Qt/Embedded Whitepaper

Trolltech

wwv. t rol | tech. com

Abstract

ThiswhitepapedescribesheQt/Embedded++toolkit for GUI andapplicationdevelopmenbnembedded
devices. It runson ary device supportedoy Linux anda C++ compiler Qt/Embeddegrovidesthe entire
standardQt APIl and can compile out unusedfeaturesto minimize its memoryfootprint. Qt/Embedded
applicationcanbedevelopedonfamiliar desktopystemse.g. WindowsandUnix, andwith standardools.
It is providedwith all the Qt toolsincluding Qt Designer for visualform designandwith toolsspecifically

tailoredto theembeddednvironment.

= ————— e
B3 o 1]H:.
i
= = — -
2z = 15
A | Calerclar |
City Tim: Enaail
11
.@'3': -::p-_?
File Manager Image “iewer
Media Player Systermn Info
‘ Terminal Text Editor Todo List =
=
ok’ ~THCIEM A TY SBM11L2)
=i/ ;—-‘ 1"::"?11' =i

o

ﬂoc

The Sharp Zaurus PDA using Qt/Embedded

Qt/Embedded Whitepaper

Trolltech

ww. trol |l tech. com

Contents

LoIntroduction e
2. SyStEM REqUITEMENTS o e
3 ATIChItECIUrE . . . o e
31 WIindowing System
3.2, FONtS . . . e
33, INPUEDEVICES
4. InputMethods e
35, Screen Acceleration
4. Development Environment e
4.1 QUsSUpporting TOOIS
5.8 gnalsand SIOtS
51. ASigndsand SlotsExample
5.2. MetaObject Compiler e
6. WIdQELS e
6.1. A'Helo Example
6.2. CommonWIdgetS
B.3. CanVas i
6.4. CustomWIdgELS
6.5. MainWindows L
6.6. MENUS
6.7. Toolbars
6.8. BaloonHelp
6.9. ACLIONS e
7. DIAlOgS .« . .
7.0 Layouts o e
7.2, QtDesigNer . . . e
7.3. BUilt-inDidlogs e

0 0000 ~N~N~NO O O w

NNNNDNDNRRRRERRPR R P =
OO RNSOSOm®mwMmO®MuNuO OO EBERDO

8.2. WINdow DEeCOrationS v v vt e e e e e

9. Internationalization

0.1. Unicode o e
9.2. Trandating Applications
9.3. QtLiNgUISt e

10. Non-Graphical Classes i e

10.1. Collection Classes oo vt
10.2. INPU/OULPUL . . o . o e e e e
10.3. Networking o o
104, Database
105 Multi-Threading o e

11. Qt/Embedded intheWider World

26
26
26
27
27
28
29
29
30
30
30
30

33

1. Introduction

Qt/Embedded is a C++ toolkit for GUI and application development for embedded devices. It
runs on a variety of processors, usually with Embedded Linux. Qt/Embedded applications write
directly to the frame-buffer, eliminating the need for the X Window System. In addition to the class
library, Qt/Embedded includes several tools to speed and ease development. Applications can
be developed with familiar programming environments on Windows and Unix, using the standard
Qt API.

Qt/Embeddeds a port of the Qt C++ API for embeddedlevices. It providesthe sameAPI andtoolsas
the Qt/X11, Qt/Windows andQt/Macversions. Qt/Embeddedilsoincludesclassesandtoolsto specifically
supportembeddedievelopment.

TheQt C++toolkit uponwhich Qt/Embeddedks built hasbeenattheheartof commerciabpplicationssince
1995.Qtis usedby enterpriseasdiverseasAT&T, IBM, NASA, SharpandXerox,andby numerousmaller
companiesand organizations.Qt 3.0 retainsthe power and easeof useof earlierversionsandintroduces
mary new classes.Qt's classesre fully featuredto reducedeveloperworkload,and provide consistent
interfacedo speedearning. Qtis, andalwayshasbeenfully object-oriented.

Qt providesa type-safealternatve to old fashionedcallbackscalledsignalsandslots[p. 8], thatfacilitates
true componentprogramming. Qt suppliesa wide rangeof versatilewidgets[p. 11] that can easily be
subclassetb createcustomcomponentspr combinedto createcustomdialogs[p. 20]. Pre-definedlialogs
for commontaskssuchasmessagéoxesandwizardsarealsoprovided.

Qt/Embeddedhasmuchsmallersystemrequirementgp. 4], i.e. lower storaggFlash)andmemory(RAM)
footprints thanembeddedolutionsbasednthe X Window System.It canrunonhardwarethatrunsLinux,
hasa linearly addressablramehuffer, andsupportsa C++compiler And Qt/Embeddedanberecompiled
to excludeunusedeaturego reducets memoryfootprint evenfurther,

Thearchitecturdp. 5] of Qt/Embeddedhcludests own windowing systemp. 6]. A varietyof inputdevices
[p. 7] aresupported.

Developerswrite codeusingtheir familiar developmentenvironmentgp. 8]. Qt Designer [p. 22]canbeused
tovisuallydesignuserinterfaceausingQt'slayout[p. 20] systemwhichautomaticallyadaptdo theavailable
screerspace.Developerscanchooseoneof the pre-definedook andfeel [p. 25] stylesor createtheir own
uniquestyles. Unix userscanrun andtesttheir applicationsn a pixel-perfectvirtual frame-huffer.

Qt/Embeddedlsoprovidesmary nongraphicacomponentfp. 28]for specializedaskssuchasinternation
alization[p. 26], networkinganddatabas@teraction.

Qt/Embeddeds a mature,solid C++ toolkit, widely usedall over the world [p. 30]. In addition to
Qt/Embedded mary othercommercialusesit is the foundationof the Qtopiaapplicationervironmentfor
smalldevices. Qt/Embeddednakesapplicationdevelopmenta pleasurewith its simplebuild systemyisual
form designandelegantAPI.

2. System Requirements

Qt/Embeddedavesnemorybecausé doesnotneedan X serveror Xlib; insteadit writesdirectly
to theframe-luffer. Memoryconsumptiorcanbefine-tunedoy compilingout featuiesthat are not
used.lt is alsopossibleto compileall theapplicationsinto a singlestaticallylinked executableto
saveevenmore memory

Qt/Embeddeds availablefor all processorsupportedoy Linux thathave a C++ compilet including Intel
x86,MIPS,ARM, StrongARM ,Motorola68000andPoverPC Trolltechis alsoexploring the possibility of
creatinga crossplatformtoolkit for theembeddednarket. Qt/Embeddednplementationgor QNX andfor
WinCE arebothbeingtrialled. Trolltechalsoprovidesportingservicego otheroperatingsystems.

QUEmbeddedpplicationswrite directly to the kernelframe-tuffer. Linearframe-tufferswith 1, 4, 8, 15,
16,24 and32bit depthsandV GAl6aresupported Any graphiccardsupportedy thekernelwill work,and
Qt/Embeddedanbecustomizedo benefitfrom screeracceleratiomardware asdescribedn “Architecture”
[p. 5]. Thereis no arbitrarylimit on screensize,and mary adwancedfeaturessuchas anti-aliasedfonts,
alpha-blendegixmapsandscreerrotationareprovided.

Qt/Embedded principal strengthis thatis doesnt rely on an X sener. This leadsto significantmemory
savingscomparedvith othersolutionssuchasQt/X11.A singlelibrary, the Qt/Embeddedibrary, is all that
is necessaro replacehe X sener, theXlib library andthewidgettoolkit of other‘embeddedsolutions.

9000

8170 KB
g000 |MQUX1L

O Qt/Embedded
7000 - 6880 KB
6000
5130 KB
5000
4250 KB
4000
3230 KB
30001 2640 ks
2000 1640 KB
1000
0 0 KB

X Server + Phone Client + Mail Client+ Message Center

RAM (KB)

Cumulative RAM consumption

Figure 1. MemorycomparisorbetweerQt/X11landQt/Embeddedor Ericssonsscreerphone

Thegraphillustrateghatthe X senergrabsalot of RAM onstartupandalsorequiresnorememoryaseach
new applicationis launched.For example startingthe PhoneClientrequire2490KB with Qt/X11,but only
1640KB with Qt/Embedded.

Thefootprint of the Qt/Embeddedibrary canbereducedoy compilingout unusedfeatures.For example,
the QListView widget canbe compiledout by definingthe pre-processosymbolQr_NO_LI STVI EW and
supportfor internationalizatioris compiledout by definingQT_NO_| 18N. Qt/Embeddegbrovidesover 200
configurablefeaturesresultingin librariesvaryingin sizebetween/00 KB and5000KB (Intel x86). Most
customersiseconfigurationdetweerl500KB and4000KB.

Qt/Embeddedilsobenefitsfrom memory-saing techniquesuchasimplicit sharing(copy on write) and
caching. Over 20 classesn Qt, including QBitmap, QM ap, QPalette, QPicture, QPixmap andQString,

useimplicit sharingto avoid unnecessargopying and minimize memoryusage.Implicit sharingoccurs
automaticallyand makesprogrammingmuch simpler avoiding the risks relatedto handoptimizationand
pointers.

Many Qt componentganbe compiledinto thelibrary or madeavailableasplugins. Customlook andfeel
component§p. 25], databaserivers,font formatreadersimageformatcorvertersext codecsandwidgets
canbecompiledasplugins,reducinghesizeof thecorelibrary andproviding moreflexibility . Alternatiely,
if theapplicationsndcomponentareknown in advancethey canbecompiledandstaticallylinkedwith the
Qt/Embeddedibrary into a singleexecutablesasing ROM, RAM andCPU.

