert, and delete buttons.

Using the facilitiesthat the Qt SQL module provides, it is straightforward to create database applications
that use foreign key lookups, present master-detail relationships, and support drill-down.

7.1. Executing SQL Commands

The QSglQuery classisused to directly execute any SQL statement. It isalso used to navigate the result
sets produced by SELECT statements.

In the example below, a query is executed, and the result set navigated using QSglQuery::next():

@Sl Query query("SELECT id, surname FROM staff");
while (query.next()) {
cout << "id: " << query.value(0).tolnt()
<< " surnane: " << query.value(1).toString() << endl;

}

Field valuesareindexed in the order they appear in the SELECT statement. QSqlQuery also providesthe
first(), prev(), last(), and seek() navigation functions.

Qt 3.1 Whitepaper T R OL L T E C H Page 30

| NSERT, UPDATE, and DELETE are equally simple. Below isan UPDATE example:

@&Sql Query query("UPDATE staff SET salary = salary * 1.10"
" WHERE id > 1155 AND id < 8155");
if (query.isActive()) {
cout << "Pay rise given to " << query. numRowsAffected()
<< " staff" << endl

}
Qt's SQL module also supportsvalue binding and prepared queries, for example:

&Bql Query query;

qguery. prepare("INSERT INTO staff (id, surname, salary)"
" VALUES (:id, :surname, :salary)"

qguery. bi ndval ue(":id", 8120);

qguery. bi ndval ue(":surnane", "Bean");

guery. bi ndvVal ue(":salary", 29960.5);

query. exec();

Value binding can be achieved using named binding and named placeholders (as above), or using
positional binding with named or positional placeholders, for example:

QSql Query query;
qguery. prepare("INSERT INTO staff (id, surname, salary)"
" VALUES (?, 2, 2)"
Enpl oyeeMap: :iterator it;
for (it = enployeeMap.begin(); it != enployeeMap.end(); ++it) {
query. addBi ndVal ue(it.data().id());
qguery. addBi ndVal ue(it.key());
guery. addBi ndval ue(it.data().salary());
qguery. exec();

}

Qt'shinding syntax workswith all supported databases, either using the underlying database support or
by emulation.

For programmerswho are not comfortablewriting raw SQL , the QSqglCur sor classprovidesahigh-level
interface for browsing and editing records in SQL tables or views without the need to write SQL
statements. For example:

@ql Cursor cur("staff");
while (cur.next()) {
cout << "id: " << cur.value("id").tolnt()
<< " surnanme: " << cur.value("surname").toString() << endl

}

QSqlCursor also supports the ordering and filtering that are achieved using the ORDER BY and WHERE
clausesin SQL statements.

Calculated fields are useful both for real calculations (e.g. calculating totals) and for performing foreign
key lookups (e.g. to display names rather than codes). Calculated fields can be created by subclassing
QSqlCursor, adding additional QSqlFields with their calculated property set tot r ue, and by reimple-
menting QSqgl Cursor::calcul ateFiel d().

Database drivers usually supply data as strings, regardless of the actual datatype. Qt handles such data
seamlessly using the QVariant class. Database drivers can be asked about the features they support,
including query-size reporting and transactions. The transaction(), commit(), and rollback() functions
can be used if the database supportstransactions.

Qt 3.1 Whitepaper T R OL L T E C H Page 31

7.2. Data-aware Widgets

QDataTable is a QTable that displays records from a result set using a QSqlCursor. QDataTable,
like QTable, supportsin-place editing. Programmers can force usersto confirm all or selected changes
(e.g. deletions) by setting QDataTabl€e sconfirmation properties. The editor widget chosen for each type
of datadependsonthedatatype. For example, aQLineEdit isused for CHARfields, whereasa Q SpinBox
isused for | NTEGERfields. The programmer can override the defaultsby creating a property map for the
table, which matchesfields (columns) to the editor widget type the programmer prefers.

e Pioe [hoss 2] 2l

[avid Copperfield 15.98
993 | Hmmm.

Hard Times 11499 [2dd s Comme Price |9.93

999 | i author [Dick =]

Title IThe tan in the High Castle

Indermnity Ol

Oliver T
' I« First I 44 Prew l Mestss | Last 5| |

Inzert I Update I Delete | LCloze |

: itrange Land

The Man in the High Castle 999 |W0rth reading

10 | The Man Wha Japed 693 |Agood boil_vJ
»

KIn I

Figure26. A QDataTableand a QDataBrowser

Records can be updated and deleted without writing any code. |nsertions require some code since most
database designs expect new records to be created with a unique key. This can easily be achieved by
generating the key in a slot connected to the QDataTable::beforelnsert() signal.

QDataTable uses intelligent buffering to make the loading of large result sets fast, while keeping the
user interface responsive. For databasesthat are capable of reporting query sizes, the scroll bar dider is
displayed proportionally immediately.

Qt also includes QDataBrowser and QDataView to display records as forms, typicaly with one or
perhaps a few records shown at a time. These classes provide buttons with ready-made connections
for navigating through the records. QDataView isused for read-only data QDataBrowser isused for
editing, and can provide ready-made insert, update, and del ete buttons.

QDataTable and QDataBrowser have both a popup context menu and keyboard shortcuts for editing
records.

Programmers can manipul ate data retrieved from the database before it is displayed by implementing a
dot and connecting it to the primelnsert() and primeUpdate() signals. Data can also be manipulated or
actions logged just before changes are written back to the database, for example, converting a foreign
key’s display text into its ID by implementing a slot connected to beforel nsert(), beforeUpdate(), and
beforeDelete().

Developers can create their own forms for displaying database records. Unlike older toolkits that
duplicate their widgets with data-aware versions, Qt widgets (including custom widgets) can be made
data-aware. All that is necessary isto include the widget in a QSglForm and set up a property map to
relate the relevant database field to the widget that will present and edit thefield’ sdata.

Master-detail relationships are easily set up by filtering the detail form or table’s cursor by the master
form or table's current record. Drill-down isalso easy to achieve by associating a button, menu item, or
keyboard shortcut with a drill-down form that isinvoked with the current record’ skey asa parameter.

Qt 3.1 Whitepaper T R OL L T E C H Page 32

Qt'sSQL moduleisfully integrated with Qt Designer. Qt Designer can preview databaseformsand tables
using live data if desired, allowing developersto browse, delete, and update records. Qt Designer has
templates and wizardsto make creating database formsfast and simple.

On-line References

http:/ /doc.trolltech.com/ 3.1/ sgl.html

8. Internationalization

Qt fully supports Unicode, the international standard character set. Programmers can freely
mix Arabic, English, Hebrew, Japanese, Russian, and other |anguages supported by Unicodein
their applications. Qt also includestoolsto support application translation to help companies
reach international markets.

Qt includes tools to facilitate the tranglation process. Programmers can easily mark user-visible text
that needs trangdlation, and a tool extracts this text from the source code. Qt Linguist is an easy-to-use
GUI application that reads the extracted source texts, and provides the texts with context information
ready for translation. When the trandation is complete, Qt Linguist outputs a translation file for use
by application programs. Qt Linguist’s documentation provides the relevant information for release
managers, trandators, and programmers.

8.1. Unicode

Qt uses the QString class to store Unicode strings, and uses it throughout the APl and internally.
QString replacesthe crude const char * and the 16-bit QChar classreplaceschar. Constructors
and operators are provided to automatically convert to and from 8-bit strings. Programmers can copy
QStrings by value, since they are implicitly shared (copy on write) [p. 43], which makes them fast and
memory efficient.

