gqmake User Guide

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

Introduction to qmake L L L e e e e e e e 3
Installing qmake e e e e e e e e e e 4
The 10 minute guide tousing qmake L e 5
gmake Tutorial L e e e e e e e e 7
gmake COMCEPLS i i i i i e 11
gmake’s Advanced Concepts i e e e e e e e e e e e e e e e 14
gmake Command Reference e e e e e e 19
IndeX e e e e e e e ??

Introduction to gmake

Introduction to gmake

gmake is a tool created by Trolltech to write makefiles for different compilers and platforms.

Writing makefiles by hand can be difficult and error prone, especially if several makefiles are required for different
compiler and platform combinations. With gmake developers create a simple single ’project’ file, and run gmake
to generate the appropriate makefiles. gmake takes care of all the compiler and platform dependencies, freeing
developers to focus on their code. Trolltech use gmake as the primary build tool for the Qt library, and for the tools
supplied with Qt.

gmake also takes care of Qt’s special requirements, automatically including build rules for moc and uic.

Installing qmake

Installing qmake

gmake is built by default when Qt is built.

This section explains how to build gmake manually. Skip ahead to The 10 minute guide to using gmake, if you
already have gmake.

Installing gmake manually
Before building Qt manually the following environment variables must be set:

e QMAKESPEC This must be set to the platform and compiler combination that you are using on your system.
For example, if you are using Windows and Microsoft Visual Studio, you would set this environment variable
to win32-msvc. If you are using Solaris and g+ +, you would set this environment variable to solaris-g++.

e QTDIR This must be set to where Qt is (or will be) installed. For example, c:\gt and \local\qgt

Once the environment variables are set go into the qmake directory, $QTDIR/qmake, e.g. C:\qt\gqmake. Now run
make or nmake depending on your compiler.

When the make has completed, gmake is ready for use.

The 10 minute guide to using qmake

Creating a project file

gmake uses information stored in project (.pro) files to determine what should go in the makefiles it generates.

A basic project file contains information about the application, for example, which files are needed to compile the
application, and which configuration settings to use.

Here’s a simple example project file:
SQURCES = hel l 0. cpp

HEADERS = hello.h
CONFI G += gt warn_on rel ease

We'll provide a brief line-by-line explanation, deferring the detail until later on in the manual.
SOQURCES = hel |l 0. cpp

This line specifies the source files that implement the application. In this case there is just one file, hello.cpp. Most
applications require multiple files; this situation is dealt with by listing all the files on the same line space separated,
like this:

SOQURCES = hel | 0. cpp mai n. cpp
Alternatively, each file can be listed on a separate line, by escaping the newlines, like this:

SOQURCES = hello.cpp \
mai n. cpp

A more verbose approach is to list each file separately, like this:

SOQURCES += hel | 0. cpp
SQURCES += mai n. cpp

This approach uses "+ =" rather than "=" which is safer, because it always adds a new file to the existing list rather
than replacing the list.

The HEADERS line is used to specify the header files created for use by the application, e.g.
HEADERS += hell 0. h

Any of the approaches used to list source files may be used for header files.

The CONFIG line is used to give gmake information about the application’s configuration.

CONFI G += gt warn_on rel ease

The 10 minute guide to using qmake 6

The "+="is used here, because we add our configuration options to any that are already present. This is safer than
using "=" which replaces all options with just those specified.

The gt part of the CONFIG line tells gmake that the application is built using Qt. This means that gmake will link
against the Qt libraries when linking and add in the neccesary include paths for compiling.

The warn_on part of the CONFIG line tells gmake that it should set the compiler flags so that warnings are output.

The release part of the CONFIG line tells gmake that the application must be built as a release application. During
development, programmers may prefer to replace release with debug, which is discussed later.

Project files are plain text (i.e. use an editor like notepad, vim or xemacs) and must be saved with a ".pro’ exten-
sion. The name of the application’s executable will be the same as the project file’s name, but with an extension
appropriate to the platform. For example, a project file called ’hello.pro’ will produce ’hello.exe’ on Windows and
’hello’ on Unix.

Generating a makefile

When you have created your project file it is very easy to generate a makefile, all you need to do is go to where you
have created your project file and type:

Makefiles are generated from the ".pro’ files like this:
gqmake -o Makefile hello.pro
For Visual Studio users, gmake can also generate ’.dsp’ files, for example:

gmeke -t vcapp -o hello.dsp hello.pro

gmake Tutorial

Introduction to the gmake tutorial

This tutorial teaches you how to use gmake. We recommend that you read the gmake manual after completing this
tutorial.

Starting off simple

Let’s assume that you have just finished a basic implementation of your application, and you have created the
following files:

e hello.cpp
e hello.h

e main.cpp

You will find these files in qt/qmake/example. The only other thing you know about the setup of the application is
that it’s written in Qt. First, using your favorite plain text editor, create a file called hello.pro in qt/qmake/tutorial.
The first thing you need to do is add the lines that tell gmake about the source and header files that are part of your
development project.

We'll add the source files to the project file first. To do this you need to use the SOURCES variable. Just start a new
line with SOURCES += and put hello.cpp after it. You should have something like:

SQURCES += hel | 0. cpp
We repeat this for each source file in the project, until we end up with:

SQURCES += hel | 0. cpp
SQURCES += mai n. cpp

If you prefer to use a Make-like syntax, with all the files listed in one go you can use the newline escaping like this:

SOURCES = hello.cpp \
mai n. cpp

Now that the source files are listed in the project file, the header files must be added. These are added in exactly
the same way as source files, except that the variable name is HEADERS:
Once you have done this, your project file should look something like this:

HEADERS += hello.h

SQURCES += hel | 0. cpp
SOQURCES += nai n. cpp

gmake Tutorial 8

The target name is set automatically; it is the same as the project file, but with the suffix appropriate to the platform.
For example, if the project file is called "hello.pro’, the target will be ’hello.exe’ on Windows and ’hello’ on Unix. If
you want to use a different name you can set it in the project file:

TARGET = hell oworl d

The final step is to set the CONFIG variable. Since this is a Qt application, we need to put 'qt’ on the CONFIG line
so that gmake will add the relevant libraries to be linked against and ensure that build lines for moc and uic are
included in the makefile.

