
Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Abstract

ThiswhitepaperdescribestheQt/EmbeddedC++toolkit for GUI andapplicationdevelopmentonembedded
devices. It runson any device supportedby Linux anda C++ compiler. Qt/Embeddedprovidestheentire
standardQt API and can compileout unusedfeaturesto minimize its memoryfootprint. Qt/Embedded
applicationscanbedevelopedonfamiliardesktopsystems,e.g. WindowsandUnix, andwith standardtools.
It is providedwith all theQt toolsincludingQt Designer for visualform design,andwith toolsspecifically
tailoredto theembeddedenvironment.

The Sharp Zaurus PDA using Qt/Embedded

Qt/Embedded Whitepaper

Trolltech

www.trolltech.com

Contents

1. Introduction . 3

2. System Requirements . 4

3. Architecture . 5

3.1. Windowing System . 6

3.2. Fonts . 6

3.3. Input Devices . 7

3.4. Input Methods . 7

3.5. Screen Acceleration . 7

4. Development Environment . 8

4.1. Qt’s Supporting Tools . 8

5. Signals and Slots . 8

5.1. A Signals and Slots Example . 10

5.2. Meta Object Compiler . 11

6. Widgets . 11

6.1. A ‘Hello’ Example . 12

6.2. Common Widgets . 13

6.3. Canvas . 14

6.4. Custom Widgets . 15

6.5. Main Windows . 17

6.6. Menus . 18

6.7. Toolbars . 18

6.8. Balloon Help . 18

6.9. Actions . 19

7. Dialogs . 20

7.1. Layouts . 20

7.2. Qt Designer . 22

7.3. Built-in Dialogs . 24

8. Look and Feel . 25

8.1. Widget Style . 25

8.2. Window Decorations . 26

9. Internationalization . 26

9.1. Unicode . 26

9.2. Translating Applications . 27

9.3. Qt Linguist . 27

10. Non-Graphical Classes . 28

10.1. Collection Classes . 29

10.2. Input/Output . 29

10.3. Networking . 30

10.4. Database . 30

10.5. Multi-Threading . 30

11. Qt/Embedded in the Wider World . 30

Index . 33

2

1. Introduction

Qt/Embedded is a C++ toolkit for GUI and application development for embedded devices. It
runs on a variety of processors, usually with Embedded Linux. Qt/Embedded applications write
directly to the frame-buffer,eliminating the need for the X Window System. In addition to the class
library, Qt/Embedded includes several tools to speed and ease development. Applications can
be developed with familiar programming environments on Windows and Unix, using the standard
Qt API.

Qt/Embeddedis a port of the Qt C++ API for embeddeddevices. It providesthe sameAPI andtoolsas
theQt/X11,Qt/WindowsandQt/Macversions.Qt/Embeddedalsoincludesclassesandtoolsto specifically
supportembeddeddevelopment.

TheQt C++toolkit uponwhichQt/Embeddedisbuilt hasbeenat theheartof commercialapplicationssince
1995.Qt isusedby enterprisesasdiverseasAT&T, IBM, NASA,SharpandXerox,andby numeroussmaller
companiesandorganizations.Qt 3.0 retainsthepower andeaseof useof earlierversionsandintroduces
many new classes.Qt’s classesare fully featuredto reducedeveloperworkload,and provide consistent
interfacesto speedlearning.Qt is,andalwayshasbeen,fully object-oriented.

Qt providesa type-safealternative to old fashionedcallbacks,calledsignalsandslots[p. 8], that facilitates
true componentprogramming.Qt suppliesa wide rangeof versatilewidgets[p. 11] that can easily be
subclassedto createcustomcomponents,or combinedto createcustomdialogs[p. 20].Pre-defineddialogs
for commontaskssuchasmessageboxesandwizardsarealsoprovided.

Qt/Embeddedhasmuchsmallersystemrequirements[p. 4], i.e. lower storage(Flash)andmemory(RAM)
footprints,thanembeddedsolutionsbasedontheX Window System.It canrunonhardwarethatrunsLinux,
hasa linearlyaddressableframebuffer, andsupportsa C++compiler. And Qt/Embeddedcanberecompiled
to excludeunusedfeaturesto reduceits memoryfootprintevenfurther.

Thearchitecture[p.5] of Qt/Embeddedincludesitsown windowingsystem[p.6].A varietyof inputdevices
[p. 7] aresupported.

Developerswrite codeusingtheir familiardevelopmentenvironments[p.8]. Qt Designer [p.22]canbeused
tovisuallydesignuserinterfacesusingQt’slayout[p.20]system,whichautomaticallyadaptsto theavailable
screenspace.Developerscanchooseoneof thepre-definedlook andfeel [p. 25] stylesor createtheir own
uniquestyles.Unix userscanrunandtesttheirapplicationsonapixel-perfectvirtual frame-buffer.

Qt/Embeddedalsoprovidesmany non-graphicalcomponents[p.28]for specializedtasks,suchasinternation-
alization[p. 26],networkinganddatabaseinteraction.

Qt/Embeddedis a mature,solid C++ toolkit, widely used all over the world [p. 30]. In addition to
Qt/Embedded’smany othercommercialuses,it is thefoundationof theQtopiaapplicationenvironmentfor
smalldevices. Qt/Embeddedmakesapplicationdevelopmentapleasure,with its simplebuild system,visual
form designandelegantAPI.

3

2. System Requirements

Qt/Embeddedsavesmemorybecauseit doesnotneedanX serveror Xlib; insteadit writesdirectly
to theframe-buffer. Memoryconsumptioncanbefine-tunedbycompilingout featuresthat arenot
used.It is alsopossibleto compileall theapplicationsinto a singlestaticallylinkedexecutable,to
saveevenmorememory.

Qt/Embeddedis availablefor all processorssupportedby Linux that have a C++ compiler, includingIntel
x86,MIPS,ARM, StrongARM,Motorola68000andPowerPC.Trolltechis alsoexploringthepossibilityof
creatingacrossplatformtoolkit for theembeddedmarket. Qt/Embeddedimplementationsfor QNX andfor
WinCEarebothbeingtrialled. Trolltechalsoprovidesportingservicesto otheroperatingsystems.

Qt/Embeddedapplicationswrite directly to thekernelframe-buffer. Linear frame-bufferswith 1, 4, 8, 15,
16,24and32bit depthsandVGA16aresupported.Any graphiccardsupportedby thekernelwill work,and
Qt/Embeddedcanbecustomizedtobenefitfrom screenaccelerationhardware,asdescribedin “Architecture”
[p. 5]. Thereis no arbitrary limit on screensize,and many advancedfeaturessuchasanti-aliasedfonts,
alpha-blendedpixmapsandscreenrotationareprovided.

Qt/Embedded’s principal strengthis that is doesn’t rely on an X server. This leadsto significantmemory
savingscomparedwith othersolutions,suchasQt/X11.A singlelibrary, theQt/Embeddedlibrary, is all that
is necessaryto replacetheX server, theXlib library andthewidgettoolkit of other‘embedded’solutions.

x

R
A

M
(K

B
)

X Server + Phone Client + Mail Client+ Message Center
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Qt/X11

Qt/Embedded

2640 KB

5130 KB

6880 KB

8170 KB

0 KB

1640 KB

3230 KB

4250 KB

Cumulative RAM consumption

Figure 1. MemorycomparisonbetweenQt/X11andQt/Embeddedfor Ericsson’sscreenphone

4

ThegraphillustratesthattheX servergrabsalot of RAM onstartup,andalsorequiresmorememoryaseach
new applicationis launched.For example,startingthePhoneClientrequires2490KB with Qt/X11,but only
1640KB with Qt/Embedded.

Thefootprint of theQt/Embeddedlibrary canbereducedby compilingout unusedfeatures.For example,
theQListView widgetcanbecompiledout by definingthepre-processorsymbolQT_NO_LISTVIEW, and
supportfor internationalizationis compiledout by definingQT_NO_I18N. Qt/Embeddedprovidesover 200
configurablefeatures,resultingin librariesvaryingin sizebetween700KB and5000KB (Intel x86).Most
customersuseconfigurationsbetween1500KB and4000KB.

