Input/Output and Networking with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark of
Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple Com-
puter Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are trademarks

of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt

documentation format.

Contents

Network Module e e e e e 4
Format of the QDataStream OpPerators o it it i it ettt e e e e e e e 11
QClipboard Class Reference i i e e e e 15
QDataStream Class Reference i i i i i e e e e e e e e 19
QDir Class Reference i i i e e e e e e e e e 29
QDns Class Reference i i it e e e e e e e e e e e e e e 45
QFile Class Reference i i i i i e et e e e e e e e e e e e e e 50
QFileInfo Class Reference o i i i et e e e e e e e e e e e 59
QFtp Class Reference i e e e e e e e e e e e e e 69
QHostAddress Class Reference i i i i i i i it e e e e e e e e e e 71
QHttp Class Reference i i i i it i e e e e e e e e e e e 74
QIODevice Class Reference i i i v i it e e e e e e e e e e e e e e 76
QLocalFs Class Reference i i i i i it et e e et e e e e e e e e e e e e 86
QLock Class Reference i i i i it e 87
QMimeSource Class Reference i i i i i i it e e e e e e e e e e 89
QMimeSourceFactory Class Reference i e e e 91
QNetworkOperation Class Reference i it e e e 96
QNetworkProtocol Class Reference i i i i e e e 99
QProcess Class Reference @ i i i i i e e e e e 108
QServerSocket Class Reference i i i i e e e e e e 118
QSessionManager Class Reference i i e e e 121
QSocket Class Reference i i i e e e e e e e e e 126
QSocketDevice Class Reference v v v i i i v e it e e e e e e e e e e e e e e 135
QSocketNotifier Class Reference i i i i i i i it e e e e e e e e e e e e 142
QTextIStream Class Reference i e e e e e e e e 146
QTextOStream Class Reference i i i i i i i e e e e e e e e e e e e e e 148
QTextStream Class Reference i i i i i i i it i e e e e e e e e e e e 150

Contents 3

QUrl Class Reference

... 163
QUrlInfo Class Reference o i i i i i i et e e e e e e e e e e e e 172
QUrlOperator Class Reference i i e e e e e 179
QWindowsMime Class Reference i i i i e e e 188

Network Module

This module is part of the Qt Enterprise Edition.

Introduction

The network module offers classes to make network programming easier and portable. Basically there are three sets
of classes, first very basic classes like QSocket, QServerSocket, QDns, etc. which allow to work in a portable way with
TCP/IP sockets. In addition, there are classes like QNetworkProtocol, QNetworkOperation in the Qt base library, which
provide an abstract layer for implementing network protocols and QUrlOperator which operates on such network
protocols. Finally the third set of network classes are the passive ones, namely QUrl and QUrlIinfo which do URL
parsing and similar stuff.

The first set of classes (QSocket, QServerSocket, QDns, QFtp, etc.) are included in the "network" module of Qt.

The QSocket classes are not directly related to the QNetwork classes, but QSocket should and will be used for imple-
menting network protocols, which are directly related to the QNetwork classes. E.g. the QFtp class (implementation
of the FTP protocol) uses QSockets. But QSockets don’t need to be used for protocol implementations, e.g. QLocalFs
(which is an implementation of the local filesystem as network protocol) uses QDir and no QSocket. Using QNet-
workProtocols you can implement everything which fits into a hierarchical structure and can be accessed using URLs.
This could be e.g. a protocol which can read pictures from a digital camera using a serial connection.

Working Network Protocol independent with QUrlOperator and
QNetworkOperation

To just use existing network protocol implementations and operate on URLSs using them is quite easy. E.g. downloading
a file from an FTP server to the local filesystem can be done with following code:

QUrl Qperator op;
op.copy("ftp://ftp.trolltech. comqt/source/qt-2.1.0.tar.gz", "file:/tnp", FALSE);

And that’s all! Of course an implementation of the FTP protocol has to be available and registered for doing that. More
information on that later.

You can also do stuff like creating directories, removing files, renaming, etc. E.g. to create a folder on a private FTP
account do

QUrl Qperator op("ftp://usernane: passwor d@ost . domai n. no/ hone/ user name");
op.nkdir("New Directory");

Network Module 5

That’s it again. To see all available operations, look at the QUrlOperator class documentation.

Now as everything works asynchronous, the function call for an operation returns before the operation has been
processed. So you don’t get a return value which tells you something about failure or success. The return value always
is a pointer to a QNetworkOperation.

In this QNetworkOperation all information about the operation is stored. There is e.g. a method of QNetworkOperation
which returns the state of this operation. Using that you can find out all the time in which state the operation currently
is. Also you get the arguments you passed to the QUrlOperator method, the type of the operation and some more stuff
from this QNetworkOperation object. For more details see the class documentation of QNetworkOperation.