The finished project file should look like this:

CONFI G = qt

HEADERS += hello.h
SOQURCES += hel | 0. cpp
SQURCES += mai n. cpp

You can now use gmake to generate a makefile for your application. On the command line, in your application
directory, type:

gqmeke -o Makefile hello.pro

Then type make or nmake depending on the compiler you use.

Making an application debuggable

The release version of an application doesn’t contain any debugging symbols or other debuggin information. During
development it is useful to produce a debugging version of the application that has the relevant information. This
is easily achieved by adding ’debug’ to the CONFIG variable in the project file.

For example:

CONFI G = gt debug
HEADERS += hell 0. h
SOQURCES += hel | 0. cpp
SOQURCES += nai n. cpp

Use gmake as before to generate a makefile and you will be able to debug your application.

Adding platform specific source files

After a few hours of coding, you might have made a start on the platform specific part of your application, and
decided to keep the platform dependent code separate. So you now have two new files to include into your project
file - hello_win.cpp and hello_x11.cpp. We can’t just add these to the SOURCES variable since this will put both files
in the makefile. So what we need to do here is to use a scope which will be processed depending on which platform
gmake is run on.

A simple scope which will add in the platform dependent file for Windows looks like this:

wi n32 {
SOURCES += hel l o_wi n. cpp
}

gmake Tutorial 9

So if gmake is run on Windows, it will add hello_win.cpp to the list of source files. If gmake is run on any other
platform, it will simply ignore it. Now all that is left to be done is to create a scope for the x11 dependent file.

When you have done that, your project file should now look something like this:

CONFI G = gt debug
HEADERS += hell 0. h
SQURCES += hel | 0. cpp
SQURCES += mai n. cpp
wi n32 {
SOQURCES += hel lo_win. cpp

}
x11 {

SOQURCES += hel | 0_x11. cpp
}

Use gmake as before to generate a makefile.

Stopping gmake if a file doesn’t exist

You may not want to create a makefile if a certain file doesn’t exist. We can check if a file exists by using the exists()
function. We can stop gmake from processing by using the error() function. This works in the same way as scopes.
Simply replace the scope condition with the function. A check for a main.cpp file looks like this:

lexists(main.cpp) {
error("No main.cpp file found")
}

The "!" is used to negate the test, i.e. exi sts(main. cpp) is true if the file exists and ! exi st s(mai n.cpp) is true
if the file doesn’t exist.

CONFI G = qt debug
HEADERS += hell 0. h
SQURCES += hel | 0. cpp
SOQURCES += nai n. cpp
wi n32 {
SOQURCES += hel lo_win.cpp

}
x11 {

SOURCES += hel | 0_x11. cpp
}

lexists(main.cpp) {
error("No main.cpp file found")
}

Use gmake as before to generate a makefile. If you rename main.cpp temporarily, you will see the message and
gmake will stop processing.

Checking for more than one condition

Suppose you use Windows and you want to be able to see the qDebug() statements when you run your application
on the command line. Unless you build your application with the console setting, you won’t see the output. We can
easily put console on the CONFIG line so that on Windows the makefile will have this setting. But let’s say that we

gmake Tutorial 10

only want to add the CONFIG line if we are running on Windows and when debug is already on the CONFIG line.
This requires using two nested scopes; just create one scope, then create the other inside that one. Put the settings
to be processed inside the last scope, like this:

wi n32 {
debug {
CONFI G += consol e
}
}

Nested scopes can be joined together using colons, so the final project file looks like this:

CONFI G = gt debug
HEADERS += hell 0. h
SOQURCES += hel | 0. cpp
SQURCES += mai n. cpp
wi n32 {
SOQURCES += hel lo_win.cpp

}
x11 {

SOQURCES += hel | 0_x11. cpp
}

lexists(main.cpp) {
error("No main.cpp file found")

}
wi n32: debug {
CONFI G += consol e

}

That’s it! You have now completed the tutorial for gmake, and are ready to write project files for your development
projects.

gmake Concepts

Introducing qmake

gmake is an easy-to-use tool from Trolltech that creates makefiles for development projects across different plat-
forms. gmake simplifies the generation of makefiles so that only a few lines of information are needed to create a
makefile. gmake can be used for any software project whether it is written in Qt or not, although it also contains
additional features to support Qt development.

gmake generates a makefile based on the information in a project file. Project files are created by the developer.
Project files are usually simple, but can be quite sophisticated if required. gmake can also generate projects for
Microsoft Visual studio without having to change the project file.

gmake’s Concepts

The QMAKESPEC environment variable

Before gmake can be used to build makefiles, the QMAKESPEC environment variable must be set to the platform-
compiler combination that is being used on the system. The QMAKESPEC environment variable tells gmake where
to look to find platform and compiler specific information. This ensures that the right libraries are used, and that
the generated makefile uses the correct syntax. A list of the currently supported platform-compiler combinations
can be found in qt/mkspecs. Just set your environment variable to one of the directories listed.

For example, if you are using Microsoft Visual Studio on Windows, then you would set the QMAKESPEC environ-
ment variable to win32-msvc. If you are using gcc on Solaris then you would set your QMAKESPEC environment
variable to solaris-g+ +.

Inside each of the directories in qt/mkspecs, there is a gmake.conf file which contains the platform and compiler
specific information. These settings are applied to any project that is built using gmake and should not be modified
unless you’re an expert. For example, if all your applications had to link against a particular library, you might add
this information to the relevant gmake.conf file.