QString ismore than a 16-bit character string. Functions such as QChar::lower() and QChar::isPunct()
replace tolower() and ispunct() and work over the whole Unicode range. Qt'sregular expression engine,
provided by the QRegEXp class, uses Unicode strings both for the regular expression pattern and the
target string.

Conversion to and from different encodings and charsetsis handled by QTextCodec subclasses. Qt uses
QTextCodec for fonts, 1/0, and input methods; programmers can useit for their own purposesaswell.

Qt 3.1 supports 38 different encodings, including Bigs and GBK for Chinese,
EUC-JP, JIS, and Shift-JIS for Japanese, KOI8-R for Russian, and the 1SO 8859 series; see
http:/ /doc.trolltech.com/ 3.1/ gtextcodec.html for the complete list. Programmers can add their own en-
codings by providing a charmap or by subclassing QTextCodec.

8.2. Text Entry and Rendering

Far-Eastern writing systems require many more characters than are available on a keyboard. The
conversion from a sequence of key pressesto actual charactersis performed at the window-system level
by software called “input methods.” Qt automatically supportstheinstalled input methods.

Qt provides a powerful text-rendering engine for all text that is displayed on screen, from the simplest
label to the most sophisticated rich-text editor. The engine supports advanced features such as special

Qt 3.1 Whitepaper T R OL L T E C H Page 33

line breaking behavior, bidirectional writing, and diacritical marks. It rendersmost of theworld’swriting
systems, including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin, and
Vietnamese. Qt will automatically combine theinstalled fontsto render multi-language text.

8.3. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers' native
languages.

To make a string translatable, simply wrap it in acall to tr() (read “trandate”):

saveButton->set Text(tr("Save"));

tr() attemptsto replaceastring literal (e.g.” Save") with atranslationif oneisavailable; otherwiseit uses
the original text. English can be used asthe source language and Chinese asthe trandated language, or
viceversa. Theargument to tr() is converted to Unicode from the application’sdefault encoding.

tr()’sgeneral syntax is
Context::tr("source text", "coment")

The“context” isthename of aQObject subclass. Itisusually omitted, in which casethe classcontaining
thetr() call isused asthe context. The “sourcetext” isthe text to translate. The“comment” isoptional;
along with the context, it provides additional information to human trandators.

Trandationsare stored in QTransglator objects, which use disk-based . gmfiles (Qt Messagefiles). Each
. gmfile containsthe trandlations for a particular language. The language can be chosen at run-time, in
accordance with the locale or user preferences.

Qt providesthreetoolsfor preparing . gmfiles: | updat e, Qt Linguist and | r el ease.

1. lupdat e extracts al the (context, source text, comment) triples from the source code, including
Qt Designer . ui files, and generatesa . t s file (Trangation Source file). Thesefiles are in human-
readable XML format.

2. Trandatorsuse Qt Linguist to provide translationsfor the sourcetextsinthe. t s files.
3. Highly compressed . gmfilesare generated by running| r el ease onthe. t s files.

These steps are repeated as often as necessary during the lifetime of an application. It is perfectly safe
to run | updat e frequently, asit reuses existing trang ations and marks translations for obsolete source
texts without eliminating them. | updat e also detects slight changes in source texts and automatically
suggests appropriate trandations. These trangd ations are marked as unfinished so that a translator can
easily check them.

Qt itself contains about 400 user-visible strings, for which Trolltech provides French and German
translations.

Qt 3.1 Whitepaper T R OLLTETCH Page 34

8.4. Qt Linguist

Qt Linguist isa Qt application that hel pstranslatorstranglate Qt applications.

Trandators can edit . t s files conveniently using Qt Linguist. The . t s file' scontexts are listed in the
|eft-hand side of the application’swindow. Thelist of sourcetextsfor the current context isdisplayedin
thetop-right area, along with translations. By selecting asourcetext, thetranslator can enter atrandation,
mark it done or unfinished, and proceed to the next unfinished translation. Keyboard shortcuts are
provided for al thecommon navigation options: Done & Next, Next Unfinished, etc. Theuser interface’s
dockable windows can be reorganized to suit the translators' preferences.

Applications often use the same phrases many timesin different source texts. Qt Linguist automatically
displays intelligent guesses based on previoudly translated strings and predefined translations at the
bottom of thewindow. Guessesoften serveasagood starting point that helpstranglatorstrand ate similar
textsconsistently. Qt Linguist can optionally validate tranglationsto ensure that acceleratorsand ending
punctuation are trans ated correctly.

2 Ot Linguist by Trolltech - japanese.ts

Translation ~
TREY

Done | Context

Undao

@ MainVWindow AG (105 x 148 mm) m
o’ (MessageBox i a
o« QFrirtDialog ; i ki
R aEdt RERE)
Source text
Bullet List {Disc)

The first window to appear when launching the application is a MainWindow.

Translation
B w2 R FIEEDDEL)

: . Phrases and guesses:

\ | Source phrase Translation Definition

| Bullet List {Circle) B L2k) Guess (Ctri+1)
. |Bullet List {Square) EalwbA EFR) Guess (Cti+2)
| Al files () FTOIPA0 Guess (Ctri+3)
| List View WA REL— Guess (Ctri+4)
. |Show dhidden files FEL 77 I RFmidh) Guess (Ctri+5)

194/196 MOD

Figure27. Qt Linguist

On-line References

http:/ /doc.trolltech.com/ 3.1/ 118n .html

http:/ /doc.trolltech.com/ 3.1/ unicode.html

http:/ /doc.trolltech.com/ 3.1/ scripts.html
http://doc.trolltech.com/ 3.1/ linguist-manual .html

Qt 3.1 Whitepaper T R OL L T E C H Page 35

9. Styles and Themes

Qt automatically uses the native style for look and feel. Qt applications respect user prefer-
ences for colors, fonts, sounds, etc. Qt programmers are free to use any of the supplied styles
and can overrideany preferences. Programmers can modify existing stylesor implement their
own stylesusing Qt’s powerful style engine.

A styleimplementsthe “look and feel” of the user interface on a particular platform. A styleisaQStyle
subclass that implements basic drawing functions such as “drav a frame” “drav a button,” etc. Qt
performsall the widget drawing itself for maximum speed and fleibility.

9.1. Built-in Styles

Qt providesthefollowing built-in styles: Windows, Windows XP, Matif, MotifPlus, CDE, Platinum, SGI,
and Mac. By default, Qt usesthe appropriate stylefor the user’splatform and desktop environment. The
style can also be chosen programmatically, or with the - st yl e command-line option.

|Winu:|n:nws shyle ﬂ _Mptif__s_tyl_e MatifFluz stule — | Mac ztyle i 1

Platium stle | #] | S67 stile 2| CDE style indows }P stle ¥ |

Figure28. Comboboxesin the different built-in styles

A styleiscomplemented by a theme, which encapsul atesthe user’s preferencesfor colors, fonts, sounds,
etc. Qt automatically adapts to the computer’s active theme. For example, Qt supports scroll and fade
transition effectsfor menus and tooltips on Windows.

The Windows XP and Mac stylesare built on top of the native style managers, and are available only on
their native platform. The other stylesare emulated by Qt and are avail able everywhere.

9.2. Style-aware Widgets

Qt’s built-in widgets are style-aware. Custom widgets and dialogs are almost always combinations of
built-in widgetsand layouts, and are automatically style-aware. Ontherare occasionsthat it isnecessary
to write a custom widget from scratch, developers can use QStyle to draw primitive user-interface
elementsrather than drawing raw rectanglesdirectly.