Now, later you get signals emitted by the QUrlOperator, which inform you about the process of the operations. As you
can call many methods which operate on a URL of one QUrlOperator, it queues up all these operations. So you can’t
know which operation the QUrlOperator just processes. Because of this you get in each signal as the last argument a
pointer to the QNetworkOperation object which is just processed and from which this signal comes.

Some of these operations send a start() signal at the beginning (depending if it makes sense or not), then some of
them send some signals during processing the operation, and all operations send a fi ni shed() signal after they are
done. Now, finished could mean that the operation has been successfully finished or that it failed. To find that out you
can use the QNetworkOperation pointer you got with the fini shed() signal. If QNetworkOperation::state() equals
QNetworkProtocol::StDone the operation finished successful, if it is QNetworkProtocol::StFailed the operation failed.

Now, a slot which you connected to the QUr| Operator::finished(Q\etworkOperation *) signal could look like this

voi d Myd ass: : sl ot Oper ati onFi ni shed(QNetwor kOperation *op)

{
switch (op->operation()) {
case QNetworkProtocol::CpMDir: {
if (op->state() == QNetworkProtocol::StFailed)
gDebug("Couldn’t create directory %", op->arg(0).latinl());
el se
qDebug("Successfully created directory %", op->arg(0).latinl());
} break;
Il ... and so on
}
}

As mentioned before, some operations send other signals too. Let’s take the list children operation as an example (e.g.
read the directory of a directory on a FTP server):

QUrl Qperator op;

M/ d ass:: MO ass() : Qject(), op("ftp://ftp.trolltech.com)

{
connect (&p, SIGNAL(newChildren(const Qval uelist & QNetworkOperation *)),
this, SLOT(slotlnsertEntries(const QVal uelList & QNetworkCperation *)));
connect (&op, SIGNAL(start(QNetworkCperation *)),
this, SLOT(slotStart(QNetworkQperation *)));
connect (&p, SIGNAL(finished(QNetworkOperation *)),
this, SLOT(slotFinished(Q\etworkCperation *)));
}

void MyC ass::slotlnsertEntries(const Qval uelList & nfo, QNetworkQperation *)

Network Module 6

{
Qval uelList::Constlterator it = info.begin();
for (; it !'=info.end(); ++it) {
const QurlInfo & nf = *it;
qDebug("Name: %, Size: 9%, Last Mdified: %",
inf.name().latinl(), inf.size(), inf.lastMdified().toString().latinl());
}
}
void MyC ass::slotStart(QNetworkQperation *)
{
gqDebug("Start reading '%'", op.toString().latinl());
}
voi d MyQ ass:: sl ot Fi ni shed(QNetworkQperation *operation)
{
if (operation->operation() == QNetworkProtocol::QListChildren) {
if (operation->state() == QNetworkProtocol::StFailed)
qDebug("Couldn't read '%’'! Followi ng error occurred: %",
op.toString().latinl(), operation->protocolDetail().latinl());
el se
qDebug("Finished reading '%'!", op.toString().latinl());
}
}

These examples explained now how to use the QUrlOperator and QNet wor kQper at i ons. The network extension will
contain some good examples for this too.

Implementing your own Network Protocol

QNetworkProtocol provides a base class for implementations of network protocols and an architecture to a dynamic
registration and unregistration of network protocols. If you use this architecture you also don’t need to care about
asynchronous programming, as the architecture hides this and does all the work for you.

Limitation: As it is quite hard to design a base class for network protocols which satisfies all network protocols, the
architecture described here is designed to work with all kinds of hierarchical structures, like filesystems. So everything
which can be interpreted as hierarchical structure and accessed via URLs, can be implemented as network protocol and
easily used in Qt. This is not limited to filesystems only!

To implement a network protocol create a class derived from QNetworkProtocol.

Other classes will use this network protocol implementation to operate on it. So you should reimplement following
protected members

voi d QNet wor kProt ocol : : operationLi st Chil dren(Q\etworkOperation *op);
voi d QNet wor kProt ocol : : operationMDir(QNetworkOperation *op);
voi d QNet wor kProt ocol : : operati onRemove(QNet workQperation *op);
voi d QNet wor kProt ocol : : operati onRenane(QNet workQperation *op);
voi d QNet wor kProt ocol :: operationGet(QNetworkOperation *op);
voi d QNet wor kProt ocol : : operationPut (QNetworkOperation *op);

Some words about how to reimplement these methods: You always get a pointer to a QNetworkOperation as argument.
This pointer holds all information about the operation in the current state. If you start processing such an operation, set

Network Module 7

the state to QNetworkProtocol::StInProgress. If you finished processing the operation, set the state to QNetworkPro-
tocol::StDone if it was successful or QNetworkProtocol::StFailed if an error occurred. If an error occurred you have
to set an error code (see QNetworkOperation::setErrorCode()) and if you know some details (e.g. an error message)
you can also set this message to the operation pointer (see QNetworkOperation::setProtocolDetail()). Also you get all
information (type, arguments, etc.) of the operation from this QNetworkOperation pointer. For details about which
arguments you can get and set look at the class documentation of QNetworkOperation.