Project (.pro) files

A project file is used to tell gmake the details it needs to know about creating a makefile for the application. For
instance, a list of source files and header files that should be put into the project file; any application specific
configuration, such as an extra library that should be linked against, or an extra include path.

Templates

The template variable tells gmake what sort of makefile should be generated for the application. The following
choices are available:

11

gmake Concepts 12

e app - Creates a makefile that builds an application. This is the default, so if a template is not specified, this is
used.

o lib - Creates a makefile that builds a library.
e vcapp - Creates a Visual Studio Project file which builds an application.
e vclib - Creates a Visual Studio Project file which builds a library.

e subdirs - This is a special template which creates a makefile which will go into the specified directories and
create a makefile for the project file and call make on it.

The ’app’ template

The ’app’ template tells gmake to generate a makefile that will build an application. When using this template
the following gmake system variables are recognized. You should use these in your .pro file to specify information
about your application.

e HEADERS - A list of all the header files for the application.

e SOURCES - A list of all the source files for the application.

e FORMS - A list of all the .ui files (created using Qt Designer) for the application.
e LEXSOURCES - A list of all the lex source files for the application.

e YACCSOURCES - A list of all the yacc source files for the application.

e TARGET - Name of the executable for the application. This defaults to the name of the project file. (The
extension, if any, is added automatically).

e DESTDIR - The directory in which the target executable is placed.

e DEFINES - A list of any additional pre-processor defines needed for the application.
e INCLUDEPATH - A list of any additional include paths needed for the application.

e DEPENDPATH - The dependency search path for the application.

e DEF FILE - Windows only: A .def file to be linked against for the application.

e RC FILE - Windows only: A resource file for the application.

e RES FILE - Windows only: A resource file to be linked against for the application.

You only need to use the system variables that you have values for, for instance, if you don’t have any extra
INCLUDEPATHS then you don’t need to specify any, gmake will add in the default ones needed. For instance, an
example project file might look like this:

TEMPLATE = app

DESTDI R c:\hel | oapp
HEADERS += hello.h

SQURCES += hel | 0. cpp

SQURCES += nmi n. cpp

DEFI NES += QT _DLL

CONFIG += gt warn_on rel ease

For items that are single valued, e.g. the template or the destination directory, we use "="; but for multi-valued
items we use "+ ="to add to the existing items of that type. Using "="replaces the item’s value with the new value,
for example if we wrote DEFI NES=QT_DLL, all other definitions would be deleted.

The ’lib’ template

The ’lib’ template tells gmake to generate a makefile that will build a library. When using this template, in addition
to the system variables mentioned above for the app’ template the VERSION variable is supported. You should use
these in your .pro file to specify information about the library.

e VERSION - The version number of the target library, for example, 2.3.1.

gmake Concepts 13

The ’subdirs’ template

The ’subdirs’ template tells gmake to generate a makefile that will go into the specified subdirectories and generate
a makefile for the project file in the directory and call make on it.

The only system variable that is recognised for this template is the SUBDIRS variable. This variable contains a list of
all the subdirectories that contain project files to be processed. It is essential that the project file in the sub directory
has the same name as the subdirectory, so that gmake can find it. For example, if the subdirectory is called 'myapp’
then the project file in that directory should be called myapp.pro in that directory.

The CONFIG variable

The config variable specifies the options that the compiler should use and the libraries that should be linked against.
Anything can be added to the config variable, but the options covered below are recognised by gqmake internally.

The following options control what compiler flags are used:

e release - The application is to be built in release mode. This is ignored if "debug’ is specified.
e debug - The application is to be built in debug mode.
e warn_on - The compiler should output as many warnings as possible. This is ignored if 'warn_off’ is specified.

e warn off - The compiler should output as few warnings as possible.
The following options define the type of library/application to be built:

e qt - The application is a Qt application and should link against the Qt library.

e thread - The application is a multi-threaded application.

e x11 - The application is an X11 application or library.

e windows - 'app’ template only: the application is a Windows window application.
e console - "app’ template only: the application is a Windows console application.

e dll - 'lib’ template only: The library is a shared library (dll).

e staticlib - ’lib’ template only: The library is a static library.

e plugin - lib’ template only: The library is a plugin; this enables the dll option.

For example, if your application uses the Qt library and you want to build it as a debuggable multi-threaded
application, your project file will have the following line:

CONFI G += gt thread debug

Note, that you must use "+ =", not "=", or gmake will not be able to use the settings used to build Qt as a guide as
what type of Qt library was built.

gmake’s Advanced Concepts

gmake’s Advanced Concepts

The gmake project files we’ve seen up to now have been very simple, just a list of name = value and name +=
value lines. gmake provides a lot more power, for example you can use a single project file to produce makefiles for
multiple platforms.

Operators

So far, you have seen the = operator and += operator being used in a project file. There are more operators
available for use; but some of these should be used carefully as they may change more than you expect them to.

The ’=’ operator
This operator simply assigns a value to a variable, it is used like this:
TARGET = nyapp

This sets the TARGET variable to myapp. This will remove any previously set TARGET.

The ’+ =’ operator
This operator adds a value to the list of values in a variable. It is used like this:
DEFI NES += QT_DLL

This adds QT _DLL to the list of pre-processor defines to be put in the makefile.

The ’-=’ operator
This operator removes a value from the list of values in a variable. It is used like this:
DEFINES -= QT_DLL

This removes QT DLL from the list of pre-processor defines to be put in the makefile.

The *=’ operator

This operator only adds a value to the list of values in a variable if it doesn’t already exist. It is used like this:

14

gmake’s Advanced Concepts 15

DEFI NES *= QT_DLL

QT _DLL will only be added to the list of pre-processor defines if it is not already defined.

The ’~=’ operator
This operator replaces any values that match the regexp with the specified value. It is used like this:
DEFI NES ~= s/ QT_[DT]. +/ QT

This removes any values in the list that start with QT _D or QT _T with QT.

