Guide to the Qt Translation Tools

Qt 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark
of Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple
Computer Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are
trademarks of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt
documentation format.

Contents

Introduction e e e e e e e e e e e e e
Release Manager i i i i it i i e et e e e e e e e e e e

Translators e e e e e e e e e e e

Introduction

Qt provides excellent support for translating applications into local languages. This Guide explains how to use Qt’s
translation tools for each of the roles involved in translating an application. The Guide begins with a brief overview
of the issues that must be considered, followed by chapters devoted to each role and the supporting tools provided.

Chapter 2: Release Manager is aimed at the person with overall responsibility for the release of the application.
They will typically coordinate the work of the software engineers and the translator. The chapter describes the use
of two tools. The lupdate tool is used to synchronize source code and translations. The lrelease tool is used to
create runtime translation files for use by the released application.

Chapter 3: Translators is for translators. It describes the use of the Qt Linguist tool. No computer knowledge
beyond the ability to start a program and use a text editor or word processor is required.

Chapter 4: Programmers is for Qt programmers. It explains how to create Qt applications that are able to use
translated text. It also provides guidance on how to help the translator identify the context in which phrases
appear. This chapter’s three short tutorials cover everything the programmer needs to do.

Overview of the Translation Process

Most of the text that must be translated in an application program consists of either single words or short phrases.
These typically appear as window titles, menu items, pop-up help text (balloon help), and labels to buttons, check
boxes and radio buttons.

The phrases are entered into the source code by the programmer in their native language using a simple but special
syntax to identify that the phrases require translation. The Qt tools provide context information for each of the
phrases to help the translator, and the programmer is able to add additional context information to phrases when
necessary. The release manager generates a set of translation files that are produced from the source files and
passes these to the translator. The translator opens the translation files using Qt Linguist, enters their translations
and saves the results back into the translation files, which they pass back to the release manager. The release
manager then generates fast compact versions of these translation files ready for use by the application. The tools
are designed to be used in repeated cycles as applications change and evolve, preserving existing translations and
making it easy to identify which new translations are required. Qt Linguist also provides a phrase book facility to
help ensure consistent translations across multiple applications and projects.

Translators and programmers must address a number of issues because of the subtleties and complexities of human
language:

e A single phrase may need to be translated into several different forms depending on context, e.g. open in
English might become öffnen, "open file", or aufbauen, "open internet connection", in German.

e Keyboard accelerators may need to be changed but without introducing conflicts, e.g. "&Quit" in English
becomes "Avslutt" in Norwegian which doesn’t contain a "Q". We cannot use a letter that is already in use —
unless we change several accelerators.

e Phrases that contain variables, for example, "The 25 files selected will take 63 seconds to process”, where
the two numbers are inserted programmatically at runtime may need to be reworded because in a different
language the word order and therefore the placement of the variables may have to change.

The Qt translation tools provide clear and simple solutions to these issues.

Introduction 4

Please send comments and suggestions regarding this tutorial to the Qt doc team. Bugs in the tools should be sent
to qt-bugs.

Release Manager

Two tools are provided for the release manager, lupdate and Irelease. These tools depend on gmake project files.
You don’t have to use gmake, though.

Qt Project Files

lupdate and Irelease depend on information in the application’s . pro Qt project file. There must be an entry in the
TRANSLATI ONS section of the project file for each language that is additional to the native language. A typical entry
looks like this:

TRANSLATI ONS =tt2 fr.ts \
tt2 nl.ts

Using a locale within the translation file name is useful for determining which language to load at runtime. This is
explained in Chapter 4: Programmers.

An example of a complete . pro file with four translation source files:

HEADERS = min-dlg.h\
options-dlg.h

SQURCES = main-dlg.cpp \
options-dlg.cpp \
mai n. cpp

FORMB search-dl g. ui

TRANSLATI ONS superapp_dk.ts \
superapp_fi.ts \
superapp_no.ts \

superapp_se.ts
QApplication::setDefaultCodec() makes it possible to choose a 8-bit encoding for literal strings that appear within
tr() calls. If no encoding is set, tr () uses Latin-1.
If you use the QApplication::defaultCodec() mechanism in your application, Qt Linguist needs you to set the

DEFAULTCODEC entry in the . pr o file as well. For example:

DEFAULTCODEC = 1 SO 8859-5

lupdate

Usage: | updat e myproject. pro

This is a simple command line tool. lupdate reads a Qt . pr o project file and produces or updates the . t s translation
source files listed in the project file. The translation files are given to the translator who uses Qt Linguist to read
the files and insert the translations.

Release Manager 6

Companies that have their own translators in-house may find it useful to run lupdate regularly, perhaps monthly,
as the application develops. This will lead to a fairly low volume of translation work spread evenly over the life of
the project and will allow the translators to support a number of projects simultaneously.

Companies that hire in translators as required may prefer to run lupdate only a few times in the application’s life
cycle, the first time might be just before the first test phase. This will provide the translator with a substantial single
block of work and any bugs that the translator detects may easily be included with those found during the initial
test phase. The second and any subsequent lupdate runs would probably take place during the final beta phase.

The .ts file format is a simple human-readable XML format that can be used with version control systems if
required.

Irelease

Usage: | rel ease nyproject.pro

This is another simple command line tool. It reads a Qt . pro project file and produces the . gmfiles used by the
application, one for each . t s translation source file listed in the project file. The . gmfile format is a compact binary
format that provides extremely fast lookups for translations.

This tool is run whenever a release of the application is to be made, from initial test version through to final release
version. If the . gmfiles are not created, e.g. because an alpha release is required before any translation has been
undertaken, the application will run perfectly well using the text the programmers placed in the source files. Once
the . gmfiles are available the application will detect them and use them automatically.

Note that Irelease will only incorporate translations that are marked as "done". If a translation is missing, or has
failed validation, the original text will be used instead.

Missing Translations

Both lupdate and Irelease may be used with . t s translation source files which are incomplete. Missing translations
will be replaced with the native language phrases at runtime.

Translators

mQt Linguist by Trolltech - C:/src/qt/main/tools/linguist/linguist_no.ts =10l x|

File Edit Translation ‘aldation Phrases Wiew Help

GBS @ -] e (@ e o ww|afr]]|wv
A x Dione I Source text I Translation I;I

Done | Context | Itermsz | v Copy K.opier

¥ EditorPage 02 7 Paste Lim it

« FindDialog 15415 W Delete Fiem o

" MessageE ditor 13413 L Firnn

7 MsgEdit 0/0 -

¥ PageCurl 142

¥ PhraseBookBox 16417

Phrasel 6/6 || Source text \

7 O0bject — 01 Accelerators

7 Trwindow 3248

This iz the application's main window.

Tranglation

Akseleratarer

g Phiases and guesses:

Source phrase & Translation I Definition
Acceleratars Akszeleratarer Guess [Ctrl+1]
thccelerators tbkselleratorer Guess [Ctrl+2)
File saved. Fil lagret. Guess [Ctrl+3)
File created. Fil apprettet. Guess [Ctrl+4)
ersion pre1.0 Wersjon pre1.0 Guess [Ctrl+5)

184217 ’W %

Linguist Main Window

The One Minute Guide to Using Qt Linguist

Qt Linguist is a tool for adding translations to Qt applications. It introduces the concept of a translation "context"
which means a group of phrases that appear together on the screen e.g. in the same menu or dialog.

