Qt/Embedded Whitepaper

Trolltech

www. trol | tech. com

Abstract

This whitepaper describes the Qt/Embedded C++ toolkit for GUI and application development on
embedded devices. It runs on any device supported by Linux and a C++ compiler. Qt/Embedded
provides the entire standard Qt API and can compile out unused features to minimize its memory
footprint. Qt/Embedded provides its own windowing system which is far more compact than
Xlib and the X Window System that it replaces. Qt/Embedded applications can be developed on
familiar desktop systems, e.g. Windows and Unix, and with standard tools. It is provided with all
the Qt tools including Qt Designer for visual form design, and with tools specifically tailored to the
embedded environment.

Media Player Opera

e =

Systemn Info

=g

The Sharp Zaurus PDA using Qt/Embedded

ii

1. Introduction .

Qt/Embedded Whitepaper

Trolltech

www. trol |l tech. com

Contents

2. System Requirements

3. Architecture .

3.1. Windowing System

3.2. Fonts

33. Input Devices
34. InputMethods

3.5. Screen

Acceleration e

4. Development Environment

4.1. Qt'sSupportingTools

5. SignalsandSlots

5.1. ASignalsand Slots Example
5.2. Meta Object Compiler

6. Widgets . . .

6.1. A'Hello’Example
6.2. Common Widgets

0.3. Canvas e e e e
6.4. CustomWidgets
6.5. Main WInNdows o e e e

6.6. Menus

6.7. Toolbars o o e
6.8. BalloonHelp
60.9. ACHIONS e e

7. Dialogs

71, Layouts ..
7.2. QtDesigner
7.3. Built-in Dialogs

8. Look and Feel

8.1. WidgetStyle

O & & 0 NI NN O O U1 B~ W

NN RN NDNNDRNR R R B 2 2 9 3 4,
Ul Ul = W O © © O 0O 00 0 Ul = W NDN = O

8.2. Window Decorations e e e

9. Internationalization e

9.1. Unicode i e
9.2. Translating Applications
93. QtLinguist

10. Non-Graphical Classes

10.1. Collection Classes v v v i it e e e
10.2. Input/Output
10.3. Networking
10.4. Database
10.5. Multi-Threading

11. Qt/Embeddedinthe WiderWorld,

26
27
27
27
28
29
29
30
30
31
31
31

34

1. Introduction

Qt/Embedded is a C++ toolkit for GUI and application development for embedded devices. 1t runs
onavariety of processors, usually with Embedded Linux. Qt/Embedded applications write directly
to the frame-buffer, eliminating the need for the X Window System. In addition to the class library,
Qt/Embedded includes several tools to speed and ease development. Applications can be developed
with familiar programming environments on Windows and Unix, using the standard Qt APL

Qt/Embedded is a port of the Qt C++ API for embedded devices. It provides the same API and
tools as the Qt/X11, Qt/Windows and Qt/Mac versions. Qt/Embedded also includes classes and
tools to specifically support embedded development.

The Qt C++ toolkit upon which Qt/Embedded is built has been at the heart of commercial
applications since 1995. Qt is used by enterprises as diverse as AT&T, IBM, NASA, Sharp and
Xerox, and by numerous smaller companies and organizations. Qt 3.0 retains the power and ease
of use of earlier versions and introduces many new classes. Qt’s classes are fully featured to reduce
developer workload, and provide consistent interfaces to speed learning. Qt is, and always has
been, fully object-oriented.

Qt provides a type-safe alternative to old fashioned callbacks, called signals and slots [p. 9], that
facilitates true component programming. Qt supplies a wide range of versatile widgets [p. 12] that
can easily be subclassed to create custom components, or combined to create custom dialogs [p. 20].
Pre-defined dialogs for common tasks such as message boxes and wizards are also provided.

Qt/Embedded has much smaller system requirements [p. 4], i.e. lower storage (Flash) and memory
(RAM) footprints, than embedded solutions based on the X Window System. It can run on
hardware that runs Linux, has a linearly addressable framebuffer, and supports a C++ compiler.
And Qt/Embedded can be recompiled to exclude unused features to reduce its memory footprint
even further.

The architecture [p. 5] of Qt/Embedded includes its own windowing system [p. 6]. A variety of
input devices [p. 7] are supported.

Developers write code using their familiar development environments [p. 8]. Qt Designer [p. 23]
can be used to visually design user interfaces using Qt’s layout [p. 20] system, which automatically
adapts to the available screen space. Developers can choose one of the pre-defined look and feel
[p. 25] styles or create their own unique styles. Unix users can run and test their applications on a
pixel-perfect virtual frame-buffer.

Qt/Embedded also provides many non-graphical components [p. 29] for specialized tasks, such as
internationalization [p. 27], networking and database interaction.

Qt/Embedded is a mature, solid C++ toolkit, widely used all over the world [p. 31]. In addition
to Qt/Embedded’s many other commercial uses, it is the foundation of the Qtopia application
environment for small devices. Qt/Embedded makes application development a pleasure, with its
simple build system, visual form design and elegant API.

2. System Requirements

Qt/Embedded saves memory because it does not need an X server or Xlib; instead it writes directly
to the frame-buffer. Memory consumption can be fine-tuned by compiling out features that are not
used. It is also possible to compile all the applications into a single statically linked executable, to
save even more memory.

Qt/Embedded is available for all processors supported by Linux that have a C++ compiler, includ-
ing Intel x86, MIPS, ARM, StrongARM, Motorola 68000 and PowerPC. Trolltech is also exploring
the possibility of creating a cross platform toolkit for the embedded market. Qt/Embedded imple-
mentations for QNX and for WinCE are both being trialed. Trolltech also provides porting services
to other operating systems.

Qt/Embedded’s principal strength is that is doesn’t rely on an X server. This leads to signifi-
cant memory savings compared with other solutions, such as Qt/X11. A single library, the
Qt/Embedded library, is all that is necessary to replace the X server, the Xlib library and the widget
toolkit of other ‘embedded” solutions.

9000

8170 KB
g000.| |mQUX11

O Qt/Embedded
7000 - 6880 KB
6000
5130 KB
5000
4250 KB
4000 —
3230 KB
30001 y640ks
2000 1640 KB
1000 |
0 0KB

X Server + Phone Client + Mail Client+ Message Center

RAM (KB)

Cumulative RAM consumption

Figure 1. Memory comparison between Qt/X11 and Qt/Embedded for Ericsson’s screen phone

The graph illustrates that the X server grabs a lot of RAM on startup, and also requires more

memory as each new application is launched. For example, starting the Phone Client requires 2490
KB with Qt/X11, but only 1640 KB with Qt/Embedded.

Qt/Embedded applications write directly to the kernel frame-buffer. Linear frame-buffers with
1, 4, 8, 15, 16, 24 and 32 bit depths and VGA16 are supported. Any graphic card supported by
the kernel will work, and Qt/Embedded can be customized to benefit from screen acceleration
hardware, as described in “Architecture” [p.5]. There is no arbitrary limit on screen size, and
many advanced features such as anti-aliased fonts, alpha-blended pixmaps and screen rotation are
provided.

The footprint of the Qt/Embedded library can be reduced by compiling out unused features.
For example, the QListView widget can be compiled out by defining the pre-processor symbol
QT_NO_LI STVI EW and support for internationalization is compiled out by defining QT_NO_| 18N.
Qt/Embedded provides over 200 configurable features, resulting in libraries varying in size
between 700 KB and 5000 KB (Intel x86). Most customers use configurations between 1500 KB and
4000 KB.

Qt/Embedded also benefits from memory-saving techniques such as implicit sharing (copy
on write) and caching. Over 20 classes in Qt, including QBitmap, QMap, QPalette, QPicture,
QPixmap and QString, use implicit sharing to avoid unnecessary copying and minimize memory
usage. Implicit sharing occurs automatically and makes programming much simpler, avoiding the
risks related to hand optimization and pointers.

Many Qt components can be compiled into the library or made available as plugins. Custom look
and feel components [p. 25], database drivers, font format readers, image format converters, text
codecs and widgets can be compiled as plugins, reducing the size of the core library and providing
more flexibility. Alternatively, if the applications and components are known in advance, they can
be compiled and statically linked with the Qt/Embedded library into a single executable, saving
ROM, RAM and CPU.

3. Architecture

Qt/Embedded provides the standard Qt API for embedded devices with a lightweight windowing
system. Qt/Embedded’s object-oriented design makes it straightforward to support additional
devices, from peripherals like keyboards and mice to accelerated graphics boards.

With Qt/Embedded, developers benefit from exactly the same API that Qt/X11, Qt/Windows and
Qt/Mac provide.