If you reimplement such an operation method, it’s also very important to emit the correct signals at the correct time: In
general always emit at the end of an operation (when you either successfully finished processing the operation or and
error occurred) the fi ni shed() signal with the network operation as argument. The whole network architecture relies
on correctly emitted f i ni shed() signals! So be careful with that! Then there are some more special signals which are
specific to operations:

e Emit in operati onLi st Chi | dren:

— start() just before starting listing the children
— newChi | dren() when new children are read

Emit in operati onMDi r:

— createdDirectory() after the directory has been created
— newChil d() (or newChildren()) after the directory has been created (as a new directory is a new child)

Emit in oper at i onRenove:

— renoved() after the child has been removed

Emit in oper at i onRenane:

— itenChanged() after the child has been renamed

Emit in oper ati onGet :

— data() each time new data has been read

— dataTransferProgress() each time new data has been read to indicate how much of the data has been
read now.

Emit in oper ati onPut :

— dataTransferProgress() each time data has been written to indicate how much of the data has been
written. Although you know the whole data when this operation is called, it’s suggested not to write the
whole data at once, but to do it step by step to avoid blocking the GUI and also this way the progress can be
made visible to the user.

And remember, always emit the fi ni shed() signal at the end!

For more details about the arguments of these signals take a look at the QNetworkProtocol class documentation.

Now, as argument in such a method you get the QNetworkOperation which you process. Here is a list which arguments
of the QNetworkOperation you can get and which you have to set in which method:

(To get the URL on which you should work, use the QNetworkProtocol::url() method which returns the pointer to the
URL operator. Using that you can get the path, host, name filter and everything else of the URL)
e InoperationLi st Children:
— Nothing.

e InoperationMkDir:

Network Module 8

— Networ kCperation::arg(0) contains the name of the directory which should be created

In oper at i onRenove:

— Networ kOperation::arg(0) contains the name of the file which should be removed. Normally this is a
relative name. But it may be absolute too, so use QUrl(op->arg(0)).fileName() to get the filename.

In oper at i onRenare:

— QNetwor kOperation::arg(0) contains the name of the file which should be renamed
— Q\etworkQperation::arg(1) contains the name to which it should be renamed.

In operati onGet:

— Q\etwor kQperation::arg(0) contains the full URL of the file which should be retrieved.

In oper ati onPut:

— Q\NetworkQperation::arg(0) contains the full URL of the file in which the data should be stored.

— Q\NetworkQperation::rawArg(1) contains the data which should be stored in QNet wor kOper ati on: : ar g(
0)

So, to sum it up: If you reimplement such an operation method, you have to emit some special signals and always at the
end a fini shed() signal, either on success or on failure. Also you have to change the state of the QNetworkOperation
during processing it and can get and set arguments of the operation as well.

But it’s unlikely that the network protocol you implement supports all these operations. So, just reimplement the
operations, which are supported by the protocol. Additionally you have to specify which operations are supported
then. This is done by reimplementing

i nt QNetwor kProtocol :: supportedQperations() const;

In your implementation of this method return an int value which is constructed by or’ing together the correct values
(supported operations) of the following enum (of QNetworkProtocol):

enum Qperation {
OpListChildren = 1,
WD r = 2,
OpRenove = 4,
OpRenane = 8,
OpGet = 32,
OpPut = 64

b

So, if your protocol e.g. supports listing children and renaming them, do in your implementation of
support edOperations():

return QpListChildren | OpRenang;
The last method you have to reimplement is

bool QNetwor kProt ocol :: checkConnection(QNetworkOperation *op);

Network Module 9

Here you have to return TRUE, if the connection is up and ok (this means operations on the protocol can be done). If the
connection is not ok, return FALSE and start to try opening it. If you will not be able to open the connection at all (e.g.
because the host is not found), emit a fi ni shed() signal and set an error code and the QNetworkProtocol::StFailed
state to the QNetworkOperation pointer you get here.

Now, you never need to check before doing an operation yourself, if the connection is ok. The network architecture
does this, this means using checkConnection() it looks if an operation could be done and if not, it tries it again and
again for some time and only calls an operation method if the connection is ok.