9.3. Custom Styles

Custom stylesare used to provideadistinct look to an application or family of applications. Custom styles
can be defined by subclassing QStyle, QCommonStyle, or any other descendent of QCommonStyle. It
iseasy to make small modificationsto existing stylesby reimplementing one or two virtual functionsfrom
the appropriate base class.

Qt 3.1 Whitepaper T R OL L T E C H Page 36

[QCommonSter]

QMotifStyle)\ ' QWindowsStyle]

[QMotifPIusSter]—/ \—[QPIatinumSter]
\—[QWindowsXPStyle]

Figure29. Thefull QStyleclasshierarchy

An application’sstyle can be set like this:
QApplication::setStyle(new MyCustonttyle);

A style can also be compiled asa plugin [p. 44]. Plugins make it possible to preview aform in a custom
stylein Qt Designerwithout recompiling Qt or Qt Designer The style of an existing Qt application can
be changed using a style plugin without recompiling the application.

On-line References

http/ /doc.trolltech.com/ 3.1/ customstyle.html

10. Layouts

Layoutsprovidea powerfulandflexible alternativeto usingfixedsizesand positions.Layouts
freeprogrammesfromhavingto performsizeandpositioncalculationsandprovideautomatic
scalingto suittheuser’s screenJanguage, and fonts.

Qt provideslayout managersfor organizing child widgets within the parent widget'sarea. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes. Qt Designeris optimized
for laying out widgets using layout managers.

French

(%] Bl=&]
Username: |
Password: |

Mom d’utilisateur: |
kot de passe: |

Connecter
I

Zonnecte,
:

Figure 30. English, French, and French with layouts

Layoutsarealso useful for internationalization. Withfix edsizesand positions, thetranslation text isoften

Qt 3.1 Whitepaper T R OL L T E C H Page 37
truncated; with layouts, the child widgets are automatically resized.

10.1. Built-in Layout Managers

Qt’sbuilt-in layout managers are QHBoxL ayout, QVBoxL ayout, and QGridL ayout.

| o | I 3 | 4
o
[o0 [o1
e [0 [13
35 [Tz0
s

Figure31. QHBoxL ayout, QVBoxL ayout, and QGridL ayout

QHBoxL ayout organizesthe managed widgetsin asingle horizontal row from left toright. QVBoxL ay-
out organizesthe managed widgetsin a single vertical column from top to bottom. QGridL ayout orga-
nizesthe managed widgetsin agrid of cells; widgets may span multiple cells.

In most cases, Qt's layout managers pick optimal sizes for managed widgets so that windows resize
smoothly. If the defaults are insufficient, developers can refine the layout using the following mech-
anisms:

1. Settingaminimumsize,a maximumsize, or afixed sizefor some child widgets.
2. Adding stretchitems or spacer items. Stretch or spacer itemsfill empty spacein alayout.

3. Changingthesizepoliciesof thechild widgets. By calling QWidget::setSizePolicy(), programmers
can fine tune the resize behavior of a child widget. Child widgets can be set to expand, contract,
keep the same size, etc.

4. Changing the child widgets size hints. QWidget::sizeHint() and QWidget::minimumSizeHint()
return awidget’spreferred size and preferred minimum size based on the contents. Built-inwidgets
provide appropriate reimplementations.

5. Setting stretch factors. Stretch factorsallow relative growth of child widgets, e.g. two thirds of any
extra space made available should be allocated to widget A and onethird to widget B.

The “spacing” between managed widgets and the “maigin” around the whole layout can also be set by
the programmer. By default, Qt Designer setsindustry-standard val ues according to the context.

Layouts can also run right-to-left and bottom-to-top. Right-to-left layoutsare convenient for internation-
alized applications supporting right-to-left languages (e.g. Arabic and Hebrew).

10.2. Nested Layouts

Layouts can be nested to arbitrary levels. Here's an example of a dialog box, shown at two different
sizes:

Qt 3.1 Whitepaper T R OL L TECH

[International Trader [

Select & country

[International Trader

i S

Page 38

il

Canada

Select a country France

Italy ;I Germany
Japan ‘ Lta|y
Russia J apan
Cancel :
A | R
Hn:fj El'r:?ioms il | U:;:: Kingdam
‘T : Help United States of America

Cancel |

Help |

Figure32. Small dialog and largedialog

The dialog uses three layouts: a QVBoxL ayout that groups the push buttons, a QHBoxL ayout that
groups the country listbox with the push buttons, and a QVBoxLayout that groups the “Select a
country” label with the rest of the widget. A stretch item maintains the gap between the Cancel and

Help buttons.
The dialog’swidgets and layouts are created with the following code:

QVBoxLayout =buttonBox = new QVBoxLayout(6);
buttonBox->addWidget(new QPushButton("OK", this));
buttonBox->addWidget(new QPushButton("Cancel", this));
buttonBox->addStretch(1)

buttonBox->addWidget(new QPushButton("Help", this));
QListBox *countryList = new QListBox(this);
countryList->insertltem("Canada");

*

countryList->insertltem("United States of America");
QHBoxLayout =*middleBox = new QHBoxLayout(11);
middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout =topLevelBox = new QVBoxLayout(this, 6, 11);
topLevelBox->addWidget(new QLabel("Select a country", this));

topLevelBox->addLayout(middleBox

)i
Qt makeslayouts so easy that programmersrarely use fix edpositioning.

. -select a country

"] Canada oK.

4 France

| Germany

C Aty

<4 Japan

" MRussia

* §United Kingdom
United States of America

Cancel

l\\\\\\\\\\\\\\\\\\\\\\|

Figure33. Layingout aformin Qt Designer

Qt Designer makeslayoutseven easier. With only 17 mouse clicks, you can create and lay out thewidgets

for the dialog shown above.

Qt 3.1 Whitepaper T R OL L T E C H Page 39

10.3. Custom Layouts

Developers can define custom layout managers by subclassing QLayout. The cust oni ayout
example provided with Qt presents three custom layout managers, Bor der Layout , Car dLayout , and
Si npl eFl ow, which programmers can use and modify.

Qt also includes QSplitter, a splitter bar that end users can manipulate. In some design situations,
QSplitter may be preferableto alayout manager.

For complete control, it is also possible to perform layout manually in a widget by reimplementing
QWidget::resizeEvent() and by calling QWidget::setGeometry() on each child widget.

On-line References

http:/ /doc.trolltech.com/ 3.1/ layout.html
http:/ /doc.trolltech.com/ 3.1/ customlayout.html

11. Events

Application objects receive system messages as Qt events. Applications can monitor, filter and
respond to events at different levels of granularity.

In Qt, an event is an aobject that inherits QEvent. Events are delivered to QObject objects so that they
can respond to them. Programmerscan monitor and filter eventsat the application level and at the object
level.

11.1. Event Creation

Most eventsare generated by thewindow system and inform widgets, for example, that akey waspressed,
that a mouse button was clicked or that the application window was resized. It isalso possible to send
simulated events to objects programmatically. There are over fifty types of event, of which the most
commonly used are MouseBut t onPr ess, MouseBut t onRel ease, MouseBut t onDbl C i ck, Weel ,
KeyPr ess, KeyRel ease, Pai nt, Resi ze, and O ose. Developers can add their own event types that
behave like the built-in types.