Scopes

A scope are similar to ’if’ statements, if a certain condition is true, the settings inside the scope are processed. A
scope is written like this:

wi n32 {
DEFI NES += QT _DLL
}

The above code will add the QT DLL define to the makefile if gmake is used on a Windows platform. If gmake is
used on a different platform than Windows, the define will be ignored.

For example, suppose we want to process something on all platforms except for Windows. We can achieve this by
negating the scope like this:

Twin32 {
DEFI NES += QT _DLL
}
Any entry on the CONFIG line is also a scope. For example, if you write this:
CONFI G += warn_on

you will have a scope called 'warn_on’. This makes it easy to change the configuration for a project without losing
all the custom settings that might be needed for a specific configuration. Since it is possible to put your own values
on the CONFIG line, this provides you with a very powerful configuration tool for your makefiles. For example:

CONFI G += gt warn_on debug

debug {
TARGET = nyappdebug
}
rel ease {
TARGET = nyapp
}

In the above code, two scopes are created which depend on what is put on the CONFIG line. In the example,
debug is on the config line, so the TARGET variable is set to myappdebug. If release was on the config line, then the
TARGET variable would be set to myapp.

It is also possible to check for two things before processing some settings. For instance, if you want to check if the
platform is Windows and that the thread configuration is set, you would write this:

gmake’s Advanced Concepts 16

wi n32 {
thread {
DEFI NES += QT_THREAD SUPPORT
}
}

To save writing many nested scopes, you can nest scopes using a colon like this:

wi n32:thread {
DEFI NES += QI_THREAD SUPPORT
}

Variables

The variables that we have encountered so far are system variables, such as DEFINES, SOURCES and HEADERS. It is
possible for you to create your own variables so that you use them in scopes. It’s easy to create your own variable;
just name it and assign something to it. For example:

MY_VARI ABLE = val ue

There are no restricitions on what you do to your own variables, as gmake will just ignore them unless it needs to
look at them for a scope.

You can also assign the value of a current variable to another variable by prefixing $$ to the variable name. For
example:

MY_DEFI NES = 3DEFI NES

Now the MY DEFINES variable contains what is in the DEFINES variable at this point in the project file.

Functions

gmake provides built-in functions that perform simple, yet powerful tasks.

contains(variablename, value)

If value is in the list of values stored in the variable called variablename, then the settings inside the scope will be
processed. For example:

contains(CONFIG thread) {
DEFI NES += QT_THREAD_ SUPPCRT
}

If thread is in the list of values for the CONFIG variable, then QT_THREAD_ SUPPORT will be added to the list of
values in the DEFINES variable.

count(variablename, number)

If number matches the number of values stored in the variable called variablename, then the settings inside the
scope will be processed. For example:

gmake’s Advanced Concepts 17

count (DEFINES, 5) {
CONFI G += debug
}

error(string)
This function outputs the string given and then makes gmake exit. For example:
error("An error has occured")

The text "An error has occured" will be displayed on the console and gmake will exit.

exists(filename)

If the specified file exists, then the settings inside the scope will be processed. For example:

exi sts(/local/qt/qgmake/ main.cpp) {
SOURCES += mai n. cpp

}

If /local/qt/qmake/main.cpp exists then main.cpp is added to the list of source files.

Note that "/" can be used as a directory separator regardless of the platform.

include(filename)

The contents of filename are included at this point in the project file, so any settings in the specified file will be
processed. An example of this is:

i ncl ude(myot herapp.pro)

Any settings in the myotherapp.pro project file are now processed.

isEmpty(variablename)

This is the equivalent of using count(variablename, 0). If the variable called variablename has no elements, then
the settings inside the scope will be processed. An example of this is:

i sSEnpty(CONFIG) {
CONFI G += gt warn_on debug
}

message(string)
This function simply outputs a message on the console.
message("This is a nessage")

The text "This is a message" is output to the console and processing of the project file carries on.

gmake’s Advanced Concepts 18

system(command)

The specified command is performed and if it returns an exit code of 1, the settings inside the scope are processed.
For example:

system(|Is /bin) {
SOURCES += bi n/ mai n. cpp
HEADERS += bi n/ mai n. h

}

So if the command Is /bin returns 1 then bin/main.cpp is added to the list of sources and bin/main.h is added to
the list of headers.

gmake Command Reference

gmake Command Reference

e About This Reference

e Command Line Options
e System Variables

e Functions

e Environment Variables and Configuration

About This Reference

This reference is a detailed index of all command line options, configurations and internal variables used by the
cross-platform makefile generation utility gmake.

Command Line Options

Syntax

qmake [options] files

Options
The following options can be specified on the command line to gmake:

e -0 file gmake output will be directed to file. if this argument is not specified, then gmake will try to guess a
suitable name. If -’ is specified, output is directed to stdout.

- uni x gmake will run in unix mode. In this mode, Unix file naming and path conventions will be used. This
is the default mode on all Unices.

-W n32 gmake will run in win32 mode. In this mode, Windows file naming and path conventions will be
used. This is the default mode on Windows.

- d gmake will output useful debugging information.

-t tmpl gmake will override any set TEMPLATE variables with tmpl.

- hel p gmake will go over these features and give some useful help.

gmake supports two different modes of operation. The first mode, which is the default is makefile generation. In
this mode, gmake will take a .pro file and turn it into a makefile. Creating makefiles is covered by this reference
guide, there is another mode which generates .pro files.

19

gmake Command Reference 20

To toggle between these modes you must specify in the first argument what mode you want to use. If no mode is
specified, gmake will assume you want makefile mode. The available modes are:

e -nakefil e gmake output will be a makefile (Makefile mode).
e -proj ect gmake output will be a project file (Project file mode).

Makefile Mode

In Makefile mode gmake will generate a makefile. Additionally you may supply the following arguments in this
mode:

e -nocache gmake will ignore the .qmake.cache file.

e -nodepend gmake will not generate any dependency information.

e -cache file gmake will use file as the cache file, ignoring any other .qmake.cache file found

e -spec spec gmake will use spec as a path to platform-compiler information and QMAKESPEC will be ignored.