To start, run Qt Linguist, either from the taskbar menu, or by double clicking the desktop icon, or type | i ngui st
(followed by Enter) at the command line. Once Qt Linguist has started choose File| Open from the menu bar and
select a . t s translation source file to work on.

Qt Linguist’s main window is divided into four main areas. The left hand side contains the Context list, the top
right is the Source text area, the middle right is the translation area and the bottom right is the phrases and guesses
area. We'll describe them in detail later.

Click on one of the contexts in the context list (left hand side) and then click on one of the phrases that appears in
the Source text area (top right). The phrase will be copied into the translation area (middle right). Click under the
word 'Translation’ and type in the translation. Click Ctrl+Enter (Done & Next) to confirm that you have completed
the translation and to move on to the next phrase that requires translation.

The cycle of entering a translation then pressing Ctrl+Enter can be repeated until all the translations are done or
until you finish the session. Linguist will attempt to fill the "phrases and guesses" area with possible translations
from any open phrase books and any previous translations. Each has a keyboard shortcut, e.g. Ctrl+1, Ctrl+2,

Translators 8

etc., which you can use to copy the guess into the Translation area. (Mouse users can double click a phrase or
guess to move it into the Translation area.) At the end of the session choose File|Save from the menu bar and then
File | Exit to quit.

Qt Linguist’s Main Window

Context List

This appears at the left hand side of the main window by default. The first column, 'Done’, identifies whether or
not the translations for the context have been done. A tick indicates that all the translations have been done and
are valid. A question mark indicates that one or more translations have not been done or have failed validation.
The second column, ’Context’ is the name of the context in which the translation phrases appear. The third column,
Items’ shows two numbers, the first is the number of translations that have been done, and the second is the
number of phrases that are in the context; if the numbers are equal then all the translations have been done. Note
that a greyed out tick indicates an obsolete translation, i.e. a phrase that was translated in a previous version of
the application but which does not occur in the new version.

The contexts are ordered alphabetically. The phrases within each context are in the order in which they appear in
the source program and this may not be the order in which they are shown on screen.

The Context List is a dockable window so it can be dragged to another position in the main window, or dragged
out of the main window to be a window in its own right. If you move the Context List, Qt Linguist will remember
its position and restore it whenever you start the program.

Source Text Area

This appears at the top right of the main window by default. The first column, 'Done’, signifies the status of the
translation. A tick indicates that the phrase has been translated and passed validation. A question mark indicates
that the translation has not been done. An exclamation mark indicates that the translation has failed validation.
The second column ’Source text’ shows the text that must be translated. The third column shows the translation.

Qt Linguist provides three kinds of validation: accelerator, punctuation and phrase. If the source text contains an
accelerator i.e. an ampersand, ‘&’ and the translated text does not contain an ampersand the translation will fail
the accelerator validation. Similarly, if the source text ends with a particular punctuation mark, e.g. ’?’,’!’ or’.” and
the translation ends with a different punctuation mark the translation will fail the punctuation validation. If the
source text has a translation in one of the open phrase books that differs from the translation used the translation
will fail phrase validation. (See Validation.)

The Source Text Area is a dockable window.

Translation Area

This area appears at the middle right of the main window by default. It is comprised of three vertical sections. The
first section is labelled ’Source text’ below which the source text appears. The second section contains contextual
information on a light blue background that the programmer has added to assist the translator. If no contextual
information has been given this section does not appear. The third section is labelled "Translation’ and this is where
you enter the translation of the source text.

Phrases and Guesses Area

This area appears at the bottom right of the main window by default. When you move to a new phrase if the phrase
is in one of the phrase books that has been loaded the phrase will appear in this area with its translation. If the
phrase is the same or similar to another phrase that has already been translated the phrase and translation will
be shown in this area. To copy a translation from the phrases and guesses area press F6 to move to the phrases

Translators 9

and guesses area, use the up and down arrow keys to move to the phrase you want to use and press Enter to
copy it. If you decide that you don’t want to copy a phrase after all, press Esc. In both cases the focus will return
to the Translation area. Alternatively, double click the translation you want to use and it will be copied into the
translation area.

The Phrases and Guesses Area is a dockable window.

Common Tasks

Leaving a Translation for Later

If you wish to leave a translation press Ctrl+L (Next Unfinished) to move to the next unfinished translation. An
unfinished translation is one that either has not been translated at all or one which fails validation. To move to the
next phrase press Shift+Ctrl+L. You can also navigate using the Translation menu. If you want to go to a different
context entirely, click the context you want to work on in the Context list, then click the source text in the Source
Text area.

Phrases That Require Multiple Translations Depending on Context

The same phrase may occur in two or more contexts without conflict. Once a phrase has been translated in one
context, Qt Linguist notes that the translation has been made and when the translator reaches a later occurrence of
the same phrase Qt Linguist will provide the previous translation as a possible translation candidate in the phrases
and guesses area. If the previous translation is acceptable just click the Done & Next button (press Alt+Enter) to
move on to the next unfinished phrase.

If a phrase occurs more than once in a particular context it will only be shown once in Qt Linguist’s context list and
the translation will be applied to every occurrence within the context. If the same phrase needs to be translated
differently within the same context the programmer must provide a distinguishing comment for each of the phrases
concerned. If such comments are used the duplicate phrases will appear in the context list. The programmers
comments will appear in the translation area on a light blue background.

Changing Keyboard Accelerators

A keyboard accelerator is a key combination that when pressed will cause an application to perform an action.
Keyboard accelerators normally come in two forms: Alt key and Ctrl key accelerators.

Alt key accelerators are used for menus and buttons. The underlining signifies that pressing the Alt key with the
underlined letter is the same as clicking the menu item with the mouse. For example, most applications have a
File menu with the "F" in the word "file" underlined. In these applications the file menu can be invoked either by
clicking the word "File" on the menu bar or by pressing Alt+E The accelerator key which is underlined is signified by
preceeding it with an ampersand, e.g. &File. If a source phrase appears with an ampersand in it then the translation
should also contain an ampersand, preferably in front of the same letter. The meaning of Alt key accelerators can
be determined from the phrase in which the ampersand is embedded. The translator may need to change the letter
used with the Alt key, e.g. if the translated phrase does not contain the original accelerator letter. Conflicts with
other keys, i.e. having two Alt key accelerators using the same letter in the same context, must be avoided. Note
that some Alt key accelerators, usually those on the menu bar, may apply in other contexts.

Ctrl key accelerators can exist independently of any visual control. They are often used to invoke actions in menus
that would otherwise take several keystrokes or mouse clicks. They may also be used to perform actions that do
not appear in any menu or on any button. For example, most applications that have a File menu have a submenu
item called New. In many applications this will appear as "New... Ctrl+N". This menu option could be invoked
by clicking File then clicking New with the mouse. Or you could press Alt+F then press N since these letters are
underlined. But the same thing can be achieved simply by pressing Ctrl+Enter. Accelerators that use the Ctrl
key are shown literally in the source text, e.g. Ctrl+Enter. Ctrl key accelerators have no phrase so the translator
must rely on the programmer to add a "comment" which appears in the top right hand pane. This comment should

Translators 10

explain what action the Ctrl key accelerator performs. Ideally Ctrl key accelerators are translated simply by copying
them by clicking the Begin from Source button. However in some cases the letter will not make sense in the target
language and must be changed. Whatever letter (or digit) is chosen, the translation should always be in the form
"Ctrl+" followed by the letter or digit in upper case. As with Alt key accelerators, if the translator changes the key
it must not conflict with any other Ctrl key accelerator.