Using this knowledge it should be possible to implement network protocols. Finally to be able to use it with a QUrlOp-
erator (and so e.g. in the QFileDialog), you have to register the network protocol implementation. This can be done
like this:

Net wor kPr ot ocol : : regi st er Net wor kProt ocol ("myprot", new QNetwor kProtocol Factory);

In this case MyProt ocol would be a class you implemented like described here (derived from QNetworkProtocol) and
the name of the protocol would be myprot. So if you want to use it, you would do something like

QUrl Cperator op("nyprot://host/path");
op.listChildren();

Finally as example for a network protocol implementation you could look at the implementation of QLocalFs. The
network extension will also contain an example implementation of a network protocol

Error Handling

Error handling is important for both, implementing new network protocols and using them (through QUrlOperator).
So first some words about error handling when using the network protocols:

As already mentioned quite some times after processing an operation has been finished the network operation and so
the QUrlOperator emits the f i ni shed() signal. This has as argument the pointer to the processed QNetworkOperation.
If the state of this operation is QNetworkProtocol::StFailed, the operation contains some more information about this
error. Following error codes are defined in QNetworkProtocol:

e QNetworkProtocol::NoError - No error occurred
e QNetworkProtocol::ErrValid - The URL you are operating on is not valid

e QNetworkProtocol::ErrUnknownProtocol - There is no protocol implementation available for the protocol of the
URL you are operating on (e.g. if the protocol is http and no http implementation has been registered)

e QNetworkProtocol::ErrUnsupported - The operation is not supported by the protocol

e QNetworkProtocol::ErrParse - Parse error of the URL

e QNetworkProtocol::ErrLoginIncorrect - You needed to login but the username and or password are wrong
e QNetworkProtocol::ErrHostNotFound - The specified host (in the URL) couldn’t be found

e QNetworkProtocol::ErrListChildren - An error occurred while listing the children

e QNetworkProtocol::ErrMKDir - An error occurred when creating a directory

e QNetworkProtocol::ErrRemove -An error occurred while removing a child

e QNetworkProtocol::ErrRename - An error occurred while renaming a child

e QNetworkProtocol::ErrGet - An error occurred while getting (retrieving) data

e QNetworkProtocol::ErrPut - An error occurred while putting (uploading) data

Network Module 10

e QNetworkProtocol::ErrFileNotExisting - A file which is needed by the operation doesn’t exist

e QNetworkProtocol::ErrPermissionDenied - The permission for doing the operation has been denied

QNetworkOperation::errorCode() returns then one of these codes or maybe a different one if you use an own network
protocol implementation which defines additional error codes.

et wor kOper ati on:: protocol Detai | s() may also return a string which contains an error message then which could
e.g. be displayed for the user.

According to this information it should be possible to react on errors.

Now, if you implement your own network protocol, you will need to tell about errors which occurred. First you
always need to be able to access the QNetworkOperation which is processed at the moment. This can be done using
et wor kOper at i on:: operationl nProgress(), which returns a pointer to the current network operation or 0 if no
operation is processed at the moment.

Now if and error occurred and you need to handle it, do

if (operationlnProgress()) {
operationl nProgress()->set ErrorCode(error_code_of your_error);
operationl nProgress()->setProtocol Details(detail); // optional!
emt finished(operationlnProgress());
return,

That’s all. The connection to the QUrlOperator and so on is done automatically. Additionally, if the error was re-
ally bad so that no more operations can be done in the current state (e.g. if the host couldn’t be found), call
et wor kProt ocol : : cl ear Oper ati onSt ack() before emitting fi ni shed().

Now, as error code you should use, if possible, one of the predefined error codes of QNetworkProtocol. If this is not
possible, you can add own error codes - they are just normal i nt eger s. Just be careful that the value of the error code
doesn’t conflict with an existing one.

Documentation about the low-level classes like QSocket, QDns, etc. will be included in the seperate network extension.

For internal use only.

Format of the QDataStream Operators

The QDataStream allows you to serialize some of the Qt data types. The table below lists the data types that QDataS-
tream can serialize and how they are represented.
e Q INTS
- signed byte
e Q INT16
— signed 16 bit integer
e Q _INT32
— signed 32 bit integer
e Q UINT8
— unsigned byte
e Q _UINT16

— unsigned 16 bit integer

Q UINT32
— unsigned 32 bit integer
o float
— 32-bit floating point number using the standard IEEE-754 format

double

— 64-bit floating point number using the standard IEEE-754 format
e char *

— The size of the string including the terminating 0 (Q_UINT32)
— The string bytes including the terminating O

The null string is represented as (Q_U NT32) 0.
e QBitArray

— The array size (Q_UINT32)
— The array bits, i.e. (size + 7)/8 bytes

e QBrush

11

Format of the QDataStream Operators

— The brush style (Q_UINTS)
— The brush color (QColor)
— If style is CustomPattern, the brush pixmap (QPixmap)

o QByteArray

— The array size (Q_UINT32)
— The array bytes, i.e. size bytes

e QCString

— The size of the string including the terminating 0 (Q_UINT32)
— The string bytes including the terminating O

The null string is represented as (Q_Ul NT32) 0.
e QColor

— RGB value serialized as a Q_UINT32
e QColorGroup

- foreground (QBrush)
— button (QBrush)

— light (QBrush)
midLight (QBrush)
dark (QBrush)

mid (QBrush)

text (QBrush)
brightText (QBrush)
ButtonText (QBrush)
— base (QBrush)