The fil es argument can be a list of one or more project files, separated by spaces. You may also pass qmake
assignments on the command line here and they will be processed before all files specified, for example:

gmake -makefile -unix -o Makefile "CONFIG+ =test" test.pro

This will generate a Makefile, from test.pro with Unix pathnames. However many of these arguments aren’t
necessary as they are the default. Therefore the line can be simplified on Unix to:

gmake "CONFIG+=test" test.pro
Projectfile Mode

In Projectfile mode gmake will generate a project file. Additionally, you may supply the following arguments in this
mode:

e - nopwd gmake will not look in your current working directory for source code and only use the specified fi | es

The fil es argument can be a list of files or directories. If a directory is specified, then it will be included in the
DEPENDPATH variable and relevant code from there will be included in the generated project file, if a file is given
it will go into the correct variable depending on extension (i.e. .ui files go into FORMS, .cpp files go into SOURCES,
etc).

System Variables

e Frequently Used System Variables
e Rarely Used System Variables

Frequently Used System Variables

The following variables are recognized by gmake and are used most frequently when creating project files.

CONFIG

The CONFI Gvariable specifies project configuration and compiler options. The values will be recognized internally
by gmake and have special meaning. They are as follows.

gmake Command Reference 21

These CONFI Gvalues control compilation flags:

e release - Compile with optimization enabled, ignored if "debug" is specified
e debug - Compile with debug options enabled
e warn on - The compiler should emit more warnings than normally, ignored if "warn_oft" is specified

e warn_off - The compiler should only emit severe warnings.
These options define the application/library type:

e qt - The target is a Qt application/library and requires the Qt header files/library. The proper include and
library paths for the Qt library will automatically be added to the project.

e opengl - The target requires the OpenGL (or Mesa) headers/libraries. The proper include and library paths
for these libraries will automatically be added to the project.

e thread - The target is a multi-threaded application or library. The proper defines and compiler flags will
automatically be added to the project.

e x11 - The target is a X11 application or library. The proper include paths and libraries will automatically be
added to the project.

e windows - The target is a Win32 window application (app only). The proper include paths,compiler flags and
libraries will automatically be added to the project.

e console - The target is a Win32 console application (app only). The proper include paths, compiler flags and
libraries will automatically be added to the project.

e dll - The target is a shared object/DLL.The proper include paths, compiler flags and libraries will automatically
be added to the project.

e staticlib - The target is a static library (lib only). The proper compiler flags will automatically be added to the
project.

e plugin - The target is a plugin (lib only). This enables dll as well.

The CONFI Gvariable will also be checked when resolving scopes. You may assign anything to this variable.

For example:
CONFI G += gt consol e newst uf f
newst uf f {
SOURCES += new. cpp
HEADERS += new. h

DEFINES

gmake adds the values of this variable as compiler C preprocessor macros (-D option).

For example:

DEFI NES += USE_MY_STUFF QT _DLL

DEF_FILE

This is only used on Windows when using the ‘app’ template.

Specifies a .def file to be included in the project.

gmake Command Reference 22

DESTDIR
Specifies where to put the target file.
For example:

DESTDIR = ../../lib

DLLDESTDIR

Specifies where to copy the target dll.

HEADERS

Defines the header files for the project.

gmake will generate dependency information (unless -nodepend is specified on the command line) for the specified
headers. gmake will also automatically detect if moc is required by the classes in these headers, and add the
appropriate dependencies and files to the project for generating and linking the moc files.

For example:

HEADERS = nycl ass. h \
login.h\
mai nwi ndow. h

See also SOURCES.

INCLUDEPATH

This variable specifies the #include directories which should be searched when compiling the project. Use ’;’ or a
space as the directory separator.

For example:

| NCLUDEPATH = c:\nsdev\include d:\stl\include

FORMS

This variable specifies the .ui files (see Qt Designer) to be processed through uic before compiling. All dependencies,
headers and source files required to build these .ui files will automatically be added to the project.

For example:

FORMS = nydi al og. ui \

mywi dget . ui \
myconfi g. ui

LEXSOURCES

This variable contains a list of lex source files. All dependencies, headers and source files will automatically be
added to the project for building these lex files.

For example:

LEXSQURCES = | exer. |

gmake Command Reference 23

LIBS

This variable contains a list of libraries to be linked into the project.
For example:

uni x: LIBS += -lmath -L/usr/local/lib

win32: LIBS += c:\nylibs\math.lib

MOC_DIR

This variable specifies the directory where all intermediate moc files should be placed.
For example:

uni x: MIC DIR = ../nyproject/tnp

wi n32: MOC DIR = c:\nyproject\tnp

OBJECTS_DIR

This variable specifies the directory where all intermediate objects should be placed.

For example:

uni x: OBJECTS DIR = ../ nyproject/tnp
wi n32: OBJECTS_DIR = c:\nyproject\tnp

REQUIRES

This is a special variable processed by gmake. If the contents of this variable do not appear in CONFIG by the
time this variable is assigned, then a minimal makefile will be generated that states what dependencies (the values
assigned to REQUIRES) are missing.

This is mainly used in Qt’s build system for building the examples.

SOURCES

This variable contains the name of all source files in the project.

For example:

SQURCES = nycl ass. cpp \
[ogin.cpp \
mai nwi ndow. cpp

See also HEADERS

SUBDIRS

This variable, when used with the ’subdir’ TEMPLATE contains the names of all subdirectories to look for a project
file.

For example:

SUBDI RS = kernel \
tools

gmake Command Reference 24

TARGET

This specifies the name of the target file.

For example:
TEMPLATE = app
TARGET = nyapp
SOQURCES = mai n. cpp

The project file above would produce an executable named *myapp’ on unix and ‘'myapp.exe’ on windows.