Later versions of Qt Linguist are expected to help the translator avoid accelerator conflicts.

Dealing with Phrases that Contain Variables

Some phrases contain variables. Variables are placeholders for items of text that are filled in at runtime. They are
signified in the source text with a percent sign followed by a digit, e.g. After processing file %1, file %2 is next in
line. In this example, %4 will be replaced at runtime with the name of the first file to be processed and 9% with
the name of the next file to be processed. In the translated version the variables must still appear. For example a
German translation might reverse the phrases, e.g. Datei %2 wird bearbeitet, wenn. Datei %1 fertig ist. Note that
both variables are still used but their order has changed. The order in which variables appear does not matter; %
will always be replaced by the same text at runtime no matter where it appears in the source text or translation
and similarly %, etc.

Reusing Translations

If the translated text is similar to the source text, click the Begin from Source button (press Alt+T) which will copy
the source text into the translation area.

Qt Linguist automatically lists phrases from the open phrase books and similar or identical phrases that have already
been translated in the Phrases and guesses area.

Creating and Using Phrase Books

[Ot Linguist - norsk.qph ed |

Source phraze: ISource text Mew Phiase I
Translatior: I kildetek s Bemove F'hrasﬂ
Definition: | Save |
Source phraze I Tranzlation Definition ILI Cloze |
Find Finn

here her
tatch Ligne

Source Kilde
= tekst

ta til

Phrase Book Dialog

A Qt Linguist phrase book is a set of source phrases, target (translated) phrases, and optional definitions. Phrase
Books are created independently of any application, although typically one phrase book will be created per appli-
cation or family of applications.

If the translator reaches an untranslated phrase that is the same as a source phrase in the phrase book, Qt Linguist
will show the phrase book entry in the Relevant phrases panel at the bottom right of the main window. Phrases
which have translations that conflict with those given in the phrase book are marked with a question mark in the
source text pane. Phrase Books are used to provide a common set of translations to help ensure consistency. They
can also be used to avoid duplication of effort since the translations for a family of applications can be produced
once in the phrase book and the phrase book used for the majority of translations in each application.

Before a phrase book can be edited it must be created or if it already exists, opened. Create a new phrase book by
selecting Phrase | New Phrase Book from the menu bar. You must enter a filename and may change the location

Translators 11

of the file if you wish. A newly created phrase book is automatically opened. Open an existing phrase book by
choosing Phrase| Open Phrase Book from the menu bar.

To add a new phrase click the New Phrase button (or press Alt+N) and type in a new source phrase. Press Tab
and type in the translation. Optionally press Tab and enter a definition — this is useful to distinguish different
translations of the same source phrase. This process may be repeated as often as necessary.

You can delete a phrase by selecting it in the phrases list and clicking Remove Phrase.

Click the Save button (press Alt+S) and then click the Close button (press Esc) once you've finished adding (and
removing) phrases.

When a phrase or set of phrases appears in the phrase book double clicking the required target phrase will copy
it to the translation pane at the text cursor position. If you want to replace the text in the translation pane with
the target phrase, click the translation pane, choose Edit|Select All (press Alt+A) and then double click the target
phrase.

Validation

Qt Linguist provides three kinds of validation on translated phrases.

1. Accelerator validation detects translated phrases that do not have an ampersand when the source phrase does
and vice versa.

2. Punctuation validation detects differences in the terminating punctuation between source and translated
phrases when this may be significant, e.g. warns if the source phrase ends with an ellipsis, exclamation
mark or question mark, and the translated phrase doesn’t and vice versa.

3. Phrases validation detects source phrases that are also in the phrase book but whose translation differs from
that given in the phrase book.

Validation may be switched on or off from the menu bar’s Validation item or using the toolbar buttons. Phrases
that fail validation are marked with a question mark in the source text pane. If you switch validation off and then
switch it on later, Qt Linguist will recheck all phrases and mark any that fail validation.

If any phrase in a context is invalid then the context itself will be marked with a question mark; if all the phrases
in a context are done and are valid the context will be marked with a tick.

Note that only phrases which are marked as done (with a tick) will appear in the application. Invalid phrases and
phrases which are translated but not marked as done are kept in the translation source file but are not used by the
application.

Qt Linguist Reference

File Types
Qt Linguist makes use of three kinds of file:

e . ts translation source files are human-readable XML files containing source phrases and their translations.
These files are usually created and updated by lupdate and are specific to an application.

e . qmQt message files are binary files that contain translations used by an application at runtime. These files
are generated by Irelease, but can also be generated by Qt Linguist.

e . gph Qt phrase book files are human-readable XML files containing standard phrases and their translations.
These files are created and updated by Qt Linguist and may be used by any number of projects and applica-
tions.

Translators 12

The Menu Bar

File Edit Translstion Yalidation Phrases Yiew Help

Menu Bar

e File

— Open... Ctrl+0 pops up an open file dialog from which a translation source . t s file can be chosen.
— Save Ctrl+S saves the current translation source . t s file.

— Save As... pops up a save as file dialog so that the current translation source . t s file may be saved with
a different name and/or put in a different location.

— Release... pops up a save as file dialog. The filename entered will be a Qt message . gmfile of the trans-
lation based on the current translation source file. The release manager’s command line tool Irelease
performs the same function on all of an application’s translation source files.

— Print... Ctrl+P pops up a print dialog. If you click OK the translation source and the translations will be
printed.

— Recently opened files shows the . t s files that have been opened recently, click one to open it.
— Exit Ctrl+Q closes Qt Linguist.

Edit

Undo Ctrl+Z undoes the last editing action in the translation pane.

Redo Ctrl+Y redoes the last editing action in the translation pane.
Cut Ctrl+X deletes any highlighted text in the translation pane and saves a copy to the clipboard.
Copy Ctrl+C copies the highlighted text in the translation pane to the clipboard.

— Paste Ctrl+V pastes the clipboard text into the translation pane.
— Select All Ctrl+A selects all the text in the translation pane ready for copying or deleting.

— Find... Ctrl+F pops up the Find dialog. When the dialog pops up enter the text to be found and click the
Find Next button. Source phrases, translations and comments may be searched.

— Find Next F3 finds the next occurrence of the text that was last entered in the Find dialog.

e Translation

— Prev Unfinished Ctrl+K moves to the nearest previous unfinished source phrase (unfinished means un-
translated or translated but failed validation).

— Next Unfinished Ctrl+L moves to the next unfinished source phrase.
— Prev Shift+Ctrl+K moves to the previous source phrase.
— Next Shift+Ctrl+L moves to the next source phrase.

— Done & NextCtrl+Enter mark this phrase as ’done’ (translated) and move to the next unfinished source
phrase.

— Begin from Source Ctrl+B copies the source text into the translation.

Validation (See the Validation section)

e — Accelerators toggles validation on or off for Alt accelerators.

- Ending Punctuation switches validation on or off for phrase ending punctuation, e.g. ellipsis, exclamation
mark, question mark, etc.

— Phrase Matches sets validation on or off for matching against translations that are in the current phrase
book.

e Phrase (See the section Creating and Using Phrase Books for details.)