It is usualy insufficient merely to know that a key was pressed or that a mouse button was rel eased.
The receiver also needs to know, for example, which key was pressed, which button was released, and
where the mouse waslocated. Thisadditional information isavailable from QEvent subclasses, such as
QM ouseEvent, QK eyEvent, QPaintEvent, QResizeEvent, and QCloseEvent.

11.2. Event Delivery

Qt delivers events by calling the virtual function QObject::event(). For convenience, QWid-
get::event() forwards the most common types of event to dedicated handlers, for example, QWid-
get::mouseRel easeEvent() and QWidget::keyPressEvent(). Devel operscan easily reimplement these han-
dlerswhen writing their own widgets or when specializing existing widgets.

Some events are sent immediately, while others are queued, ready to be dispatched when control returns
tothe Qt kernel. Qt usesqueueing to optimize certain typesof events. For example, multiple paint events
are compressed into a single event to minimizeflicker and maximize speed.

Qt 3.1 Whitepaper T R OL L T E C H Page 40

Often an object needsto look at another object’s events, e.g. to respond to them or to block them. This
is achieved by having a monitoring object call QObject::installEventFilter() on the object that it will
monitor. The monitor’s QObject::eventFilter() virtual function will be called with each event that is
destined for the monitored object before the monitored object receivesthe event.

It'salso possibleto filter al the application’sevents by installing afilter on gApp, the unique QApplica-
tion instance. Such filtersare called before any widget-specificfilters. It iseven possibleto reimplement
QA pplication::notify(), the event dispatcher, for complete control.

On-line References

http://doc.trolltech.com/ 3.1/ eventsandfilters.html
http://doc.trolltech.com/ 3.1/ gapplication.html#notify

12. Input/Output and Networking

Qt canload and savedatain plain text, XML, and binary format. Qt handleslocal filesusingits
own classes,and remotefilesusingthe FTP and HTTP protocols. Inter-processcommunication
and socket-based TCP and UDP networking are also fully supported.

12.1. Filel/O

Qt providesclassesto perform advanced I/0O on multiple platforms. The QTextStream classhasasimilar
interfacetothestandard <i ost r ean® classes, and supportsthe encodings provided by QTextCodec. The
QDataStream classisused to seriadizethe basic C++ typesand many Qt typesin a platform-independent
binary format. For example, the following code writes a Unicode string, a font, and a color to the file
spl ash. dat :

QFile file("splash.dat");
if (file.open(IOWiteOnly)) {
QataStreamout (&file);
out << @tring("SplashWdget Style")
<< QFont ("Tinmes", 18, Qont::Bold)
<< Lol or("skyblue");
}

The data can easily be retrieved and used, for example:

QString str;
QFont font;
Col or color;

QFile file("splash.dat");

if (file.open(lO ReadOnly)) {
QPataStreamin(&ile);
in >> str > font >> color;

if (str == "SplashWdgetStyle") {
spl ashW dget - >set Font (font);
spl ashW dget - >set Col or (col or);

}

QTextStream and QDataStream operate on any QI ODevice subclass. Qt includesthe QFile, QBuffer,
QSocket, and QSocketDevice subclasses, and programmers can implement their own custom devices.

Qt 3.1 Whitepaper T R OL L TECH Page 41

QI ODevice aso provides low-level functions such as readLine() and writeBlock() that can be used
independently of any stream.

Directories are read and traversed using QDir. QDir can be used to manipulate path names and access
the underlying file system (e.g. create a directory or delete a file). QFilelnfo provides more detailed
information about afile, such asitssize, permissions, creation time, last modification time, etc.

The following example lists the hidden files in the user's home directory along with their size, in
decreasing size order:

Qir dir = Qir::home();

dir.setFilter(Q)r::Files | QDir::H dden);
dir.setSorting(Qir::Size | Qir::Reversed);
@StringlList nanmes = dir.entryList();

for (int i =0; i < nanes.count(); i++) {

@ilelnfo info(dir, nanes[i]);

cout << nanes[i].latinl() << " " << info.size() << endl;
}

Transparent accessto remote filesis provided by QUrIOperator. In addition to local file system access,
Qt supportsthe FTP and HTTP protocols and can be extended to support other protocols. For example,
files can be downloaded using FTP like this:

QUr | Oper at or op;
op.copy("ftp://ftp.trolltech.com gt/ NSTALL", "file:/tmp");

URL s can easily be parsed and recomposed using QUr .

Image files are usually read by creating a Qlmage with the file name as argument. Printing text and
imagesishandled by QPainter. These classesare described in “2D Graphics’ [p. 22].

12.2. XML

Qt's XML module providesa SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2
Java implementation, with adapted naming conventions. The DOM (Document Object Model) Level 2
implementation follows the W3C recommendation and includes namespace support.

Many Qt applicationsuse XML format to storetheir persistent data. The SAX parser isused for reading
dataincrementally and isespecially suitable for simple parsing requirementsand for very largefiles. The
DOM parser readsthe entire fileinto a tree structure in memory that can be traversed at will.

12.3. Inter-Process Communication

The QProcessclassisused to start external programs and to communicate with them from a Qt applica-
tion in a platform-independent way. Communication is achieved by writing to the external program’'s
standard input and potentially by reading its standard output and standard error.

QProcess works asynchronously, reporting the availability of data by emitting signals. Qt applications
can connect to the signalsto retrieve and process the data, and optionally respond by sending data back
to the external program.

Qt 3.1 Whitepaper T R OL L TECH Page 42

12.4. Networking

Qt providesa multiplatform interface for writing TCP/IP clientsand servers.

The QSocket class provides an asynchronous buffered TCP connection. QSocket is a QI ODevice,
making it easy to use QTextStream and QDataStream on a socket.

QSocket is designed to work well within a GUI application. A live currency converter application
illustratesthis:

Figure 34. Livecurrency converter

The application uses the fictional protocol CCP (Currency Conversion Protocol) to access the latest
exchange ratesfrom a server. Only linesrelated to networking are presented.
socket = new QSocket(this);
connect (socket, SIGNAL(readyRead()),
this, SLOT(updateTargetAnount()));

The socket is created in the Converter constructor. Socket communication is asynchronous, and the
socket emitsthe readyRead() signal when there isdata availableto read.

voi d Converter::convert()

{

QString command = "CONV " + sourceAnpunt->text() + " " +
sourceCurrency->current Text() + " " +
target Currency->current Text() + "\r\n";

socket - >connect ToHost ("ccp. banca- noni ca. nu*, 123);

socket ->writeBl ock(command.latinl(), command.length());
}

The convert() slot is called when the user clicks the Convert button. It opens the connection and sends
a CONV request (e.g. CONV 100 EUR USD) to port 123 on the server ccp. banca- noni ca. nu. QSocket
automatically usesQDnstoresolveccp. banca- noni ca. nu toitsIP address. All these operationsare
non-blocking to keep the user interface responsive.

voi d Converter::updateTar get Anount ()

{
if (socket->canReadLine()) {
t ar get Amount - >set Text (socket - >readLi ne());
socket - >cl ose();
}
}

The updateTargetAmount() function is called when the server repliesto the CONV request. It reads the
reply, updatesthe display, and closes the connection.

Qt 3.1 Whitepaper T R OL L T E C H Page 43

Simple TCP servers can be implemented by subclassing QSer ver Socket, which works asynchronously
like QSocket. QServer Socket sets up a listening socket that acceptsincoming connections, and calls a
virtual function to serve the client.

The QSocketDevice class provides a platform-independent wrapper for the native socket APIs. It
providesthe underlying functionality for QSocket and QServer Socket, and can be used for UDP.