TEMPLATE

This variable contains the name of the template to use when generating the project. The allowed values are:

e app - Creates a makefile for building applications (the default)
e lib - Creates a makefile for building libraries

subdirs - Creates a makefile for building targets in subdirectories
e vcapp - win32 only Creates an application project file

e vclib - win32 only Creates a library project file

For example:

TEMPLATE = lib
SOQURCES = mai n. cpp
TARGET = mylib
VERSION

This variable contains the version number of the library if the "lib’ TEMPLATE is specified.

For example:

VERSION = 1.2.3

YACCSOURCES

This variable contains a list of yacc source files to be included in the project. All dependencies, headers and source
files will automatically be included in the project.

For example:

YACCSQURCES = noc. y

Rarely Used System Variables

The following variables are also recognized by gmake but are either internal or very rarely used.

DESTDIR_TARGET

This variable is set internally by gmake, which is basically the DESTDIR variable with the TARGET variable appened
at the end. The value of this variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

gmake Command Reference 25

DSP_TEMPLATE

This variable is set internally by gmake, which specifies where the dsp template file for basing generated dsp files
is stored. The value of this variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

LEXIMPLS

This variable contains a list of lex implementation files. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

LEXOBJECTS

This variable contains the names of intermediate lex object files.The value of this variable is typically handled by
gmake and rarely needs to be modified.

MAKEFILE

This variable specifies the name of the makefile which gmake should use when outputting the dependency infor-
mation for building a project. The value of this variable is typically handled by gmake or gqmake.conf and rarely
needs to be modified.

MAKEFILE_GENERATOR

This variable contains the name of the makefile generator to use when generating a makefile. The value of this
variable is typically handled internally by gmake and rarely needs to be modified.

OBJECTS

This variable is generated from the SOURCES variable. The extension of each source file will have been replaced
by .o (Unix) or .obj (Win32). The value of this variable is typically handled by gmake or gqmake.conf and rarely
needs to be modified.

OBJMOC

This variable is set by gmake if files can be found that contain the Q OBJECT macro. OBJMC contains the name of
all intermediate moc object files. The value of this variable is typically handled by gmake or gmake.conf and rarely
needs to be modified.

PRECOMPH

This variable contains a list of header files that require some sort of pre-compilation step (such as with moc). The
value of this variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE

This variable contains the name of the gmake program itself and is placed in generated makefiles. The value of this
variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

gmake Command Reference 26

QMAKESPEC

This variable contains the name of the gmake configuration to use when generating makefiles. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified. Use the QMAKESPEC
environment variable instead.

QMAKE_AIX_SHLIB

If this variable is not empty, then this variable tells gmake to generate the TARGET as an AIX shared library.

QMAKE_APP_FLAG

This variable is empty unless the app’ TEMPLATE is specified. The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified. Use the following instead:

app {
}

#conditional code for "app’ tenplate here

QMAKE_APP_OR_DLL

This variable is empty unless the "app’ or "dll’ TEMPLATE is specified. The value of this variable is typically handled
by gqmake or gqmake.conf and rarely needs to be modified.

QMAKE_AR_CMD

This is used on Unix platforms only

This variable contains the command for invoking the program which creates, modifies and extracts archives. The
value of this variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_DEBUG

This variable contains the flags for the C compiler in debug mode.The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_MT

This variable contains the compiler flags for creating a multi-threaded application. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_MT_DBG

This variable contains the compiler flags for creating a debuggable multi-threaded application. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_MT _DLL

This is used on Windows only

gmake Command Reference 27

This variable contains the compiler flags for creating a multi-threaded dll. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_MT_DLLDBG

This is used on Windows only

This variable contains the compiler flags for creating a debuggable multi-threaded dll. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_RELEASE

This variable contains the compiler flags for creating a non-debuggable application. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_SHLIB

This is used on Unix platforms only

This variable contains the compiler flags for creating a shared library. The value of this variable is typically handled
by gmake or qmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_THREAD

This variable contains the compiler flags for creating a multi-threaded application. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_WARN_OFF

This variable is not empty if the warn off TEMPLATE option is specified. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_CFLAGS_WARN_ON

This variable is not empty if the warn on TEMPLATE option is specified. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CLEAN

This variable contains any files which are not generated files (such as moc and uic generated files) and object files
that should be removed when using "make clean".

QMAKE_CXXFLAGS_DEBUG

This variable contains the C++ compiler flags for creating a debuggable application. The value of this variable is
typically handled by gmake or gqmake.conf and rarely needs to be modified.

gmake Command Reference 28

QMAKE_CXXFLAGS_MT

This variable contains the C+ + compiler flags for creating a multi-threaded application. The value of this variable
is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_MT _DBG

This variable contains the C++ compiler flags for creating a debuggable multi-threaded application. The value of
this variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_MT DLL

This is used on Wndows only

This variable contains the C++ compiler flags for creating a multi-threaded dll. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_MT_DLLDBG

This is used on Wndows only

This variable contains the C++ compiler flags for creating a multi-threaded debuggable dll. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_RELEASE

This variable contains the C++ compiler flags for creating an application. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_SHLIB

This variable contains the C++ compiler flags for creating a shared library. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_THREAD

This variable contains the C++ compiler flags for creating a multi-threaded application. The value of this variable
is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_WARN_OFF

This variable contains the C++ compiler flags for suppressing compiler warnings. The value of this variable is
typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_CXXFLAGS_WARN_ON

This variable contains C++ compiler flags for generating compiler warnings. The value of this variable is typically
handled by gmake or qmake.conf and rarely needs to be modified.

gmake Command Reference 29

QMAKE_EXTENSION_SHLIB

This variable contains the extention for shared libraries. The value of this variable is typically handled by gqmake or
gmake.conf and rarely needs to be modified.