— New Phrase Book... Ctrl+N pops up a save as file dialog. You must enter a filename to be used for the
phrase book and save the file. Once saved you should open the phrase book to begin using it.

— Open Phrase Book... Ctrl+H pops up an open file dialog. Find and choose a phrase book to open.

— Close Phrase Book closes the current phrase book. This will stop any further phrase validation taking
place. The same effect can be achieved by switching off phrase validation using the Validation menu or
the phrase toolbar button.

Translators 13

— Edit Phrase Book... pops up the phrase book dialog where you can add, edit or delete phrases.
— Print Phrase Book... pops up a print dialog. If you click OK the phrase book will be printed.

View
e — Revert Sorting puts the phrases in the source text pane into their original order.
— Display Guesses turns the display of phrases and guesses on or off.

— Views toggles the visibility of the Context, Source text and Phrase views.
— Toolbars toggles the visibility of the different toolbars.

The Toolbar

@ o

f@'

[o o[b BE[@ | » 2 2wz R

Toolbar

e & Pops up the open file dialog to open a new translation source . t s file.

e & Saves the current translation source . t s file.

e & Prints the current translation source . t s file.

e <& Pops up the file open dialog to open a new phrase book . gph file.

e * Undoes the last editing action in the translation pane.

e ™ Redoes the last editing action in the translation pane.

e & Deletes any highlighted text in the translation pane and save a copy to the clipboard.
. Copies the highlighted text in the translation pane to the clipboard.

o B2 Pastes the clipboard text into the translation pane.

o ® Pops up the Find dialog.

e ¥ Moves to the previous source phrase.

e ¥ Moves to the next source phrase.

e % Moves to the previous unfinished source phrase.

e ¥ Moves to the next unfinished source phrase.

e #* Marks the phrase as ’done’ (translated) and move to the next unfinished source phrase.
e & Toggles accelerator validation on and off.

e !? Toggles phrase ending punctuation validation on and off.

e " Toggles phrase book validation on or off.

The Find Dialog

Find what: Iwhat are you looking for? Find Next I
¥ Source texts [~ Match case Cancel |

¥ Translations

¥ Commerits

The Find Dialog

Choose Edit|Find from the menu bar or press Ctrl+F to pop up the Find dialog. Press F3 to repeat the last
search. By default the source phrases, translations and comments will all be searched and the search will be case-
insensitive. These settings can be changed by checking or unchecking the checkboxes to reflect your preferences.

Translators

The Phrase Dialog

This dialog is explained in the Creating and Using Phrase Books section.

14

Programmers

Support for multiple languages is extremely simple in Qt applications and adds little overhead to the programmer’s
workload.

Qt minimizes the performance cost of using translations by translating the phrases for each window as they are
created. In most applications the main window is created just once. Dialogs are often created once and then
shown and hidden as required. Once the initial translation has taken place there is no further runtime overhead
for the translated windows. Only those windows that are created, destroyed and subsequently created will have a
translation performance cost — although the overhead is still very low.

Creating applications that can switch language at runtime is possible with Qt, but requires a certain amount of
programmer intervention and will of course incur some runtime performance cost.

Making the Application Translation Aware

Programmers should make their application look for and load the appropriate translation file and mark user-visible
text and Ctrl keyboard accelerators as targets for translation.

Each piece of text that requires translating requires context to help the translator identify where in the program
the text occurs. In the case of multiple identical texts that require different translations the translator also requires
some information to disambiguate the source texts. Marking text for translation will automatically cause the class
name to be used as basic context information. In some cases the programmer may be required to add additional
information to help the translator.

Creating Translation Files

Translation files consist of all the user-visible text and Ctrl key accelerators in an application and translations of
that text. Translation files are created as follows:

1. Run lupdate initially to generate the first set of . t s translation source files with all the user-visible text but
no translations.

2. The . ts files are given to the translator who adds translations using Qt Linguist. Qt Linguist takes care of any
changed or deleted source text.

3. Run lupdate to incorporate any new text added to the application. lupdate synchronizes the user-visible text
from the application with the translations; it does not destroy any data.

4. Steps 2 and 3 are repeated as often as necessary.

5. When a release of the application is needed Irelease is run to read the . t s files and produce the . gmfiles used
by the application at runtime.

For lupdate to work successfully, it must know which translation files to produce. The files are simply listed in the
application’s . pr o Qt project file, for example:

TRANSLATI ONS = tt2_fr.ts \
tt2_nl.ts

15

Programmers 16
See the "lupdate" and "lrelease" sections.

Loading Translations

int min(int argc, char **argv)
{
QApplication app(argc, argv);

This is how a simple mai n() function of a Qt application begins.

int min(int argc, char **argv)
{
QApplication app(argc, argv);

Qlransl ator translator(0);

translator.load("ttl1 la", ".");
app.installTransl ator(&ranslator);

For a translation-aware application a translator object is created, a translation is loaded and the translator object
installed into the application.

int min(int argc, char **argv)
{
QApplication app(argc, argv);
Qlransl ator translator(0);
translator.load(QString("tt2 ") + QlextCodec::locale(), ".");
app.installTransl ator(&ranslator);
In production applications a more flexible approach, for example, loading translations according to locale, might

be more appropriate. If the . t s files are all named according to a convention such as appname_locale, e.g. tt2_fr,
tt2_de etc, then the code above will load the current locale’s translation at runtime.

If there is no translation file for the current locale the application will fall back to using the original source text.

Making the Application Translate User-Visible Strings

User-visible strings are marked as translation targets by wrapping them in atr() call, for example:
button = new QPushButton("&uit", this);

would become
button = new QPushButton(tr("&uit"), this);

All QObject subclasses that use the Q OBJECT macro have a reimplementation of the t r () function.

Although the tr() call is normally made directly since it is usually called as a member function of a QObject
subclass, in other cases an explicit class name can be supplied, for example:

QPushButton::tr("&uit")
or

Qbject::tr("&uit")

Programmers 17

Distinguishing Identical Strings That Require Different Translations

The lupdate program automatically provides a context for every source text. This context is the class name of the
class that contains the tr () call. This is sufficient in the vast majority of cases. Sometimes however, the translator
will need further information to uniquely identify a source text; for example, a dialog that contained two separate
frames, each of which contained an "Enabled" option would need each identified because in some languages the
translation would differ between the two. This is easily achieved using the two argument form of the tr () call, e.g.

rbc = new QRadi oButton(tr("Enabled", "Color frame"), this);
and

r bh

new QRadi oButton(tr("Enabled", "Hue frame"), this);
Ctrl key accelerators are also translatable:

file->insertliten tr("E&it"), qApp, SLOT(quit()),
QAccel ::stringToKey(tr("Ctrl+Q", "Qit")));

It is strongly recommended that the two argument form of tr() is used for Ctrl key accelerators. The second

argument is the only clue the translator has as to the function performed by the accelerator.

Helping The Translator With Navigation Information

In large complex applications it may be difficult for the translator to see where a particular source text comes from.
This problem can be solved by adding a comment using the keyword TRANSLATOR which describes the navigation
steps to reach the text in question; e.g.
/* TRANSLATOR Fi ndDi al og
Choose Edit|Find fromthe menu bar or press Ctrl+F to pop up the
Fi nd dial og.
*|

These comments are particularly useful for widget classes.