- background (QBrush)
— shadow (QBrush)

— highlight (QBrush)

— highlightedText (QBrush)

e QCursor

— Shape id (Q _INT16)
— If shape is BitmapCursor: The bitmap (QPixmap), mask (QPixmap) and hot spot (QPoint)

e QDate
— Julian day (Q_UINT32)
e QDateTime

— Date (QDate)
— Time (QTime)

e QFont

— The point size (Q_INT16)
— The style hint (Q_UINT8)
— The char set (Q_UINT8)

12

Format of the QDataStream Operators

— The weight (Q_UINT8)
— The font bits (Q_UINT8)

e QImage
— Save it as a PNG image.
e QMap

— The number of items (Q_UINT32)
— For all items, the key and value

e QPalette

- active (QColorGroup)
- disabled (QColorGroup)
— inactive (QColorGroup)

e QPen

— The pen styles (Q_UINTS8)
— The pen width (Q_UINTS)
— The pen color (QColor)

e QPicture

— The size of the picture data (Q_UINT32)
— The raw bytes of picture data (char)

e QPixmap
— Save it as a PNG image.
e QPoint

— The x coordinate (Q_INT32)
— The y coordinate (Q_INT32)

e QPointArray

— The array size (Q_UINT32)
— The array points (QPoint)

e QRect

— left (Q_INT32)

— top (Q_INT32)

- right (Q_INT32)

— bottom (Q_INT32)

e QRegion

The size of the data, i.e. 8 + 16 * (number of rectangles) (Q UINT32)
QRGN_RECTS (Q_INT32)

The number of rectangles (Q_UINT32)

The rectangles in sequential order (QRect)

e QSize

Format of the QDataStream Operators

- width (Q_INT32)
— height (Q_INT32)

e QString

— If the string is null: Oxffffffff (Q_UINT32)
— Otherwise: The string length (Q_UINT32) followed by the data in UTF-16

e QTime
— Milliseconds since midnight (Q_UINT32)
e QValueList

— The number of list elements (Q_UINT32)
— All the elements in sequential order

e QVariant

— The type of the data (Q_UINT32)
— The data of the specified type

e QWDMatrix

mll (double)
m1l2 (double)
m21 (double)
m22 (double)
dx (double)
— dy (double)

14

QClipboard Class Reference

The QClipboard class provides access to the window system clipboard.
#incl ude <qcl i pboard. h>
Inherits QObject [Additional Functionality with Qt].

Public Members

m void clear ()

m bool supportsSelection () const

= bool ownsSelection () const

m bool ownsClipboard () const

= void setSelectionMode (bool enable)

= bool selectionModeEnabled () const

m QMimeSource * data () const

m void setData (QMimeSource * src)

m QString text () const

m QString text (QCString & subtype) const
m void setText (const QString & text)

m QImage image () const

m QPixmap pixmap () const

m void setImage (const QImage & image)
m void setPixmap (const QPixmap & pixmap)

Signals

» void selectionChanged ()
m void dataChanged ()

Detailed Description

The QClipboard class provides access to the window system clipboard.

The clipboard offers a simple mechanism to copy and paste data between applications.

15

QClipboard Class Reference 16

QClipboard supports the same data types that QDragObject does, and uses similar mechanisms. For advanced clipboard
usage, you should read the drag-and-drop documentation.

There is a single QClipboard object in an application, and you can access it using QApplication::clipboard().
Example:

Qi pboard *cb = QApplication::clipboard();
QString text;

/1 Copy text fromthe clipboard (paste)
text = ch->text();
if (text)
qDebug("The clipboard contains: %", text);

/1 Copy text into the clipboard
ch->set Text("This text can be pasted by other programs");

QClipboard features some convenience functions to access common data types: setText() allows the exchange of
Unicode text and setPixmap() and setImage() allows the exchange of QPixmaps and QImages between applications.
The setData() function is the ultimate in flexibility: it allows you to add any QMimeSource into the clipboard. (There
are corresponding getters for each of these, e.g. text().)

You can clear the clipboard by calling clear().

The underlying clipboards of the X Window system and MS Windows differ. The X Window system has a concept of
selection — when text is selected it is immediately available in the selection buffer; MS Windows only adds text to the
clipboard when an explicit copy or cut is made. The X Window system also has a concept of ownership; if you change
the selection within a window X11 will only notify the owner and the previous owner of the change; in MS Windows
the clipboard is a fully global resource so all applications are notified of changes. See the multiclip example in the Qt
Designer examples directory for an example of a cross-platform clipboard application that also demonstrates selection
handling.

See also Input/Output and Networking.

Member Function Documentation
void QClipboard::clear ()

Clears the clipboard contents.

QMimeSource * QClipboard::data () const

Returns a reference to a QMimeSource representation of the current clipboard data.

void QClipboard::dataChanged () [signal]

This signal is emitted when the clipboard data is changed.