Using a single API across a variety of platforms offers many benefits. Companies that produce
applications for both embedded devices and desktop computers can train their developers in a
single toolkit. This makes it easier to share experience and knowledge, and gives managers more
flexibility when allocating developers to projects. Furthermore, applications and components
developed for a particular platform can be sold for any of the other Qt platforms, expanding the
products’ market for a very low marginal cost.

Application Source Code
Qt API

Qt/Embedded Qt/X11
X Window Server

Frame-buffer

Figure 2. Qt/Embedded versus Qt/X11 on Embedded Linux

3.1. Windowing System

A Qt/Embedded windowing system consists of one or more processes, one of which acts as a
server. The server allocates regions to be displayed by clients, and generates mouse and keyboard
events. The server process can also provide input methods and a user interface to launch client
applications. The server process behaves like a client but has some additional privileges. Any
program can be run as the server using the - gws command-line option.

Clients communicate with the server using shared memory. Communication is kept to a minimum;
clients perform all drawing operations directly to the frame-buffer, without passing through
the server, and are responsible for drawing their own title bars and other decorations. This is all
handled transparently by the Qt/Embedded library.

Clients can exchange messages using QCOP channels. The server simply broadcasts QCOP mes-
sages to all applications listening to a given channel. Applications can respond in a slot connected
to a received() signal. Messages can be accompanied by binary data, typically serialized using the
QDataStream class, described in “Non-Graphical Classes” [p. 29].

The QProcess class provides another asynchronous inter-process communication mechanism. It is
used to start external programs and to communicate with them by writing to their standard input
and by reading their standard output and standard error.

3.2. Fonts

Qt/Embedded supports four different font formats: TrueType Fonts (TTF), PostScript Typel Fonts,
Bitmap Distribution Format (BDF) and Qt Pre-rendered Fonts (QPF). Support for other font formats
can be added by subclassing QFontFactory, and can be made available as a plugin. Anti-aliased
fonts are supported.

Each TTF or Typel glyph is rendered at a given point size when it is first used in a drawing or met-
rics operation, and the result is cached. Memory and CPU time can often be saved by pre-rendering
aTTF or a Typel file at the required sizes (for example, 10 and 12 points) and saving the result in QPF
format. QPF files that contain the necessary fonts can be obtained by using the makeqpf tool, or by
running applications with the - savef ont s option. If all the fonts are in QPF format, Qt/Embedded
can be reconfigured to compile out support for TTF and Typel fonts, which will cut down the size
of the Qt/Embedded library, and considerably reduce the amount of memory used to store fonts.

For example, a 10-point Times QPF font for ASCII uses about 1300 bytes, and is directly mapped
into memory from physical storage.

Qt/Embedded fonts usually contain a small subset of Unicode, typically ASCII or Latin-1. A
complete 16-point Unicode font uses over 1 MB of memory. It is possible to save custom subsets of
a font, for example one that contains all the glyphs necessary to spell the name of your product in
24-point Cappuccino Bold.

3.3. Input Devices

Qt/Embedded 3.0 supports several mouse protocols out of the box: BusMouse, IntelliMouse, Mi-
crosoft and MouseMan. Qt/Embedded also supports the NEC Vr41XX touch-panel and the iPAQ
touch-panel. Developers can support custom pointer devices by subclassing QWSMouseHandler
or QCalibratedMouseHandler.

Qt/Embedded supports the standard 101-key keyboard and Vr41XX buttons. Custom keyboards
and other non-pointer devices can be supported by subclassing QWSKeyboardHand]ler.

3.4. Input Methods

Input methods for non-Latin scripts (for example, Arabic, Chinese, Hebrew and Japanese) can be
written to filter and convert keyboard input. Input method writers have the entire Qt API at their
disposal.

On devices without a keyboard, input methods constitute the only means of entering characters.
Qtopia provides four input methods: a handwriting recognizer, a graphical QWERTY keyboard, a
Unicode keyboard and a dictionary-based pickboard.

e — : | CJK Unified Ideagraphs - |
=
A : 4 |1 4F |4F AR [Z=2)0E 0T -
L 5| | iz |
& o 2 | U5 A [E|hR BE |2 -
G .7~ B earam ORI B |%E S I (i v
- N~ I] G648 AW
Handwriting @ . ®
Unicode
ml-Ji]2]3[4]s]e|7[e]o]0]-[=]¢
Tablg[wle|refy[u]ifalp[I[I]\]
Caps|a|5|d|f|g|h|_1|k|||,:|'|Eet
shift |z[x|c]v]b|n|m]|.][.[/] shif 123 @*1? KEY Space Back Enter Shift
crrl] Ale |alt|ctd| ABC DEF GHIJKL MNO PQR STU WX Y2-'
@) - Bl eeram @e=ma <P 6:47 AM
Keyboard Pickboard

Figure 3. The standard input methods available on Qtopia

3.5. Screen Acceleration

Screen operations can benefit from hardware acceleration by subclassing QScreen and QGfxRaster.
Trolltech provides example accelerated drivers for Mach64 and Voodoo3 cards, and can be contract-
ed to write custom drivers.

4. Development Environment

Qt/Embedded development can take place using familiar Unix and Windows tools. Several
multi-platform tools are provided to make development easier and faster, notably Qt Designer. Unix
users additionally benefit from a virtual frame-buffer that duplicates, pixel for pixel, the screen of
a device.

Applications for an embedded device can be compiled on any platform equipped with a cross-
development tool chain. The most common option is to build a cross-platform GNU C++ compiler
(g++) with libc and the binary utilities on a Unix system.

An alternative approach involves using a desktop version of Qt, such as Qt/X11 or Qt/Windows,
for most of the development phase. This allows developers to use a familiar environment, for
example, Microsoft Visual C++ or Borland C++. On Unix, many environments are available, such
as KDevelop, which supports cross-development.

If the Qt/Embedded application is developed on Unix, it can be compiled to run on the develop-
ment machine in a separate console or in the virtual frame-buffer,an X11application that simulatesa
frame-buffer. By specifying the device’s width, height and color depth, the simulated frame-buffer
will match the physical device, pixel for pixel. This saves developers from continuously re-flashing
the device, and accelerates the compile, link and run cycle. It also allows developers to use standard
debuggers and profilers on the development machine. If desired, Qt/Embedded applications can
act as VNC (Virtual Network Computing) servers and be run over a network.

4.1. Qt’s Supporting Tools

Qt includes many tools to support embedded systems development, some of which are mentioned
elsewhere in this document. The two most substantial tools (apart from the virtual frame-buffer
mentioned above) are qmake and Qf Designer.

The gmeke tool is a Makefile generator for the Qt/Embedded library and for applications. It gener-
ates Makefiles for multiple platforms from a project file (. pr 0). gmake supports cross-development
and shadow builds, and makes it easy to switch between different configurations.

Developers can use Qt Designer to design dialogs visually instead of writing code. It uses Qt’s
layout managers to produce dialogs that resize smoothly, and is fully integrated with gqnmake.
Qt Designer is covered in “Dialogs” [p. 20].

5. Signals and Slots

The signals and slots mechanism provides inter-object communication. It is easy to understand and
use and it is fully supported by Qt Designer.

GUI applications respond to user actions. For example, when a user clicks a menu item or toolbar
button, the application executes some code. More generally, we want objects of any kind to com-
municate with each other. The programmer must relate events to the relevant code. Older toolkits
use mechanisms that are crash-prone, inflexible, and not object-oriented. Trolltech has invented a
solution called "signals and slots’. Signals and slots is a powerful inter-object communication mech-
anism that can be used to completely replace the crude callbacks and message maps used by legacy
toolkits. Signalsand slots are fast, type-safe, flexible, fully object-oriented and implemented in C++.

To associate some code with a button using the old callback mechanism, it is necessary to pass a
pointer to a function to the button. When the button is clicked, the function is then called. Old
toolkits do not ensure that arguments of the right type are given to the function when it is called,
which makes crashes more likely. Another problem with the callback approach is that it tightly
binds the GUI element to the functionality, making it difficult to develop classes independently.

Qt’s signals and slots mechanism is different. Qt widgets emit signals when events occur. For
example, a button will emit a ‘clicked” signal when it is clicked. The programmer can choose to

/ "\ connect(Object1, signal1, Object2, slot1)

el connect(Object1, signal1, Object2, slot2)
signali
Ak (" Object2)
signali
N—nt
——p slotl
L——Pp slot2
N——S
Object3
signalt | connect(Object1, signal2, Object4, slot1)
(Objectd)
slot1
N—t
L) slotl
slot2
———————JP slot3
connect(Object3, signal1, Object4, slot3) N— S

Figure 4. An abstract view of some signals and slots connections

connect to a signal by creating a function (called a slot) and calling the connect() function to relate
the signal to the slot. Qt’s signals and slots mechanism does not require classes to have knowledge

of each other, which makes it much easier to develop highly reusable classes. Signals and slots are
type-safe, with type errors being reported by warnings rather than by crashes.