QMAKE_FAILED REQUIREMENTS

This variable contains the list of requirements that were failed to be met when gmake was used. For example, the
sql module is needed and wasn’t compiled into Qt. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

QMAKE_FILETAGS

This variable contains the file tags needed to be entered into the makefile, such as SOURCES and HEADERS. The
value of this variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_HPUX_SHLIB

This is used on Unix platforms only

If this variable is not empty then this variable tells gmake to generate the TARGET as an HPUX shared library. The
value of this variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_HPUX SHLIBS

This is used on Unix platforms only

If this variable is not empty then this variable tells gmake to generate the TARGET as an HPUX shared library. The
value of this variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_INCDIR

This variable contains the location of all known header files to be added to INCLUDEPATH when building an
application. The value of this variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_INCDIR_OPENGL

This variable contains the location of OpenGL header files to be added to INCLUDEPATH when building an applica-
tion with OpenGL support. The value of this variable is typically handled by gmake or gmake.conf and rarely needs
to be modified.

QMAKE_INCDIR QT

This variable contains the location of all known header file paths to be added to INCLUDEPATH when building a Qt
application. The value of this variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_INCDIR_THREAD

This variable contains the location of all known header file paths to be added to INCLUDEPATH when building
a multi-threaded application. The value of this variable is typically handled by gmake or gmake.conf and rarely
needs to be modified.

gmake Command Reference 30

QMAKE_INCDIR_X11

This is used on Unix platforms only

This variable contains the location of X11 header file paths to be added to INCLUDEPATH when building a X11
application. The value of this variable is typically handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_CONSOLE

This is used on Windows only

This variable contains link flags when building console programs. The value of this variable is typically handled by
gmake or qmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_CONSOLE_DLL

This is used on Windows only

This variable contains link flags when building console dlls. The value of this variable is typically handled by gmake
or gmake.conf and rarely needs to be modified.

QMAKE_LFLAGS DEBUG

This variable contains link flags when building debuggable applications. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_PLUGIN

This variable contains link flags when building plugins. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_QT_DLL

This variable contains link flags when building programs that use the Qt library built as a dll. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_ RELEASE

This variable contains link flags when building applications for release. The value of this variable is typically
handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_SHAPP

This variable contains link flags when building applications which are using the ’app’ template. The value of this
variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_SHLIB

This variable contains link flags when building shared libraries The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

gmake Command Reference 31

QMAKE_LFLAGS_SONAME

This variable specifies the name of shared objects, such as .so or .dll. The value of this variable is typically handled
by gqmake or gqmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_THREAD

This variable contains link flags when building multi-threaded projects. The value of this variable is typically
handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LFLAGS_WINDOWS

This is used on Windows only

This variable contains link flags when building windows projects. The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LFLAGS WINDOWS DLL

This is used on Windows only

This variable contains link flags when building windows dll projects. The value of this variable is typically handled
by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LIBDIR

This variable contains the location of all known library directories.The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBDIR_FLAGS

This is used on Unix platforms only

This variable contains the location of all library directory with -L prefixed. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBDIR OPENGL

This variable contains the location of the OpenGL library directory.The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBDIR_QT

This variable contains the location of the Qt library directory.The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBDIR X11

This is used on Unix platforms only

This variable contains the location of the X11 library directory.The value of this variable is typically handled by
gmake or qmake.conf and rarely needs to be modified.

gmake Command Reference 32

QMAKE_LIBS

This variable contains all project libraries. The value of this variable is typically handled by gmake or gqmake.conf
and rarely needs to be modified.

QMAKE_LIBS_CONSOLE

This is used on Windows only

This variable contains all project libraries that should be linked against when building a console application. The
value of this variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LIBS_OPENGL

This variable contains all OpenGL libraries. The value of this variable is typically handled by gmake or qmake.conf
and rarely needs to be modified.

QMAKE_LIBS_OPENGL_QT

This variable contains all OpenGL Qt libraries.The value of this variable is typically handled by gmake or qmake.conf
and rarely needs to be modified.

QMAKE_LIBS QT

This variable contains all Qt libraries.The value of this variable is typically handled by gmake or gmake.conf and
rarely needs to be modified.

QMAKE _LIBS QT DLL

This is used on Windows only

This variable contains all Qt libraries when Qt is built as a dll. The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBS_QT_OPENGL

This variable contains all the libraries needed to link against if OpenGL support is turned on. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBS_QT_THREAD

This variable contains all the libraries needed to link against if thread support is turned on. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBS_RT

This is used with Borland compilers only

This variable contains the runtime library needed to link against when building an application. The value of this
variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

gmake Command Reference 33

QMAKE_LIBS_RTMT

This is used with Borland compilers only

This variable contains the runtime library needed to link against when building a multi-threaded application. The
value of this variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIBS_THREAD

This is used on Unix platforms only

This variable contains all libraries that need to be linked against when building a multi-threaded application. The
value of this variable is typically handled by gmake or qmake.conf and rarely needs to be modified.

QMAKE_LIBS_WINDOWS

This is used on Windows only

This variable contains all windows libraries.The value of this variable is typically handled by gmake or gqmake.conf
and rarely needs to be modified.

QMAKE _LIBS X11

This is used on Unix platforms only

This variable contains all X11 libraries.The value of this variable is typically handled by gmake or gmake.conf and
rarely needs to be modified.

QMAKE_LIBS X11SM

This is used on Unix platforms only

This variable contains all X11 session management libraries. The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LIB_FLAG

This variable is not empty if the ’lib’ template is specified. The value of this variable is typically handled by gmake
or gmake.conf and rarely needs to be modified.

QMAKE_LINK_SHLIB_CMD

This variable contains the command to execute when creating a shared library. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_LN_SHLIB

This variable contains the command to execute when creating a link to a shared library. The value of this variable
is typically handled by gmake or gmake.conf and rarely needs to be modified.

gmake Command Reference 34

QMAKE_MAKEFILE

This variable contains the name of the makefile to create. The value of this variable is typically handled by gmake
or gmake.conf and rarely needs to be modified.