3. Architecture

Qt/Embedded provides the standard Qt API for embedded devices with a lightweight windowing
system. Qt/Embedded’s object-oriented design makes it straightforward to support additional
devices, from peripherals like keyboards and miceto accel erated graphics boards.

With Qt/Embeddeddevelopersbenefitfrom exactly the sameAPI that Qt/X11, Qt/Windows and Qt/Mac
provide.

Application Source Code

Qt AP

Qt/Embedded Qt/X11
X Window Server

Frame-buffer

Figure2. Qt/EmbeddedersuQt/X11on Embedded.inux

UsingasingleAPI acrossavarietyof platformsoffersmary benefits.Companieshatproduceapplications
for bothembeddedievicesanddesktopcomputergantrain their developersn asingletoolkit. Thismakes
it easietto shareexperienceandknowledge andgivesmanagersnoreflexibility whenallocatingdevelopers

to projects. Furthermoreapplicationsandcomponentslevelopedfor a particularplatform canbe sold for
ary of theotherQt platforms expandingthe productsmarketfor averylow maginal cost.

3.1. Windowing System

A Qt/Embeddedvindowing systemconsistof oneor more processesyneof which actsasa sener. The
sener allocategegionsto be displayedby clients,and generatesnouseand keyboardevents. The sener
processanalsoprovide inputmethodsanda userinterfaceto launchclientapplications.Thesener process
behaeslikeaclientbut hassomeadditionalprivileges. Any programcanberunasthesenerusingthe- gws
command-lineption.

Clientscommunicatewith the sener usingsharednemory Communicatioris keptto a minimum;clients
performall drawing operationgdirectly to the frame-huffer, without passingthroughthe sener, and are
responsibldor draving their own title barsandotherdecorations.Thisis all handledtransparenthoy the
Qt/Embeddedibrary.

ClientscanexchanganessagessingQCOPchannels.Thesener simply broadcastQ COPmessaget all
applicationdisteningto a givenchannel.Applicationscanrespondn aslotconnectedo areceved()signal.
Messagesanbeaccompaniedthy binarydata,typically serializedusingthe QDataStream classdescribed
in “Non-GraphicalClasses]p. 28].

The QProcess classprovidesanotherasynchronousiter-processommunicatiormechanism.t is usedto
startexternalprogramsandto communicatavith themby writing to their standardnputandby readingheir
standardutputandstandarcerror.

3.2. Fonts

Qt/Embeddedaupportdour differentfont formats: TrueType Fonts(TTF), PostScripfTypelFonts,Bitmap
Distribution Format(BDF) andQt Pre-renderefonts(QPF).Supportfor otherfont formatscanbeaddedoy
subclassin@FontFactory, andcanbe madeavailableasa plugin. Anti-aliasedfontsaresupported.

EachTTF or Typelglyph is renderedat a given point sizewhenit is first usedin a drawving or metrics
operationandtheresultis cached.MemoryandCPUtime canoftenbe saved by pre-renderin@ TTF or a
Typelfile attherequiredsizeqfor example 10and12 points)andsaving theresultin QPFformat. QPFfiles
thatcontainthenecessarjontscanbeobtainedoy usingthemakeqpf tool, or by runningapplicationsvith
the- savef ont s option. If all thefontsarein QPFformat,Qt/Embeddedanbereconfiguredo compileout
supportfor TTF andTypelfonts,whichwill cutdown thesizeof the Qt/Embeddedibrary, andconsiderably
reducetheamountof memoryusedto storefonts. For example,a 10-pointTimesQPFfont for ASCII uses
about1300bytes,andis directly mappednto memoryfrom physicalstorage.

Qt/Embeddedonts usually containa small subsetof Unicode,typically ASCII or Latin-1. A complete
16-pointUnicodefont usesover 1MB of memory It is possiblgo save customsubsetsf afont, for example
onethatcontainsall theglyphsnecessario spellthenameof your productin 24-pointCappuccindold.

3.3. Input Devices

Qt/Embedded 3.0 supports several mouse protocolsout of the box: BusMouse, IntelliMouse, Microsoft and
MouseMan. Qt/Embedded also supportsthe NEC Vr41X X touch-panel and theiPAQ touch-panel. Develop-
erscan support custom pointer deviceshby subclassing QW SM ouseHandler or QCalibratedM ouseHandler.

Qt/Embedded supports the standard 101-key keyboard and Vr41X X buttons. Custom keyboards and other
non-pointer devices can be supported by subclassing QW SK eyboar dHandler.

3.4. Input Methods

Input methods for non-Latin scripts (for example, Arabic, Chinese, Hebrew and Japanese) can be written to
filter and convert keyboard input. Input method writers have the entire Qt API at their disposal.

On devices without a keyboard, input methods constitute the only means of entering characters. Qtopia
providesfour input methods: ahandwriting recognizer, agraphical QWERTY keyboard, a Unicode keyboard
and a dictionary-based pickboard.

X — : : |I:JK Unified Ideographs vi
(‘ - 1 |15 |5 |2 76 |22 [fE Bt =
A o| | Bz |
Z LA e S .
@.7- B0 eazam OO E % I R T
Handwriting BN S Rein ol
Unicode
ml[af2]s]4]s][s][7][E]o]o]-[=]¢
Tablgfwle|refy[u]ifalp[I[I]\]
Caps|a[s[d]flafh[j[k[1]:["]Ret
shift [z]=[c]v|b][n|m][.].[/] shife 123 @*!? KEY Space Back Enter Shift
c_trl' Alt | |Alc|ctl| ABC DEF GHIJKL MNO PGQR STU VWX vz-'B
[== B hesran G- B 1) 5:47 aM
Keyboard Pickboard

Figure 3. The standard input methods available on Qtopia

3.5. Screen Acceleration

Screen operations can benefit from hardware acceleration by subclassing QScreen and QGfxRaster.
Trolltech providesexample accel erated driversfor Mach64 and Voodoo3 cards, and can be contracted towrite
custom drivers.

4. Development Environment

Qt/Embeddeddevelopmentcan take place using familiar Unix and Windows tools. Several
multi-platformtoolsare providedto maledevelopmeneasierandfasternotablyQt DesignerUnix
uses additionallybenefittroma virtual frame-tuffer that duplicatespixel for pixel,the screenof
adevice

Applicationsfor anembeddedievice canbe compiledon ary platformequippedwith a cross-degelopment
tool chain. Themostcommonoptionisto build across-platforrGNU C++compiler(g++)with libc andthe
binaryutilities ona Unix system.

An alternatve approactinvolvesusinga desktopversionof Qt, suchasQt/X11or Qt/Windows, for most

of the developmentphase.This allows developersto usea familiar ervironment,for example,Microsoft

VisualC++ or BorlandC++.0n Unix, mary ernvironmentsareavailable,suchasKDevelop,which supports
cross-deelopment.

If theQt/Embeddedpplicationis developedonUnix, it canbecompiledto runonthedevelopmenimachine
in a separateonsoleor in the virtual frame-tuffer, an X11 applicationthat simulatesa frame-luffer. By
specifyingthe device’s width, heightand color depth,the simulatedframe-tuffer will matchthe physical
device, pixel for pixel. This savesdevelopersfrom continuouslyre-flashingthe device, and accelerates
the compile,link andrun cycle. It alsoallows developersto usestandarddeluggersand profilerson the
developmentmachine.If desiredQt/EmbeddedpplicationsanactasVNC (Virtual Network Computing)
senersandberun over anetwork.

4.1. Qt’s Supporting Tools

Qtincludesmary toolsto supportembeddedystemslevelopmentsomeof which arementionecelsavhere
in thisdocument.Thetwo mostsubstantiatools (apartfrom thevirtual frame-tuffer mentionedabove) are
gmeke andQt Designer

The gmeke tool is a Makefile generatorfor the Qt/Embeddedibrary and for applications. It generates
Makefilesfor multiple platformsfrom a projectfile (. pr o). gmake supportross-degelopmentandshadev
builds,andmalesit easyto switchbetweerdifferentconfigurations.

Developerscan use Qt Designerto designdialogsvisually insteadof writing code. It usesQt’s layout
managero producadialogsthatresizesmoothlyandis fully integratedwith gmake. Qt Designeris covered
in “Dialogs” [p. 20].

5. Signals and Slots
Thesignalsand slotsmedanismprovidesinter-objectcommunication.t is easyto undestand

anduseandit is fully supportedby Qt Designer

GUI applicationgespondo useractions. For example whena userclicks a menuitem or toolbarbutton,
the applicationexecutessomecode. More generally we want objectsof ary kind to communicatewith
eachother Theprogrammemustrelateeventsto therelevantcode. Oldertoolkitsusemechanismghatare

crash-prone, inflible, and not object-oriented. Trolltech hasinvented a solution called 'signalsand slots'.
Signalsand dotsisapowerful inter-object communication mechanism that can be used to completely replace
the crude callbacks and message maps used by legacy toolkits. Signalsand slots are fast, type-safe, flible,
fully object-oriented and implemented in C++.

To associate some code with a button using the old callback mechanism, it is necessary to pass a pointer to
afunction to the button. When the button is clicked, the function isthen called. Old toolkits do not ensure
that argumentsof the right type are given to the function when it is called, which makes crashesmore likely.
Another problem with the callback approach isthat it tightly binds the GUI element to the functionality,
making it difficult to develop classesindependently.