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user’s
click on Quit makes the application terminate. In code, this is written as

connect (button, SIGNAL(clicked()), gApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

The signals and slots implementation smoothly extends C++’s syntax and takes full advantage
of C++’s object-oriented features. Signals and slots can be overloaded or reimplemented and may
appear in the public, protected or private sections of a class.

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

[Helvetica [Cronyx o &]connect(fontSizeSpinBox, valueChanged(int),

textEdit, setPointSize(int))

int factorial{ int n)

l/f Recursive, I.e. sleow, factorial Ffunction =
i

if (n <=1) return 1;

return n * factorial{ n - L J; connect(textEdit, modificationChanged(bool),
' = customStatusBar, modificationStatus(bool))

|Ln 1, Col 1 |.Sa.vec|

Figure 5. An example of signals and slots connections

5.1. A Signals and Slots Example

To benefit from signals and slots, a class must inherit from QObject or one of its subclasses and
include the Q OBJECT macro in the class’s definition. Signals are declared in the si gnal s section
of the class, while slots are declared in the public sl ots, protected slots or private slots
sections.

Here’s an example QObject subclass:

cl ass BankAccount : public QObject
{
Q _OBJECT
public:
BankAccount () { curBalance = 0; }
i nt balance() const { return curBal ance; }
public slots:
voi d setBal ance(int newBal ance);

si ghal s:
voi d bal anceChanged(int newBal ance);

10

private:
i nt curBal ance;

s

In the style of most C++ classes, the class BankAccount has a constructor, a get function balance(),
and a set function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account
has changed. Signals are not implemented; when a signal is emitted, the slots it is connected to
are executed.

The set function is declared in the publ i ¢ sl ot s section, so it is a slot. Slots are standard member
functions with an implementation that can be called like any other function, and which can also be
connected to signals.

Here’s the implementation of the slot setBalance():

voi d BankAccount: : set Bal ance(i nt newBal ance)

{
if (newBal ance != curBal ance) {
cur Bal ance = newBal ance;
em t bal anceChanged(curBal ance);
}
}

The statement

em t bal anceChanged(curBal ance);

causes the balanceChanged() signal to be emitted with the new current balance asits argument. The
keyword emi t, like si gnal s and sl ot s, is provided by Qt and is transformed into standard C++
by the C++ pre-processor.

One object’s signal can be connected to many different slots, and many signals can be connected to
one slot in a particular object. Connections are made between signals and slots whose parameters
have the same types. A slot can have fewer parameters than the signal and ignore the extra param-
eters.

5.2. Meta Object Compiler

The signals and slots mechanism is implemented in pure standard C++. The implementation uses
the C++ pre-processor and the Meta Object Compiler (noc) included with the Qt toolkit.

The moc reads the application’s header files and generates the necessary code to support signals and
slots. Developers never edit or even need to look at the generated code. Makefiles generated by
gnake include rules to run nmoc transparently, when required.

In addition to handling signals and slots, moc supports Qt’s translation mechanism, its property
system and run-time type information.

11

6. Widgets

Qt has a rich set of widgets (buttons, scroll bars, etc.) that cater for most situations. Qt’s widgets
are flexible and easy to subclass for special requirements.

Widgets are instances of QWidget or one of its subclasses, and custom widgets are created by
subclassing.

QObject

QTimer QWidget

QDialog | QSpinBox

QLineEdit

Figure 6. An extract from the QWidget class hierarchy

A widget may contain any number of child widgets. Child widgets are shown within the parent
widget’s area. A widget with no parent is a top-level widget (a ‘window’), and is decorated with a
configurable frame and title bar. Qt imposes no arbitrary limitations on widgets. Any widget can
be a top-level widget; any widget can be a child of any other widget. The position of child widgets
within the parent’s area can be set automatically using layout managers [p.20], or manually if
preferred. When a parent widget is disabled, hidden or deleted, the same action is applied to all its
child widgets recursively.

Labels, message boxes, tooltips, etc., are not confined to using a single color, font and language.
Qt’s text-rendering widgets can display multi-language rich text using a HTML subset.

6.1. A ‘Hello’ Example

The complete source code for a program that displays “Hello Qt/Embedded!” follows:

hello M [=]F

Hello G/Embaddad!

Figure 7. Hello Qt/Embedded!

#i ncl ude <qapplication. h>
#i ncl ude <ql abel . h>

int main(int argc, char xxargv)

{

12

QApplication app(argc, argv);
Q.,abel =xhello = new Q.abel ("Hel | 0"
" <i>Q/Enbedded! </i>", 0);
app. set Mai nWdget(hello);
hel | o- >show() ;
return app. exec();

6.2. Common Widgets

The screenshots below present the main Qt widgets, shown using the Windows style.

A& label Push but‘lonl

Figure 8. A QLabel and a QPushButton laid out with a QHBox

QButtonGroup
& Badiol [~ Checki

 Radio2 [V Check2

Figure 9. Two QRadioButtons and two QCheckBoxes laid out with a QButtonGroup

— AGroUpBox
|1905-05-17 FH| 031416 £
| QLineEdit

QTex=tEdit

“Everything FEME alwvays
he made as simple as
possible, but not simpler.”

Albert Einsteit

|C0mb0b0x text j

Figure 10. A QDateTimeEdit, a QLineEdit, a QTextEdit and a QComboBox laid out with a QGroupBox

13

{7 CH s

[3 4 i i

Figure 11. A QDial, a QProgressBar, a QSpinBox, a QScrollBar, a QLCDNumber and a QSlider laid out with
a QGrid

?1) @ C.olum.n 1 . Caolumn 2 | Column 3
o - GListWiew
lcan 1 lcon 2 =
Deux
B o Tl tem 3 Three Trais
Icon 3 B-Nitem 4 Four Gluatre
o i item 5 Five Cing
& O Item & Six Six
[Witer 1 QTableltem | @CheckTablsitem | @CombaTablsiter=
e 2 0 [iem1 ™ Check 1
% 1 |@uemz | Checkz |Cnmb0 2) |
2 |tem 3 ¥ Check 3
3 |item4 I~ Check 4 ICnmbo4 B
4| | »

Figure 12. A QIconView, a QListView, a QListBox and a QTable laid out with a QGrid

QComboBox, QLineEdit and QSpinBox’s input can be constrained or validated using a QValida-
tor subclass. Regular expressions can be used for validation.

QTable, QListView, QTextEdit and other widgets that can display large amounts of data inherit
QScrollView and automatically provide scroll bars.

Many of Qt’s built-in widgets can display images, for example, buttons, labels, menu items, etc.
The QImage class supports the input, output and manipulation of images in several formats,
including BMP, GIFY, JPEG, MNG, PNG, PNM, XBM and XPM.

6.3. Canvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large
number of ‘canvas items’ that represent lines, rectangles, ellipses, texts, pixmaps, animated sprites,
etc. Canvas items can easily be made interactive (e.g. user movable).

PIf you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys
may require you to license the technology to use GIF.

14

Score o0 Level 3 Ships 2

»

)

01 @ ® 0 ¢ § Fuel [Immm]

Figure 13. The Qtopia Asteroids game written with QCanvas

Canvas items are instances of QCanvasltem subclasses. They are more lightweight than widgets,
and they can be quickly moved, hidden and shown. QCanvas has efficient support for collision
detection, and can list all the canvas items in a given area. QCanvasltem can be subclassed to
provide custom item types and to extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can show
the same QCanvas, but with different translations, scales, rotations and shears.

QcCanvasis ideal for data visualization. It has been used by customers for drawing road maps and
for presenting network topologies. It is also suitable for fast 2D games with lots of sprites.

6.4. Custom Widgets
Developers can create their own widgets and dialogs by subclassing QWidget or one of its

subclasses. Toillustrate subclassing, the complete code for an analog clock widget is presented. The
AnalogClock widget displays the current time and updates itself automatically.

Figure 14. Analog clock widget

In anal ogcl ock. h, AnalogClock is defined like this:

#i ncl ude <qgw dget. h>

cl ass Anal ogC ock : public QN dget

{
public:
Anal ogC ock(QW dget *parent = 0, const char *name = 0);

15

pr ot ect ed:
virtual void timerEvent(QlinmerEvent xevent);
virtual void paintEvent(QPaintEvent xevent);

s

AnalogClock inherits QWidget. It has a constructor typical of widget classes, with optional par ent
and name parameters. (Testing and debugging are easier if nane is set.) The timerEvent() function
isinherited from QObject (a base class of QWidget) and is called at regular intervals by the system.
The paintEvent() function is inherited from QWidget and is called automatically whenever the
widget needs to be redrawn.