QClipboard Class Reference 17

QImage QClipboard::image () const

Returns the clipboard image, or returns a null image if the clipboard does not contain an image or if it contains an
image in an unsupported image format.

See also setlmage() [p. 171, pixmap() [p. 171, data() [p. 16] and QImage::isNull() [Graphics with Qt].

bool QClipboard::ownsClipboard () const

Returns TRUE is this clipboard object owns the clipboard data, FALSE otherwise.

bool QClipboard::ownsSelection () const

Returns TRUE if this clipboard object owns the mouse selection data, FALSE otherwise.

QPixmap QClipboard::pixmap () const

Returns the clipboard pixmap, or null if the clipboard does not contain a pixmap. Note that this can lose information.
For example, if the image is 24-bit and the display is 8-bit, the result is converted to 8 bits, and if the image has an
alpha channel the result just has a mask.

See also setPixmap() [p. 18], image() [p. 171, data() [p- 16] and QPixmap::convertFromImage() [Graphics with Qt].

void QClipboard::selectionChanged () [signal]

This signal is emitted when the selection is changed. This only applies to windowing systems that support selections,
e.g. X11. Windows doesn’t support selections.

bool QClipboard::selectionModeEnabled () const

Returns the value set by setSelectionMode().

See also setSelectionMode() [p. 18] and supportsSelection() [p. 18].

void QClipboard::setData (QMimeSource * src)
Sets the clipboard data to src. Ownership of the data is transferred to the clipboard. If you want to remove the data
either call clear() or call setData() again with new data.

The QDragObject subclasses are reasonable objects to put into the clipboard (but do not try to call QDragObject::drag()
on the same object). Any QDragObject placed in the clipboard should have a parent of 0. Do not put QDragMoveEvent
or QDropEvent subclasses in the clipboard, as they do not belong to the event handler which receives them.

The setText() and setPixmap() functions are simpler wrappers for setting text and image data respectively.

void QClipboard::setlmage (const QImage & image)

Copies image into the clipboard.

QClipboard Class Reference 18

This is shorthand for:
set Dat a(new Q mageDrag(i mage))

See also image() [p. 171, setPixmap() [p. 18] and setData() [p. 17].

void QClipboard::setPixmap (const QPixmap & pixmap)

Copies pixmap into the clipboard. Note that this is slower than setlmage() - it needs to convert the QPixmap to a
QImage first.

See also pixmap() [p. 171, setimage() [p. 17] and setData() [p. 17].

void QClipboard::setSelectionMode (bool enable)
Sets the clipboard selection mode. If enable is TRUE, then subsequent calls to QClipboard::setData() and other func-

tions which put data into the clipboard will put the data into the mouse selection, otherwise the data will be put into
the clipboard.

See also supportsSelection() [p. 18] and selectionModeEnabled() [p. 17].

void QClipboard::setText (const QString & text)

Copies text into the clipboard as plain text.

See also text() [p. 18] and setData() [p. 171.

bool QClipboard::supportsSelection () const

Returns TRUE if the clipboard supports mouse selection, FALSE otherwise.

QString QClipboard::text (QCString & subtype) const

Returns the clipboard text in subtype subtype, or a null string if the clipboard does not contain any text. If subtype is
null, any subtype is acceptable, and subtype is set to the chosen subtype.

Common values for subtype are "plain" and "html".

See also setText() [p. 18], data() [p. 16] and QString::operator!() [Datastructures and String Handling with Qt].

QString QClipboard::text () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the clipboard text as plain text, or a null string if the clipboard does not contain any text.

See also setText() [p. 18], data() [p. 16] and QString::operator!() [Datastructures and String Handling with Qt].

QDataStream Class Reference

The QDataStream class provides serialization of binary data to a QIODevice.

#i ncl ude <gdat astream h>

Public Members

QDataStream ()

QDataStream (QIODevice * d)

QDataStream (QByteArray a, int mode)
virtual ~QDataStream ()

QIODevice * device () const

void setDevice (QIODevice * d)

void unsetDevice ()

bool atEnd () const

bool eof () const (obsolete)

enum ByteOrder { BigEndian, LittleEndian }
int byteOrder () const

void setByteOrder (int bo)

bool isPrintableData () const

void setPrintableData (bool enable)

int version () const

void setVersion (int v)

QDataStream & operator>> (Q _INT8 & i)
QDataStream & operator>> (Q UINT8 & i)
QDataStream & operator>> (Q_INT16 & i)
QDataStream & operator>> (Q _ UINT16 & i)
QDataStream & operator>> (Q INT32 & i)
QDataStream & operator>> (Q UINT32 & i)
QDataStream & operator>> (Q LONG & i)
QDataStream & operator>> (Q ULONG & i)
QDataStream & operator>> (float & f)
QDataStream & operator>> (double & f)
QDataStream & operator>> (char *& s)
QDataStream & operator<< (Q INT81)
QDataStream & operator<< (Q UINT81)