Qt/Embeddedalsobenefitsfrom memory-saving techniquessuchasimplicit sharing(copy on write) and
caching.Over 20 classesin Qt, includingQBitmap, QMap, QPalette, QPicture, QPixmap andQString,
useimplicit sharingto avoid unnecessarycopying andminimize memoryusage.Implicit sharingoccurs
automaticallyandmakesprogrammingmuchsimpler, avoiding the risksrelatedto handoptimizationand
pointers.

Many Qt componentscanbecompiledinto thelibrary or madeavailableasplugins. Customlook andfeel
components[p. 25],databasedrivers,font formatreaders,imageformatconverters,text codecsandwidgets
canbecompiledasplugins,reducingthesizeof thecorelibraryandprovidingmoreflexibility . Alternatively,
if theapplicationsandcomponentsareknown in advance,they canbecompiledandstaticallylinkedwith the
Qt/Embeddedlibrary into asingleexecutable,saving ROM, RAM andCPU.

3. Architecture

Qt/Embedded provides the standard Qt API for embedded devices with a lightweight windowing
system. Qt/Embedded’s object-oriented design makes it straightforward to support additional
devices, from peripherals like keyboards and mice to accelerated graphics boards.

With Qt/Embedded,developersbenefitfrom exactly the sameAPI that Qt/X11,Qt/Windows andQt/Mac
provide.

Application Source Code

Qt API

Qt/X11

Xlib

Qt/Embedded

X Window Server

Frame-buffer

Linux Kernel

Figure 2. Qt/EmbeddedversusQt/X11onEmbeddedLinux

Usinga singleAPI acrossa varietyof platformsoffersmany benefits.Companiesthatproduceapplications
for bothembeddeddevicesanddesktopcomputerscantrain their developersin a singletoolkit. Thismakes
it easierto shareexperienceandknowledge,andgivesmanagersmoreflexibility whenallocatingdevelopers

5

to projects.Furthermore,applicationsandcomponentsdevelopedfor a particularplatformcanbesold for
any of theotherQt platforms,expandingtheproducts’market for avery low marginalcost.

3.1. Windowing System

A Qt/Embeddedwindowing systemconsistsof oneor moreprocesses,oneof which actsasa server. The
server allocatesregionsto be displayedby clients,andgeneratesmouseandkeyboardevents. The server
processcanalsoprovideinputmethodsandauserinterfaceto launchclientapplications.Theserverprocess
behaveslikeaclientbut hassomeadditionalprivileges.Any programcanberunastheserverusingthe-qws
command-lineoption.

Clientscommunicatewith theserver usingsharedmemory. Communicationis kept to a minimum;clients
perform all drawing operationsdirectly to the frame-buffer, without passingthroughthe server, and are
responsiblefor drawing their own title barsandotherdecorations.This is all handledtransparentlyby the
Qt/Embeddedlibrary.

ClientscanexchangemessagesusingQCOPchannels.TheserversimplybroadcastsQCOPmessagesto all
applicationslisteningto agivenchannel.Applicationscanrespondin aslotconnectedto areceived()signal.
Messagescanbeaccompaniedby binarydata,typically serializedusingtheQDataStream class,described
in “Non-GraphicalClasses”[p. 28].

TheQProcess classprovidesanotherasynchronousinter-processcommunicationmechanism.It is usedto
startexternalprogramsandtocommunicatewith themby writing to theirstandardinputandby readingtheir
standardoutputandstandarderror.

3.2. Fonts

Qt/Embeddedsupportsfour differentfont formats: TrueTypeFonts(TTF),PostScriptType1Fonts,Bitmap
DistributionFormat(BDF)andQt Pre-renderedFonts(QPF).Supportfor otherfont formatscanbeaddedby
subclassingQFontFactory, andcanbemadeavailableasaplugin. Anti-aliasedfontsaresupported.

EachTTF or Type1glyph is renderedat a given point sizewhen it is first usedin a drawing or metrics
operation,andtheresultis cached.MemoryandCPUtimecanoftenbesavedby pre-renderinga TTF or a
Type1file at therequiredsizes(for example,10and12points)andsaving theresultin QPFformat. QPFfiles
thatcontainthenecessaryfontscanbeobtainedby usingthemakeqpf tool,or by runningapplicationswith
the-savefonts option. If all thefontsarein QPFformat,Qt/Embeddedcanbereconfiguredtocompileout
supportfor TTF andType1fonts,whichwill cutdown thesizeof theQt/Embeddedlibrary,andconsiderably
reducetheamountof memoryusedto storefonts. For example,a 10-pointTimesQPFfont for ASCII uses
about1300bytes,andis directlymappedinto memoryfrom physicalstorage.

Qt/Embeddedfonts usually containa small subsetof Unicode,typically ASCII or Latin-1. A complete
16-pointUnicodefont usesover1MB of memory. It ispossibletosavecustomsubsetsof afont,for example
onethatcontainsall theglyphsnecessaryto spellthenameof yourproductin 24-pointCappuccinoBold.

6

3.3. Input Devices

Qt/Embedded 3.0 supports several mouse protocols out of the box: BusMouse, IntelliMouse, Microsoft and
MouseMan. Qt/Embedded also supports the NEC Vr41XX touch-panel and the iPAQ touch-panel. Develop-
erscan support custom pointer devicesby subclassingQWSMouseHandler or QCalibratedMouseHandler.

Qt/Embedded supports the standard 101-key keyboard and Vr41XX buttons. Custom keyboards and other
non-pointer devices can be supported by subclassing QWSKeyboardHandler.

3.4. Input Methods

Input methods for non-Latin scripts (for example, Arabic, Chinese, Hebrew and Japanese) can be written to
filter and convert keyboard input. Input method writers have the entire Qt API at their disposal.

On devices without a keyboard, input methods constitute the only means of entering characters. Qtopia
provides four input methods: a handwriting recognizer, a graphical QWERTY keyboard, a Unicode keyboard
and a dictionary-based pickboard.

Pickboard

Handwriting

Keyboard

Unicode

Figure 3. The standard input methods available on Qtopia

3.5. Screen Acceleration

Screen operations can benefit from hardware acceleration by subclassing QScreen and QGfxRaster.
Trolltech provides example accelerated drivers for Mach64 and Voodoo3cards, and can be contracted to write
custom drivers.

7

4. Development Environment

Qt/Embeddeddevelopmentcan take place using familiar Unix and Windows tools. Several
multi-platformtoolsareprovidedtomakedevelopmenteasierandfaster,notablyQt Designer.Unix
usersadditionallybenefitfroma virtual frame-buffer that duplicates,pixel for pixel,thescreenof
a device.

Applicationsfor anembeddeddevicecanbecompiledon any platformequippedwith a cross-development
tool chain. Themostcommonoptionis tobuild across-platformGNUC++compiler(g++)with libc andthe
binaryutilities onaUnix system.

An alternative approachinvolvesusinga desktopversionof Qt, suchasQt/X11or Qt/Windows, for most
of the developmentphase.This allows developersto usea familiar environment,for example,Microsoft
VisualC++or BorlandC++.OnUnix, many environmentsareavailable,suchasKDevelop,whichsupports
cross-development.

If theQt/EmbeddedapplicationisdevelopedonUnix, it canbecompiledto runonthedevelopmentmachine
in a separateconsoleor in the virtual frame-buffer, an X11 applicationthat simulatesa frame-buffer. By
specifyingthe device’s width, heightandcolor depth,the simulatedframe-buffer will matchthe physical
device, pixel for pixel. This savesdevelopersfrom continuouslyre-flashingthe device, and accelerates
the compile,link andrun cycle. It alsoallows developersto usestandarddebuggersandprofilerson the
developmentmachine.If desired,Qt/EmbeddedapplicationscanactasVNC (Virtual Network Computing)
serversandberunoveranetwork.

4.1. Qt’s Supporting Tools

Qt includesmany toolsto supportembeddedsystemsdevelopment,someof whicharementionedelsewhere
in thisdocument.Thetwo mostsubstantialtools(apartfrom thevirtual frame-buffer mentionedabove)are
qmake andQt Designer.