On-line References

http:/ /doc.trolltech.com/ 3.1/ xml.html
http/ /doc.trolltech.com/ 3.1/ datastreamformat.html

13. Collection Classes

Collectionclassesareused to storegroupsof itemsin memory. Qt providesaset of classesthat
are compatiblewith the Sandard TemplateLibrary (STL),and that work regardless of whether
the compiler supports STL or not.

Applications often need to manage itemsin memory, for example, groups of images, widgets, or custom
objects. Many C++ compilers support the STL, which provides ready-made data structures for storing
items. Qt provideslists, stacks, queues, and dictionarieswith STL-syntax. Qt’s collection classes work
with both STL and non-STL compilers.

Qt's rich set of portable collection classes (“containers’) and associated iterators are heavily used
internally, and are provided as part of the Qt API. Qt's containers are optimized for speed and memory
efficienc yusing two techniques, “ private classes’” and “implicit sharing.” Programmerscan also use STL
containerson the platformsthat support them, at the cost of losing Qt’s optimizations.

Template classes usually increase the size of executables dramatically, because the compiler generates
essentially the same code for each specialized type. Qt'stemplate collection classes reduce code bloat
because they are athin layer over non-template private classes.

13.1. Value-based Collections

Qt provides fiv evalue-based collection classes. QM ap<Key,T>, QValuelList<T>, QValueStack<T>,
QValueVector<T>, and QStringList. They have an interface very similar to the STL containers and
are fully compatible with the STL algorithms. Qt provides some STL-equivalent algorithms: qCopy(),
gFind(), gHeapSort(), etc. On platformswith STL support, Qt provides automatic conversion operators
between STL and Qt containers.

Qt'svalue-based collection classes are implicitly shared (“copy on write”). Copiesof instances of these
classes share the same data in memory. The data sharing is handled automatically; if the application
maodifiesthe contentsof one of the copied objects, adeep copy of the dataismade so that the other objects
areleft unchanged. When an object iscopied, only a pointer ispassed and areference count incremented,
which ismuch faster than actually copying the data and also saves memory.

Sharing is used wherever it makes sense: in Qt's value-based collection classes, and in QBitmap,
QBrush, QCursor, QFont, QlconSet, QPalette, QPen, QPicture, QPixmap, QRegion, QRegEXp,
QString, etc. Programmerscan safely and efficiently copy objectsof these classesby value, avoiding the
risksrelated to using pointers and hand optimization. In particular, the implicitly shared QString class
makes string processing easy and fast.

Qt 3.1 Whitepaper T R OL L TECH Page 44

Qt aso providesthe low-level QM emArray<T> classwith itssubclasses QBitArray, QByteArray, and
QPointArray. These classes are very efficient for handling basic “plain old data’ types.

13.2. Pointer-based Collections

Qt provides many low-level, generic, pointer-based collection classes: QDict<Key,T>, QPtrList<T>,
QPtrQueue<T>, QPtrStack<T>, QPtrVector<T>, and QCache<T>. These classes store pointers
rather than values. They are especialy useful for storing pointers to QWidgets and QObjects. The
pointer-based collection classes can optionally take ownership of the objectsthey contain and automati-
cally delete them when the collection is destroyed.

On-line References

http:/ /doc.trolltech.com/ 3.1/ gtl.html
http:/ /doc.trolltech.com/ 3.1/ collections.html
http:/ /doc.trolltech.com/ 3.1/ shclass.html

14. Plugins and Dynamic Libraries

Qt can access functions from dynamic libraries platform-independently. Qt also supports
plugins, which allow devel opersto create and distribute codecs, database drivers,imageformat
converters, styles, and custom widgets as independent components.

14.1. Plugins

Converting a Qt codec, database driver, image format converter, style, or custom widget into a plugin
is achieved by subclassing the appropriate plugin base class, implementing a few simple functions, and
adding a macro.

For example, if a developer has created a QStyle subclass called Copper Style that they want to make
available asa plugin, they would create a subclasslikethis:

cl ass CopperStylePlugin : public QStylePlugin
public:

Copper Styl ePlugin() { }

~Copper Styl ePlugin() { }

St ringlLi st keys() const {
return QStringlList() << "CopperStyle";

}
Style xcreate(const QString& key) {
if (key == "CopperStyle")
return new Copper Styl e;
return O;
}

b
Q EXPORT_PLUGQ N(Copper Styl ePlugin)

The new style can be set likethis:

Qt 3.1 Whitepaper T R OL L TECH Page 45

QApplication::setStyle(QStyleFactory::create("CopperStyle"));

Databaselrivers,codecsgcustomwidgets,andimageformatsthat are suppliedaspluginsare detected
andusedby theapplicationautomatically

Companiesalreadyprovide Qt componentsn sourceform, as precompileddynamiclibraries or as
plugins.

01:18:02 pr i" Juli | |

Sun Maon Tue Wed Thu Fri Sat

12z 3 4 5 & 7
5 3 10 11 12 13 14
15 17 18 13 20 A
22 23 24 25 26 27 28
23 30 A

Figure 35. Oneof Klaréalvdalen®atalonsultsmary commerciacomponents

On-line References

http//doc.trolltech.corh3.1 plugins-havto.html

14.2. Dynamic Libraries

TheQLibrary classprovidesmultiplatformdynamiclibrary loading,a morepowerful mechanisnthan
themorerestrictive build-time linking.

Below isanexampleof themostbasiowvayto dynamicallyjloadandusealibrary. Theexampleattemptdo
obtainapointertothepri nt _str symbolfromthenyl i b library(nyl i b. dl | onWindows,nyl i b. so
onUnix).

typedef void (StrFunc)(const char =*str);

Qi brary lib("nylib");
StrFunc *func = (StrFunc *) lib.resolve("print_str");
if (func)

func("Hello world!");

Callingafunctionthisway is not type-safeandonly symbolswith C linkagearesupporteddueto C++
namemangling).

Qt 3.1 Whitepaper T R OL L T E C H Page 46

15. Platform Specific Extensions

In addition to being complete in itself, Qt provides some platform-specific extensionsto assist
developers in certain contexts. The ActiveQt extension allows developers to use ActiveX
controlswithin their Qt applications, and also allows themto make their Qt applicationsinto
ActiveX servers. The Motif extension helps developers migrate to Qt by supporting Qt and
Motif coexistence.

15.1. ActiveQt

ActiveX ishbuilt on Microsoft’'s COM technology. It alowsapplicationsand librariesto use components
provided by component servers, and to be component serversintheir own right. Qt/Windows' sActiveQt
modul e allowsdevel opersto maketheir applicationsinto ActiveX servers, and to make use of the ActiveX
controls provided by other applications.

ActiveQt seamlessly integrates ActiveX into Qt: ActiveX properties, methods, and events become Qt
properties, dots, and signals. This approach makes it straightforward for Qt developers to work with
ActiveX using a familiar programming paradigm and insulates them from all the different kinds of
generated code that isnormally part of an ActiveX implementation.

Here'show to register Internet Explorer for use asan ActiveX component:
#defi ne CLSID I nternet Expl orer "{8856F961-340A- 11D0- A96B- 00C04FD705A2} "

QAXW dget +activeX = new QAxW dget(this);
activeX->setControl (CLSID I nternetExplorer);

If we want to track the user’suse of the component, we could watch how itstitle changes:

connect (activeX, SIGNAL(TitleChange(const QString&)),
this, SLOT(setTitle(const QString&)));

ActiveQt automatically handlesthe conversions between ActiveX and Qt datatypes.