Coping With C++ Namespaces

C++ namespaces and the usi ng namespace statement can confuse lupdate. It will interpret MyC ass::tr() as
meaning just that, not as MyNamespace: : Myd ass: : tr(), even if MyC ass is defined in the M/Nanespace namespace.
Run-time translation of these strings will fail because of that.

You can work around this limitation by putting a TRANSLATOR comment at the beginning of the source files that
use Wd ass: :tr():

/* TRANSLATOR MyNanespace:: M/d ass */

After the comment, all references to Myd ass: : tr () will be understood as meaning MyNanespace: : MyCl ass: :tr().

Tranlating Text that is Outside of a QObject subclass
Using QApplication::translate()

If the quoted text is not in a member function of a QObject subclass, use either the tr() function of an appropriate
class, or the QApplication::translate() function directly:

Programmers 18

voi d sone_gl obal function(Logi nWdget *logwid)

{
QLabel *label = new QLabel (
Logi nWdget::tr("Password:"), logwid);
}
voi d sane_gl obal function(Logi nWdget *logwid)
{
QLabel *label = new QLabel (
qApp- >t ransl at e(" Logi nW dget ", "Password:"),
logwid);
}

Using QT_TR_NOOP and QT_TRANSLATE_NOOP

If you need to have translatable text completely outside a function, there are two macros to help: QT_TR_NOOP()
and QT _TRANSLATE_NOOP(). These macros merely mark the text for extraction by lupdate. The macros expand
to just the text (without the context).

Example of QT _TR_NOOP():

QString Friendl yConversation::greeting(int greet type)

{
static const char* greeting strings[] = {
QT_TR_NOOP("Hello"),
QT_TR_NOOP(" Goodbye")
b
return tr(greeting strings[greet type]);
}

Example of QT _TRANSLATE NOOP():

static const char* greeting strings[] = {
QI_TRANSLATE_NOCOP("Friendl yConversation", "Hello"),
QT_TRANSLATE_NOOP("Fri endl yConversation", "Coodbye")

b
QString Friendl yConversation::greeting(int greet type)
{
return tr(greeting_strings[greet_type]);
}
QString global _greeting(int greet type)
{
return gApp->translate("Friendl yConversation",
greeting_strings[greet_type]);
}
Tutorials

Three tutorials are presented. The first demonstrates the creation of a QTranslator object. It also shows the simplest
use of the tr () function to mark user-visible source text for translation. The second tutorial explains how to make
the application load the translation file applicable to the current locale. It also shows the use of the two-argument
form of tr() which provides additional information to the translator. The third tutorial explains how identical

Programmers 19

source texts can be distinguished even when they occur in the same context. This tutorial also discusses how the
translation tools help minimize the translator’s work when an application is upgraded.

Tutorial 1: Loading and Using Translations

Tutorial 1 Screenshot, English version

TEMPLATE = app

CONFI G += gt warn_on
SQURCES = main. cpp
TRANSLATI ONS =ttl la.ts
ttl.pro

/**
* %

** Translation tutorial 1

* %

**/

#incl ude <gapplication. h>
#i ncl ude <gpushbutton. h>
#include <qtranslator. h>

int min(int argc, char **argv)

{
QApplication app(argc, argv);
Qlranslator translator(0);
translator.load("ttl la", ".");
app.installTranslator(&ranslator);
QPushButton hel |l o(QPushButton::tr("Hello world!"), 0);
app. set Mai nW dget (&hello);
hel 1 0. show();
return app. exec();

}

mai n. cpp

This example is a reworking of the "hello-world" example from the first Qt tutorial, with a Latin translation. The
Tutorial 1 Screenshot, English version, above, shows the English version.

Line by Line Walk-through
#incl ude <qtranslator.h>

This line includes the definition of the QTranslator class. Objects of this class provide translations for user-visible
text.

Qlransl ator translator(0);

Programmers 20

Creates a QTranslator object without a parent.
translator.load("ttl1 la", ".");

Try to load a file called tt 1_I a. gm(the . gmfile extension is implicit) that contains Latin translations for the source
texts used in the program. No error will occur if the file is not found.

app.installTranslator(&ranslator);

Add the translations from tt 1_| a. gmto the pool of translations used by the program. No error will occur if the file
is not found.

QPushButton hello(QPushButton::tr("Hello world!"), 0);

Creates a push button that displays "Hello world!". If tt1 | a. gmnwas found and contains a translation for "Hello
world!", the translation appears; if not, the source text appears.

All classes that inherit QObject have a tr () function. Inside a member function of a QObject class, we simply write
tr("Hello world!'") instead of QPushButton::tr("Hello world!") or QObject::tr("Hello world!").

Running the Application in English

Since we haven’t made the translation file tt 1_| a. qm the source text is shown when we run the application:

Tutorial 1 Screenshot, English version

Creating a Latin Message File

The first step is to create a project file, tt 1. pr o, that lists all the source files for the project. The project file can be
a gmake project file, or even an ordinary makefile. Any file that contains

SQURCES
TRANSLATI ONS

mai n. cpp
ttl la.ts

will work. TRANSLATIONS specifies the message files we want to maintain. In this example, we just maintain one
set of translations, namely Latin.

Note that the file extension is .ts, not .qm The .ts translation source format is designed for use during the
application’s development. Programmers or release managers run the lupdate program to generate and update . t s
files with the source text that is extracted from the source code. Translators read and update the . t s files using Qt
Linguist adding and editing their translations.

The . t s format is human-readable XML that can be emailed directly and is easy to put under version control. If
you edit this file manually, be aware that the default encoding for XML is UTF-8, not Latin-1 (ISO 8859-1). One
way to type in a Latin-1 character such as ’ø’ (Norwegian o with slash) is to use an XML entity: "ø".
This will work for any Unicode character.

Once the translations are complete the Irelease program is used to convert the . t s files into the . gmQt message file
format. The . gmformat is a compact binary format designed to deliver very fast lookup performance. Both lupdate
and Irelease read all the project’s source and header files (as specified in the HEADERS and SOURCES lines of the
project file) and extract the strings that appear in tr () function calls.

lupdate is used to create and update the message files (tt 1_| a. t s in this case) to keep them in sync with the source
code. It is safe to run lupdate at any time, as lupdate does not remove any information. For example, you can put
it in the makefile, so the . t s files are updated whenever the source changes.

Try running lupdate right now, like this:

Programmers 21

lupdate ttl.pro

You should now have a filett1 | a.ts in the current directory, containing this

QPushBut t on

Hel | o worl d!

You don’t need to understand the file format since it is read and updated using tools, e.g. lupdate and Qt Linguist.

Translating to Latin with Qt Linguist
We will use Qt Linguist to provide the translation, although you can use any XML or plain text editor to enter a
translation into a . t s file.

To start Qt Linguist, type
linguist ttl la.ts

You should now see the text "QPushButton" in the top left pane. Double-click it, then click on "Hello world!" and
enter "Orbis, te saluto!" in the Translation pane (the middle right of the window). Don’t forget the exclamation
mark!

Click the Done checkbox and choose File| Save from the menu bar. The . t s file will no longer contain

but instead will have

Obis, te saluto!