The timerEvent() and paintEvent() functions are two examples of ‘event handlers’. Application
objects receive system messages as Qt events (QEvent objects). There are over fifty types of event,
of which the most commonly used are MouseBut t onPress, MbuseBut t onRel ease, KeyPress,
KeyRel ease, Pai nt, Resi ze and C ose. Objects can respond to events sent to them, and filter
events destined for other objects.

In anal ogcl ock. cpp, the functions declared in anal ogcl ock. h are implemented:

#i ncl ude <qdatetine. h>
#i ncl ude <qgpainter. h>

#i ncl ude "anal ogcl ock. h"

Anal ogCl ock: : Anal ogCl ock(QW dget xparent, const char *name)
QW dget (parent, nane)

{ start Timer(12000);
resi ze(100, 100);
}
voi d Anal ogC ock: :tinmerEvent (QTiner Event x)
{
update();
}

voi d Anal ogd ock: : pai nt Event (QPai nt Event x)

{
QCOORD hourHand[8] ={ 2, 0, 0, 2, -2, 0, 0, -25};
QCOORD mi nuteHand[8] ={ 1, 0, 0, 1, -1, 0, 0, -40 };
Qlinme tinme = Qlinme::currentTinme();

QPainter painter(this);
pai nter.set Wndow -50, -50, 100, 100);

pai nter.setBrush(black);

for (int i =0; i <12; i++) {

16

pai nter.drawLi ne(44, 0, 46, 0);
painter.rotate(30);

}

pai nter.save();

painter.rotate(30 * (time.hour() %12) + tine.mnute() / 2);
pai nt er. drawConvexPol ygon(QPoi nt Array(4, hourHand));

pai nter.restore();

pai nter.save();

painter.rotate(6 x tinme.mnute());

pai nt er. drawConvexPol ygon(QPointArray(4, m nuteHand));
pai nter.restore();

}

The constructor tells the system to call timerEvent() every twelve seconds to refresh the clock, and
sets the widget’s default size to 100 x 100.

In timerEvent(), the QWidget function update() is called to tell Qt that the widget needs to be
repainted. Subsequently, Qt will generate a paint event and call paintEvent().

In paintEvent(), a QPainter object is used to draw the twelve notches and the time and minute
hands on the widget. The QPainter class provides an API for painting widgets, pixmaps, vector
images and PostScript in a uniform way. It provides functions to draw points, lines, polygons,
ellipses, arcs, Bezier curves, etc. The coordinate system of a QPainter can be translated, scaled,
rotated and sheared; the objects drawn can be clipped according to a ‘'window’, and positioned
on the widget using a 'viewport’. Clipping can be used to reduce flicker when repainting. An
area of the frame-buffer can be locked and accessed directly using the QDirectPainter subclass of
QPainter.

The files anal ogcl ock. h and anal ogcl ock. cpp completely define and implement the Analog-
Clock custom widget. This widget can be used immediately:

#i ncl ude <qapplication. h>
#i ncl ude "anal ogcl ock. h"

int main(int argc, char xxargv)

{
QAppl i cation app(argc, argv);
Anal ogC ock =*cl ock = new Anal ogd ock;
app. set Mai nW dget (cl ock);
cl ock->show() ;
return app. exec();
}

17

6.5. Main Windows

The QMainWindow class lays out a set of related widgets to provide a framework for typical
application main windows.

A main window contains a set of standard widgets. The top of the main window contains a
menu bar, beneath which toolbars are laid out. The toolbars can be moved to any dock area; main
windows have dock areas at the top, left, right and bottom. Toolbars can also be dragged out of a
dock area and floated as independent tool palettes. The bottom of the main window, below the
bottom dock area, is occupied by a status bar. The central area contains any widget. Tooltips and
“What's this?” help provide balloon help for the user-interface elements.

For small screen devices, it can be preferable to define a standard QWidget template in Qf Designer
and use that, rather than QMainWindow. The template typically has a menu bar and a toolbar side
by side, and may not have a status bar at all. (Where necessary, status may be shown in the task
bar or the title bar, for example.)

6.6. Menus

The QPopupMenu widget presents menu items to the user in a vertical list. Popup menus can be
standalone (e.g. a context menu), can appear in a menu bar, or can be a sub-menu of another popup
menu.

Each menu item can have an icon, a checkbox and an accelerator. Menu items usually correspond
to actions (e.g. Save). Separator items are displayed as a line and are used to visually group related
actions.

Here’s an example that creates a File menu with New, Open and Exit menu items:

QPopupMenu =fileMenu = new QPopupMenu(this);
fileMenu->insertlitenm("&N\New', this, SLOT(newFile()), CTRL+Key_N);
fileMenu->insertliten("&pen...", this, SLOT(open()), CTRL+Key O);
fileMenu->i nsert Separator();

fileMenu->insertltenm "E&it", qApp, SLOT(quit()), CTRL+Key Q);

When a menu item is chosen, the corresponding slot is executed. As accelerators are rarely used on
devices with no keyboard, Qt/Embedded is typically configured without accelerator support. This
means that whereas “&New” would be rendered as New on a desktop machine, it will appear as
New on an embedded device.

The QMenuBar class implements a menu bar. It automatically sets its geometry to the top of its
parent widget. It splits its contents across multiple lines if the parent window is not wide enough.
Qt’s built-in layout managers automatically take the menu bar into consideration.

Qt’s menu system is very flexible. Menu items can be enabled, disabled, added or removed
dynamically. Menu items with customized appearance and behavior can be created by subclassing
QCustomMenultem.

18

6.7. Toolbars

The QToolButton class implements a toolbar button with an icon, a 3D frame and an optional
label. Toggle toolbar buttons turn features on and off. Other toolbar buttons execute a command.
Different icons can be provided for the active, disabled and enabled modes, and for the on and
off states. If only one icon is provided, Qt automatically distinguishes the state using visual cues,
for example, graying out disabled buttons. Pressing a toolbar button can also be used to trigger a
popup menu.

QToolButtons usually appear side-by-side within a QToolBar. An application can have any
number of toolbars, and the user is free to move them around. Toolbars can contain widgets of
almost any type, for example QComboBoxes and QSpinBoxes.

6.8. Balloon Help

Modern applications use balloon help to briefly explain the purpose of user-interface elements. Qt
provides two mechanisms for balloon help: tooltips and “What's this?” help.

Tooltips are small, usually yellow, rectangles that appear automatically when the mouse pointer
hovers over a widget. Tooltips are often used to explain a toolbar button, since toolbar buttons are
rarely displayed with text labels. Here’s how to set the tooltip of a ‘Save” toolbar button:

Qrool Ti p: : add(saveButton, "Save");

It is also possible to set a longer piece of text to be displayed in the status bar when the tooltip is
shown.

Devices that do not use a mouse (for example, those that use a stylus), may not have a means of
hovering the mouse pointer over a widget, which is the normal mechanism for raising a tooltip.
Such devices may not support tooltips at all (relying on “What's this?” help instead), or may use a
gesture, for example, press and hold, to signify hovering.

“What's this?” help is similar to tooltips, except that the user must request it. On a small screen
device, “What'’s this?” help may be invoked by pressing a ? help button that appears next to the
application’s X close button, and then pressing the relevant widget. “What's this?” help is typically
longer than a tooltip. Here’s how to set the “What's this?” text for a ‘Save’ toolbar button:

QMhat sThi s: : add(saveButton, "Saves the current file.");

The QToolTip and QWhatsThis classes provide virtual functions that can be reimplemented for
more specialized behavior.

Qtopia doesn’t use either of these mechanisms to provide help. Instead it provides a ? help button
in each application’s title bar, which launches the HTML help browser with the help contents page
for the relevant application. It uses the press and hold gesture to invoke context (right click) menus
and property dialogs.

19

6.9. Actions

Applications usually provide the user with several different ways to perform a particular action.
For example, most applications provide a ‘Save’ action available from the menu (File | Save), from
the toolbar (the "floppy disk” toolbar button) and as an accelerator (Ctrl+S). The QAction class
encapsulates this concept. It allows programmers to define an action in one place and then add that
action to a menu or toolbar. Actions that only make sense as menu options can be added to menus
directly.

The following code implements a ‘Save” menu item and a ‘Save’ toolbar button. Balloon help
and an accelerator could easily be added, but are not included because they are rarely used for
small devices.

QAction *saveAct = new QAction(this);

saveAct - >set Text (" Save");

saveAct - >set | conSet (QPi xmap("save. png"));

connect (saveAct, SIGNAL(activated()), this, SLOT(save()));
saveAct - >addTo(fil eMenu);

saveAct - >addTo(tool bar);

In addition to avoiding duplication, using a QAction ensures that the state of menu items stays in
sync with the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an
action will disable any corresponding menu items and toolbar buttons. Similarly, if the user clicks
a toggle toolbar button, the corresponding menu item will be checked or unchecked accordingly.