19

QDataStream Class Reference 20

m QDataStream & operator<< (Q INT161)

m QDataStream & operator<< (Q UINT161)

m QDataStream & operator<< (Q INT321i)

m QDataStream & operator<< (Q_UINT321)

m QDataStream & operator<< (Q_LONG i)

m QDataStream & operator<< (Q_ULONG i)

m QDataStream & operator<< (float f)

m QDataStream & operator< < (double f)

m QDataStream & operator< < (const char * s)

m QDataStream & readBytes (char *& s, uint & 1)

m QDataStream & readRawBytes (char * s, uint len)

e QDataStream & writeBytes (const char * s, uint len)
e QDataStream & writeRawBytes (const char * s, uint len)

Detailed Description

The QDataStream class provides serialization of binary data to a QIODevice.

A data stream is a binary stream of encoded information which is 100% independent of the host computer’s operating
system, CPU or byte order. For example a data stream that is written by a PC under Windows can be read by a Sun
SPARC running Solaris.

You can also use a data stream to read/write raw unencoded binary data. If you want a "parsing” input stream, see
QTextStream.

The QDataStream class implements serialization of primitive types, like char, short, i nt, char* etc. Serialization of
more complex data is accomplished by breaking up the data into primitive units.

A data stream cooperates closely with a QIODevice. A QIODevice represents an input/output medium one can read
data from and write data to. The QFile class is an example of an 10 device.

Example (write binary data to a stream):

QFile f("file.dta");
f.open(1O WiteOnly);

QataStream s(&); /I we will serialize the data into file f
s << "the answer is"; [/ serialize a string
s << (Q.INT32)42; /1 serialize an integer

Example (read binary data from a stream):

@ile f("file.dta");
f.open(10 ReadOnly);

QataStream s(&); /] read the data serialized fromfile f
@tring str;

Q INT32 a;

S >> str >> a; Il extract "the answer is" and 42

Each item written to the stream is written in a predefined binary format that varies depending on the item’s type.
Supported Qt types include QBrush, QColor, QDateTime, QFont, QPixmap, QString, QVariant and many others. For the
complete list of all Qt types supporting data streaming see Format of the QDataStream operators .

QDataStream Class Reference 21

To take one example, a char* string is written as a 32-bit integer equal to the length of the string including the NUL
byte, followed by all the characters of the string including the NUL byte. When reading a char * string, 4 bytes are read
to create the 32-bit length value, then that many characters for the char* string including the NUL are read.

The initial IODevice is usually set in the constructor, but can be changed with setDevice(). If you've reached the end of
the data (or if there is no IODevice set) atEnd() will return TRUE.

If you want the data to be compatible with an earlier version of Qt use setVersion().

If you want the data to be human-readable, e.g. for debugging, you can set the data stream into printable data mode
with setPrintableData(). The data is then written slower, in a bloated but human readable format.

If you are producing a new binary data format, such as a file format for documents created by your application, you
could use a QDataStream to write the data in a portable format. Typically, you would write a brief header containing
a magic string and a version number to give yourself room for future expansion. For example:

Qrile f("file.xxx");
f.open(1O WiteOnly);
QDat aStream s(&);

/I Wite a header with a "magi ¢ nunber" and a version
S << (Q_UI NT32) 0xa0b0c0do;
s << (Q.INT32)123;

Il Wite the data
s << [lots of interesting data]

Then read it in with:

Qrile f("file.xxx");
f.open(10 ReadOnly);
QDat aStream s(&);

/1 Read and check the header

Q UINT32 nmgi c;

s >> nmagi c;

if (magic !'= 0xa0b0c0dO)
return XXX _BAD FI LE FORMAT;

/1 Read the version
Q I NT32 version;
s >> version;
if (version 123)
return XXX BAD FI LE TOO NEW
if (version <= 110)
s.setVersion(1);

/] Read the data
s >> [lots of interesting data];
if (version > 120)
s >> [data new in XXX version 1.2];
s >> [other interesting data];

You can select which byte order to use when serializing data. The default setting is big endian (MSB first). Changing

QDataStream Class Reference 22

it to little endian breaks the portability (unless the reader also changes to little endian). We recommend keeping this
setting unless you have special requirements.

Reading and writing raw binary data

You may wish to read/write your own raw binary data to/from the data stream directly. Data may be read from the
stream into a preallocated char* using readRawBytes(). Similarly data can be written to the stream using writeRaw-
Bytes(). Notice that any encoding/decoding of the data must be done by you.

A similar pair of functions is readBytes() and writeBytes(). These differ from their raw counterparts as follows: read-
Bytes() reads a Q_UINT32 which is taken to be the length of the data to be read, then that number of bytes is read
into the preallocated char*; writeBytes() writes a Q_UINT32 containing the length of the data, followed by the data.
Notice that any encoding/decoding of the data (apart from the length Q UINT32) must be done by you.