Running the Application in Latin

To see the application running in Latin, we have to generate a . gmfile from the . t s file. Generating a . gmfile can be
achieved either from within Qt Linguist (for a single . t s file), or by using the command line program lrelease which
will produce one . gmfile for each of the . t s files listed in the project file. Generatettl | a.gmfromttl la.ts by
choosing File|Release from Qt Linguist’s menu bar and pressing Save in the file save dialog that pops up. Now run
the tt1 example program again. This time the button will be labelled "Orbis, te saluto!".

Tutorial 1 Screenshot, Latin version

Programmers 22

Tutorial 2: Using Two or More Languages

CIEm -0

Eile

Left | ﬂightl
Down |

Tutorial 2 Screenshot, English version

TEMPLATE = app
CONFI G += gt warn_on
HEADERS = arrowpad. h \
mai nwi ndow. h
SQURCES = arrowpad. cpp \
mai n. cpp \
mai nwi ndow. cpp
TRANSLATI ONS =tt2_fr.ts\
tt2_nl.ts
tt2.pro

This example is a slightly more involved and introduces a key Qt Linguist concept: "contexts".

e arrowpad. h contains the definition of Arr owPad, a custom widget;

e arrowpad. cpp contains the implementation of Ar r owPad;

e nai nwi ndow. h contains the definition of Mai nW ndow, a subclass of QMainWindow
e nai nwi ndow. cpp contains the implementation of Mai nW ndow;

e mai n. cpp contains main().

We will use two translations, French and Dutch, although there is no effective limit on the number of possible
translations that can be used with an application. The relevant lines of t t 2. pro are

HEADERS = arrowpad. h \
mai nwi ndow. h
SQURCES = arrowpad. cpp \
mai n. cpp \
mai nwi ndow. cpp
TRANSLATI ONS =tt2_fr.ts\
tt2_nl.ts

Run lupdate; it should produce two identical message filestt2_fr.ts and tt2_nl.ts. These files will contain all
the source texts marked for translation with t r () calls and their contexts.

Line by Line Walk-through

In ar r owpad. h we define the Arr owPad subclass which is a subclass of QWidget. In the Tutorial 2 Screenshot, English
version, above, the central widget with the four buttons is an Ar r owPad.

class ArrowPad : public QGid

When lupdate is run it not only extracts the source texts but it also groups them into contexts. A context is the
name of the class in which the source text appears. Thus, in this example, "ArrowPad" is a context: it is the context
of the texts in the Arr owPad class. The Q OBJECT macro defines tr(x) in ArrowPad like this

Programmers 23

qApp->transl ate("ArrowPad", x)

Knowing which class each source text appears in enables Qt Linguist to group texts that are logically related
together, e.g. all the text in a dialog will have the context of the dialog’s class name and will be shown together. This
provides useful information for the translator since the context in which text appears may influence how it should
be translated. For some translations keyboard accelerators may need to be changed and having all the source
texts in a particular context (class) grouped together makes it easier for the translator to perform any accelerator
changes without introducing conflicts.

In ar r owpad. cpp we implement the Arr owPad class.
(void) new QPushButton(tr("&Up"), this);
We call ArrowPad: : tr() for each button’s label since the labels are user-visible text.

CIEm -0

Eile

Left | ﬂightl
Down |

Tutorial 2 Screenshot, English version

cl ass Mai nWndow : public Qvai nW ndow

{
Q OBJECT

In the Tutorial 2 Screenshot, English version, above, the whole window is a Mai nW ndow. This is defined in the
mai nwi ndow. h header file. Here too, we use Q OBJECT, so that Mai nW ndow will become a context in Qt Linguist.

In the implementation of Mai nW ndow, mai nwi ndow. cpp, we create an instance of our Arr owPad class
ArrowPad *ap = new ArrowPad(this, "arrow pad");
We also call Mai nW ndow:. : tr () twice, once for the menu item and once for the accelerator.

file->insertliten tr("E&it"), qApp, SLOT(quit()),
QAccel ::stringToKey(tr("Crl+@Q, "Qit")));

Note the use of QAccel::stringToKey() to support different keys in other languages. "Ctrl+Q" is a good choice for
Quit in English, but a Dutch translator might want to use "Ctrl4+A" (for Afsluiten) and a German translator "Strg+E"
(for Beenden). When using tr () for Ctrl key accelerators the two argument form should be used with the second
argument describing the function that the accelerator performs.

Our mai n() function is defined in mai n. cpp as usual.

Qlransl ator translator(0);
translator.load(QString("tt2_") + QlextCodec::locale(), ".");
app.installTransl ator(&ranslator);

We choose which translation to use according to the current locale. QTextCodec::locale() can be influenced by
setting the LANG environment variable, for example. Notice that the use of a naming convention that incorporates
the locale for . gmmessage files, (and . t s files), makes it easy to implement choosing the translation file according
to locale.

If there is no . gmmessage file for the locale chosen the original source text will be used and no error raised.

Programmers 24

Translating to French and Dutch

We’ll begin by translating the example application into French. Start Qt Linguist with tt2_fr.ts. You should get
the seven source texts ("&Up", "&Left", etc.) grouped in two contexts ("ArrowPad" and "MainWindow").

Now, enter the following translations:

e ArrowPad

&Up - &Haut
&Left - &Gauche
&Right - &Droite

— &Down - &Bas
Mai nW ndow
. - E&xit - &Quitter

- Ctrl+Q - Ctrl+Q
- &File - &Fichier

It’s quickest to press Alt+D (which clicks the Done & Next button) after typing each translation, since this marks
the translation as done and moves on to the next source text.

Save the file and do the same for Dutch working with tt2_nl . ts:

e ArrowPad

&Up - &Boven
&Left - &Links
&Right - &Rechts
&Down - &Onder

Mai nW ndow

o - E&xit - &Afsluiten
— Ctrl+Q - Ctrl+A
- File - &Bestand

We have to convert thettl fr.tsandtt1_nl.ts translation source files into . gmfiles. We could use Qt Linguist as
we’ve done before; however using the command line tool lrelease ensures that all the . gmfiles for the application
are created without us having to remember to load and File|Release each one individually from Qt Linguist.

In practice we would include calls to lupdate and Irelease in the application’s makefile to ensure that the latest
translations are used.

Type
Irelease tt2.pro

This should create both tt2_fr.gmand tt2_nl.gm Set the LANG environment variable to fr. In Unix, one of the
two following commands should work

export LANG=fr
setenv LANG fr

In Windows, either modify aut oexec. bat or run

set LANG=fr

Programmers 25

When you run the program, you should now see the French version:

CIEN o]

Eichier

Gauche Diraite

Tutorial 2 Screenshot, French version
Try the same with Dutch, by setting LANG=nl . Now the Dutch version should appear:
CIZET -0l

Bestand |

Links Bechts
Onder

Tutorial 2 Screenshot, Dutch version

Exercises

Mark one of the translations in Qt Linguist as not done, i.e. by unchecking the "done" checkbox; run lupdate, then
Irelease, then the example. What effect did this change have?

Set LANG=f r _CA (French Canada) and run the example program again. Explain why the result is the same as with
LANG=f r.

Change one of the accelerators in the Dutch translation to eliminate the conflict between &Bestand and &Boven.