Qt's signals and dots mechanism is different. Qt widgets emit signals when events occur. For example, a
button will emit a‘clicked’ signal when it isclicked. The programmer can choose to connect to a signal by
creating afunction (called aslot) and calling the connect() function torelatethe signal tothedot. Qt'ssignals
and slotsmechani sm does not require classesto have knowledge of each other, which makesit much easier to
develop highly reusable classes. Signalsand slotsare type-safe, with type errors being reported by warnings
rather than by crashes.

/ "\ connect(Object1, signal1, Object2, slot1)

ol A connect(Object1, signal1, Object2, slot2)
signall
signal2 (" Object2)
signali
N—S
—p| slott
—— slof2
——S
(Object3)
signalt | connect(Object1, signal2, Object4, slot1)
(Objectd)
slot1
——S
L) slotl
slot2
—————— P slot3
connect(Object3, signal1, Object4, slot3) N——— S

Figure4. An abstract view of some signalsand slots connections

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a user'sclick on
Quit makesthe application terminate. In code, thisiswritten as
connect (button, SIGNAL(clicked()), gApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application.

The signals and slots implementation smoothly extends C++'s syntax and takes full advantage of C++'s

connect(fontFamilyComboBox, activated(QString),
textEdit, setFamily(QString))

[Hetvetica [Cronyed =] [10pt 2| —Jconnect(fontSizeSpinBox, valueChanged(int),
textEdit, setPointSize(int))

int factoriali{ int n)

l/f Reoursive, I.e. slow, factorisl function j ‘
{

if (n <=1) return 1;

return n * factorial(n - L J; —] connect(textEdit, modificationChanged(bool),

y = customStatusBar, modificationStatus(bool))

|Ln 1, Col 1 |.Sa.vec| <+

Figure5. Anexample of signalsand slots connections

object-oriented features. Signalsand dlotscan be overloaded or reimplemented and may appear inthe public,
protected or private sectionsof a class.

5.1. A Signals and Slots Example

To benefit from signalsand slots, a classmust inherit from QObject or one of its subclassesand include the
Q_OBJECT macro in the class's definition. Signals are declared in the si gnal s section of the class, while
dotsaredeclared inthepubl i c sl ots, protectedsl ots orprivate sl ots sections.

Here'san example QObj ect subclass:

cl ass BankAccount : public Qoject
{
Q _OBJECT
public:
BankAccount () { curBal ance = 0; }
i nt balance() const { return curBal ance; }
public slots:
voi d setBal ance(int newBal ance);

si gnal s:
voi d bal anceChanged(int newBal ance);

private:
i nt curBal ance;

s

Inthe style of most C++ classes, the classBank Account hasa constructor, aget function balance(), and aset
function setBalance().

The classalso hasa signal balanceChanged(), which announcesthat the balance in the account has changed.
Signalsare not implemented; when a signal isemitted, the dotsit is connected to are executed.

10

The set function is declared in the publ i c sl ots section, so it is a dot. Slots are standard member
functionswith an implementation that can be called like any other function, and which can also be connected
tosignals.

Here'stheimplementation of the slot setBalance():

voi d BankAccount: : set Bal ance(i nt newBal ance)

{
if (newBal ance != curBal ance) {
cur Bal ance = newBal ance;
em t bal anceChanged(curBal ance);
}
}
The statement

em t bal anceChanged(curBal ance);

causesthe balanceChanged() signal to be emitted with the new current balance asitsargument. The keyword
em t, like si gnal s and sl ots, is provided by Qt and is transformed into standard C++ by the C++
pre-processor.

One object’ssignal can be connected to many different slots, and many signals can be connected to one slot
inaparticular object. Connectionsare made between signalsand slotswhose parametershave the sametypes.
A dot can have fewer parametersthan the signal and ignore the extra parameters.

5.2. Meta Object Compiler

The signals and dlots mechanism isimplemented in pure standard C++. The implementation uses the C++
pre-processor and the Meta Object Compiler (noc) included with the Qt toolkit.

The noc reads the application’s header files and generates the necessary code to support signals and dots.
Developers never edit or even need to look at the generated code. Makefiles generated by gmake include
rulesto run noc transparently, when required.

In addition to handling signals and slots, noc supports Qt's trand ation mechanism, its property system and
run-time type information.

6. Widgets
Qt hasarich setof widgets(buttonsscroll bars,etc.) that caterfor mostsituations.Qt’swidgets

areflexible and easyto subclasgor specialrequirements.

Widgetsareinstances of QWidget or one of itssubclasses, and custom widgets are created by subclassing.

11

QObject

QTimer QWidget

QDialog

| QSpinBox

QLineEdit

Figure6. An extractfrom theQWidget classhierarchy

A widget may containany numberof child widgets. Child widgetsare shavn within the parentwidget’s

area.A widgetwith noparentis atop-level widget(a ‘window’), andis decoratedvith aconfigurabldrame
andtitle bar Qt imposeso arbitrarylimitations on widgets. Any widget canbe a top-level widget; ary

widgetcanbea child of any otherwidget. The positionof child widgetswithin the parentsareacanbe set
automaticallyusinglayout manager$p. 20], or manuallyif preferred.Whena parentwidgetis disabled,
hiddenor deletedthe sameactionis appliedto all its child widgetsrecursvely.

Labels,messagéoxes, tooltips, etc., are not confinedto using a single color, font and language.Qt's
text-renderingvidgetscandisplaymulti-languageich text usingaHTML subset.

6.1. A ‘Hello’ Example

Thecompletesourcecodefor a programthatdisplays‘Hello Qt/Embedded!follows:

Hello &/Embedaed!

Figure7. Hello Qt/Embedded!

#i ncl ude <qapplication. h>
#i ncl ude <ql abel . h>

int min(int argc, char *xargv)

{
QApplication app(argc, argv);
Q,abel =xhello = new Q.abel ("Hel | 0"
' <i>Q/Enbedded! </i>", 0);
app. set Mai nWdget(hello);
hel | o- >show() ;
return app. exec();
}

12

6.2. Common Widgets

The screenshots below present the main Qt widgets, shown using the Windows style.

A label Push buﬂonl

Figure8. A QLabel and a QPushButton laid out with a QHBox

QButtonGroup
& BRadiocl [~ Checki

" Radio2 [Check?2

Figure9. Two QRadioButtonsand two QCheckBoxeslaid out with a QButtonGroup

— AGroUpBox
|1905-05-17 FH| 031416 £
| QLineEdit

QTex=tEdit

“Everything FEME alwvays
he made as simple as
possible, but not simpler.”

Albert Einsteit

|C0mb0b0x text j

Figure 10. A QDateTimeEdit, aQL ineEdit, aQTextEdit and a QComboBox laid out with a QGroupBox

{7:4"“ 6%
|
[Bl

Figure1l. A QDial,aQProgressBar, aQSpinBox, aQScrollBar, a QL CDNumber and aQSlider laid out with aQGrid

13

(‘1) @ C.olum.n 1] Column 2 | Column 3
L - QListWiew

lcon 1 lcon 2 [item 1
- Witem 2 Two Deux
m [ftem 3 Three Trois
lcon 3 - Witem 4 Faur Quatre
B- i item 5 Five Cing
& O Item B Six Six
[Witer 1 QTableltem | @CheckTablelten | @CombaTableiter=
Vitem 2 Item 1 ™ Check 1
% @emz [Checkez [comboz =
ltem 3 ¥ Check 3

alalm|l—=lo

ltem 4 ™ Check4 [comboa S
| | »

Figure12. A QlconView,aQListView,aQListBox and aQTablelaid out withaQGrid

QComboBox, QLineEdit and QSpinBox’s input can be constrained or validated using a QValidator
subclass. Regular expressions can be used for validation.

QTable, QListView, QTextEdit and other widgets that can display large amounts of data inherit QScrol-
IView and automatically provide scroll bars.

Many of Qt’sbuilt-inwidgetscan display images, for example, buttons, [abels, menuitems, etc. TheQlmage
class supports the input, output and manipulation of imagesin severa formats, including BMP, GIF- JPEG,
MNG, PNG, PNM, XBM and XPM.

6.3. Canvas

The QCanvas class provides a high-level interface to 2D graphics. It can handle a very large number of
‘canvas items’ that represent lines, rectangles, ellipses, texts, pixmaps, animated sprites, etc. Canvas items
can easily be madeinteractive (e.g. user movable).

Canvasitems are instances of QCanvasltem subclasses. They are more lightweight than widgets, and they
can be quickly moved, hidden and shown. QCanvas hasefficient support for collision detection, and can list
all the canvasitemsin a given area. QCanvasltem can be subclassed to provide custom item types and to
extend the functionality of existing types.

QCanvasobjectsare rendered by the QCanvasView class. Many QCanvasView objects can show the same
QCanvas, but with different trandations, scal es, rotations and shears.

QCanvas isidea for data visuaization. It has been used by customers for drawing road maps and for
presenting network topologies. It isalso suitablefor fast 2D gameswith lots of sprites.

Af you arein a country that recognizes software patents and where Unisys holds a patent on LZW decompression, Unisys may require
you to license the technology to use GIF.