QMAKE_MOC_SRC

This variable contains the names of all moc source files to generate and include in the project. The value of this
variable is typically handled by gmake or gqmake.conf and rarely needs to be modified.

QMAKE_QMAKE

This variable contains the location of gmake if it is not in the path. The value of this variable is typically handled
by gqmake or gqmake.conf and rarely needs to be modified.

QMAKE_QT_DLL

This variable is not empty if Qt was built as a dll. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

QMAKE_RUN_CC

This variable specifies the individual rule needed to build an object. The value of this variable is typically handled
by gqmake or gqmake.conf and rarely needs to be modified.

QMAKE_RUN_CC_IMP

This variable specifies the individual rule needed to build an object. The value of this variable is typically handled
by gmake or qmake.conf and rarely needs to be modified.

QMAKE_RUN_CXX

This variable specifies the individual rule needed to build an object. The value of this variable is typically handled
by gqmake or gqmake.conf and rarely needs to be modified.

QMAKE_RUN_CXX_IMP

This variable specifies the individual rule needed to build an object. The value of this variable is typically handled
by gmake or qmake.conf and rarely needs to be modified.

QMAKE_TARGET

This variable contains the name of the project target. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

RC_FILE

This variable contains the name of the resource file for the application. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

gmake Command Reference 35

RES_FILE

This variable contains the name of the resource file for the application. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

SRCMOC

This variable is set by gmake if files can be found that contain the Q_OBJECT macro. SRCMOC contains the name of
all the generated moc files. The value of this variable is typically handled by gmake or gqmake.conf and rarely needs
to be modified.

TARGET_EXT

This variable specifies the target’s extension. The value of this variable is typically handled by gmake or gqmake.conf
and rarely needs to be modified.

TARGET _x

This variable specifies the target’s extension with a major version number. The value of this variable is typically
handled by gmake or gqmake.conf and rarely needs to be modified.

TARGET x.y.z

This variable specifies the target’s extension with version number. The value of this variable is typically handled by
gmake or gqmake.conf and rarely needs to be modified.

UICIMPLS

This variable contains a list of the generated implementation files by UIC. The value of this variable is typically
handled by gmake or gmake.conf and rarely needs to be modified.

UICOBJECTS

This variable is generated from the UICIMPLS variable. The extension of each file will have been replaced by .o
(Unix) or .obj (Win32). The value of this variable is typically handled by gmake or gqmake.conf and rarely needs to
be modified.

VER_MAJ

This variable contains the major version number of the library, if the ’lib’ template is specified.

VER_MIN

This variable contains the minor version number of the library, if the ’lib’ template is specified.

VER_PAT

This variable contains the patch version number of the library, if the 'lib’ template is specified.

gmake Command Reference 36

YACCIMPLS

This variable contains a list of yacc source files. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

YACCOBJECTS

This variable contains a list of yacc object files. The value of this variable is typically handled by gmake or
gmake.conf and rarely needs to be modified.

Functions

gmake recognizes the following functions:

include(filename)

This function will include the contents of filename into the current project at the point where was included. The
function succeeds if filename was included, otherwise it fails. You can check the return value of this function using
a scope.

For example:

include(shared.pri)

OPTIONS = standard custom

Finclude(options.pri) {
message("No custom build options specified")
OPTIONS -= custom

exists(file)

This function will test if file exists. If the file exists, then it will succeed; otherwise it will fail. You can specify a
regular expression in file and it will succeed if any file matches the regular expression specified.

For example:

exists($(QIDIR)/lib/gt-m*) {

message("Configuring for nulti-threaded Q...")
CONFI G += thread

contains(variablename, value)

This function will succeed if the variable variablename contains the value value. You can check the return value of
this function using a scope.

For example:

contains(drivers, network) {
drivers contains 'network’
message("Configuring for network build...")
HEADERS += network. h

gmake Command Reference 37

SOURCES += networ k. cpp

count(variablename, number)

This function will succeed if the variable variablename contains number elements, otherwise it will fail. You can
check the return value of this function using a scope.

For example:

MYVAR = one two three
count (MYWAR 3) {

always true
}

infile(filename, var, val)

This function will succeed if the file filename (when parsed by gmake itself) contains the variable var with a value
of val. You may also not pass in a third argument (val) and the function will only test if var has been assigned to in
the file.

isEmpty(variablename)

This function will succeed if the variable variablename is empty (same as count (vari abl e, 0)).

system(command)

This function will execute conmand in a secondary shell and will succeed if the command exits with an exit status
of 1. You can check the return value of this function using a scope.

For example:

systen(|s /bin):HAS Bl N=FALSE

message(string)

This function will always succeed, and will display the given string to the user.

error(string)

This function will never return a value. It will display the given string to the user, and then exit gmake. This
function should only be used for very fatal configurations.

For example:

rel ease: debug: error(You can't have release and debug at the sane tine!)

gmake Command Reference 38

Environment Variables and Configuration

QMAKESPEC

gmake requires a platform and compiler description file which contains many default values used to generate
appropriate makefiles. The standard Qt distribution comes with many of these files, located in the 'mkspecs’
subdirectory of the Qt installation.

The QMAKESPEC environment variable can contain any of the following:

e A complete path to a directory containing a gqmake.conf file. In this case gmake will open the gqmake.conf file
from within that directory. If the file does not exist, gmake will exit with an error.

e The name of a platform-compiler combination. In this case, gmake will search in the directory specified by
the QTDIR environment variable.

Note: the QMAKESPEC path will automatically be added to the INCLUDEPATH system variable.

Cache File

The cache file (mentioned above in the options) is a special file gmake will read to find settings not specified in
the gmake. conf file, the .pro file, or the command line. If neither - pat h or - nocache are specified, gmake will try
to find a file called . gmake. cache in parent directories. If it fails to find this file, it will silently ignore this step of
processing.