The qmake tool is a Makefile generatorfor the Qt/Embeddedlibrary and for applications.It generates
Makefilesfor multipleplatformsfrom aprojectfile (.pro).qmake supportscross-developmentandshadow
builds,andmakesit easyto switchbetweendifferentconfigurations.

Developerscan useQt Designerto designdialogsvisually insteadof writing code. It usesQt’s layout
managerstoproducedialogsthatresizesmoothly,andis fully integratedwith qmake.Qt Designeriscovered
in “Dialogs” [p. 20].

5. Signals and Slots

Thesignalsand slotsmechanismprovidesinter-objectcommunication.It is easyto understand
anduseandit is fully supportedbyQt Designer.

GUI applicationsrespondto useractions.For example,whena userclicks a menuitem or toolbarbutton,
the applicationexecutessomecode. More generally, we want objectsof any kind to communicatewith
eachother. Theprogrammermustrelateeventsto therelevantcode.Oldertoolkitsusemechanismsthatare

8

crash-prone, inflexible, and not object-oriented. Trolltech has invented a solution called ’signals and slots’.
Signals and slots is a powerful inter-object communication mechanism that can be used to completely replace
the crude callbacks and message maps used by legacy toolkits. Signals and slots are fast, type-safe, flexible,
fully object-oriented and implemented in C++.

To associate some code with a button using the old callback mechanism, it is necessary to pass a pointer to
a function to the button. When the button is clicked, the function is then called. Old toolkits do not ensure
that arguments of the right type are given to the function when it is called, which makes crashes more likely.
Another problem with the callback approach is that it tightly binds the GUI element to the functionality,
making it difficult to develop classes independently.

Qt’s signals and slots mechanism is different. Qt widgets emit signals when events occur. For example, a
button will emit a ‘clicked’ signal when it is clicked. The programmer can choose to connect to a signal by
creating a function (called a slot) and calling the connect() function to relate the signal to the slot. Qt’s signals
and slots mechanism does not require classes to have knowledge of each other, which makes it much easier to
develop highly reusable classes. Signals and slots are type-safe, with type errors being reported by warnings
rather than by crashes.

connect(Object3, signal1, Object4, slot3)

connect(Object1, signal1, Object2, slot1)
connect(Object1, signal1, Object2, slot2)

connect(Object1, signal2, Object4, slot1)

Object3

signal1

slot1

Object4

slot1
slot2
slot3

Object1

signal1
signal2 Object2

signal1

slot1
slot2

Figure 4. An abstract view of some signals and slots connections

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user’s click on
Quit makes the application terminate. In code, this is written as

connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

9

The signals and slots implementation smoothly extends C++’s syntax and takes full advantage of C++’s

connect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

connect(textEdit, modificationChanged(bool),
customStatusBar, modificationStatus(bool))

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

Figure 5. An example of signals and slots connections

object-oriented features. Signals and slots can be overloaded or reimplemented and may appear in the public,
protected or private sections of a class.

5.1. A Signals and Slots Example

To benefit from signals and slots, a class must inherit from QObject or one of its subclasses and include the
Q_OBJECT macro in the class’s definition. Signals are declared in the signals section of the class, while
slots are declared in the public slots, protected slots or private slots sections.

Here’s an example QObject subclass:

class BankAccount : public QObject

{

Q_OBJECT

public:

BankAccount() { curBalance = 0; }

int balance() const { return curBalance; }

public slots:

void setBalance(int newBalance);

signals:

void balanceChanged(int newBalance);

private:

int curBalance;

};

In the style of most C++ classes, the class BankAccount has a constructor, a get function balance(), and a set
function setBalance().

The class also has a signal balanceChanged(), which announces that the balance in the account has changed.
Signals are not implemented; when a signal is emitted, the slots it is connected to are executed.

10

The set function is declared in the public slots section, so it is a slot. Slots are standard member
functions with an implementation that can be called like any other function, and which can also be connected
to signals.

Here’s the implementation of the slot setBalance():

void BankAccount::setBalance(int newBalance)

{

if (newBalance != curBalance) {

curBalance = newBalance;

emit balanceChanged(curBalance);

}

}

The statement

emit balanceChanged(curBalance);

causes the balanceChanged() signal to be emitted with the new current balance as its argument. The keyword
emit, like signals and slots, is provided by Qt and is transformed into standard C++ by the C++
pre-processor.

One object’s signal can be connected to many different slots, and many signals can be connected to one slot
in a particular object. Connections are made between signals and slots whose parameters have the same types.
A slot can have fewer parameters than the signal and ignore the extra parameters.

5.2. Meta Object Compiler

The signals and slots mechanism is implemented in pure standard C++. The implementation uses the C++
pre-processor and the Meta Object Compiler (moc) included with the Qt toolkit.

The moc reads the application’s header files and generates the necessary code to support signals and slots.
Developers never edit or even need to look at the generated code. Makefiles generated by qmake include
rules to run moc transparently, when required.

In addition to handling signals and slots, moc supports Qt’s translation mechanism, its property system and
run-time type information.

6. Widgets

Qt hasa rich setof widgets(buttons,scroll bars,etc.) that caterfor mostsituations.Qt’swidgets
areflexibleandeasyto subclassfor specialrequirements.

Widgets are instances of QWidget or one of its subclasses, and custom widgets are created by subclassing.

11

QTimer

QObject

QWidget

QDialog

QLabel

QFrame

QLineEdit

QSpinBox

Figure 6. An extractfrom theQWidget classhierarchy

A widget maycontainany numberof child widgets. Child widgetsareshown within theparentwidget’s
area.A widgetwith noparentisa top-level widget(a ‘window’), andisdecoratedwith aconfigurableframe
andtitle bar. Qt imposesno arbitrarylimitationson widgets. Any widget canbe a top-level widget;any
widgetcanbea child of any otherwidget. Thepositionof child widgetswithin theparent’sareacanbeset
automaticallyusinglayout managers[p. 20], or manuallyif preferred.Whena parentwidget is disabled,
hiddenor deleted,thesameactionis appliedto all its child widgetsrecursively.

Labels,messageboxes, tooltips, etc., are not confinedto using a single color, font and language.Qt’s
text-renderingwidgetscandisplaymulti-languagerich text usingaHTML subset.

6.1. A ‘Hello’ Example

Thecompletesourcecodefor aprogramthatdisplays“Hello Qt/Embedded!”follows:

Figure 7. Hello Qt/Embedded!

#include <qapplication.h>

#include <qlabel.h>

int main(int argc, char **argv)

{

QApplication app(argc, argv);

QLabel *hello = new QLabel("Hello"

" <i>Qt/Embedded!</i>", 0);

app.setMainWidget(hello);

hello->show();

return app.exec();

}

12

6.2. Common Widgets

The screenshots below present the main Qt widgets, shown using the Windows style.

Figure 8. A QLabel and a QPushButton laid out with a QHBox

Figure 9. Two QRadioButtons and two QCheckBoxes laid out with a QButtonGroup

Figure 10. A QDateTimeEdit, a QLineEdit, a QTextEdit and a QComboBox laid out with a QGroupBox

Figure 11. A QDial, a QProgressBar, a QSpinBox, a QScrollBar, a QLCDNumber and a QSlider laid out with a QGrid

13

Figure 12. A QIconView, a QListView, a QListBox and a QTable laid out with a QGrid

QComboBox, QLineEdit and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

QTable, QListView, QTextEdit and other widgets that can display large amounts of data inherit QScrol-
lView and automatically provide scroll bars.

Many of Qt’s built-in widgets can display images, for example, buttons, labels, menu items, etc. The QImage
class supports the input, output and manipulation of images in several formats, including BMP, GIF∗, JPEG,
MNG, PNG, PNM, XBM and XPM.

6.3. Canvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large number of
‘canvas items’ that represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvas items
can easily be made interactive (e.g. user movable).

Canvas items are instances of QCanvasItem subclasses. They are more lightweight than widgets, and they
can be quickly moved, hidden and shown. QCanvas has efficient support for collision detection, and can list
all the canvas items in a given area. QCanvasItem can be subclassed to provide custom item types and to
extend the functionality of existing types.