Tutorial 3: Disambiguating Identical Strings

0

File Help

— 2-zided
" Enabled

— Colors
" Enabled " Disabled

Tutorial 3 Screenshot, "Troll Print 1.0", English version

TEMPLATE = app
CONFI G += gt warn_on
HEADERS = mai nwi ndow. h \
printpanel . h
SQURCES = main.cpp \
mai nwi ndow. cpp \
print panel . cpp
TRANSLATI ONS = tt3_pt.ts
tt3.pro

We’ve included a translation file, t t 3_pt . t s, which contains some Portuguese translations for this example.

We will consider two releases of the same application: Troll Print 1.0 and 1.1. We will learn to reuse the translations

Programmers 26

created for one release in a subsequent release. (In this tutorial, you have to edit some source files. It’s probably
best to copy all the files to a new temporary directory and work from there.)

Troll Print is a toy example application that lets the user choose printer settings. It comes in two versions: English
and Portuguese.

Version 1.0 consists of these files:

e printpanel.h contains the definition of PrintPanel;

e printpanel . cpp contains the implementation of PrintPanel;
e mai nwi ndow. h contains the definition of Mai nW ndow;

e nai nwi ndow. cpp contains the implementation of Mai nW ndow;
e i n. cpp contains main();

e tt3. pro is the gmake project file.

e t13 pt.ts is the Portuguese message file.

Line by Line Walk-through
The PrintPanel is defined in pri nt panel . h.

class PrintPanel : public QvBox

{
Q OBJECT

PrintPanel is a QWidget. It needs the Q OBJECT macro fortr() to work properly.

The implementation file is pri nt panel . cpp.

/*
QLabel *lab = new QLabel (tr("TROLL PRINT"), this);
| ab->set Ali gnment (AlignCenter);

*|

Some of the code is commented out in Troll Print 1.0; you will uncomment it later, for Troll Print 1.1.

QHBut t onG oup *twoSi ded = new QHButtonG oup(this);
twoSi ded->set Title(tr("2-sided"));

but = new QRadi oButton(tr("Enabled"), twoSided);
but = new QRadi oButton(tr("Disabled"), twoSided);
but - >t oggl e();

QHButt onGroup *col ors = new QHButtonG oup(this);
colors->setTitle(tr("Colors"));

but = new QRadi oButton(tr("Enabled"), colors);
but = new QRadi oButton(tr("Disabled"), colors);
but - >t oggl e();

Notice the two occurrences of tr("Enabl ed") and of tr("Di sabl ed") in PrintPanel. Since both "Enabled"s and
"Disabled"s appear in the same context Qt Linguist will only display one occurrence of each and will use the same
translations for the duplicates that it doesn’t display. Whilst this is a useful timesaver, in some languages, such as
Portuguese, the second occurrence requires a separate translation. We will see how Qt Linguist can be made to
display all the occurrences for separate translation shortly.

The header file for Mai nW ndow, mai nwi ndow. h, contains no surprises. In the implementation, mai nwi ndow. cpp, we
have some user-visible source texts that must be marked for translation.

setCaption(tr("Troll Print 1.0"));

Programmers 27

We must translate the window’s caption.

file->insertliten tr("E&it"), qApp, SLOT(quit()),
QAccel @ :stringToKey(tr("Crl+Q", "Qit")));

QPopupMenu *hel p = new QPopupMenu(this);

hel p->insertlitem tr("&About..."), this, SLOT(about()), Key_F1);

hel p->insertlitem(tr("About &..."), this, SLOT(aboutQ()));

menuBar ()->insertltem(tr("&File"), file);
menuBar () - >i nsert Separator () ;
menuBar ()->insertlten(tr("&Help"), help);

We also need to translate the menu items. Note that the two argument form of tr() is used for the keyboard
accelerator, "Ctrl+Q", since the second argument is the only clue the translator has to indicate what function that
accelerator will perform.

Qlransl ator translator(0);
translator.load(QString("tt3 ") + QlextCodec::locale(), ".");
app.installTranslator(&ranslator);

The mai n() function in mai n. cpp is the same as the one in Tutorial 2. In particular it chooses a translation file
based on the current locale.

Running Troll Print 1.0 in English and in Portuguese

We will use the translations in the tt 3_pt. t s file that is provided.

Set the LANG environment variable to pt, and then run tt 3. You should still see the English version, as shown in
the Tutorial 3 Screenshot, "Troll Print 1.0", English version, above. Now run Irelease, e.g. | rel ease tt3. pro, and
then run the example again. Now you should see the Portuguese edition (Troll Imprimir 1.0):

=1olx|

Arquivo Ajuda

— 2dados
 Ativado o

— Cores
O Ativado " Desativada

Tutorial 3 Screenshot, "Troll Imprimir 1.0", (Bad) Portuguese version

Whilst the translation has appeared correctly, it is in fact wrong. In good Portuguese, the second occurrence of
"Enabled" should be "Ativadas", not "Ativado" and the ending for the second translation of "Disabled" must change
similarly too.

If you opentt3_pt.ts using Qt Linguist, you will see that there is just one occurrence of "Enabled" and of "Disabled"
in the translation source file, even though there are two of each in the source code. This is because Qt Linguist
tries to minimize the translator’s work by using the same translation for duplicate source texts. In cases such as
this where an identical translation is wrong, the programmer must disambiguate the duplicate occurrences. This is
easily achieved by using the two argument form of tr ().

We can easily determine which file must be changed because the translator’s "context" is in fact the class name for
the class where the texts that must be changed appears. In this case the file is pri nt panel . cpp, where the there are
four lines to change. Add the second argument "two-sided" in the appropriate tr() calls to the first pair of radio
buttons:

but
but

new QRadi oButton(tr("Enabled", "two-sided"), twoSided);
new QRadi oButton(tr("Disabled", "two-sided"), twoSided);

Programmers 28

and add the second argument "colors" in the appropriate tr () calls for the second pair of radio buttons:

but
but

new QRadi oButton(tr("Enabled", "colors"), colors);
new QRadi oButton(tr("Disabled", "colors"), colors);

Now run lupdate and open tt3_pt. ts with Qt Linguist. You should now see two changes.

First, the translation source file now contains three "Enabled", "Disabled" pairs. The first pair is marked "(obs.)"
signifying that they are obsolete. This is because these texts appeared intr () calls that have been replaced by new
calls with two arguments. The second pair has "two-sided" as their comment, and the third pair has "colors" as their
comment. The comments are shown in the Source text and comments area in Qt Linguist.

Second, the translation text "Ativado" and "Desativado”" have been automatically used as translations for the new
"Enabled" and "Disabled" texts, again to minimize the translator’s work. Of course in this case these are not correct
for the second occurrence of each word, but they provide a good starting point.

Change the second "Ativado" into "Ativadas" and the second "Desativado" into "Desativadas”, then save and quit.
Run lrelease to obtain an up-to-date binary tt 3_pt . gmfile, and run Troll Print (or rather Troll Imprimir).

= Troll Imprimir L -0l

Arquiva Ajuds

— 2ados
 Ativado «

— Cores
" Ativadas (% Desativadas

Tutorial 3 Screenshot, "Troll Imprimir 1.0", (Good) Portuguese version

The second argument to tr() calls, called "comments" in Qt Linguist, distinguish between identical source texts
that occur in the same context (class). They are also useful in other cases to give clues to the translator, and in
the case of Ctrl key accelerators are the only means of conveying the function performed by the accelerator to the
translator.