ActiveQt also supportsthe dynamicCall() function to control an ActiveX component:

activeX->dynam cCal | ("Navi gate(const QString& ",
"http://doc.trolltech.conm);

Thelower-level | Dispatch interfaceisalso supported.

Making a Qt application into an ActiveX server issimple. If we only need to export a single class, lit-
tle more is required than the inclusion of the gaxf act ory. h header and writing out the QAXFACTO
RY_DEFAULT macro. Oncethe classiscompiled,itsproperties, slots, and signalsbecome ActiveX proper-
ties, methods, and eventsto ActiveX clients. ActiveQt also providesthe QAxFactory::isServer() function
that can be called to determineif the applicationisbeing runinitsown right or being used asan ActiveX
control, so that devel opers can control which functionality isavailable in which context.

On-line References

http/ /doc.trolltech.com/ 3.1/ activeqt.html

Qt 3.1 Whitepaper T R OL L TECH Page 47

15.2. Motif

Many large Unix applications have been written using Motif, atoolkit that isno longer being developed.
Migrating an entireMotif applicationisamajor task, and like any large devel opment effort, hassignificant
risks. Trolltech’ssolution for customerswho are locked in to Motif isthe Qt/Motif extension.

The Qt/Motif extension enables developers to migrate their Motif applications piece by piece, as part
of routine maintenance and development. Thisminimizesthe resourcesrequired for migration, and also
minimizestherisks. Thismigration can be achieved becausethe Qt/Motif modul e supportsamixed-code
environment. Developers can continue to use the Motif event loop if they wish, or switch to Qt’s event
loop. Modality, timers, and socket notifiers all work correctly in the mixed-code environment. For
example, when a dialog requires maintenance, it can be replaced by a Qt dialog which will probably be
easier and faster to create and maintain using Qt Designerp. 18].

On-line References

http:/ /doc.trolltech.com/ 3.1/ motif-extension.html

16. Qt’s Architecture

Qt’s functionalityis built on the low-level APIs of the platformsit supports. This makesQt
flexible and efficient.

Qtisan “emulating” multiplatform toolkit. All widgets are drawn by Qt, and programmers can extend
or customize them by reimplementing virtual functions. Qt’s widgets accurately emulate the look and
feel of the supported platforms, asdescribed in “ Stylesand Themes® [p. 35]. Thistechnique also enables
developersto derive their own custom stylesto provide a distinct ook for their applications.

Qt Application Source Code
Qt API
Qt/Windows Qt/X11 Qt/Macintosh Qt/Embedded
GDI Xlib Carbon

MS-Windows Unix/Linux Mac OS X Embedded Linux

Figure 36. Qt'sArchitecture

Qt usesthe low-level APIsof the different platformsit supports. Thisdiffersfrom traditional “layered”
multiplatform toolkits that are thin wrappers over single-platform toolkits (e.g. MFC on Windows and
Motif on X11). Layered toolkits are usually slow, since every function call to the library resultsin many
additional callsdown through the different API layers. Layered toolkits are limited by theinflibilities
of theunderlying toolkits, and usually behave dightly differently on the different platformsthey support,
leading to obscure bugsin applications.

Qt isprofessionally supported, and takesadvantage of the available platforms: Microsoft Windows, X11,
Mac OS X, and Embedded Linux. Using a single source tree, a Qt application can be converted into
an executable simply by recompiling on the target platforms. Although Qt is a multiplatform toolkit,
customers have found it to be easier to learn and more productive than platform-specific toolkits. Many
customersuse Qt for single-platform devel opment, preferring Qt'sfully object-oriented approach.

Qt 3.1 Whitepaper T R OL L T E C H Page 48

16.1. Microsoft Windows

Qt/Windows uses the Win32 APl and GDI for events and drawing primitives. Qt does not use MFC or
any other toolkit. In particular, Qt doesnot use the inflible “common controls,” but rather providesits
own more powerful, customizable widgets. (For non-specialized uses, Qt uses the native Windows file
and print dialogs.)

With Qt, the same executable works on Windows 95, 98, NT4, ME, 2000, and XP. Qt performsarun-time
check for the Windows version, and uses the most advanced capabalities available. For example, only
Windows NT4, 2000, and XP support rotated text natively; Qt renders rotated text on all Windows
versions, and uses the native support where available. Asthis example demonstrates, Qt developersare
insulated from differencesin the Windows APIs.

Qt supports the Microsoft accessibility interfaces. Unlike Windows's common controls, Qt widgets can
be extended without losing the accessibility information of the base widget. Custom widgets can also
provide accessibility.

Qt also supports multiple screens on Microsoft Windows.

Qt/Windows customers create Qt applications using Microsoft Visual C++ and Borland C++.

16.2. X11

Qt/X11 uses Xlib to communicate with the X server directly. Qt does not use Xt (X Toolkit), Motif,
Athena, or any other toolkit.

Qt applications automatically adapt to the user’'s window manager or desktop environment, and have a
native look and feel under Motif, SGI, CDE, GNOME, and KDE. This contrasts with most other Unix
toolkits, which lock usersinto their own look and fedl.

Qt provides full Unicode support [p.32]. Qt applications automatically support both Unicode and
non-Unicode fonts. Qt combines multiple X fonts to render multi-lingual text. Qt's font handling is
intelligent enough to search all the installed fontsfor charactersunavailable in the current font.

Qt takes advantage of X extensions where they are available. Qt supports the RENDER extension for
anti-aliased fontsand alpha-blending. Qt provideson-the-spot editing for X Input Methods. Qt supports
multiple screens both with traditional multi-head and with Xinerama.

Qt supports the following versions of Unix: AlX, BSDI, FreeBSD, HP-UX, Irix, Linux, NetBSD,
OpenBSD, Solaris, Tru64, and UnixWare. See http:/ /www.trolltech.com/ products platforms for an
up-to-datelist of supported compilersand operating system versions.

16.3. Mac OS X

Since version 3.0, Qt supports Mac OS X using the Carbon API. Qt/Mac creates a new market for
customerswho sell Qt applications.

Qt introduceslayouts and straightforward internationalization support to the Macintosh. Qt handlesfiles
and asynchronous socket input/output in the event loop. Qt provides solid database support. Developers
can create Macintosh applications using a modern object-oriented API that includes comprehensive
documentation and full source code.

M acintosh devel opers can create applicationson their favorite platform and broaden their market hugely
simply by recompiling on, for example, Windows.

Qt 3.1 Whitepaper T R OL L T E C H Page 49

Qt/Mac a'so brings some technical benefitsto Macintosh development, for example, standard OpenGL,
straightforward internationalization, and powerful visual design with Qt Designer.

16.4. Embedded Linux

Qt/Embedded provides its own windowing environment and writes directly to the Linux frame buffer.
QUt/Embedded eliminatesthe need for an X server, and runsfaster and with alower memory footprint than
X11-based embedded Linux devices.

Qt/Embedded uses apha-blending for image painting and anti-aliased scalable TrueType and Typel
fonts. Trolltech aso offers a complete environment for embedded devices, called Qtopia. The Qtopia
environment includes a program launcher, a suite of applications, and libraries to support application
development. It also hasflible input handling, including hand-writing recognition, a pickboard, and
avirtual keyboard; it is easy to write new input methods. Qtopia isthe standard environment used by
Sharp’s Zaurus PDASs. By selectively choosing features, the memory demands of Qt/Embedded can be
tuned to between 800 KB and 3MB in ROM.