7. Dialogs

Developers can build their own dialogs using the Qt Designer visual design tool. Qt uses ‘layouts’
to automatically size and position widgets in relation to one another. This ensures that dialogs make
the best use of the available screen space. The use of layouts also means that buttons and labels
automatically resize to show their text in full regardless of language.

7.1. Layouts

Qt provides layout managers for organizing child widgets within the parent widget’s area. They
feature automatic positioning and resizing of child widgets, sensible minimum and default sizes
for top-level widgets, and automatic repositioning when the contents or the font changes.

Using layouts, developers can write applications independently of the screen size or orientation,
without wasting space or duplicating code. For internationalized applications, layouts ensure
that buttons and labels take as little space as possible without cutting off the text, regardless of the
language.

Layouts also make it easy to accommodate certain user-interface components such as input
methods and task bars. For example, when Qtopia users are entering text, the input method takes
up screen space, and the application should adapt accordingly.

20

Edit Address

Edit Address

First Mame |Josephine First Mame |Josephine %
Last Mame Doe Last Mame Dioe l
Categories Personal ! ' ~ Categories Personal

Miciclle Name I
Suffix I
Ermails IJDl
Home Street I
Harne City I

Home State I

Harne Zip I E

sl

Iliciclle Mame

SUTfiz

Ermails

Home Street

&..7-0d P 1 54| @7 - 0T b s

B
n

Figure 15. Layout management on Qtopia

Qt provides three built-in layout managers: QHBoxLayout, QVBoxLayout and QGridLayout.

| o I | 2 3 4
o
== [To0 [o1
=z [0 [1.1
T [z
‘|

Figure 16. QHBoxLayout, QVBoxLayout and QGridLayout

QHBoxLayout organizes the managed widgets in a single horizontal row from left to right.
QVBoxLayout organizes the managed widgets in a single vertical column, from top to bottom.
QGridLayout organizes the managed widgets in a grid of cells; widgets may span multiple cells.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that windows look
good and resize smoothly. Developers can refine the layout using the following mechanisms:

1. Setting a minimum size, a maximum size or a fixed size for some child widgets.
2. Adding stretch items or spacer items. Stretch or spacer items fill empty space in a layout.

3. Changing the size policies of the child widgets. Programmers can fine tune the resize behavior of
a child widget. Child widgets can be set to expand, contract, keep the same size, etc.

4. Changing the child widgets” size hints. QWidget::sizeHint() and QWidget: minimumSizeHint()
return a widget’s preferred size and preferred minimum size based on the contents. Built-in

widgets provide appropriate reimplementations.

5. Setting stretch factors. Stretch factors allow relative growth of child widgets, e.g. two thirds of
any extra space made available should be allocated to widget A and one third to widget B.

21

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient for
internationalized applications supporting right-to-left languages such as Arabic and Hebrew.

Layouts can be nested to arbitrary levels. Here’s an example of a dialog box, shown at two different
sizes:

3 . —
. i @) bl e ere
O IATErHEOR F B @ 8 Now please select a country
Now please select a countr
: : Canarta Met

_:'J France
Mext »
Germany
Italy
< Prev | Japan

Russia
 Uriitect Ririgdom skiniecE o

| Initerd Gtates nf Amp United States of America
11 ? » Help I

< Frey

f L

Help

Figure 17. Small dialog and large dialog

The dialog uses three layouts: a QVBoxLayout that groups the push buttons,a QHBoxLayout that
groups the country listbox with the push buttons and a QVBoxLayout that groups the “Now please
select a country” label with the rest of the widget. A stretch item maintains the gap between the <
Prev and Help buttons.

The dialog’s widgets and layouts are created with the following code:

QVBoxLayout =buttonBox = new QVBoxLayout(6);
buttonBox->addWidget(new QPushButton("Next >" this));
buttonBox->addWidget(new QPushButton("< Prev", this));
buttonBox->addStretch(1)

buttonBox->addWidget(new QPushButton("Help", this));
QListBox countryList = new QListBox(this);
countryList->insertltem("Canada");

L

countryList->insertltem("United States of America");

QHBoxLayout =*middleBox = new QHBoxLayout(11);
middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout =topLevelBox = new QVBoxLayout(this, 6, 11);
topLevelBox->addWidget(new QLabel("Now please select a country", this));
topLevelBox->addLayout(middleBox);

Alternatively, the dialog can be designed using Qt Designer with just 17 mouse clicks.

22

. MNow please select a country

 [Canada Nets ||
4 France

| Germany < Pray | i
C]ty |
4 Japan

“ YRussia

. JUnited Kingdom

| United States of America

i<l
o i\\\\\\\\\\\\\\|
=

Figure 18. Laying out a form in Qt Designer

7.2. Qt Designer

Qt Designer is a visual user-interface design tool. Qt applications can be written entirely in source
code, or using Qt Designer to speed up development. Designing a form with Qt Designer is a simple

[x] : - QtDesignerbyIrolftech = WA
File Edit Project Search Tools Layout Prewiew Mdindow Help

[AB®R E v @0 = @[]| 6]
JJHwaHUn%\ D@Dl\ﬂll%\

| fulticlip
S muliciip pro | lcu”e“t Ciopng |
B- 0 omefmonica i Prewous Cllpplngs Length | b
- 1/home/monicaftest/multiclip/m... ; =
D main.cpp | = [
il ™ Auto Add Clippingsf
; Ay Add Clipping |
Properties l Signal Handlers | ! :
Property |\falue <] Copy Previous |
= text [&Cuit Y) Celete Clipping |
pixmap i n " l
toggleButton False
an False

W Edit pulticlipFarm
volid MulticlipForm:
£

rdeletecl ipping(
Widgets IScurce |

Narme Class clippingChanged! "" 3;
—— clippingsListBox->removeltem(
E-=s= | ayout? (HBox clippingsListBox->currentItem(l J;
..|GLabel ZI
. |GLineEdit Line: 81 Col: 36
HBox

Figure 19. Qt Designer

23

process. Developers click a toolbar button representing the widget they want, then click on a form
to place the widget. The widget’s properties can then be changed using the property editor. The
precise positions and sizes of the widgets do not matter. Developers select widgets and apply
layouts to them. For example, some button widgets could be selected and laid out side-by-side by
choosing the ‘lay out horizontally” option. This approach makes design very fast, and the finished
forms will scale properly to fit whatever window size is available.

Qt Designer eliminates the time-consuming compile, link and run cycle for user interface design.
This makes it easy to correct or change designs. Qt Designer’s preview options let developers see
their forms in any style, including custom styles. Qt Designer provides live preview and editing of
database data through its tight integration with Qt’s database classes.

Developers can create both “dialog’ style applications and ‘main window” style applications with
menus, toolbars, balloon help, etc. Several form templates are supplied, and developers can
create their own templates to ensure consistency across an application or family of applications.
Qt Designer uses wizards to make creating toolbars, menus and database applications as fast and
easy as possible. Programmers can create their own custom widgets that can easily be integrated
with Qt Designer.

Form designs are stored in human-readable . ui files, and converted into C++ header and source
files by the ui ¢ (User Interface Compiler). The gmake build tool automatically includes build rules
for ui ¢ in the Makefiles it generates, so developers do not need to invoke ui ¢ themselves.

Alternatively, . ui files can be loaded at run-time by applications, and converted into fully
functional forms. This allows customers to modify the look of an application without recompiling,
and can also be used to reduce the size of applications.

7.3. Built-in Dialogs

Qt includes ready-made dialog classes with static convenience functions for the most common
tasks. Screenshots of some of Qt’s standard dialogs are presented below.

QMessageBox is used to provide the user with information or to present the user with simple
choices (e.g. “Yes’ or ‘No’).

TN O <

Ctempiresume. hitml already exists.-
% Do wou want to replace it ?

Figure 20. A QMessageBox

QProgressDialog displays a progress bar and a ‘Cancel” button.

24

-+ EX

Figure 21. A QProgressDialog

QWizard provides a framework for wizard dialogs.

¥ 0t Example - Wizard + R

Personal Data

First Marne: IJohn
Enter your personal
dlata here. Last Mamne: lSmith
Address; ISS Atlantic Street
The required fields are
First Mame, Last Mame = Phone Mumber: !(408)555—1212
and E-tdail.
E-Mail: Iiohns@cs.telemark.edu

Cancel l + Back |

Figure 22. A QWizard

Qt also includes QColorDialog, QFileDialog, QFontDialog and QPrintDialog. These classes are
more suitable for desktop applications and are usually compiled out of Qt/Embedded.

8. Look and Feel

Qt desktop applications adopt the style, or look and feel, of their execution environment, e.g. Win-
dows XP, Mac OS X, Linux. Qt/Embedded applications can use any of these styles, or can use cus-
tom styles, statically or as plugins. Developers can customize both the widget style and the window
decorations.