14

Score o0 Level 3 Ships 2

»

)

01 @ ® 0 ¢ § Fuel [Immm]

Figure 13. The Qtopia Asteroids game written with QCanvas

6.4. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of its subclasses. To
illustrate subclassing, the complete code for an analog clock widget is presented. The AnalogClock widget

displaysthe current time and updatesitself automatically.
Figure 14. Analog clock widget

Inanal ogcl ock. h, AnalogClock isdefined like this:

#i ncl ude <qgw dget. h>

cl ass Anal ogC ock : public QW dget

{
public:

Anal ogCl ock(QN dget *parent = 0, const char =*nane

pr ot ect ed:
virtual void timerEvent(QlimerEvent xevent);
virtual void paintEvent(QPaintEvent xevent);

s

AnalogClock inherits QWidget. It has a constructor typical of widget classes, with optional par ent and
nane parameters. (Testing and debugging are easier if nane isset.) ThetimerEvent() function isinherited
from QODbject (a base classof QWidget) and iscalled at regular intervals by the system. The paintEvent()
function isinherited from QWidget and is called automatically whenever the widget needsto be redrawn.

15

The timerEvent() and paintEvent() functions are two examples of ‘event handlers'. Application objects
receive system messagesas Qt events (QEvent objects). Thereare over fifty typesof event, of which the most
commonly used are MbuseBut t onPress, MbuseBut t onRel ease, KeyPr ess, KeyRel ease, Pai nt,
Resi ze and O ose. Objects can respond to events sent to them, and filter events destined for other objects.

Inanal ogcl ock. cpp, thefunctionsdeclared in anal ogcl ock. h areimplemented:

#i ncl ude <qdatetinme. h>
#i ncl ude <gpai nter. h>

#i ncl ude "anal ogcl ock. h"

Anal ogd ock: : Anal ogCl ock(QW dget xparent, const char =*name)
QW dget (parent, nane)

{ start Timer(12000);
resi ze(100, 100);
}
voi d Anal ogC ock: :timerEvent (QTi mer Event x)
{
update();
}

voi d Anal ogd ock: : pai nt Event (QPai nt Event x)

{
QCOORD hourHand[8] ={ 2, 0, 0, 2, -2, 0, 0, -25};
QCOORD m nuteHand[8] ={ 1, 0, 0, 1, -1, O, 0, -40 };
Qlime time = Qlinme::currentTime();

QPainter painter(this);
pai nter.set Wndow -50, -50, 100, 100);
pai nter.setBrush(black);

for (int i =0; i <12; i++) {
pai nter.drawLi ne(44, 0, 46, 0);
painter.rotate(30);

pai nter.save();

painter.rotate(30 = (time.hour() %12) + tine.nmnute() / 2);
pai nt er. drawConvexPol ygon(QPoi nt Array(4, hourHand));

pai nter.restore();

pai nter.save();

painter.rotate(6 * time.mnute());

pai nt er. drawConvexPol ygon(QPoi nt Array(4, ni nuteHand));
pai nter.restore();

16

}

The constructottells the systemto call timerEvent() every twelve secondgo refreshthe clock,andsetsthe
widget'sdefault sizeto 100x 100.

In timerEvent() the QWidget function update()is calledto tell Qt thatthe widget needgso be repainted.
SubsequentyQt will generate painteventandcall paintEwvent()

In paintEwvent() a QPainter objectis usedto drawv thetwelve notchesandthetime andminutehandson the
widget. TheQPainter classprovidesanAPI for paintingwidgets pixmapsyectorimagesandPostScriptn
auniformway. It providesfunctionsto draw points,lines,polygons ellipsesarcs,Beziercurves,etc. The
coordinatesystemof a QPainter canbe translatedscaledyotatedand shearedthe objectsdravn canbe
clippedaccordingo a’'window’, andpositionedon thewidgetusinga'viewport’. Clipping canbe usedto
reduceflicker whenrepainting. An areaof the frame-luffer canbe locked andaccessedirectly usingthe
QDirectPainter subclas®f QPainter.

Thefiles anal ogcl ock. h andanal ogcl ock. cpp completelydefineand implementthe AnalogClock
customwidget. Thiswidgetcanbeusedimmediately:

#i ncl ude <gapplication. h>
#i ncl ude "anal ogcl ock. h"

int main(int argc, char xxargv)

{
QApplication app(argc, argv);
Anal ogCl ock *cl ock = new Anal ogd ock
app. set Mai nW dget (cl ock);
cl ock->show();
return app. exec();
}

6.5. Main Windows

The QMainWindow classlaysout a setof relatedwidgetsto provide a framework for typical application
mainwindows.

A mainwindow containsasetof standardvidgets. Thetop of themainwindow containsamenubar, beneath
whichtoolbarsarelaid out. Thetoolbarscanbe movedto any dockareaymainwindows have dock areasat
thetop, left, right andbottom. Toolbarscanalsobe draggedout of a dock areaandfloatedasindependent
tool palettes.Thebottomof themainwindow, belov thebottomdockareajs occupiedby a statusbar. The
centralareacontainsary widget. Tooltipsand“What'sthis?”helpprovide balloonhelpfor theuserinterface
elements.

For smallscreerdevices,it canbepreferabldo definea standardQWidget templatan Qt Designer anduse
that,ratherthanQM ainWindow. Thetemplatetypically hasa menubarandatoolbarsideby side,andmay
nothaveastatudaratall. (Wherenecessargtatusnaybeshownin thetaskbaror thetitle bar, for example.)

17

6.6. Menus

TheQPopupM enu widgetpresentsnenuitemsto theuserin averticallist. Popupmenuscanbestandalone
(e.g. acontett menu),canappeain amenubar, or canbeasub-menwf anothempopupmenu.

Eachmenuitem canhave anicon,acheckboxandanacceleratorMenuitemsusuallycorrespondo actions
(e.g. Save).Separatoitemsaredisplayedasa line andareusedto visually grouprelatedactions.

Heresanexamplethatcreates File menuwith New, Open andExit menuitems:

QPopupMenu *fileMenu = new QPopupMenu(this);
fileMenu->insertliten("&New', this, SLOT(newFile()), CITRL+Key N);
fileMenu->insertiten("&pen...", this, SLOT(open()), CTRL+Key O);
fileMenu->i nsert Separator();

fileMenu->insertltem "E&it", qApp, SLOT(quit()), CTRL+Key_Q);

Whena menuitem is chosenthecorrespondinglotis executed.As acceleratorarerarelyusedon devices
with nokeyboard Qt/Embeddeds typically configuredwvithoutacceleratosupport. Thismeansghatwhereas
“&New” would berenderechsNew on adesktopmachineit will appeaiasNew onanembeddedievice.

The QMenuBar classimplementsa menubar. It automaticallysetsits geometryto the top of its parent
widget. It splitsits contentscrossnultiplelinesif theparentwindow is notwideenough.Qt'sbuilt-in layout
managersautomaticallytake the menubarinto consideration.

Qt's menusystemis very fl«ible. Menuitemscanbe enableddisabled addedor removed dynamically
Menuitemswith customizedappearancandbehaior canbe createdy subclassin@@CustomM enultem.

6.7. Toolbars

TheQToolButton classmplementsatoolbarbuttonwith anicon,a 3D frameandanoptionallabel. Toggle
toolbar buttonsturn featureson and off. Othertoolbar buttonsexecutea command. Differenticonscan
be provided for the active, disabledand enabledmodes,and for the on and off states.If only oneicon
is provided, Qt automaticallydistinguisheghe stateusing visual cues,for example,grayingout disabled
buttons. Pressing toolbarbuttoncanalsobeusedto triggera popupmenu.

QToolButtons usually appearside-by-sidewithin a QToolBar. An applicationcan have ary numberof
toolbars,andthe useris free to move themaround. Toolbarscancontainwidgetsof almostary type,for
exampleQComboBoxesandQSpinBoxes.

6.8. Balloon Help

Modernapplicationsuseballoonhelpto briefly explainthe purposeof userinterfaceelements.Qt provides
two mechanismor balloonhelp: tooltipsand“What’sthis?” help.

Tooltipsaresmall,usuallyyellow, rectangleshatappeamutomaticallywhenthe mousepointerhoversover
awidget. Tooltipsareoftenusedto explain a toolbarbutton,sincetoolbarbuttonsarerarelydisplayedwith
text labels. Hereshow to setthetooltip of a‘Save’toolbarbutton:

Qrool Ti p: : add(saveButton, "Save");

It is alsopossibleto setalongerpieceof text to bedisplayedn thestatusarwhenthetooltip is shavn.

18

Devicesthat do not use a mouse (for example, those that use a stylus), may not have a means of hovering
the mouse pointer over awidget, which isthe normal mechanism for raising atooltip. Such devices may not
support tooltipsat all (relying on “What's this?" help instead), or may use a gesture, for example, pressand
hold, to signify hovering.

“What's this?” help is similar to tooltips, except that the user must request it. On a small screen device,
“What's this?’ help may be invoked by pressing a ? help button that appears next to the application’s X close
button, and then pressing the relevant widget. “What'’s this?’ help istypically longer than atooltip. Here's
how to set the “What's this?’ text for a*‘Save' toolbar button:

QMhat sThi s: : add(saveButton, "Saves the current file.");

The QToolTip and QWhatsT his classes provide virtual functions that can be reimplemented for more
speciaized behavior.

Qtopia doesn’t use either of these mechanismsto provide help. Instead it provides a ? help button in each
application’stitle bar, which launches the HTML help browser with the help contents page for the relevant
application. It usesthe pressand hold gesture to invoke context (right click) menusand property dial ogs.

6.9. Actions

Applicationsusually providethe user with several different waysto perform aparticular action. For example,
most applications provide a’ Save' action avail able from the menu (File|Save), from the toolbar (the ' floppy
disk’ toolbar button) and as an accelerator (Ctrl+S). The QAction class encapsul ates this concept. It allows
programmersto define an action in one place and then add that action to amenu or toolbar. Actionsthat only
make sense as menu options can be added to menus directly.