QCanvas objects are rendered by the QCanvasView class. Many QCanvasView objects can show the same
QCanvas, but with different translations, scales, rotations and shears.

QCanvas is ideal for data visualization. It has been used by customers for drawing road maps and for
presenting network topologies. It is also suitable for fast 2D games with lots of sprites.

∗If you are in a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may require
you to license the technology to use GIF.

14

Figure 13. The Qtopia Asteroids game written with QCanvas

6.4. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses. To
illustrate subclassing, the complete code for an analog clock widget is presented. The AnalogClock widget
displays the current time and updates itself automatically.

Figure 14. Analog clock widget

In analogclock.h, AnalogClock is defined like this:

#include <qwidget.h>

class AnalogClock : public QWidget

{

public:

AnalogClock(QWidget *parent = 0, const char *name = 0);

protected:

virtual void timerEvent(QTimerEvent *event);

virtual void paintEvent(QPaintEvent *event);

};

AnalogClock inherits QWidget. It has a constructor typical of widget classes, with optional parent and
name parameters. (Testing and debugging are easier if name is set.) The timerEvent() function is inherited
from QObject (a base class of QWidget) and is called at regular intervals by the system. The paintEvent()
function is inherited from QWidget and is called automatically whenever the widget needs to be redrawn.

15

The timerEvent() and paintEvent() functions are two examples of ‘event handlers’. Application objects
receive system messages as Qt events (QEvent objects).There are over fifty types of event, of which the most
commonly used are MouseButtonPress, MouseButtonRelease, KeyPress, KeyRelease, Paint,
Resize and Close. Objects can respond to events sent to them, and filter events destined for other objects.

In analogclock.cpp, the functions declared in analogclock.h are implemented:

#include <qdatetime.h>

#include <qpainter.h>

#include "analogclock.h"

AnalogClock::AnalogClock(QWidget *parent, const char *name)

: QWidget(parent, name)

{

startTimer(12000);

resize(100, 100);

}

void AnalogClock::timerEvent(QTimerEvent *)

{

update();

}

void AnalogClock::paintEvent(QPaintEvent *)

{

QCOORD hourHand[8] = { 2, 0, 0, 2, -2, 0, 0, -25 };

QCOORD minuteHand[8] = { 1, 0, 0, 1, -1, 0, 0, -40 };

QTime time = QTime::currentTime();

QPainter painter(this);

painter.setWindow(-50, -50, 100, 100);

painter.setBrush(black);

for (int i = 0; i < 12; i++) {

painter.drawLine(44, 0, 46, 0);

painter.rotate(30);

}

painter.save();

painter.rotate(30 * (time.hour() % 12) + time.minute() / 2);

painter.drawConvexPolygon(QPointArray(4, hourHand));

painter.restore();

painter.save();

painter.rotate(6 * time.minute());

painter.drawConvexPolygon(QPointArray(4, minuteHand));

painter.restore();

16

}

Theconstructortells thesystemto call timerEvent()every twelve secondsto refreshtheclock,andsetsthe
widget’sdefault sizeto 100x 100.

In timerEvent(), the QWidget function update()is calledto tell Qt that the widget needsto be repainted.
Subsequently, Qt will generateapainteventandcall paintEvent().

In paintEvent(), a QPainter objectis usedto draw thetwelvenotchesandthetimeandminutehandson the
widget. TheQPainter classprovidesanAPI for paintingwidgets,pixmaps,vectorimagesandPostScriptin
a uniform way. It providesfunctionsto draw points,lines,polygons,ellipses,arcs,Beziercurves,etc. The
coordinatesystemof a QPainter canbe translated,scaled,rotatedandsheared;the objectsdrawn canbe
clippedaccordingto a ’window’, andpositionedon thewidgetusinga ’viewport’. Clipping canbeusedto
reduceflicker whenrepainting.An areaof theframe-buffer canbelockedandaccesseddirectly usingthe
QDirectPainter subclassof QPainter.

The files analogclock.h andanalogclock.cpp completelydefineand implementthe AnalogClock
customwidget. Thiswidgetcanbeusedimmediately:

#include <qapplication.h>

#include "analogclock.h"

int main(int argc, char **argv)

{

QApplication app(argc, argv);

AnalogClock *clock = new AnalogClock;

app.setMainWidget(clock);

clock->show();

return app.exec();

}

6.5. Main Windows

TheQMainWindow classlaysout a setof relatedwidgetsto provide a framework for typical application
mainwindows.

A mainwindow containsasetof standardwidgets.Thetopof themainwindow containsamenubar,beneath
which toolbarsarelaid out. Thetoolbarscanbemovedto any dockarea;mainwindowshavedockareasat
thetop,left, right andbottom. Toolbarscanalsobedraggedout of a dockareaandfloatedasindependent
tool palettes.Thebottomof themainwindow, below thebottomdockarea,is occupiedby astatusbar. The
centralareacontainsany widget. Tooltipsand“What’sthis?”helpprovideballoonhelpfor theuser-interface
elements.

For smallscreendevices,it canbepreferableto defineastandardQWidget templatein Qt Designer anduse
that,ratherthanQMainWindow. Thetemplatetypically hasamenubaranda toolbarsideby side,andmay
nothaveastatusbaratall. (Wherenecessary,statusmaybeshownin thetaskbaror thetitle bar, for example.)

17

6.6. Menus

TheQPopupMenu widgetpresentsmenuitemsto theuserin averticallist. Popupmenuscanbestandalone
(e.g. acontext menu),canappearin amenubar, or canbeasub-menuof anotherpopupmenu.

Eachmenuitemcanhaveanicon,acheckboxandanaccelerator. Menuitemsusuallycorrespondto actions
(e.g. Save).Separatoritemsaredisplayedasa line andareusedto visuallygrouprelatedactions.

Here’sanexamplethatcreatesaFile menuwith New, Open andExit menuitems:

QPopupMenu *fileMenu = new QPopupMenu(this);

fileMenu->insertItem("&New", this, SLOT(newFile()), CTRL+Key_N);

fileMenu->insertItem("&Open...", this, SLOT(open()), CTRL+Key_O);

fileMenu->insertSeparator();

fileMenu->insertItem("E&xit", qApp, SLOT(quit()), CTRL+Key_Q);

Whena menuitem is chosen,thecorrespondingslot is executed.As acceleratorsarerarelyusedon devices
with nokeyboard,Qt/Embeddedistypicallyconfiguredwithoutacceleratorsupport.Thismeansthatwhereas
“&New” wouldberenderedasNew onadesktopmachine,it will appearasNew onanembeddeddevice.

The QMenuBar classimplementsa menubar. It automaticallysetsits geometryto the top of its parent
widget. It splitsitscontentsacrossmultiplelinesif theparentwindow isnotwideenough.Qt’sbuilt-in layout
managersautomaticallytakethemenubarinto consideration.

Qt’s menusystemis very flexible. Menu itemscanbe enabled,disabled,addedor removed dynamically.
Menuitemswith customizedappearanceandbehavior canbecreatedby subclassingQCustomMenuItem.

6.7. Toolbars

TheQToolButton classimplementsa toolbarbuttonwith anicon,a3D frameandanoptionallabel. Toggle
toolbarbuttonsturn featureson andoff. Other toolbarbuttonsexecutea command.Different iconscan
be provided for the active, disabledand enabledmodes,and for the on and off states.If only one icon
is provided,Qt automaticallydistinguishesthe stateusingvisual cues,for example,grayingout disabled
buttons.Pressinga toolbarbuttoncanalsobeusedto triggerapopupmenu.

QToolButtons usuallyappearside-by-sidewithin a QToolBar. An applicationcanhave any numberof
toolbars,andthe useris free to move themaround. Toolbarscancontainwidgetsof almostany type,for
exampleQComboBoxesandQSpinBoxes.

6.8. Balloon Help

Modernapplicationsuseballoonhelpto briefly explain thepurposeof user-interfaceelements.Qt provides
two mechanismsfor balloonhelp: tooltipsand“What’sthis?”help.