8.1. Widget Style

A style is a QStyle subclass that implements the look and feel of Qt’s widgets. Qt/Embedded
programmers are free to use and modify existing styles or implement their own styles using Qt’s
style engine. The built-in styles available on Qt/Embedded are Windows, Motif, MotifPlus, CDE,
Platinum and SGI. The style can be set dynamically on a per-application basis, and even on a
per-widget basis.

IWindows style VI totif style __"l totifPlus style _lI

CDE style | [[Patinum style | #] | 564 seyre @]

Figure 23. Comboboxes in the different built-in styles

25

A family of applications can be given a distinctive look by writing a custom style. Custom styles
can be defined by subclassing QStyle, QCommonStyle or any descendent of QCommonStyle. It is
easy to make small modifications to existing styles by reimplementing one or two virtual functions
from the appropriate base class.

A style can be compiled as a plugin. With plugins, developers can preview a form in their device’s
custom style in Qf Designer. Style plugins also give users the opportunity to change the look of the
device without recompiling.

| QMotifStyle

QWindowsStyle

QPlatinumsStyle
S

[QCDESter {QMotifPIusSter]
Jl

QSGlStyleW
S

Figure 24. The QStyle class hierarchy

Qt’s built-in widgets are style-aware and will automatically repaint themselves when the style
changes. Custom widgets and dialogs are almost always combinations of built-in widgets and
layouts, and are automatically style-aware. On the rare occasions that it is necessary to write a
custom widget from scratch, developers can use QStyle to draw primitive user-interface elements
rather than drawing raw rectangles directly.

8.2. Window Decorations

Top-level windows are decorated by a title bar and a frame. Qt/Embedded includes these window
manager styles: BeOS, Hydro, KDE and Windows.

QM o X

Figure 25. Windows with different window decorations

26

Decorations can be configured on a per-window basis, if required. Custom styles are created
by subclassing QWSDecoration, and distributed as plugins. For more control over the window
manager’s behavior, developers can subclass QWSManager.

9. Internationalization

Qt/Embedded fully supports Unicode, the international standard character set. Developers can
freely mix Arabic, English, Hebrew, Japanese, Russian, and every other language supported by
Unicode, in their applications. Qt/Embedded also includes tools to support application translation
to help companies reach international markets.

9.1. Unicode

Qt uses the QString class to store Unicode strings. QString replaces the crude const char *;
constructors and operators are provided to handle conversion between QString and const char
*. Programmers can copy QStrings by value without penalty, since QString uses implicit sharing
(copy on write) to reduce memory use. Qt also provides QCString to efficiently store ASCII strings.

Qt provides a powerful Unicode text rendering engine for all text that is displayed on screen, from
the simplest label to the most sophisticated rich-text editor. The engine supports advanced features
such as special line breaking behavior, bidirectional writing and diacritical marks. It renders
most of the world’s writing systems, including Arabic, Chinese, Cyrillic, English, Greek, Hebrew,
Japanese, Korean, Latin and Vietnamese. The engine is optimized for the common case: a single
line of plain text with an optional accelerator (e.g. File).

Conversion to and from different encodings and charsets is handled by QTextCodecsubclasses. Qt
3.0 supports 37 different encodings, including Big5 and GBK for Chinese, EUC-JP, JIS and Shift-JIS
for Japanese, KOI8-R for Russian and the ISO 8859 series. They can be compiled as part of the
library or as plugins, or compiled out using the ‘feature’ mechanism.

9.2. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers’ native
languages.

To make a string translatable, simply wrap it in a call to tr() (read ‘translate’):
saveButton->set Text(tr("Save"));

tr() attempts to replace a string literal (e.g. “Save”) with a translation if one is available; otherwise
it uses the original text. For example, English could be used as the source language and Chinese
as the translated language, or vice versa. The argument to tr() is converted to Unicode from the
application’s default encoding.

tr()’s general syntax is

Context::tr("source text", "coment")

27

The ‘context” is the name of a QObject subclass. It is usually omitted, in which case the class
containing the tr() call is used as the context. The ‘source text”is the text to translate. The ‘comment’
is optional; along with the context, it provides additional information for human translators.

Translations are stored in QTranslator objects, which use memory-mapped . gmfiles (Qt Message
files). Each . gmfile contains the translations for a particular language. The language can be changed
at run-time; any dialog created using Qt Designer can retranslate itself on the fly with no special
provisions.

Qt provides three tools for preparing . qmfiles: | updat e, Qt Linguist and | r el ease.

1. | updat e extracts all the (context, source text, comment) triples from the source code, including
Qt Designer . ui files,and generatesa . t s file (Translation Source file). The . t s files are human-
readable.

2. Translators use Qt Linguist to provide translations for the source texts in the . t s files.

3. Highly compressed . gmfiles are generated by running | r el ease on the. t s files. The . gmfiles
are used on the embedded device.

These steps are repeated as often as necessary during the lifetime of an application. It is perfectly
safe torun| updat e frequently, as it reuses existing translations and marks translations for obsolete
source texts without eliminating them.

9.3. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications.

Translators can edit . t s files by hand, or more conveniently using Qt Linguist. The . ts file’s
contexts are listed in the left-hand side of the application’s window. The list of source texts for the
current context is displayed in the top-right area, along with translations. By selecting a source text,
the translator can enter a translation, mark it done or unfinished and proceed to the next unfinished
translation. Keyboard shortcuts are provided for all the common navigation options: Done &
Next, Next Unfinished, etc. The user interface’s dockable windows can be reorganized to suit the
translators’ preferences.

Applications often use the same phrases many times in different source texts. Qt Linguist automati-
cally displaysintelligent guessesbased on previously translated strings and predefined translations
at the bottom of the window. Guesses often serve as a good starting point that helps translators
translate similar texts consistently. Qt Linguist can optionally validate translations to ensure that
accelerators and ending punctuation are translated correctly. Qt Linguist also detects slight changes
in source texts and automatically suggests appropriate translations. These translations are marked
as unfinished so that a translator can easily find them and check them.

28

at Linguist by Trolltech - japanese.ts

File Edit Translation ‘“alidation Phrases Miew Help

E@o @[>~ sl @ vwnwanr |y
XX DUneISource text |Trans|ati0n I;l
Done | Context temms ¢ Undo TicEY b= |

2 MainWindow e
v QMessageBox 5/5 7. BulletList(Disc) Eal-w bl
» QPrintDialog 14 » &Bold b =)
¢ &Edit e |
B -
Source text

A6 (105 % 148 mm) AG (105 = 148 mm)
3 2

Bullet List (Disc)

The first window to appear when launching the application is a MainWindow.

Translation

Falw k2R EEDDEL

B Phrases and guesses:

Source phrase |Trans|ati0n | Definition I

Bullet List (Circle) Fal-owbkUZE) Guess (Ctr+1)

Bullet List (Square) Ealow k)2 (EAT Guess (Ctrl+2)

all files) FTD72A00 Guess (Cirl+3)

List View DAY a— Guess (Cirl+4)

Show &hidden files L 75 EFomEh Guess (CtH+5)
1347196 A

Figure 26. Qt Linguist

10. Non-Graphical Classes

Qt/Embedded provides a full range of non-graphical classes that provide data containers (collection
classes), input/output, networking, database interaction and threading.

10.1. Collection Classes

Collection classes are used to store groups of items in memory. Qt/Embedded provides two sets
of collection classes: pointer-based collections and value-based collections.

The pointer-based collection classes are QDict<Key,T>, QPtrList<T>, QPtrQueue<T>, QP-
trStack<T>, QPtrVector<T> and QCache<T>. These classes are often used for storing pointers to
QWidgets and QObjects, and Qt/Embedded’s internals make heavy use of them. The pointer-
based collection classes can optionally take ownership of the objects they contain and automatically
delete them when the collection is destroyed, simplifying memory management.

The value-based collection classes are QMap<Key,T> QValueList<T> QValueStack<T>,
QValueVector<T> and QStringList. They have an interface very similar to the STL containers.
Qt/Embedded also provides the low-level QMemArray<T> class with its subclasses QBitArray,

29

QByteArray and QPointArray. These classes are very efficient for handling basic “plain old data’
types.

To avoid the problem of code bloat associated with templates, Qt/Embedded uses private non-tem-
plate classes to implement the functionality of template classes. The template classes are only a thin
layer that converts special types to generic pointers, and results in very little binary code. Another
technique, implicit sharing, is used in the value-based containers to avoid needless duplication of
data. These optimizations make Qt’s collection classes suitable to embedded development.

10.2. Input/Output

Qt provides QTextStream and QDataStream to read and write text and binary data in a file, a
buffer, a socket or a custom device. QDataStream can be used to serialize basic C++ types and

many Qt types.