The following code implements a ‘Save’ menu item and a ‘Save' toolbar button. Balloon help and an
accelerator could easily be added, but are not included because they are rarely used for small devices.

QAction *saveAct = new QAction(this);

saveAct - >set Text (" Save");

saveAct - >set |l conSet (QPi xmap("save. png"));

connect (saveAct, SIGNAL(activated()), this, SLOT(save()));
saveAct - >addTo(fileMenu);

saveAct - >addTo(tool bar);

In addition to avoiding duplication, using a QAction ensuresthat the state of menu items staysin sync with
the state of toolbar buttons, and that tooltips are displayed when necessary. Disabling an action will disable
any corresponding menu items and toolbar buttons. Similarly, if the user clicks a toggle toolbar button, the
corresponding menu item will be checked or unchecked accordingly.

19

7. Dialogs

Developerscan build their own dialogsusing the Qt Designer visual designtool. Qt uses’layouts
to automatically size and position widgets in relation to one another. This ensures that dialogs
make the best use of the available screen space. The use of layouts also means that buttons and
labels automatically resizeto show their text in full regardlessof language.

7.1. Layouts

Qt provides layout managers for organizing child widgets within the parent widget's area. They feature
automatic positioning and resizing of child widgets, sensible minimum and default sizes for top-level
widgets, and automatic repositioning when the contents or the font changes.

Using layouts, developers can write applications independently of the screen size or orientation, without
wasting space or duplicating code. For internationalized applications, layouts ensure that buttons and labels
take aslittle space as possible without cutting off the text, regardlessof the language.

Layouts also make it easy to accommaodate certain user-interface components such as input methods and
task bars. For example, when Qtopia usersare entering text, the input method takes up screen space, and the
application should adapt accordingly.

Edit Address

Edit Address

Firat Marne |Josephine

Doe

Last Mame Doe

Last Mame

Firat Mame |Josephine %

Categories Personal | %] ' -

Miclclle Narme I
Suffiz I
Ermails |J°|—
Home Stregt I
Horne City I

Home State I

Ferzonal

Categoties
Ieliclclle: Mame
Suffiz
Ermails

Home Stregt

£ ; [

Home Zip I (=] :j
e I — By
[Notes l -?

&..” -0g N [e <P [l 545

Figure 15. Layout management on Qtopia

Qt providesthree built-in layout managers. QHBoxL ayout, QVBoxL ayout and QGridL ayout.

20

o

[[To0 [o1
=z [0 [1.1
T [z
——

Figure16. QHBoxL ayout, QVBoxL ayout and QGridL ayout

QHBoxL ayout organizesthe managed widgetsin a single horizontal row from left to right. QVBoxL ayout
organizesthe managed widgetsin asingle vertical column, from top to bottom. QGridL ayout organizesthe
managed widgetsin agrid of cells; widgets may span multiple cells.

In most cases, Qt's layout managers pick optimal sizesfor managed widgets so that windowslook good and
resize smoothly. Developerscan refine the layout using the following mechanisms:

1
2.

Settinga minimumsize a maximunsizeor a fixedsizefor somechild widgets.
Addingstretdh itemsor spaceritems. Stretch or spacer itemsfill empty spacein alayout.

Changinghesizepoliciesof thechild widgets. Programmerscan finetune the resize behavior of achild
widget. Child widgets can be set to expand, contract, keep the same size, etc.

Changingthechild widgets’ sizehints. QWidget::sizeHint() and QWidget::minimumSizeHint() return
awidget’s preferred size and preferred minimum size based on the contents. Built-in widgets provide
appropriate reimplementations.

Settingstretch factors. Stretch factorsallow relativegrowth of child widgets, e.g. twothirdsof any extra
space made available should be alocated to widget A and one third to widget B.

Layoutscan asorun right-to-left and bottom-to-top. Right-to-left layoutsare convenient for internationalized
applications supporting right-to-left languages such as Arabic and Hebrew.

Layouts can be nested to arbitrary levels. Here'san example of a dialog box, shown at two different sizes:

.) ro terrational Te [elEle]
O Interniaticns F B @e Mow please select a country
Maw please select a country Canada, Plest > I
_:J o France
I Germany < Prev |
Italy
< Prey | Japan

Fiasia

United! Kingdom United Kirioclomn

| Initer States of Ame. United States of America
41 ? [3 Help I

Help |

Figure17. Small dialog and large dialog

21

The dialog usesthree layouts: a QVBoxL ayout that groups the push buttons, a QHBoxL ayout that groups
the country listbox with the push buttonsand a QV BoxL ayout that groupsthe“Nav please select a country”
label with therest of thewidget. A stretch item maintainsthe gap between the < Prev and Hel p buttons.

The dialog’swidgets and layouts are created with the following code:

QVBoxLayout =buttonBox = new QVBoxLayout(6);
buttonBox->addWidget(new QPushButton("Next >" this));
buttonBox->addWidget(new QPushButton("< Prev', this));
buttonBox->addStretch(1)

buttonBox->addWidget(new QPushButton("Help", this));
QListBox *countryList = new QListBox(this);
countryList->insertltem("Canada");

T

countryList->insertltem("United States of America");

QHBoxLayout =*middleBox = new QHBoxLayout(11);
middleBox->addWidget(countryList);
middleBox->addLayout(buttonBox);

QVBoxLayout =*topLevelBox = new QVBoxLayout(this, 6, 11);
topLevelBox->addWidget(new QLabel("Now please select a country", this));
topLevelBox->addLayout(middleBox);

Alternatively, the dialog can be designed using Qt Designer with just 17 mouse clicks.

Ml Intemnational Tracer

. Mow please select a country

~f Canada Mest = |]
.+ 4 France

.4 Germany < Prey | |
Ctaly]
<4 Japan

. {Russia

* {United Kingdom ;
| United States of America Help | !

l\\\\\\\\\\\\\\.|

Figure 18. Laying out aformin Qt Designer

7.2. Qt Designer

Qt Designer isavisual user-interface design tool. Qt applications can be written entirely in source code, or
using Qt Designer to speed up devel opment.

Designing aform with Qt Designer isa simple process. Developersclick atoolbar button representing the
widget they want, then click on aformto placethewidget. Thewidget’spropertiescan then be changed using
the property editor. The precise positions and sizes of the widgets do not matter. Devel opers select widgets
and apply layoutsto them. For example, some button widgets could be selected and laid out side-by-side by

22

choosing the ‘lay out horizontally’ option. Thisapproach makesdesign very fast, and the finished formswill
scale properly to fit whatever window sizeisavailable.

] g . Ot Desianer by Trolltech
Eile Edlt PI’_JECt Search Tocls Layout Preview Window Help

JAB% & w @D & B[mwe 8] |
RIIEREET elEekllEREEIETERRAIT
IRCE: |@|E\u-l@®%@°@-r-glﬂ~m

| hulticlip

oEmE

lCurrent Cllppmg |

_imulticlip.pro
E| 0 omefmonica ; Previous Cllpplngs Length | i
‘home/monicaitest/multiclip/m... —
Dmaln cpp i E [
il ™ Auto Add Clippingsf
B

Add Clipping ||

Properties Igignal Handlers |

Property |Value B s et |
text [&Gt) Delete Clipping |3
pixmap : ' e
toggleButton False
an False =

W Edit MulticlipForm
yvoid MulticlipForm:
£

rdeletecTipping(
YWidgets ISource |

REma Biass B clippingChanged{ "" J;

= J clippingsListBox->removeltem(

E|==Lay0ut2 HBox clippingsListBox->currentItem() J;

P |GLabel =
; .. |GLineEdit Line: 81 Col: 36
=|=lLay0ut9 HEox Ad|

|Re ady
11

Figure19. Qt Designer

Qt Designer eliminatesthetime-consuming compile, link and run cyclefor user interfacedesign. Thismakes
it easy to correct or changedesigns. Qt Designer’spreview optionslet developersseetheir formsinany style,
including custom styles. Qt Designer provides live preview and editing of database data through its tight
integration with Qt’s database classes.

Developers can create both ‘diadlog’ style applications and ‘main window’ style applications with menus,
toolbars, balloon help, etc. Several form templatesare supplied, and devel operscan createtheir owntemplates
to ensure consistency across an application or family of applications. Qt Designer uses wizards to make
creating tool bars, menusand database applicationsasfast and easy aspossible. Programmerscan createtheir
own custom widgetsthat can easily be integrated with Qt Designer.

Form designs are stored in human-readable . ui files, and converted into C++ header and source files by
the ui ¢ (User Interface Compiler). The gmake build tool automatically includes build rulesfor ui ¢ in the
Makefilesit generates, so developersdo not need to invoke ui ¢ themselves.

23

Alternatively, . ui filescan beloaded at run-time by applications, and converted into fully functional forms.
This alows customers to modify the look of an application without recompiling, and can also be used to
reduce the size of applications.

7.3. Built-in Dialogs

Qt includes ready-made dialog classes with static convenience functions for the most common tasks.
Screenshots of some of Qt’s standard dialogs are presented below.

QM essageBox isused to provide the user with information or to present the user with simple choices (e.g.
‘Yes or ‘No").

CENTI O ¢

Ctempiresume hitml already exists.
% Do wouwant to replace it ?

Figure20. A QM essageBox

QProgressDialog displaysa progress bar and a‘ Cancel’ button.

(&8 Data Converter AN
Converting C\databaseicustomers dat...