Tooltipsaresmall,usuallyyellow, rectanglesthatappearautomaticallywhenthemousepointerhoversover
a widget. Tooltipsareoftenusedto explaina toolbarbutton,sincetoolbarbuttonsarerarelydisplayedwith
text labels.Here’show to setthetooltip of a ‘Save’ toolbarbutton:

QToolTip::add(saveButton, "Save");

It is alsopossibleto seta longerpieceof text to bedisplayedin thestatusbarwhenthetooltip is shown.

18

Devices that do not use a mouse (for example, those that use a stylus), may not have a means of hovering
the mouse pointer over a widget, which is the normal mechanism for raising a tooltip. Such devices may not
support tooltips at all (relying on “What’s this?” help instead), or may use a gesture, for example, press and
hold, to signify hovering.

“What’s this?” help is similar to tooltips, except that the user must request it. On a small screen device,
“What’s this?” help may be invoked by pressing a ? help button that appears next to the application’s X close
button, and then pressing the relevant widget. “What’s this?” help is typically longer than a tooltip. Here’s
how to set the “What’s this?” text for a ‘Save’ toolbar button:

QWhatsThis::add(saveButton, "Saves the current file.");

The QToolTip and QWhatsThis classes provide virtual functions that can be reimplemented for more
specialized behavior.

Qtopia doesn’t use either of these mechanisms to provide help. Instead it provides a ? help button in each
application’s title bar, which launches the HTML help browser with the help contents page for the relevant
application. It uses the press and hold gesture to invoke context (right click) menus and property dialogs.

6.9. Actions

Applications usually provide the user with several different ways to perform a particular action. For example,
most applications provide a ’Save’ action available from the menu (File|Save), from the toolbar (the ’floppy
disk’ toolbar button) and as an accelerator (Ctrl+S). The QAction class encapsulates this concept. It allows
programmers to define an action in one place and then add that action to a menu or toolbar. Actions that only
make sense as menu options can be added to menus directly.

The following code implements a ‘Save’ menu item and a ‘Save’ toolbar button. Balloon help and an
accelerator could easily be added, but are not included because they are rarely used for small devices.

QAction *saveAct = new QAction(this);

saveAct->setText("Save");

saveAct->setIconSet(QPixmap("save.png"));

connect(saveAct, SIGNAL(activated()), this, SLOT(save()));

saveAct->addTo(fileMenu);

saveAct->addTo(toolbar);

In addition to avoiding duplication, using a QAction ensures that the state of menu items stays in sync with
the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will disable
any corresponding menu items and toolbar buttons. Similarly, if the user clicks a toggle toolbar button, the
corresponding menu item will be checked or unchecked accordingly.

19

7. Dialogs

Developers can build their own dialogs using the Qt Designer visual design tool. Qt uses ‘layouts’
to automatically size and position widgets in relation to one another. This ensures that dialogs
make the best use of the available screen space. The use of layouts also means that buttons and
labels automatically resize to show their text in full regardless of language.

7.1. Layouts

Qt provides layout managers for organizing child widgets within the parent widget’s area. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes.

Using layouts, developers can write applications independently of the screen size or orientation, without
wasting space or duplicating code. For internationalized applications, layouts ensure that buttons and labels
take as little space as possible without cutting off the text, regardless of the language.

Layouts also make it easy to accommodate certain user-interface components such as input methods and
task bars. For example, when Qtopia users are entering text, the input method takes up screen space, and the
application should adapt accordingly.

Figure 15. Layout management on Qtopia

Qt provides three built-in layout managers: QHBoxLayout, QVBoxLayout and QGridLayout.

20

Figure 16. QHBoxLayout, QVBoxLayout and QGridLayout

QHBoxLayout organizes the managed widgets in a single horizontal row from left to right. QVBoxLayout
organizes the managed widgets in a single vertical column, from top to bottom. QGridLayout organizes the
managed widgets in a grid of cells; widgets may span multiple cells.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that windows look good and
resize smoothly. Developers can refine the layout using the following mechanisms:

1. Settinga minimumsize,a maximumsizeor a fixedsizefor somechild widgets.

2. Addingstretch itemsor spaceritems.Stretch or spacer items fill empty space in a layout.

3. Changingthesizepoliciesof thechild widgets.Programmers can fine tune the resize behavior of a child
widget. Child widgets can be set to expand, contract, keep the same size, etc.

4. Changingthechild widgets’sizehints. QWidget::sizeHint() and QWidget::minimumSizeHint() return
a widget’s preferred size and preferred minimum size based on the contents. Built-in widgets provide
appropriate reimplementations.

5. Settingstretchfactors. Stretch factors allow relative growth of child widgets, e.g. two thirds of any extra
space made available should be allocated to widget A and one third to widget B.

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient for internationalized
applications supporting right-to-left languages such as Arabic and Hebrew.

Layouts can be nested to arbitrary levels. Here’s an example of a dialog box, shown at two different sizes:

Figure 17. Small dialog and large dialog

21

The dialog uses three layouts: a QVBoxLayout that groups the push buttons, a QHBoxLayout that groups
the country listbox with the push buttons and a QVBoxLayout that groups the “Now please select a country”
label with the rest of the widget. A stretch item maintains the gap between the < Prev and Help buttons.

The dialog’s widgets and layouts are created with the following code:

QVBoxLayout * buttonBox = new QVBoxLayout(6);

buttonBox->addWidget(new QPushButton("Next >", this));

buttonBox->addWidget(new QPushButton("< Prev", this));

buttonBox->addStretch(1);

buttonBox->addWidget(new QPushButton("Help", this));

QListBox * countryList = new QListBox(this);

countryList->insertItem("Canada");

/* … */

countryList->insertItem("United States of America");

QHBoxLayout * middleBox = new QHBoxLayout(11);

middleBox->addWidget(countryList);

middleBox->addLayout(buttonBox);

QVBoxLayout * topLevelBox = new QVBoxLayout(this, 6, 11);

topLevelBox->addWidget(new QLabel("Now please select a country", this));

topLevelBox->addLayout(middleBox);

Alternatively, the dialog can be designed using Qt Designer with just 17 mouse clicks.

Figure 18. Laying out a form in Qt Designer

7.2. Qt Designer

Qt Designer is a visual user-interface design tool. Qt applications can be written entirely in source code, or
using Qt Designer to speed up development.

Designing a form with Qt Designer is a simple process. Developers click a toolbar button representing the
widget they want, then click on a form to place the widget. The widget’s properties can then be changed using
the property editor. The precise positions and sizes of the widgets do not matter. Developers select widgets
and apply layouts to them. For example, some button widgets could be selected and laid out side-by-side by

22

choosing the ‘lay out horizontally’option. This approach makes design very fast, and the finished forms will
scale properly to fit whatever window size is available.

Figure 19. Qt Designer

Qt Designer eliminates the time-consuming compile, link and run cycle for user interface design. This makes
it easy to correct or change designs. Qt Designer’s preview options let developers see their forms in any style,
including custom styles. Qt Designer provides live preview and editing of database data through its tight
integration with Qt’s database classes.

Developers can create both ‘dialog’ style applications and ‘main window’ style applications with menus,
toolbars, balloon help, etc. Several form templates are supplied, and developers can create their own templates
to ensure consistency across an application or family of applications. Qt Designer uses wizards to make
creating toolbars, menus and database applications as fast and easy as possible. Programmers can create their
own custom widgets that can easily be integrated with Qt Designer.

Form designs are stored in human-readable .ui files, and converted into C++ header and source files by
the uic (User Interface Compiler). The qmake build tool automatically includes build rules for uic in the
Makefiles it generates, so developers do not need to invoke uic themselves.

23

Alternatively, .ui files can be loaded at run-time by applications, and converted into fully functional forms.
This allows customers to modify the look of an application without recompiling, and can also be used to
reduce the size of applications.

7.3. Built-in Dialogs

Qt includes ready-made dialog classes with static convenience functions for the most common tasks.
Screenshots of some of Qt’s standard dialogs are presented below.

QMessageBox is used to provide the user with information or to present the user with simple choices (e.g.
‘Yes’or ‘No’).

Figure 20. A QMessageBox

QProgressDialog displays a progress bar and a ‘Cancel’button.

Figure 21. A QProgressDialog

QWizard provides a framework for wizard dialogs.