An additional way of helping the translator is to provide information on how to navigate to the particular part
of the application that contains the source texts they must translate. This helps them see the context in which
the translation appears and also helps them to find and test the translations. This can be achieved by using a
TRANSLATOR comment in the source code:

/* TRANSLATOR Mai nW ndow

In this application the whole application is a MinW ndow.
Choose Hel p| About fromthe menu bar to see sone text
bel onging to Mai nW ndow.

*|

Try adding these comments to some source files, particularly to dialog classes, describing the navigation necessary
to reach the dialogs. You could also add them to the example files, e.g. mai nwi ndow. cpp and pri nt panel . cpp are
appropriate files. Run lupdate and then start Qt Linguist and load in tt3_pt.ts. You should see the comments in
the Source text and comments area as you browse through the list of source texts.

Sometimes, particularly with large programs, it can be difficult for the translator to find their translations and check
that they’re correct. Comments that provide good navigation information can save them time:

/* TRANSLATOR ZO ientErrorDial og

Choose Client|Edit to reach the Cient Edit dialog, then choose
Cient Specification fromthe drop down list at the top and pick
client Bartel Leendert van der \Waerden. Now check the Profile
checkbox and then click the Start Processing button. You should
now see a pop up window with the text "Error: Nane too long!".

Programmers 29

This window is a ZCOientErrorDial og.
*|

Troll Print 1.1

We’ll now prepare release 1.1 of Troll Print. Start your favorite text editor and follow these steps:

Uncomment the two lines that create a QLabel with the text "TROLL PRINT"in pri nt panel . cpp.

Word-tidying: Replace "2-sided" by "Two-sided" in pri nt panel . cpp.

Replace "1.0" with "1.1" everywhere it occurs in mai nwi ndow. cpp.

Update the copyright year to 1999-2000 in mai hwi ndow. cpp.

(Of course the version number and copyright year would be consts or #defines in a real application.)

Once finished, run lupdate, then opentt3_pt. ts in Qt Linguist. The following items are of special interest:

e Mai nW ndow

Troll Print 1.0 - marked "(obs.)", obsolete

About Troll Print 1.0 - marked "(obs.)", obsolete

Troll Print 1.0. Copyright 1999 Macroshaft, Inc. - marked "(obs.)", obsolete
Troll Print 1.1 - automatically translated as "Troll Imprimir 1.1"

About Troll Print 1.1 - automatically translated as "Troll Imprimir 1.1"

Troll Print 1.1. Copyright 1999-2000 Macroshaft, Inc. - automatically translated as "Troll Imprimir 1.1.
Copyright 1999-2000 Macroshaft, Inc."

Pri nt Panel

° — 2-sided - marked "(obs.)", obsolete
— TROLL PRINT - unmarked, i.e. untranslated
— Two-sided - unmarked, i.e. untranslated.

Notice that lupdate works hard behind the scenes to make revisions easier, and it’s pretty smart with numbers.

Go over the translations in Mai nWndow and mark these as "done". Translate "TROLL PRINT" as
"TROLL IMPRIMIR". When you’re translating "Two-sided", press the Guess Again button to translate
"Two-sided", but change the "2" into "Dois".

Save and quit, then run Irelease. The Portuguese version should look like this:

I Troll Imprimir o] 4

Arquivo Ajuda

TROLL IMPRIMIR

Dois-ladoz

’71"' Ativado G'

Cores———
’7(" Ativadas % Desativadas

Tutorial 3 Screenshot, "Troll Imprimir 1.1", Portuguese version

Choose Ajuda | Sobre, (Help |About), to see the about box

[Sobre Troll Imprimir 1.1 x|

= Troll Impririr 1.1
) T

Copyright 1999-2000 Macroshaft, Inc,

Programmers 30

Tutorial 3 Screenshot, About box, Portuguese version

If you choose Ajuda | Sobre Qt, (Help |About Qt), you'll get an English dialog... oops! Qt itself needs to be translated.
See the document Internationalization with Qt for details.

Now set LANG=en to get the original English version:

=il

File Help

TROLL PRINT

Two-gided———————
’7 " Enabled ‘

Colos————————
’7(" Enabled % Dicabled ‘

Tutorial 3 Screenshot, "Troll Print 1.1", English version

Summary

These tutorials cover all that you need to know to prepare your Qt applications for translation.

At the beginning of a project add the translation source files to be used to the project file and add calls to lupdate
and lrelease to the make file.

During the project all the programmer must do is wrap any user-visible text in tr() calls. They should also use
the two argument form for Ctrl key accelerators, or when asked by the translator for the cases where the same
text translates into two different forms in the same context. The programmer should also include TRANSLATION
comments to help the translator navigate the application.

Index

.pro Files, 5, 15, 22

.qm Files, 6, 11, 20

.qph Files, 11

.ts Files, 6, 11, 15, 20, 21

Accelerators, 9
Validation, 11
Alt Key, 9, 23
ArrowPad
in Translation Tutorial, 22
autoexec.bat, 24

Brazilian Language, 25

C++

Namespaces, 17
Canada, 25
Comments

for Translators, 9, 17, 28
Contexts

for Translation, 7-9, 17, 22
Ctrl Key, 9, 17, 23

DEFAULTCODEC
in Project Files, 5
defaultCodec()
QApplication, 5
Dutch Language, 22

English Language, 20, 22, 30
Environment Variables
LANG, 23
export
Unix Command, 24

FORMS

in Project Files, 5
French Canada, 25
French Language, 22

Guesses
in Qt Linguist, 8

HEADERS
in Project Files, 5
Hello World, 20

installTranslator()
QApplication, 16, 20

Keyboard Accelerators, 9

LANG
Environment Variable, 23, 24
Latin, 20, 21
Linguist, 7, 21
load()
QTranslator, 16
locale()
QTextCodec, 23
Irelease, 6, 15, 21
lupdate, 5, 15, 17, 20, 22, 28

main(), 16, 23, 27
MainWindow
in Translation Tutorial, 23, 26

Namespaces, 17

Phrase Books, 10
Phrases
in Qt Linguist, 8, 10
Validation, 11
Portuguese Language, 25
PrintPanel
in Translation Tutorial, 26
Project Files, 5, 15, 22
Punctuation
Validation, 11

Q_OBJECT, 16, 22, 23, 26
QAccel
stringToKey(), 23
QApplication
defaultCodec(), 5
installTranslator(), 16, 20
translate(), 22
gmake
Project Files, 5, 15, 22
QObject
tr(), 16, 20, 22
Qt

31

Translating Qt, 30
Qt Linguist, 7, 21
Qt Message Files, 6, 11, 20
Qt Phrase Book Files, 11
QTextCodec

locale(), 23
QTranslator, 19

load(), 16

Release Manager, 5

set

Windows Command, 24
setenv

Unix Command, 24
SOURCES

in Project Files, 5, 20
stringToKey()

QAccel, 23

tr(), 16, 20, 22
translate()

QApplication, 22
Translating Qt, 30
Translation Contexts, 17, 22

Translation Source Files, 6, 11, 15, 20,

21

TRANSLATIONS

in Project Files, 5, 20
TRANSLATOR

in Comments, 17, 28
Translator Comments, 17, 28
Troll Print, 25, 26
ttl.pro, 20
ttl la.qm, 20
tt2.pro, 22
tt2_fr.ts, 22
tt2_nl.ts, 22
tt3.pro, 26
tt3_pt.ts, 26, 28

Validation of Translations, 11

XML, 6, 20, 21