Directories are manipulated using QDir. The QFileInfo class provides more detailed information
about a file, such as its size, permissions, creation time and last modification time.

Transparent access to remote files is provided by QUrlOperator. In addition to local file system
access, Qt supports the the FITP and HTTP protocols and can be extended to support other
protocols. For example, files can be downloaded using FTP like this:

QUr | Oper ator op;
op.copy(Qstring("ftp://ftp.trolltech.com qt/|NSTALL"),

String("file:/tmp"));
URLS can easily be parsed and recomposed using QUrl.

Image files are usually read by creating a QImage with the file name as argument. Printing text and
images is handled by QPainter. These classes are described in “Widgets” [p. 12].

User settings and other application settings can easily be stored on disk using the QSettings
class. Settings are stored in text files under hierarchical keys, e.g./ Tool s/ Zooner/ Recent Fi | es.
Booleans, numbers, Unicode strings and lists of Unicode strings are supported.

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed
XML and are non-validating. The SAX (Simple API for XML) implementation follows the design
of the SAX2 Java implementation, and is especially suitable for simple parsing requirements and
for very large files. The DOM (Document Object Model) Level 2 implementation follows the W3C
recommendation and includes namespace support.

10.3. Networking

Qt provides an interface for writing TCP/IP clients and servers. The QSocket class provides
an asynchronous buffered TCP connection. Functions such as QSocket::connectToHost() and
QSocket::writeBlock() can be called at any time without freezing the application’s user interface.
Sockets emit the readyRead() signal when there is data available to read.

The QSocketDevice provides an abstraction for the underlying functionality for QSocket and
QServerSocket, and can be used for UDP.

30

10.4. Database

The Qt SQL module provides a uniform interface for accessing SQL databases. Qt includes native
drivers for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL and ODBC.
Programs can access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface
that programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget, including custom widgets, can be made data-aware. Qt also includes some
database-specific convenience widgets, to simplify the creation of dialogs and windows that
present records as forms or in tables. Data-aware widgets automatically support browsing, updat-
ing and deleting records. Most database designs require that new records have a unique key that
cannot be guessed by Qt, so insertion usually needs a small amount of code to be written. The pro-
grammer can easily force the user to confirm actions, e.g. deletions.

Using the facilities that the Qt SQL module provides, it is straightforward to create database appli-
cations that use foreign key lookups, present master-detail relationships, and support drill-down.

Qt’s SQL module is fully integrated with Qt Designer. Qt Designer can preview database forms
and tables using live data if desired, allowing developers to browse, delete and update records.
Qt Designer has templates and wizards to make creating database forms fast and simple.

10.5. Multi-Threading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and
one or many other threads to perform time-consuming activities such as reading large files and
performing complex calculations. Qt/Embedded can be configured to support multi-threading,
and provides four threading classes: QThread, QMutex, QSemaphore and QWaitCondition.

11. Qt/Embedded in the Wider World

Qt/Embedded makes Linux a viable platform for embedded GUI applications. It is an implementa-
tion of a mature, consistent, object-oriented toolkit that includes many tools to ease and speed de-
velopment. Qt/Embedded is already used by major companies and is attracting software developers
from both the commercial sector and from the open source community.

Qt/Embedded became commercially available for the first time in September 2000. It is a port of
the Qt toolkit which has been powering both commercial and open source applications since 1995.
Qt/Embedded is already used by enterprises and individuals across the world.

Organizations that wish to make use of a ready-made software environment for specialized devices
such as PDAs and WebTVs, can license Qtopia, an environment created by Trolltech that is built
with Qt/Embedded. Qtopia is used in the Sharp Zaurus device (shown on the cover-page) and
includes a PIM (Personal Information Management) application suite. Qtopia is also available in
open source form at http://qpe.sourceforge.net. Qtopia is described in the Qtopia Whitepaper.

31

http://qpe.sourceforge.net

Insigna Solutions offers a Java Virtual Machine for Qt/Embedded. The Qt APIis used to implement
the Java AWT, resulting in a look and feel that is consistent with C++ applications.

IBM and OTI (Object Technology International) also provide a Java solution for Qt/Embedded.
Their Simple Widget Toolkit is implemented using the Qt APL

Qt has an active and helpful user community who communicate using the gt -i nt er est mailing
list. See http:/ /qt-interest.trolltech.com to subscribe or to browse the archive.

Qt’s extensive documentation is available on-line at http:/ /doc.trolltech.com.

Developers can evaluate Qt/Embedded, with support, for 30 days. See

http:/ /www.trolltech.com/products/qt/evaluate.html for details.

For further information, email info@trolltech.com.

A small sample of the applications that have been developed with Qt/Embedded are shown
below.

Opera Software has developed a fast Qt/Embedded web-browser that supports HTML 4.0, CSS1,
JavaScript 1.3 and cookies.

K Desktop ¥vironment Home (kde org) @3

0t MetHack x)
ear A-F G-Z Manic €3 =10

» 3 Fh bk

MesDFSaM

Open nesw Wiew

Find in Document Ctrl+F || FAQ | DoviEl
Preferences... E

Aclel Bookmark Cir+B | c -
Edit Bookmarks... preensd '
Bookmarks 3
Close Mg Ctrl+i L= KDE i
[LITTUL)
TAC P
July5-8, Stuﬂgg

f_ ERE a ' 4:? PM

Figure 27. Konqueror/Embedded by the KDE team - Port of NetHack by Warwick Allison

32

http://qt-interest.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/products/qt/evaluate.html
mailto:info@trolltech.com

Garng

33

Main | List | M ier | Engine [Info_ |

220 (@ |n| » || 3
Speed (% w1 O w2 O w4 {C ®10
MName: Hawkeye ;

Anthor: Jeroen Tel f Maniacs of Moise
Copyright: 1988 Thalamus
Sorgs: 12 {Startsahg;'.l__}

SHCS ete

T4 Beginning. sid
8 Cybernoid sid
28] Cybernoid_Il.sid
T8 Deel 3 sid

4 DemoSong sicl

Figure 28. Port of KDE's Sokoban game by Steve Dunham - A SID player by Markus Gritsch