Figure 22. A QWizard

Qt also includes QColorDialog, QFileDialog, QFontDialog and QPrintDialog. These classes are more
suitable for desktop applications and are usually compiled out of Qt/Embedded.

24

8. Look and Feel

Qt desktop applications adopt the style, or look and feel, of their execution environment, e.g.
Windows XP, Mac OS X, Linux. Qt/Embedded applications can use any of these styles, or can use
custom styles, statically or as plugins. Developers can customize both the widget style and the
window decorations.

8.1. Widget Style

A style is a QStyle subclass that implements the look and feel of Qt’s widgets. Qt/Embedded programmers
are free to use and modify existing styles or implement their own styles using Qt’s style engine. The built-in
styles available on Qt/Embedded are Windows, Motif, MotifPlus, CDE, Platinum and SGI. The style can be
set dynamically on a per-application basis, and even on a per-widget basis.

Figure 23. Comboboxes in the different built-in styles

A family of applications can be given a distinctive look by writing a custom style. Custom styles can be
defined by subclassing QStyle, QCommonStyle or any descendent of QCommonStyle. It is easy to make
small modifications to existing styles by reimplementing one or two virtual functions from the appropriate
base class.

A style can be compiled as a plugin. With plugins, developers can preview a form in their device’s custom
style in Qt Designer. Style plugins also give users the opportunity to change the look of the device without
recompiling.

QStyle

QMotifStyle

QCDEStyle QMotifPlusStyle QSGIStyle

QCommonStyle

QWindowsStyle

QPlatinumStyle

Figure 24. The QStyle class hierarchy

Qt’s built-in widgets are style-aware and will automatically repaint themselves when the style changes.
Custom widgets and dialogs are almost always combinations of built-in widgets and layouts, and are
automatically style-aware. On the rare occasions that it is necessary to write a custom widget from scratch,
developers can use QStyle to draw primitive user-interface elements rather than drawing raw rectangles
directly.

25

8.2. Window Decorations

Top-level windows are decorated by a title bar and a frame. Qt/Embedded includes these window manager
styles: BeOS, Hydro, KDE and Windows.

Figure 25. Windows with different window decorations

Decorations can be configured on a per-window basis, if required. Custom styles are created by subclassing
QWSDecoration, and distributed as plugins. For more control over the window manager’s behavior,
developers can subclass QWSManager.

9. Internationalization

Qt/Embedded fully supports Unicode, the international standard character set. Developers can
freely mix Arabic, English, Hebrew, Japanese, Russian, and every other language supported by
Unicode,in their applications. Qt/Embedded also includes tools to support application translation
to help companies reach international markets.

9.1. Unicode

Qt uses the QString class to store Unicode strings. QString replaces the crude const char *; constructors
and operators are provided to handle conversion between QString and const char *. Programmers
can copy QStrings by value without penalty, since QString uses implicit sharing (copy on write) to reduce
memory use. Qt also provides QCString to efficiently store ASCII strings.

Qt provides a powerful Unicode text rendering engine for all text that is displayed on screen, from the
simplest label to the most sophisticated rich-text editor. The engine supports advanced features such as
special line breaking behavior, bidirectional writing and diacritical marks. It renders most of the world’s
writing systems, including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin and
Vietnamese. The engine is optimized for the common case: a single line of plain text with an optional
accelerator (e.g. File).

26

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses. Qt 3.0
supports 37 different encodings, including Big5 and GBK for Chinese, EUC-JP, JIS and Shift-JIS for
Japanese, KOI8-R for Russian and the ISO 8859 series. They can be compiled as part of the library or as
plugins, or compiled out using the ‘feature’mechanism.

9.2. Translating Applications

Qt provides tools and functions to help developers provide applications in their customers’native languages.

To make a string translatable, simply wrap it in a call to tr() (read ‘translate’):

saveButton->setText(tr("Save"));

tr() attempts to replace a string literal (e.g. “Save”) with a translation if one is available; otherwise it uses
the original text. For example, English could be used as the source language and Chinese as the translated
language, or vice versa. The argument to tr() is converted to Unicode from the application’s default encoding.

tr()’s general syntax is

Context::tr("source text", "comment")

The ‘context’ is the name of a QObject subclass. It is usually omitted, in which case the class containing the
tr() call is used as the context. The ‘source text’ is the text to translate. The ‘comment’ is optional; along with
the context, it provides additional information for human translators.

Translations are stored in QTranslator objects, which use memory-mapped .qm files (Qt Message files).
Each .qm file contains the translations for a particular language. The language can be changed at run-time;
any dialog created using Qt Designer can retranslate itself on the fly with no special provisions.

Qt provides three tools for preparing .qm files: lupdate, Qt Linguist and lrelease.

1. lupdate extracts all the (context, source text, comment) triples from the source code, including Qt De-
signer .ui files, and generates a .ts file (Translation Source file). The .ts files are human-readable.

2. Translators use Qt Linguist to provide translations for the source texts in the .ts files.

3. Highly compressed .qm files are generated by running lrelease on the .ts files. The .qm files are
used on the embedded device.

These steps are repeated as often as necessary during the lifetime of an application. It is perfectly safe to run
lupdate frequently, as it reuses existing translations and marks translations for obsolete source texts without
eliminating them.

27

9.3. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications. Translators can edit .ts files
by hand, or more conveniently using Qt Linguist. The .ts file’ scontexts are listed in the left-hand side of

Figure 26. Qt Linguist

the application’s window. The list of source texts for the current context is displayed in the top-right area,
along with translations. By selecting a source text, the translator can enter a translation, mark it done or
unfinished and proceed to the next unfinished translation. Keyboard shortcuts are provided for all the
common navigation options: Done & Next, Next Unfinished, etc. The user interface’s dockable windows can
be reorganized to suit the translators’preferences.

Applications often use the same phrases many times in different source texts. Qt Linguist automatically dis-
plays intelligent guesses based on previously translated strings and predefined translations at the bottom of the
window. Guesses often serve as a good starting point that helps translators translate similar texts consistently.
Qt Linguist can optionally validate translations to ensure that accelerators and ending punctuation are trans-
lated correctly. Qt Linguist also detects slight changes in source texts and automatically suggests appropriate
translations. These translations are marked as unfinished so that a translator can easily find them and check
them.

28

10. Non-Graphical Classes

Qt/Embedded provides a full range of non-graphical classes that provide data containers
(collection classes), input/output, networking,database interaction and threading.

10.1. Collection Classes

Collection classes are used to store groups of items in memory. Qt/Embedded provides two sets of collection
classes: pointer-based collections and value-based collections.

The pointer-based collection classes are QDict<Key,T>, QPtrList<T>, QPtrQueue<T>, QPtrStack<T>,
QPtrVector<T> and QCache<T>. These classes are often used for storing pointers to QWidgets and
QObjects, and Qt/Embedded’s internals make heavy use of them. The pointer-based collection classes can
optionally take ownership of the objects they contain and automatically delete them when the collection is
destroyed, simplifying memory management.

The value-based collection classes are QMap<Key,T>, QValueList<T>, QValueStack<T>, QValueVec-
tor<T> and QStringList. They have an interface very similar to the STL containers. Qt/Embedded also pro-
vides the low-level QMemArray<T> class with its subclasses QBitArray, QByteArray and QPointArray.
These classes are very efficient for handling basic ‘plain old data’ types.

To avoid the problem of code bloat associated with templates, Qt/Embedded uses private non-template
classes to implement the functionality of template classes. The template classes are only a thin layer that
converts special types to generic pointers, and results in very little binary code. Another technique, implicit
sharing, is used in the value-based containers to avoid needless duplication of data. These optimizations make
Qt’s collection classes suitable to embedded development.

10.2. Input/Output

Qt provides QTextStream and QDataStream to read and write text and binary data in a file, a buffer, a socket
or a custom device. QDataStream can be used to serialize basic C++ types and many Qt types.

Directories are manipulated using QDir. The QFileInfo class provides more detailed information about a file,
such as its size, permissions, creation time and last modification time.