See the Qt/Embedded whitepaper for a complete technical overview.

17. Qt’s Development World

Companies and developers from around the world are joining the Qt development community every
day. They have recognized that Qt’s architecture lends itself to rapid application development. These
developers, whether they are targeting one or many platforms, are benefiting from Qt’s consistent and
straightforward API, and from Qt’s powerful supporting tools such asqgmake and Qt Designer.

Qt has an active and helpful user community who communicate using the gt - i nt er est mailing list.
See http://lists.trolltech.com/ gt-interest/ to subscribe or to browsethe archive. Qt customersreceive our
monthly developers’ newsletter, Qt Quarterly; see http://doc.trolltech.com/ qo/ .

Qt'sextensive documentation isavailable on-line at http://doc.trolltech.com.

Developers can evaduate Qt, with support, for 30 days on their preferred platform. See
http/ /www.trolltech.com for details.

For further information, email info@trolltech.com.

mailto:info@trolltech.com

Index

About box, 14
Accelerator, 14, 34
Accessibility, 48
Action, 14

ActiveQt, 46

ActiveX, 46

AlX, 48

Algorithm, 43
Alpha-blending, 48, 49
Alphachannel, 23, 25
Animation, 23, 25
Anti-aliased font, 48, 49
Appearance Manager, 35
Aqua, 35

Arabic, 33,37

Array, 44

Assistant, 16, 19
Asynchronous|/O, 41, 42, 43
Athena, 48
Auto-deletion, 44
Automatic layout, 36
Balloon help, 13
Bezier curve, 23
Bidirectional writing, 33
Big5, 32

Binary serialization, 40
Bitmap, 22, 24

Bloat problem, 43
BMP, 22
BorderLayout, 39
Borland C++, 48

Box layout, 5, 37

BSDI, 48

Button, 5

Cache, 44

Calculated field, 30
Calendar, 45

Callback, 9

Canvas, 25

Caption, 14

Carbon, 48
CardLayout, 39
Cascade, 14

CDE, 35

Central area, 12
Central widget, 14, 17
char, 32

Charmap, 32

Charset, 32

Checkbox, 5, 6

Child widget, 5, 14, 36

Chinese, 33

clicked(), 9

Clipboard, 11

Clipping, 23,24

Clock, 7

Code bloat problem, 43

Codec, 32,48

Collection class, 43

Collision testing, 25

Color, 24,35

Color dialog, 14

Colormap, 25

COM, 46

Combobox, 5

Comment, 33

Commit, 30

Common controls, 48

Common Desktop Environ-
ment, 35

Communication, 9

Compiler features, 11

Component, 9

Configuration, 17

connect(), 9

Connection, 9, 14

Container, 43

Context, 33

Context menu, 12, 31

Control, 4

Coordinate, 23

Copy on write, 43

Custom canvasitem, 25

Custom dock window, 17

Custom I/O device, 41

Custom layout, 39

Custom style, 35

Custom tag, 19

Custom widget, 7, 19, 23, 29,
35

Cyrillic, 33

Database, 18, 29

Datatable, 31

Datavisualisation, 25

Date, 5

Defaults, 17

Default widget size, 36

Delete, 44

50

Designer, 8,17, 18, 29, 32, 33,
36, 37, 38

Diacritical mark, 33

Dial, 5

Diaog, 14

Dictionary, 44

Directory, 15,41

DLL, 45

Dock window, 17

Documentation, 19, 49

DOM, 41

Double buffering, 24, 25

Drag and drop, 11

Drawing, 23, 35, 39

Drill-down, 31

Druid, 16

.dsp, 3

Dynamic library, 45

Editor, 5

Embedded Linux, 47, 49

Emitting asignal, 10

Emulation, 35, 47

Encoding, 32

English, 33

Error, 14

EUC-JP, 32

Evaluation, 49

Event, 9, 23, 39

exec(), 5

Fade effect, 35

Fatal error, 14

Filedialog, 15, 48

Fixed positioning, 38

Flicker, 24, 39

Flow layout, 39

Font, 33, 35, 36, 48, 49

Font dialog, 14

Foreign key, 30, 31

Form, 31

Frame, 14

Frame buffer, 49

FreeBSD, 48

French, 33

FTP, 41

Game, 25

GBK, 32

GCC, 48

GDI, 48

Geometry, 5, 36

Qt 3.1 Whitepaper

German, 33

GIF, 22

GL, 25

Graph, 25

Graphics, 22

Greek, 33

Grid layout, 37

GUI application, 12

Guide, 19, 49

Hebrew, 33, 37

height(), 23, 24

Help browser, 19

Hierarchical treeview, 6

Hover help, 13

HP-UX, 48

HSV, 24

HTML, 5,19

HTTPR, 41

Icon, 12, 13, 22

Iconview, 6

Image, 22,24

Implicit sharing, 32, 43

Inheriting, 7, 10, 13, 19, 25, 30,
32,35, 39,43, 44

Input method, 32, 49

Input/output, 40

Input validation, 6

Interface emulation, 35, 47

Internationalization, 32, 37

Introspection, 11

iostream, 40

IPC, 41

Irix, 48

1SO 8859, 32

Iterator, 43

Japanese, 33, 34

Java, 41

JS 32

JPEG, 22

Key, 29

Keyboard, 32, 39

KOI8-R, 32

Korean, 33

Label, 5

Language, 32, 36

Latin, 33

Layered toolkits, 47

Layout, 5, 36

LCD,5,7

Library, 45

Line breaking, 33

T R OL L TECH

Lineeditor, 5

Linguist, 17,33

Linking, 45

Linux, 47, 48

List, 43,44

List box, 6

List view, 6

Locde, 33

Localization, 32

Look and feel, 35, 47, 48

Irelease, 33

lupdate, 33

Macintosh, 13, 25, 35, 47

Magic, 11

Mailing list, 49

Main window, 12

Makefile, 3,11, 19

Manudl, 19, 49

Manual layout, 39

Map, 43

Margin, 37

Master-detail, 31

Maximum size, 37

MDI, 12,14

Memory array, 44

Memory constraints, 49

Menu bar, 13, 14

Mesa, 25

Message box, 14

Message map, 9

Messaging, 39

Meta-file, 24

Meta Object Compiler, 11

MFC, 9,47

Microsoft SQL Server, 29

Microsoft Visual C++, 48

Microsoft Windows, 25, 35,
46, 47

Minimum size, 37

MNG, 22

moc, 11

Modal dialog, 16

Model, 23

Matif, 9, 35,47, 48

MotifPlus, 35

Mouse, 39

Movie, 23

Multi-line editor, 5

Multiple document interface,
12,14

Multiple screens, 48

Page 51

Multithreading, 17
MySQL, 29
Name of widget, 7
Native dialog, 14
NetBSD, 48
Networking, 41, 42
Notebook, 16
notify(), 40
Object-oriented programming,
9
OcCl, 29
ODBC, 29
OpenBSD, 48
OpenGL, 25, 49
Oracle, 29
Overlay, 25
Ownership, 44
Painting, 23, 39
Palette, 23, 24, 35
Parent widget, 5, 7, 36
Picture, 22, 24
Pixmap, 24
Plain old data, 44
Patforms, 47
Platinum, 35
Plugin, 36
PNG, 22
PNM, 22
Pointer-based collection, 44
Popup menu, 12, 31
Positioning, 36
PostgreSQL, 29
Preferences, 17, 35
Preferred size, 37
Prepared queries, 30
Preprocessor, 10
Primary key, 29
Print dialog, 14, 48
Printer, 24
Private class, 43
.pro, 19
Process, 41
Progressbar, 5, 15
Property, 11
Property box, 16
Push button, 5
QAction, 14
QApplication, 5, 36, 40, 44
QAquastyle, 35
QAssistantClient, 19
QBitArray, 44