Index

About box, 24

Acceleration hard-
ware, 8

Accelerator, 20, 28

Action, 20

Alpha-blended
pixmap, 5

Analog clock, 15

Animation, 14

Anti-aliased font, 5, 6

Aqua, 26

Arabic, 7 22,27

ARM, 4

Array, 30

Assistant, 25

Asynchronous1/0, 6

Auto-deletion, 29

Automatic layout, 20

AWT, 32

Balloon help, 19

BDF, 6

BeOS, 26

Bezier curve, 17

Bidirectional writing,
27

Big5, 27

Binary serialization,
30

Bit depth, 5

Bitmap, 5, 14

Bloat problem, 30

BMP, 14

Borland C++, 8

Box layout, 13, 21

Browser, 32

BusMouse, 7

Button, 13

Cache, 29

Caching, 5

Callback, 10

Canvas, 14

CDE, 25

Central area, 18

char, 27

Charmap, 27

Charset, 27

Checkbox, 13

Child widget, 12, 20

Chinese, 7, 27

clicked(), 10

Client, 6, 30

Clipping, 17

Clock, 15

Code bloat problem,
30

Codec, 27

Collection class, 29

Collision testing, 15

Color, 25

Combobox, 13

Comment, 28

Communication, 6,
10

Compiler, 4,8

Compiler features, 11

Component, 10

Configuration, 5, 30

connect(), 10

Connection, 10, 20

Container, 29

Context, 28

Context menu, 18

Control, 12

Copy on write, 5

Cross-development,
8

CSS1, 32

Custom canvas item,
15

Custom style, 26

Custom widget, 24,
31

Cyrillic, 27

Data visualization, 15

Database, 24, 31

Date, 13

Debugger, 8

Decorations, 6, 26

Default widget size,
20

34

Defaults, 30

Delete, 29

Designer, 8,22 28, 31

Desktop, 58, 25

Device, 5

Diacritical mark, 27

Dial, 13

Dialog, 24

Dictionary, 29

Directory, 30

DOM, 30

Drawing, 25

Drill-down, 31

Driver, 5, 8

Druid, 25

Dynamic dialog, 24

Editor, 13

Embedded Linux, 4,
5

Emitting a signal, 11

Encoding, 27

English, 27

Ericsson, 4

Error, 24

EUC-JP, 27

Event, 10, 16

exec(), 13

Fatal error, 24

Features, 5

File, 30

Flash, 5, 8

Flicker, 17

Font, 20, 27

Foreign key, 31

Form, 22

Frame, 12,26

Frame-buffer, 5,58,
17

FTP, 30

g++,8

Game, 15

GBK, 27

GCC, 8

Geometry, 12, 20

GIF, 14

Graph, 15

Graphic card, 5

Graphics, 8, 14

Greek, 27

Grid layout, 21

GUI application, 18

Handwriting, 7

Hebrew, 7 22,27

Hierarchical tree
view, 14

Hover help, 19

HTML, 12, 32

HTTP, 30

Icon, 14 18, 19

Icon view, 14

Image, 14, 30

Implicit sharing, 527,
30

Inheriting, 10 15, 18

Input method, 7, 20

Input/output, 30

Input validation, 14

Insigna Solutions, 32

Intel x86, 4

IntelliMouse, 7

Internationalization,
20,27

Introspection, 11

1P, 30

iPAQ, 7

IPC, 6

ISO 8859, 27

Japanese, 7 27,28

Java, 30

Java Virtual Machine,
32

JavaScript, 32

JIS, 27

JPEG, 14

KDE, 26

KDevelop, 8

Key, 31

Keyboard, 57,7

KOI8-R, 27

Korean, 27

Label, 13
Language, 20, 27
Latin, 27
Layout, 12, 20
LCD, 13
libc, 8
Library, 56,7
Line breaking, 27
Line editor, 13
Linguist, 28
Linker, 8
Linking, 5
Linux, 4,5
List, 29, 30
List box, 14
List view, 14
Localization, 27
Look and feel, 25
Irelease, 28
lupdate, 28
Macho64, 8
Macintosh, 5
Magic, 11
Main window, 18
Makefile, 8, 11
Makefiles, 24
Map, 30
Master-detail, 31
Maximum size, 21
Memory array, 30
Menu bar, 18, 20
Message box, 24
Message map, 10
Messaging, 16
Meta Object Compil-
er, 11
MFC, 10
Microsoft mouse, 7
Microsoft SQL Serv-
er, 31

Microsoft Visual C++,

8

Microsoft Windows, 5

25,26
Minimum size, 21
MIPS, 4
MNG, 14

moc, 11
Motif, 10, 25
Motorola 68000, 4
Mouse, 5
MouseMan, 7
Multi-line editor, 13
Multi-threading, 31
MySQL, 31
NEC Vr41XX, 7
Networking, 30, 30
Notebook, 25
Object-oriented pro-
gramming, 10
OdI, 31
ODBC, 31
Opera Software, 32
Operating system, 4
Oracle, 31
Ownership, 29
Painting, 16 17, 26
Parent widget, 12, 20
Peripheral, 5
Pickboard, 7
Picture, 14
Pixmap, 17
Plain old data, 30
Platforms, 5
Platinum, 25
Plugin, 5, 6 26 27,27
PNG, 14
PNM, 14
Pointer-based collec-
tion, 29
Pointer device, 7
Popup menu, 18
Positioning, 20
PostgreSQL, 31
PostScript, 17
PostScript font, 6
PowerPC, 4
Pre-processor, 5, 11
Preferences, 25, 30
Preferred size, 21
Primary key, 31
Printer, 17
Private class, 30
.pro, 8

35

Process, 6, 6
Profiler, 8
Progress bar, 13, 24
Property, 11
Property box, 25
Push button, 13
QAction, 20
QApplication, 13
QBitArray, 30
QBitmap, 5
QButtonGroup, 13
QByteArray, 30
QCache, 29
QcCalibratedMouse-
Handler, 7
QCanvas, 14
QCanvasltem, 15
QCanvasView, 15
QCDEStyle, 26
QCheckBox, 13
QColorDialog, 25
QComboBox, 13, 14
QCommonStyle, 26,
26
QCOP, 6
QCString, 27
QCustomMenultem,
18
QDataStream, 6, 30
QDateEdit, 13
QDateTimeEdit, 13
QDial, 13
QDialog, 12
QDict, 29
QDir, 30
QDirectPainter, 17
QEvent, 16
QFileDialog, 25
QFilelnfo, 30
QFontDialog, 25
QFontFactory, 6
QFrame, 12
QGfxRaster, 8
QGridLayout, 13 14,
21
QGroupBox, 13
QHBoxLayout, 13, 21

QlconView, 14
QImage, 14, 30
QLabel, 12,13
QLCDNumber, 13
QLineEdit, 1213, 14
QListBox, 14
QListView, 14, 14
.qm, 28
QMainWindow, 18
qmake, 8 11, 24
QMap, 5, 30
QMemArray, 30
QMenuBar, 18
QMessageBox, 24
QMotifPlusStyle, 26
QMotifStyle, 26
QMutex, 31
QNX, 4
QObject, 10,1012 28,
29
QPainter, 17, 30
QPalette, 5
QPF, 6
QPicture, 5
QPixmap, 5
QPlatinumStyle, 26
QPointArray, 30
QPopupMenu, 18
QPrintDialog, 25
QProcess, 6
QProgressBar, 13
QProgressDialog, 24
QPtrList, 29
QPtrQueue, 29
QPtrStack, 29
QPtrVector, 29
QPushButton, 13
QRadioButton, 13
QRegExp, 14
QScreen, 8
QScrollBar, 13
QScrollView, 14
QSemaphore, 31
QServerSocket, 30
QSettings, 30
QSGlIStyle, 26
QSlider, 13

QSocket, 30
QSocketDevice, 30
QSpinBox, 1213, 14
QStatusBar, 18
QString, 527, 30
QStringList, 30
QStyle, 26
Qt Designer, 8, 22 28,
31
Qt Linguist, 28
QTabDialog, 25
QTable, 14, 14
QTextCodec, 27, 30
QTextEdit, 13,14
QTextStream, 30
QThread, 31
QTimekEdit, 13
QTimer, 12
QTL, 30
QToolBar, 19
QToolButton, 19
QToolTip, 19
Qtopia, 7 14, 20
QTranslator, 28
Queue, 29
quit(), 10
QUrl, 30
QUrlOperator, 30
QValidator, 14
QValuelList, 30
QValueStack, 30
QValueVector, 30
QVBoxLayout, 21
QWaitCondition, 31
QWERTY, 7
QWhatsThis, 19
QWidget, 12,29
QWindowsStyle, 26
QWizard, 25
QWSDecoration, 27
QWSKeyboardHan-
dler, 7
QWSManager, 27

QWSMouseHandler,
7

Radio button, 13
RAM, 4

Reference counting, 5

Registry, 30

Regular expression,
14

Relative growth, 21

Repositioning, 20

Resizing, 20

Reusability, 10

Rich text, 12

Right-to-left lan-
guages, 22,27

ROM, 5

Rotation, 15, 17

RTTI, 11

Run-time type infor-
mation, 11

SAX, 30

Scale, 15,17

Screen, 8

Screen rotation, 5

Screen size, 5 18, 20

Screens, 8

Scroll bar, 13, 14

Scroll view, 13, 14

Separator item, 18

Serialization, 30

Server, 46,30

Settings, 30

SGI, 25

Shadow build, 8

Shared library, 5

Shared memory, 6

Sharing, 527, 30

Shear, 15,17

Shift-JIS, 27

Signal, 9

Size, 20

Size policy, 21

Slider, 13

Slot, 9

Socket, 30

Source text, 28

Spacer item, 21

Spin box, 13

Spreadsheet, 14

Sprite, 14

SQL, 31

36

Stack, 29, 30

Static linking, 5

Status bar, 18

STL, 30

Storage, 5 28, 30

Stream, 30

Stretch, 21

Stretch factor, 21

String, 27

Strong ARM, 4

Style, 25

Stylus, 7,19

Sub-menu, 18

Subclassing, 10 15, 18

Sybase, 31

19,7

Tab widget, 25

Table, 14

TCP, 30

TDS, 31

Template, 30

Text editor, 13

Text rendering, 27

Text translation, 27

Theme, 25

Thread, 31

Time, 13

Timer, 16

Title bar, 12, 26

Toggle button, 19

Tool chain, 8

Toolbar, 18 19, 20

Tooltip, 19

Touch-panel, 7,19

tr(), 27

Transformation, 15,
17

Translation, 11, 27

Tree view, 14

TrueType font, 6

.ts, 28

Type safety, 10

Typel font, 6

UDP, 30

.ui, 24,28

Unicode, 7,7 27 30,
30

Unisys, 14

Unix, 4, 8

URL, 30

User input, 14

User settings, 30

Validation, 14

Value-based collec-
tion, 30

Vector, 29, 30

Vector image, 17

VGA16,5

Vietnamese, 27

Viewport, 17

Virtual frame-buffer,
8

Visualization, 15

VNG, 8

Voodoo3, 8

Vr41XX, 7

W3C, 30

Warning, 24

Web-browser, 32

What's this?, 19

Widget, 12

Widget style, 25

Window, 24

Window manager, 26

Windowing system, 5

Windows, 5, 8 25, 26

Wizard, 25, 31

Writing system, 27

X11,45,8

XBM, 14

XML, 30

XPM, 14