Transparent access to remote files is provided by QUrlOperator. In addition to local file system access, Qt
supports the the FTP and HTTP protocols and can be extended to support other protocols. For example, files
can be downloaded using FTP like this:

QUrlOperator op;

op.copy(QString("ftp://ftp.trolltech.com/qt/INSTALL"),

QString("file:/tmp"));

URLs can easily be parsed and recomposed using QUrl.

Image files are usually read by creating a QImage with the file name as argument. Printing text and images
is handled by QPainter. These classes are described in “Widgets” [p. 11].

29

User settings and other application settings can easily be stored on disk using the QSettings class. Settings
are stored in text files under hierarchical keys, e.g. /Tools/Zoomer/RecentFiles. Booleans, numbers,
Unicode strings and lists of Unicode strings are supported.

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2 Java
implementation, and is especially suitable for simple parsing requirements and for very large files. The
DOM (Document Object Model) Level 2 implementation follows the W3C recommendation and includes
namespace support.

10.3. Networking

Qt provides an interface for writing TCP/IP clients and servers. The QSocket class provides an asynchronous
buffered TCP connection. Functions such as QSocket::connectToHost() and QSocket::writeBlock() can be
called at any time without freezing the application’s user interface. Sockets emit the readyRead() signal when
there is data available to read.

The QSocketDevice provides an abstraction for the underlying functionality for QSocket and QServerSock-
et, and can be used for UDP.

10.4. Database

The Qt SQL module provides a uniform interface for accessing SQL databases. Qt includes native drivers
for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL and ODBC. Programs can
access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget, including custom widgets, can be made data-aware. Qt also includes some database-specific
convenience widgets, to simplify the creation of dialogs and windows that present records as forms or in
tables. Data-aware widgets automatically support browsing, updating and deleting records. Most database
designs require that new records have a unique key that cannot be guessed by Qt, so insertion usually needs
a small amount of code to be written. The programmer can easily force the user to confirm actions, e.g.
deletions.

Using the facilities that the Qt SQL module provides, it is straightforward to create database applications that
use foreign key lookups, present master-detail relationships, and support drill-down.

Qt’s SQL module is fully integrated with Qt Designer. Qt Designer can preview database forms and tables
using live data if desired, allowing developers to browse, delete and update records. Qt Designer has
templates and wizards to make creating database forms fast and simple.

10.5. Multi-Threading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one or
many other threads to perform time-consuming activities such as reading large files and performing complex
calculations. Qt/Embedded can be configured to support multi-threading, and provides four threading
classes: QThread, QMutex, QSemaphore and QWaitCondition.

30

11. Qt/Embedded in the Wider World

Qt/Embedded makes Linux a viable platform for embedded GUI applications. It is an implemen-
tation of a mature, consistent, object-oriented toolkit that includes many tools to ease and speed
development. Qt/Embedded is already used by major companies and is attracting software devel-
opers from both the commercial sector and from the open source community.

Qt/Embedded became commercially available for the first time in September 2000. It is a port of the Qt
toolkit which has been powering both commercial and open source applications since 1995. Qt/Embedded is
already used by enterprises and individuals across the world.

Organizations that wish to make use of a ready-made software environment for specialized devices
such as PDAs and WebTVs, can license Qtopia, an environment created by Trolltech that is built with
Qt/Embedded. Qtopia is used in the Sharp Zaurus device (shown on the cover-page) and includes a PIM
(Personal Information Management) application suite. Qtopia is also available in open source form at
http://qpe.sourceforge.net. Qtopia is described in the Qtopia Whitepaper.

Insigna Solutions offers a Java Virtual Machine for Qt/Embedded. The Qt API is used to implement the Java
AWT, resulting in a look and feel that is consistent with C++ applications.

IBM and OTI (Object Technology International) also provide a Java solution for Qt/Embedded. This uses
their Simple Widget Toolkit instead of the Abstract Widget Toolkit.

Qt has an active and helpful user community who communicate using the qt-interest mailing list. See
http://qt-interest.trolltech.com to subscribe or to browse the archive.

Qt’s extensive documentation is available on-line at http://doc.trolltech.com.

Developers can evaluate Qt/Embedded, with support, for 30 days. See
http://www.trolltech.com/products/qt/evaluate.html for details.

For further information, email info@trolltech.com.

A small sample of the applications that have been developed with Qt/Embedded are shown below.

Opera Software has developed a fast Qt/Embedded web-browser that supports HTML 4.0, CSS1, JavaScript
1.3 and cookies.

31

http://qpe.sourceforge.net
http://qt-interest.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/products/qt/evaluate.html
mailto:info@trolltech.com

Figure 27. Konqueror/Embeddedby theKDE team·Portof NetHackby WarwickAllison

Figure 28. Portof KDE’sSokobangameby SteveDunham·A SID playerby MarkusGritsch

32

Index

About box, 24
Acceleration hard-

ware, 7
Accelerator, 19, 28
Action, 19
Alpha-blended

pixmap, 4
Analog clock, 15
Animation, 14
Anti-aliased font, 4, 6
Aqua, 26
Arabic, 7 21, 26
ARM, 4
Array, 29
Assistant, 24
Asynchronous I/O, 6
Auto-deletion, 29
Automatic layout, 20
AWT, 31
Balloon help, 18
BDF, 6
BeOS, 26
Bezier curve, 17
Bidirectional writing,

26
Big5, 27
Binary serialization,

29
Bit depth, 4
Bitmap, 5, 14
Bloat problem, 29
BMP, 14
Borland C++, 8
Box layout, 13, 21
Browser, 31
BusMouse, 7
Button, 13
Cache, 29
Caching, 5
Callback, 9
Canvas, 14
CDE, 25
Central area, 17
char, 26
Charmap, 27

Charset, 27
Checkbox, 13
Child widget, 12, 20
Chinese, 7, 26
clicked(), 9
Client, 6, 30
Clipping, 17
Clock, 15
Code bloat problem,

29
Codec, 27
Collection class, 29
Collision testing, 14
Color, 25
Combobox, 13
Comment, 27
Communication, 6, 9
Compiler, 4, 8
Compiler features, 11
Component, 10
Configuration, 5, 29
connect(), 9
Connection, 9, 19
Container, 29
Context, 27
Context menu, 18
Control, 11
Copy on write, 5
Cross-development, 8
CSS1, 31
Custom canvas item,

14
Custom style, 25
Custom widget, 23,

30
Cyrillic, 26
Data visualization, 14
Database, 23, 30
Date, 13
Debugger, 8
Decorations, 6, 26
Default widget size,

20
Defaults, 29
Delete, 29

Designer, 8, 22 27, 30
Desktop, 6 8, 24
Device, 5
Diacritical mark, 26
Dial, 13
Dialog, 24
Dictionary, 29
Directory, 29
DOM, 30
Drawing, 25
Drill-down, 30
Driver, 5, 7
Druid, 24
Dynamic dialog, 24
Editor, 13
Embedded Linux, 4, 5
Emitting a signal, 11
Encoding, 27
English, 26
Ericsson, 4
Error, 24
EUC-JP, 27
Event, 9, 16
exec(), 12
Fatal error, 24
Features, 5
File, 29
Flash, 5, 8
Flicker, 17
Font, 20, 26
Foreign key, 30
Form, 22
Frame, 12, 26
Frame-buffer, 4, 5 8,

17
FTP, 29
g++, 8
Game, 14
GBK, 27
GCC, 8
Geometry, 12, 20
GIF, 14
Graph, 14
Graphic card, 4
Graphics, 7, 14

Greek, 26
Grid layout, 21
GUI application, 17
Handwriting, 7
Hebrew, 7 21, 26
Hierarchical tree

view, 14
Hover help, 18
HTML, 12, 31
HTTP, 29
Icon, 14 18, 18
Icon view, 14
Image, 14, 29
Implicit sharing, 5 26,

29
Inheriting, 10 14, 18
Input method, 7, 20
Input/output, 29
Input validation, 14
Insigna Solutions, 31
Intel x86, 4
IntelliMouse, 7
Internationalization,

20, 26
Introspection, 11
IP, 30
iPAQ, 7
IPC, 6
ISO 8859, 27
Japanese, 7 26, 28
Java, 30
Java Virtual Machine,