Qt 3.1 Whitepaper

QBitmap, 43
QBrush, 43
QBuffer, 41
QButtonGroup, 5
QByteArray, 44
QCache, 44
QCanvas, 25
QCanvasltem, 25
QCanvasView, 25
QCDEStyle, 35
QChar, 32
QCheckBox, 5,6
QCloseEvent, 39
QColor, 24, 26
QComboBox, 5, 6
QCommonStyle, 35
qCopy(), 43
QCursor, 43
QCustomMenultem, 13
QDataBrowser, 31
QDataStream, 40
QDataTable, 31
QDataView, 31
QDateTimeEdit, 5
QDid, 5

QDidog, 4, 16
QDict, 44

QDir, 41

QDns, 42
QDockArea, 17
QDockWindow, 17
QEvent, 39

QFile, 41
QFileDialog, 15
QFilelnfo, 41
gFind(), 43

QFont, 43
QFontDialog, 14
QFrame, 4
gglClearCoalor(), 26
gglColor(), 26
QGLWidget, 25
QGridLayout, 5, 6, 37
QGroupBox, 5
QHBoxLayout, 5, 37
gHeapSort(), 43
QlconSet, 43
QlconView, 6
Qlmage, 22
QIODevice, 41, 42
QKeyEvent, 39

T R OL L TECH

QLabel, 4,5
QLayout, 39
QLCDNumber, 5,7
QLibrary, 45
QLineEdit, 4,5, 6
QListBox, 6
QListView, 6

.gm, 33
QMacStyle, 35
OMainWindow, 12
gmake, 3,11, 19
QMap, 43
QMemArray, 44
QMenuBar, 12
QMessageBox, 14
QMotifPlusStyle, 35
QMoatifStyle, 35
QMouseEvent, 39
OQMovie, 23
OQMutex, 17
QObject, 4,9, 10, 33, 39, 44
QPainter, 23
QPaintEvent, 39
QPalette, 43

QPen, 43

QPicture, 24,43
QPixmap, 24, 43
QPlatinumStyle, 35
QPointArray, 44
QPopupMenu, 12
QPrinter, 24
QProcess, 41
QProgressBar, 5
QProgressDialog, 15
QPtrList, 44
QPtrQueue, 44
QPtrStack, 44
QPtrVector, 44
QPushButton, 5
QRadioButton, 5,6
QRegEXp, 6, 32,43
QRegion, 43
QResizeEvent, 39
QScrollBar, 5
QsScrollView, 6
QSemaphore, 17
QServerSocket, 43
QSettings, 17
QSGlstyle, 35
QSlider, 5
QSocket, 41, 42

Page 52

QSocketDevice, 41, 43
QSpinBox, 4,5,6
QSplitter, 39
QSqlCursor, 30
QSqlField, 30
QSglForm, 31
QSqlQuery, 29
QStatusBar, 11
QString, 32,40, 43
QStringList, 43
QStyle, 35,44
QStyleShest, 19
QTabDiadog, 16
QTable, 6
Qt Assistant, 19
Qt Designer, 8,17, 18, 29, 32,
33,36, 37,38
QTextCodec, 32,40
QTextEdit, 5, 6, 14, 19
QTextStream, 40
QThread, 17
QTimer, 4
QTL, 43
QtLinguist, 17,33
QToolBar, 13,17
QToolButton, 13
QToolTip, 13
QTrandator, 33
Qt Template Library, 43
Query, 29
Queue, 44
quit(), 9
Qurl, 41
QUrlOperator, 41
Qvalidator, 6
QValuelist, 43
QValueStack, 43
QValueVector, 43
QVariant, 30
QVBoxLayout, 37
QWaitCondition, 17
QWhatsThis, 13
QWidget, 4, 16, 24, 44
QWindowsStyle, 35
QWindowsXPStyle, 35
QWizard, 16
QWorkspace, 12, 14
Radio button, 5, 6
Rapid application devel op-
ment, 49
rect(), 24

Qt 3.1 Whitepaper

Reference counting, 43

Reference documentation, 19,
49

Registry, 17

Regular expression, 6, 32

Relative growth, 37

RENDER, 48

Repainting, 39

Repositioning, 36

Resizing, 36, 39

Reusability, 9

RGB, 24

Rich text, 5

Right-to-left languages, 33, 37

Rollback, 30

Rotation, 23, 24, 25, 48

RTTI, 11

Run-timetype information, 11

SAX, 41

Scale, 23, 24,25

Scroll bar, 5,6

Scroll effect, 35

Scroll view, 5,6

SDI, 12

SELECT, 29

Semi-modal dialog, 16

Separator item, 12

Serialization, 40

Settings, 17, 35

SGl, 35

Shared library, 45

Sharing, 32, 43

Shear, 23, 24, 25

Shift-JIS, 32

Signal, 9

SimpleFlow, 39

Single document interface, 12

Size, 36

Size policy, 37

Slider, 5

Slot, 9

Socket, 41

Solaris, 48

Sound, 35

Sourcetext, 33

Spacer item, 37

Spacing, 37

Spin box, 5

Splitter, 39

Spreadsheet, 6

Sprite, 25

T R OL L TECH

SQL, 29

Stack, 43, 44

Standard Template Library,
43

Statusbar, 11, 12

STL, 43

Stream, 40

Stretch, 37

Stretch factor, 37

String, 32, 43

Style, 35, 47

Subclassing, 7, 10, 13, 19, 25,
30, 32, 35, 39, 43, 44

Sub-menu, 12

Support, 49

SVG, 24

Sybase, 29

System registry, 17

System sound, 35

Table, 6,31

Tab widget, 16

TCP, 42

TDS, 29

Tear-off handle, 12

Template, 43

Text editor, 5

Text rendering, 33

Text trandation, 33

Theme, 35, 47

Tile, 14

Time, 5

Timer, 7

Toggle button, 13

Toolbar, 11, 12, 13, 14, 17

Tooltip, 13, 35

tr(), 33

Transaction, 30

Transformation, 23, 25, 48

Transition effect, 35

Trandation, 11, 33

Transparency, 23

Treeview, 6

Tru64, 48

15,33

Type safety, 9

UDP, 42, 43

.ui, 19,33

uic, 19

Unicode, 17, 32, 40, 48

Unisys, 22

Unix, 47

Page 53

UnixWare, 48

URL, 41

User input, 6

User settings, 17, 35
Validation, 6
Value-based collection, 43
Variable binding, 30
Variant type, 30
Vector, 43, 44
Vietnamese, 33
View, 30

Viewport, 23

Visua C++, 48
Visualisation, 25
W3C, 24, 41
Warning, 14
What'sthis?, 13
Wheel mousg, 39
Widget, 4, 24
Widget style, 35, 47
width(), 23,24
Window, 14, 23
Windows, 25, 35, 46, 47
Windows XP, 35, 47
Wizard, 16, 32
Workspace, 12, 14
World matrix, 23, 48
Writing system, 33
XBM, 22

X extensions, 48
XIM, 48

Xinerama, 48

Xlib, 48

XML, 19, 24, 33, 41
XP, 35,47

XPM, 22

Xt, 48

X Window System, 25, 47