LT B4

Figure21. A QProgressDialog

QWizard providesaframework for wizard dialogs.

Qt Examnple = Wizard e e

Fersonal Data

First Marme: IJohn
Enter your personal
lata here. Last Marne: ISmith

Ardcress; |65 Atlantic Street
The required fields are

First Mame, Last Mame =~ Phone Mumber: !(408)555-1212
and E-hdail.
E-Mail: Iiohns@cs.telemark.edu

Cancel l < Back |

Figure22. A QWizard

Qt also includes QColorDialog, QFileDialog, QFontDialog and QPrintDialog. These classes are more
suitable for desktop applicationsand are usually compiled out of Qt/Embedded.

24

8. Look and Feel

Qt desktop applications adopt the style, or look and fedl, of their execution environment, e.g.
Windows XP, Mac OS X, Linux. Qt/Embedded applications can use any of these styles, or can use
custom styles, statically or as plugins. Developers can customize both the widget style and the
window decorations.

8.1. Widget Style

A styleisa QStyle subclassthat implementsthe look and feel of Qt’swidgets. Qt/Embedded programmers
are freeto use and modify existing stylesor implement their own stylesusing Qt’sstyle engine. The built-in
styles available on Qt/Embedded are Windows, Motif, MotifPlus, CDE, Platinum and SGI. The style can be
set dynamically on a per-application basis, and even on a per-widget basis.

IWTndows style VI tdatif style _,"l tatifPlus style _lI

CDE style | [Prairum ste | 3] [[sGrstye []]

Figure 23. Comboboxesin the different built-in styles

A family of applications can be given a distinctive look by writing a custom style. Custom styles can be
defined by subclassing QStyle, QCommonStyle or any descendent of QCommonStyle. It is easy to make
small modifications to existing styles by reimplementing one or two virtual functions from the appropriate
base class.

A style can be compiled asa plugin. With plugins, developers can preview aform in their device's custom
stylein Qt Designer. Style plugins a so give users the opportunity to change the look of the device without
recompiling.

’ QStyle W

QCommonStyle

| QMotifStyle

QWindowsStyle |
/

QSGIStyle | QPlatinumsStyle

i

g N 7
(QCDESter \QMotifPIusSterj

Figure24. The QStyleclasshierarchy

Qt's built-in widgets are style-aware and will automatically repaint themselves when the style changes.
Custom widgets and dialogs are ailmost aways combinations of built-in widgets and layouts, and are
automatically style-aware. On the rare occasionsthat it isnecessary to write a custom widget from scratch,
developers can use QStyle to draw primitive user-interface elements rather than drawing raw rectangles
directly.

25

8.2. Window Decorations

Top-level windows are decorated by atitle bar and aframe. Qt/Embedded includes these window manager
styles. BeOS, Hydro, KDE and Windows.

Figure 25. Windowswith different window decorations

Decorations can be configured on a per-window basis, if required. Custom stylesare created by subclassing
QW SDecoration, and distributed as plugins. For more control over the window manager’s behavior,
devel opers can subclass QW SM anager .

9. Internationalization

Qt/Embedded fully supports Unicode, the international standard character set. Developers can
freely mix Arabic, English, Hebrew, Japanese, Russian, and every other language supported by
Unicode,intheir applications. Qt/Embedded al so includestool sto support applicationtranslation
to help companies reach international markets.

9.1. Unicode

Qt usesthe QString classto store Unicodestrings. QString replacesthecrudeconst char *; constructors
and operators are provided to handle conversion between QString and const char *. Programmers
can copy QStrings by value without penalty, since QString usesimplicit sharing (copy on write) to reduce
memory use. Qt also provides QCString to efficiently store ASCII strings.

Qt provides a powerful Unicode text rendering engine for all text that is displayed on screen, from the
simplest label to the most sophisticated rich-text editor. The engine supports advanced features such as
specia line breaking behavior, bidirectional writing and diacritical marks. It renders most of the world's
writing systems, including Arabic, Chinese, Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin and
Vietnamese. The engine is optimized for the common case: a single line of plain text with an optional
accelerator (e.g. File).

26

Conversion to and from different encodings and charsets is handled by QTextCodec subclasses. Qt 3.0
supports 37 different encodings, including Bigs and GBK for Chinese, EUC-JP, JIS and Shift-JIS for
Japanese, KOI8-R for Russian and the 1SO 8859 series. They can be compiled as part of the library or as
plugins, or compiled out using the ‘feature’ mechanism.

9.2. Translating Applications

Qt providestoolsand functionsto help devel opers provide applicationsin their customers' native languages.

To make a string trandatable, simply wrap itin acall totr() (read ‘trandate’):
saveButton->set Text(tr("Save"));

tr() attempts to replace a string literal (e.g. “Save’) with atrandlation if one is available; otherwise it uses
the original text. For example, English could be used as the source language and Chinese as the trandated
language, or viceversa. Theargument totr() isconverted to Unicode from the application’sdefault encoding.

tr()’'sgeneral syntax is
Context::tr("source text", "coment")

The*context’ isthe name of a QObj ect subclass. Itisusually omitted, in which casethe classcontaining the
tr() call isused asthe context. The‘sourcetext’ isthetext totranslate. The‘comment’ isoptional; along with
the context, it provides additional information for human translators.

Trandations are stored in QTrandator objects, which use memory-mapped . gmfiles (Qt Message files).
Each . gmfile containsthe trandationsfor a particular language. The language can be changed at run-time;
any dialog created using Qt Designer can retranglateitself on the fly with no specia provisions.

Qt providesthreetoolsfor preparing . gmfiles: | updat e, Qt Linguistand! rel ease.

1. | updat e extractsall the (context, source text, comment) triplesfrom the source code, including Qt De-
signer . ui files, and generatesa. t s file (Trandation Sourcefile). The. t s filesare human-readable.

2. Trandatorsuse Qt Linguist to provide trandationsfor the sourcetextsin the. t s files.

3. Highly compressed . gmfiles are generated by running | r el ease onthe. ts files. The. gmfilesare
used on the embedded device.

These stepsare repeated as often as necessary during the lifetime of an application. It isperfectly safeto run
| updat e frequently, asit reusesexisting translationsand markstrangl ationsfor obsol ete source textswithout
eliminating them.

27

9.3. Qt Linguist

Qt Linguist isa Qt application that helpstrandatorstransate Qt applications. Trandators can edit . t s files
by hand, or more conveniently using Qt Linguist. The . t s file' scontexts are listed in the left-hand side of

x| - 0t Linguist by Trolltech - japanese.ts
File Edit Translation ‘Validation Phrases View Help

BB @0 bRl @ e dwerww|arn |
X1 Cone I Source text |Trans|ati0n I;I
Done | Context Iterms v Undo TICES iy
7 MainWindow W AB (105 % 148 mm) 4B (105 % 148 mm)
W CiMessageBox 5/5 7 Bullet List (Disc) s WA
« GIPtintDialog 11 » &Bold
v &Edit
Source text

Bullet List (Disc)

The first window to appear when launching the application is a MainWindow.

Translation

Falw kAR EEDEL

X Phrases and guesses:

Source phrase 5 |Trans|ati0n | Definition I

Bullet List (Circle) Palwbl)ZAR M Guess (Ctrl+1)

Bullet List (Square) Ealwhk)Zk (EFH GUess (Ctrl+2)

Al files (%) ETD75T0 () Guess (Ctrl+3)

List View VAR a— Guess (Cirl+4)

Show &hidden files B 7w & FRED Guess (Ctrl+5)
194196 A

Figure26. Qt Linguist

the application’swindow. Thelist of source textsfor the current context is displayed in the top-right area,
along with tranglations. By selecting a source text, the translator can enter a trandation, mark it done or
unfinished and proceed to the next unfinished trandation. Keyboard shortcuts are provided for all the
common navigation options. Done & Next, Next Unfinished, etc. Theuser interface’ sdockablewindowscan
be reorganized to suit the trandators’ preferences.

Applications often use the same phrases many timesin different sourcetexts. Qt Linguist automatically dis-
playsintelligent guessesbased on previously translated stringsand predefined translationsat the bottom of the
window. Guessesoften serveasagood starting point that hel pstranslatorstranslate similar textsconsistently.
Qt Linguist can optionally validate trandlationsto ensure that accelerators and ending punctuation are trans
lated correctly. Qt Linguist also detectsslight changesin source textsand automatically suggestsappropriate
trandations. These translations are marked as unfinished so that a translator can easily find them and check
them.

28

10. Non-Graphical Classes

Qt/Embedded provides a full range of non-graphical classes that provide data containers
(collection classes), input/output, networ king, database interaction and threading.

10.1. Collection Classes

Collection classesare used to store groupsof itemsin memory. Qt/Embedded providestwo setsof collection
classes. pointer-based collections and value-based collections.

The pointer-based collection classes are QDict<K ey, T>, QPtrList<T>, QPtr Queue<T>, QPtr Stack<T>,
QPtrVector<T> and QCache<T>. These classes are often used for storing pointers to QWidgets and
QObjects, and Qt/Embedded’ sinternals make heavy use of them. The pointer-based collection classes can
optionally take ownership of the objectsthey contain and automatically delete them when the collection is
destroyed, simplifying memory management.

The value-based collection classes are QM ap<Key, T>, QValueList<T>, QValueStack<T>, QValueVec-
tor<T>and QStringList. They have an interface very similar tothe STL containers. Qt/Embedded also pro-
videsthelow-level QM emATrray<T> classwith itssubclassesQBitArray, QByteArray and QPointArray.
These classesare very efficient for handling basic ‘ plain old data’ types.