31
JavaScript, 31
JIS, 27
JPEG, 14
KDE, 26
KDevelop, 8
Key, 30
Keyboard, 5 7, 7
KOI8-R, 27
Korean, 26
Label, 13
Language, 20, 26
Latin, 26

33

Layout, 12, 20
LCD, 13
libc, 8
Library, 5 6, 6
Line breaking, 26
Line editor, 13
Linguist, 27
Linker, 8
Linking, 5
Linux, 4, 5
List, 29, 29
List box, 14
List view, 14
Localization, 26
Look and feel, 25
lrelease, 27
lupdate, 27
Mach64, 7
Macintosh, 5
Magic, 11
Main window, 17
Makefile, 8, 11
Makefiles, 23
Map, 29
Master-detail, 30
Maximum size, 21
Memory array, 29
Menu bar, 18, 19
Message box, 24
Message map, 9
Messaging, 16
Meta Object Compil-

er, 11
MFC, 9
Microsoft mouse, 7
Microsoft SQL Serv-

er, 30
Microsoft Visual C++,

8
Microsoft Windows, 5

25, 26
Minimum size, 21
MIPS, 4
MNG, 14
moc, 11
Motif, 9, 25
Motorola 68000, 4

Mouse, 5
MouseMan, 7
Multi-line editor, 13
Multi-threading, 30
MySQL, 30
NEC Vr41XX, 7
Networking, 29, 30
Notebook, 24
Object-oriented pro-

gramming, 10
OCI, 30
ODBC, 30
Opera Software, 31
Operating system, 4
Oracle, 30
Ownership, 29
Painting, 16 17, 25
Parent widget, 12, 20
Peripheral, 5
Pickboard, 7
Picture, 14
Pixmap, 17
Plain old data, 29
Platforms, 6
Platinum, 25
Plugin, 5, 6 25 26, 27
PNG, 14
PNM, 14
Pointer-based collec-

tion, 29
Pointer device, 7
Popup menu, 18
Positioning, 20
PostgreSQL, 30
PostScript, 17
PostScript font, 6
PowerPC, 4
Pre-processor, 5, 11
Preferences, 25, 29
Preferred size, 21
Primary key, 30
Printer, 17
Private class, 29
.pro, 8
Process, 6, 6
Profiler, 8
Progress bar, 13, 24

Property, 11
Property box, 24
Push button, 13
QAction, 19
QApplication, 12
QBitArray, 29
QBitmap, 5
QButtonGroup, 13
QByteArray, 29
QCache, 29
QCalibratedMouse-

Handler, 7
QCanvas, 14
QCanvasItem, 14
QCanvasView, 14
QCDEStyle, 25
QCheckBox, 13
QColorDialog, 24
QComboBox, 13, 14
QCommonStyle, 25,

25
QCOP, 6
QCString, 26
QCustomMenuItem,

18
QDataStream, 6, 29
QDateEdit, 13
QDateTimeEdit, 13
QDial, 13
QDialog, 11
QDict, 29
QDir, 29
QDirectPainter, 17
QEvent, 16
QFileDialog, 24
QFileInfo, 29
QFontDialog, 24
QFontFactory, 6
QFrame, 11
QGfxRaster, 7
QGridLayout, 13 14,

20
QGroupBox, 13
QHBoxLayout, 13,

20
QIconView, 14
QImage, 14, 29

QLabel, 11, 13
QLCDNumber, 13
QLineEdit, 11 13, 14
QListBox, 14
QListView, 14, 14
.qm, 27
QMainWindow, 17
qmake, 8 11, 23
QMap, 5, 29
QMemArray, 29
QMenuBar, 18
QMessageBox, 24
QMotifPlusStyle, 25
QMotifStyle, 25
QMutex, 30
QNX, 4
QObject, 9, 10 11 27,

29
QPainter, 17, 29
QPalette, 5
QPF, 6
QPicture, 5
QPixmap, 5
QPlatinumStyle, 25
QPointArray, 29
QPopupMenu, 18
QPrintDialog, 24
QProcess, 6
QProgressBar, 13
QProgressDialog, 24
QPtrList, 29
QPtrQueue, 29
QPtrStack, 29
QPtrVector, 29
QPushButton, 13
QRadioButton, 13
QRegExp, 14
QScreen, 7
QScrollBar, 13
QScrollView, 14
QSemaphore, 30
QServerSocket, 30
QSettings, 29
QSGIStyle, 25
QSlider, 13
QSocket, 30
QSocketDevice, 30

34

QSpinBox, 11 13, 14
QStatusBar, 17
QString, 5 26, 29
QStringList, 29
QStyle, 25
Qt Designer, 8, 22 27,

30
Qt Linguist, 27
QTabDialog, 24
QTable, 14, 14
QTextCodec, 27, 29
QTextEdit, 13, 14
QTextStream, 29
QThread, 30
QTimeEdit, 13
QTimer, 11
QTL, 29
QToolBar, 18
QToolButton, 18
QToolTip, 19
Qtopia, 7 14, 20
QTranslator, 27
Queue, 29
quit(), 9
QUrl, 29
QUrlOperator, 29
QValidator, 14
QValueList, 29
QValueStack, 29
QValueVector, 29
QVBoxLayout, 20
QWaitCondition, 30
QWERTY, 7
QWhatsThis, 19
QWidget, 11, 29
QWindowsStyle, 25
QWizard, 24
QWSDecoration, 26
QWSKeyboardHan-

dler, 7
QWSManager, 26
QWSMouseHandler,

7
Radio button, 13
RAM, 4
Reference counting, 5
Registry, 29

Regular expression,
14

Relative growth, 21
Repositioning, 20
Resizing, 20
Reusability, 10
Rich text, 12
Right-to-left lan-

guages, 21, 26
ROM, 5
Rotation, 14, 17
RTTI, 11
Run-time type infor-

mation, 11
SAX, 30
Scale, 14, 17
Screen, 8
Screen rotation, 4
Screen size, 4 17, 20
Screens, 7
Scroll bar, 13, 14
Scroll view, 13, 14
Separator item, 18
Serialization, 29
Server, 4 6, 30
Settings, 29
SGI, 25
Shadow build, 8
Shared library, 5
Shared memory, 6
Sharing, 5 26, 29
Shear, 14, 17
Shift-JIS, 27
Signal, 9
Size, 20
Size policy, 21
Slider, 13
Slot, 9
Socket, 30
Source text, 27
Spacer item, 21
Spin box, 13
Spreadsheet, 14
Sprite, 14
SQL, 30
Stack, 29, 29
Static linking, 5

Status bar, 17
STL, 29
Storage, 5 27, 29
Stream, 29
Stretch, 21
Stretch factor, 21
String, 26
StrongARM, 4
Style, 25
Stylus, 7, 19
Sub-menu, 18
Subclassing, 10 14,

18
Sybase, 30
T9, 7
Tab widget, 24
Table, 14
TCP, 30
TDS, 30
Template, 29
Text editor, 13
Text rendering, 26
Text translation, 27
Theme, 25
Thread, 30
Time, 13
Timer, 15
Title bar, 12, 26
Toggle button, 18
Tool chain, 8
Toolbar, 17 18, 19
Tooltip, 18
Touch-panel, 7, 19
tr(), 27
Transformation, 14,

17
Translation, 11, 27
Tree view, 14
TrueType font, 6
.ts, 27
Type safety, 10
Type1 font, 6
UDP, 30
.ui, 23, 27
Unicode, 6, 7 26 29,

29
Unisys, 14

Unix, 4, 8
URL, 29
User input, 14
User settings, 29
Validation, 14
Value-based collec-

tion, 29
Vector, 29, 29
Vector image, 17
VGA16, 4
Vietnamese, 26
Viewport, 17
Virtual frame-buffer,

8
Visualization, 14
VNC, 8
Voodoo3, 7
Vr41XX, 7
W3C, 30
Warning, 24
Web-browser, 31
What’s this?, 19
Widget, 11
Widget style, 25
Window, 24
Window manager, 26
Windowing system, 5
Windows, 5, 8 25, 26
Wizard, 24, 30
Writing system, 26
X11, 4 5, 8
XBM, 14
XML, 30
XPM, 14

35