To avoid the problem of code bloat associated with templates, Qt/Embedded uses private non-template
classes to implement the functionality of template classes. The template classes are only a thin layer that
converts specia typesto generic pointers, and resultsin very little binary code. Another technique, implicit
sharing, isused in the val ue-based containersto avoid needlessduplication of data. These optimizationsmake
Qt’'scollection classes suitable to embedded devel opment.

10.2. Input/Output
Qt providesQTextStream and QDataStr eam to read and writetext and binary datain afile, abuffer, asocket
or acustom device. QDataStream can be used to serialize basic C++ typesand many Qt types.

Directoriesare manipulated using QDir. The QFilel nfo class providesmore detailed information about afile,
such asitssize, permissions, creation time and last modification time.

Transparent accessto remote filesis provided by QUrlOperator. In addition to local file system access, Qt
supportsthethe FTP and HTTP protocol sand can be extended to support other protocols. For example, files
can be downloaded using FTP likethis:

QUr | Oper at or op;
op.copy(Qstring("ftp://ftp.trolltech.com qt/|NSTALL"),

String("file:/tmp"));
URL s can easily be parsed and recomposed using QUr .

Image filesare usually read by creating a QI mage with the file name asargument. Printing text and images
ishandled by QPainter. These classesare described in “Wdgets’ [p. 11].

29

User settings and other application settings can easily be stored on disk using the QSettings class. Settings
are stored in text files under hierarchical keys, e.q. / Tool s/ Zooner/ Recent Fi | es. Booleans, numbers,
Unicode stringsand lists of Unicode strings are supported.

Qt's XML module provides a SAX parser and a DOM parser, both of which read well-formed XML and
are non-validating. The SAX (Simple API for XML) implementation follows the design of the SAX2 Java
implementation, and is especially suitable for simple parsing requirements and for very large files. The
DOM (Document Object Model) Level 2 implementation follows the W3C recommendation and includes
namespace support.

10.3. Networking

Qt providesaninterfacefor writing TCP/IP clientsand servers. The QSocket classprovidesan asynchronous
buffered TCP connection. Functions such as QSocket::connectToHost() and QSocket::writeBlock() can be
called at any timewithout freezing the application’suser interface. Socketsemit the readyRead() signal when
thereisdata available to read.

The QSocketDeviceprovidesan abstraction for the underlying functionality for QSocket and QSer ver Sock-
et, and can be used for UDP.

10.4. Database

The Qt SQL module provides a uniform interface for accessing SQL databases. Qt includes native drivers
for Oracle, Microsoft SQL Server, Sybase Adaptive Server, PostgreSQL, MySQL and ODBC. Programs can
access multiple databases using multiple drivers simultaneously.

Programmers can easily execute any SQL statements. Qt also provides a high-level C++ interface that
programmers can use to generate the appropriate SQL statements automatically.

Any Qt widget, including custom widgets, can be made data-aware. Qt also includes some database-specific
convenience widgets, to simplify the creation of dialogs and windows that present records as forms or in
tables. Data-aware widgets automatically support browsing, updating and deleting records. Most database
designsrequire that new records have a unique key that cannot be guessed by Qt, so insertion usually needs
a small amount of code to be written. The programmer can easily force the user to confirm actions, e.g.
deletions.

Using the facilitiesthat the Qt SQL module provides, it isstraightforward to create database applicationsthat
use foreign key lookups, present master-detail relationships, and support drill-down.

Qt's SQL module isfully integrated with Qt Designer. Qt Designer can preview database forms and tables
using live data if desired, allowing developers to browse, delete and update records. Qt Designer has
templates and wizardsto make creating database formsfast and simple.

10.5. Multi-Threading

GUI applications often use multiple threads: one thread to keep the user interface responsive, and one or
many other threadsto perform time-consuming activities such asreading large filesand performing complex
calculations. Qt/Embedded can be configured to support multi-threading, and provides four threading
classes. QThread, QM utex, QSemaphore and QWaitCondition.

30

11. Qt/Embedded in the Wider World

Qt/Embedded makes Linux a viable platform for embedded GUI applications. It isan implemen-
tation of a mature, consistent, object-oriented toolkit that includes many tools to ease and speed
development. Qt/Embedded is already used by major companiesand is attracting software devel-
opersfrom both the commercial sector and from the open source community.

Qt/Embedded became commercially available for the first time in September 2000. It is a port of the Qt
toolkit which has been powering both commercial and open source applicationssince 1995. Qt/Embedded is
already used by enterprisesand individuals across the world.

Organizations that wish to make use of a ready-made software environment for specialized devices
such as PDAs and WebTVs, can license Qtopia, an environment created by Trolltech that is built with
Qt/Embedded. Qtopia is used in the Sharp Zaurus device (shown on the cover-page) and includes a PIM
(Personal Information Management) application suite. Qtopia is also available in open source form at
http://gpe.sourceforge.net. Qtopiais described in the Qtopia Whitepaper.

Insigna Solutions offersa Java Virtual Machine for Qt/Embedded. The Qt API isused to implement the Java
AWT, resulting in alook and feel that is consistent with C++ applications.

IBM and OTI (Object Technology International) also provide a Java solution for Qt/Embedded. This uses
their Simple Widget Toolkit instead of the Abstract Widget Toolkit.

Qt has an active and helpful user community who communicate using the gt - i nt er est mailing list. See
http://qt-interest.trolltech.com to subscribe or to browse the archive.

Qt'sextensive documentation is available on-line at http://doc.trolltech.com.

Developers can evaluate Qt/Embedded, with support, for 30 days. See
http://www.trolltech.com/products/qt/eval uate.html for details.

For further information, email info@trolltech.com.
A small sample of the applicationsthat have been devel oped with Qt/Embedded are shown below.

Opera Software has devel oped a fast Qt/Embedded web-browser that supportsHTML 4.0, CSS1, JavaScript
1.3 and cookies.

31

http://qpe.sourceforge.net
http://qt-interest.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/products/qt/evaluate.html
mailto:info@trolltech.com

K Desktop ¥vironment Home (kde org) @3

0t MetHack)

P NS BAM Game Gear A-F G-Z Magic €% =]23
'&ﬁ‘“"'}"'" i

-+

E

Open hesw Wiew

Finclin Document Ctr+F || FAQ | DovEs

Preferences...

Aclel Bookmark Cirl+B c -
Edit Bookmarks... preensd
Eookmarks 3

Close Wiew Cirl+

[LIFUE
TAG B

July 5 - 8, Stuitg
5%
-
<[[e
gqbcf P <plizoos (CE== 1 d 447 FM

Figure 27. Konqueror/Embedddaly the KDE team- Portof NetHackby Warwick Allison

SID Player ~ Hawkeye I3
Game

Main | List | Mixer | Ergine | Infa |

220 (m | n | » [| 3
Speed: (v w1 O w2 O x4 (C xi0
[ame; Hauwkeye
Author: Jeroen Tel f Maniacs of Moise
Copyright: 1985 Thalarmus
Songs: 12 (_Startsung: 13

(EJHCS ete

4 Beginning. sid
28] Cybernoid sid
28] Cyberroid_Il.sid
8 Deel_3sid

8 DemoSong sicl
T8 Fun_Fun sid
B Ha d

T8 Hawkeye _loader sid

Figure28. Portof KDE’s Sokobangameby Steve Dunham: A SID playerby MarkusGritsch

32

Index

About box, 24

Acceleration hard-
ware, 7

Accelerator, 19, 28

Action, 19

Alpha-blended
pixmap, 4

Analog clock, 15

Animation, 14

Anti-aliased font, 4, 6

Aqua, 26

Arabic, 721, 26

ARM, 4

Array, 29

Assistant, 24

Asynchronous|/O, 6

Auto-deletion, 29

Automatic layout, 20

AWT, 31

Balloon help, 18

BDF, 6

BeOs, 26

Bezier curve, 17

Bidirectional writing,
26

Big5, 27

Binary serialization,
29

Bit depth, 4

Bitmap, 5, 14

Bloat problem, 29

BMP, 14

Borland C++, 8

Box layout, 13, 21

Browser, 31

BusMouse, 7

Button, 13

Cache, 29

Caching, 5

Cdlback, 9

Canvas, 14

CDE, 25

Central area, 17

char, 26

Charmap, 27

Charset, 27

Checkbox, 13

Child widget, 12, 20

Chinese, 7, 26

clicked(), 9

Client, 6, 30

Clipping, 17

Clock, 15

Code bloat problem,
29

Codec, 27

Collection class, 29

Coallision testing, 14

Color, 25

Combobox, 13

Comment, 27

Communication, 6, 9

Compiler, 4,8

Compiler features, 11

Component, 10

Configuration, 5, 29

connect(), 9

Connection, 9, 19

Container, 29

Context, 27

Context menu, 18

Control, 11

Copy on write, 5

Cross-development, 8

CSSsy, 31

Custom canvasitem,
14

Custom style, 25

Custom widget, 23,
30

Cyrillic, 26

Datavisudization, 14

Database, 23, 30

Date, 13

Debugger, 8

Decorations, 6, 26

Default widget size,
20

Defaults, 29

Delete, 29

33

Designer, 8,22 27, 30

Desktop, 6 8, 24

Device, 5

Diacritical mark, 26

Didl, 13

Diaog, 24

Dictionary, 29

Directory, 29

DOM, 30

Drawing, 25

Drill-down, 30

Driver, 5,7

Druid, 24

Dynamic dialog, 24

Editor, 13

Embedded Linux, 4, 5

Emitting asignal, 11

Encoding, 27

English, 26

Ericsson, 4

Error, 24

EUC-JP, 27

Event, 9, 16

exec(), 12

Fatal error, 24

Features, 5

File, 29

Flash, 5, 8

Flicker, 17

Font, 20, 26

Foreign key, 30

Form, 22

Frame, 12, 26

Frame-buffer, 4,58,
17

FTP, 29

g++,8

Game, 14

GBK, 27

GCC, 8

Geometry, 12, 20

GIF, 14

Graph, 14

Graphic card, 4

Graphics, 7, 14

Greek, 26

Grid layout, 21

GUI application, 17

Handwriting, 7

Hebrew, 7 21, 26

Hierarchical tree
view, 14

Hover help, 18

HTML, 12,31

HTTP, 29

Icon, 14 18, 18

Iconview, 14

Image, 14, 29

Implicit sharing, 5 26,
29

Inheriting, 10 14, 18

Input method, 7, 20

Input/output, 29

Input validation, 14

Insigna Solutions, 31

Intel x86, 4

IntelliMouse, 7

| nternationalization,
20, 26

Introspection, 11

IP, 30

iPAQ,7

IPC, 6

| SO 8859, 27

Japanese, 7 26, 28

Java, 30

Java Virtual Machine,
31

JavaScript, 31

JS, 27

JPEG, 14

KDE, 26

KDevelop, 8

Key, 30

Keyboard, 57,7

KOI8-R, 27

Korean, 26

Label, 13

Language, 20, 26

Latin, 26

Layout, 12, 20

LCD, 13

libc, 8

Library,56, 6

Line breaking, 26

Lineeditor, 13

Linguist, 27

Linker, 8

Linking, 5

Linux, 4,5

List, 29, 29

List box, 14

Listview, 14

Localization, 26

Look and fedl, 25

Irelease, 27

lupdate, 27

Mach64, 7

Macintosh, 5

Magic, 11

Main window, 17

Makefile, 8, 11

Makefiles, 23

Map, 29

Master-detail, 30

Maximum size, 21

Memory array, 29

Menu bar, 18, 19

Message box, 24

Message map, 9

Messaging, 16

Meta Object Compil-
er,11

MFC, 9

Microsoft mouse, 7

Microsoft SQL Serv-
er, 30

Microsoft Visual C++,
8

Microsoft Windows, 5
25, 26

Minimum size, 21

MIPS, 4

MNG, 14

moc, 11

Matif, 9, 25

Motorola 68000, 4

Mouse, 5
MouseMan, 7
Multi-line editor, 13
Multi-threading, 30
MySQL, 30
NECVr41XX,7
Networking, 29, 30
Notebook, 24
Object-oriented pro-
gramming, 10
OCl, 30
ODBC, 30
Opera Software, 31
Operating system, 4
Oracle, 30
Ownership, 29
Painting, 16 17, 25
Parent widget, 12, 20
Peripheral, 5
Pickboard, 7
Picture, 14
Pixmap, 17
Plain old data, 29
Platforms, 6
Platinum, 25
Plugin, 5,6 25 26, 27
PNG, 14
PNM, 14
Pointer-based collec-
tion, 29
Pointer device, 7
Popup menu, 18
Positioning, 20
PostgreSQL, 30
PostScript, 17
PostScript font, 6
PowerPC, 4
Pre-processor, 5, 11
Preferences, 25, 29
Preferred size, 21
Primary key, 30
Printer, 17
Private class, 29
.pro, 8
Process, 6, 6
Profiler, 8
Progressbar, 13, 24

Property, 11
Property box, 24
Push button, 13
QAction, 19
QApplication, 12
QBitArray, 29
QBitmap, 5
QButtonGroup, 13
QByteArray, 29
QCache, 29
QCadlibratedMouse-
Handler, 7
QCanvas, 14
QCanvasltem, 14
QCanvasView, 14
QCDEStyle, 25
QCheckBox, 13
QColorDiaog, 24
QComboBox, 13, 14
QCommonStyle, 25,
25
QCOP, 6
QCstring, 26
QCustomMenultem,
18
QDataStream, 6, 29
QDateEdit, 13
QDateTimekEdit, 13
QDial, 13
QDidog, 11
QDict, 29
QDir, 29
QDirectPainter, 17
QEvent, 16
QFileDidog, 24
QFilelnfo, 29
QFontDialog, 24
QFontFactory, 6
QFrame, 11
QGfxRaster, 7
QGridLayout, 13 14,
20
QGroupBox, 13
QHBoxLayout, 13,
20
QlconView, 14
Qlmage, 14, 29

QLabdl, 11, 13
QLCDNumber, 13
QLineEdit, 1113, 14
QListBox, 14
QListView, 14, 14
.gm, 27
OQMainWindow, 17
gmake, 811, 23
QMap, 5,29
QMemArray, 29
QMenuBar, 18
QMessageBox, 24
QMotifPlusStyle, 25
QMotifStyle, 25
QMutex, 30
ONX, 4
QObject, 9,10 1127,
29
QPainter, 17, 29
QPalette, 5
QPF, 6
QPicture, 5
QPixmap, 5
QPlatinumStyle, 25
QPointArray, 29
QPopupMenu, 18
QPrintDialog, 24
QProcess, 6
QProgressBar, 13
QProgressDialog, 24
QPxrList, 29
QPtrQueue, 29
QPtrStack, 29
QPtrVector, 29
QPushButton, 13
QRadioButton, 13
QRegEXp, 14
QScreen, 7
QScrollBar, 13
QScrollView, 14
QSemaphore, 30
QServerSocket, 30
QSettings, 29
QSGIstyle, 25
QSlider, 13
QSocket, 30
QSocketDevice, 30

QSpinBox, 1113, 14
QStatusBar, 17
QString, 5 26, 29
QStringList, 29
QStyle, 25
Qt Designer, 8, 22 27,
30
Qt Linguist, 27
QTabDidog, 24
QTable, 14, 14
QTextCodec, 27, 29
QTextEdit, 13,14
QTextStream, 29
QThread, 30
QTimeEdit, 13
QTimer, 11
QTL, 29
QToolBar, 18
QToolButton, 18
QToolTip, 19
Qtopia, 714, 20
QTrandator, 27
Queue, 29
quit(), 9
Qurl, 29
QUrlOperator, 29
Qvadlidator, 14
QValuelList, 29
QValueStack, 29
QValueVector, 29
QVBoxLayout, 20
QWaitCondition, 30
QWERTY, 7
QWhatsThis, 19
QWidget, 11, 29
QWindowsStyle, 25
QWizard, 24
QWSDecoration, 26
QWSKeyboardHan-
dler, 7
QWSManager, 26
QWSMouseHandler,
7
Radio button, 13
RAM, 4
Reference counting, 5
Registry, 29

Regular expression,
14
Relative growth, 21
Repositioning, 20
Resizing, 20
Reusability, 10
Rich text, 12
Right-to-left lan-
guages, 21, 26
ROM, 5
Rotation, 14, 17
RTTI, 11
Run-timetypeinfor-
mation, 11
SAX, 30
Scale, 14, 17
Screen, 8
Screen rotation, 4
Screensize, 4 17, 20
Screens, 7
Scroll bar, 13, 14
Scroll view, 13, 14
Separator item, 18
Seridization, 29
Server, 4 6, 30
Settings, 29
SGl, 25
Shadow build, 8
Shared library, 5
Shared memory, 6
Sharing, 526, 29
Shear, 14, 17
Shift-JIS, 27
Signal, 9
Size, 20
Sizepolicy, 21
Slider, 13
Slot, 9
Socket, 30
Sourcetext, 27
Spacer item, 21
Spin box, 13
Spreadshest, 14
Sprite, 14
SQL, 30
Stack, 29, 29
Static linking, 5

35

Statusbar, 17

STL, 29

Storage, 527, 29

Stream, 29

Stretch, 21

Stretch factor, 21

String, 26

StrongARM, 4

Style, 25

Stylus, 7, 19

Sub-menu, 18

Subclassing, 10 14,
18

Sybase, 30

T9,7

Tab widget, 24

Table, 14

TCP, 30

TDS, 30

Template, 29

Text editor, 13

Text rendering, 26

Text trand ation, 27

Theme, 25

Thread, 30

Time, 13

Timer, 15

Title bar, 12, 26

Toggle button, 18

Tool chain, 8

Toolbar, 17 18, 19

Tooltip, 18

Touch-panel, 7, 19

tr(), 27

Transformation, 14,
17

Translation, 11, 27

Treeview, 14

TrueTypefont, 6

s, 27

Type safety, 10

Typelfont, 6

UDP, 30

.ui, 23, 27

Unicode, 6, 7 26 29,
29

Unisys, 14

Unix, 4, 8

URL, 29

User input, 14

User settings, 29

Validation, 14

Value-based collec-
tion, 29

Vector, 29, 29

Vector image, 17

VGA16, 4

Vietnamese, 26

Viewport, 17

Virtual frame-buffer,
8

Visudization, 14

VNC, 8

Voodoo3, 7

Vr41XX,7

W3C, 30

Warning, 24

Web-browser, 31

What'sthis?, 19

Widget, 11

Widget style, 25

Window, 24

Window manager, 26

Windowing system, 5

Windows, 5, 8 25, 26

Wizard, 24, 30

Writing system, 26

X11,45,8

XBM, 14

XML, 30

XPM, 14