See also QTextStream [p. 150], QVariant [Datastructures and String Handling with Qt] and Input/Output and
Networking.

Member Type Documentation

QDataStream::ByteOrder
The byte order used for reading/writing the data.

e (Dat aStream : Bi gEndi an - the default
e (DataStream:Littlekndian

Member Function Documentation

QDataStream::QDataStream ()

Constructs a data stream that has no IO device.

See also setDevice() [p. 27].

QDataStream::QDataStream (QIODevice * d)

Constructs a data stream that uses the 10 device d.

See also setDevice() [p. 27] and device() [p. 23].

QDataStream::QDataStream (QByteArray a, int mode)

Constructs a data stream that operates on a byte array, a, through an internal QBuffer device. The mode is a QIODe-
vice::mode(), usually either IO_ReadOnly or IO0_WriteOnly.
Example:

static char bindata[] = { 231, 1, 44, ... };
ByteArray a;

QDataStream Class Reference 23

a.set RawDat a(bindata, sizeof(bindata)); // a points to bindata
QataStreams(a, 10 ReadOnly); /'l open on a's data

s >> [sonething]; Il read raw bindata
a.reset Rawbat a(bi ndata, sizeof(bindata)); // finished

The QByteArray::setRawData() function is not for the inexperienced.

QDataStream::~QDataStream () [virtual]

Destroys the data stream.

The destructor will not affect the current 10 device, unless it is an internal 10 device processing a QByteArray passed
in the constructor, in which case the internal IO device is destroyed.

bool QDataStream::atEnd () const

Returns TRUE if the IO device has reached the end position (end of the stream or file) or if there is no 10 device set;
otherwise returns FALSE, i.e. if the current position of the IO device is before the end position.

See also QIODevice::atEnd() [p. 791.

int QDataStream::byteOrder () const

Returns the current byte order setting — either BigEndian or LittleEndian.

See also setByteOrder() [p. 27].

QIODevice * QDataStream::device () const

Returns the IO device currently set.

See also setDevice() [p. 271 and unsetDevice() [p. 28].

bool QDataStream::eof () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Returns TRUE if the 10 device has reached the end position (end of stream or file) or if there is no IO device set.
Returns FALSE if the current position of the read/write head of the IO device is somewhere before the end position.

See also QIODevice::atEnd() [p. 791.

bool QDataStream::isPrintableData () const

Returns TRUE if the printable data flag has been set.
See also setPrintableData() [p. 27].

QDataStream Class Reference 24

QDataStream & QDataStream::operator<< (Q_INT81i)

Writes a signed byte, i, to the stream and returns a reference to the stream.

QDataStream & QDataStream::operator<< (Q_UINT8 i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsigned byte, i, to the stream and returns a reference to the stream.

QDataStream & QDataStream::operator<< (Q_INT161)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes a signed 16-bit integer, i, to the stream and returns a reference to the stream.

QDataStream & QDataStream::operator<< (Q _UINT161i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsigned 16-bit integer, i, to the stream and returns a reference to the stream.

QDataStream & QDataStream::operator<< (Q_INT321i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a signed 32-bit integer, i, to the stream and returns a reference to the stream.

QDataStream & QDataStream::operator<< (Q_UINT321i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsigned integer, i, to the stream as a 32-bit unsigned integer (Q UINT32). Returns a reference to the
stream.

QDataStream & QDataStream::operator<< (Q_LONG i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes a signed integer, i, of the system’s word length to the stream and returns a reference to the stream.
QDataStream & QDataStream::operator<< (Q _ULONG i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsigned integer, i, of the system’s word length to the stream and returns a reference to the stream.

QDataStream Class Reference 25

QDataStream & QDataStream::operator< < (float f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a 32-bit floating point number, f, to the stream using the standard IEEE754 format. Returns a reference to the
stream.

QDataStream & QDataStream::operator< < (double f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a 64-bit floating point number, f, to the stream using the standard IEEE754 format. Returns a reference to the
stream.

QDataStream & QDataStream::operator< < (const char * s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes the "\0’-terminated string s to the stream and returns a reference to the stream.

The string is serialized using writeBytes().

QDataStream & QDataStream::operator>> (Q_INT8 & i)

Reads a signed byte from the stream into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (Q _UINT8 & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads an unsigned byte from the stream into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (Q_INT16 & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed 16-bit integer from the stream into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (Q_UINT16 & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Reads an unsigned 16-bit integer from the stream into 7, and returns a reference to the stream.
QDataStream & QDataStream::operator>> (Q_INT32 & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed 32-bit integer from the stream into i, and returns a reference to the stream.

QDataStream Class Reference 26

QDataStream & QDataStream::operator>> (Q_UINT32 & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads an unsigned 32-bit integer from the stream into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (Q_LONG & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed integer of the system’s word length from the stream into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (Q_ULONG & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads an unsigned integer of the system’s word length from the stream, into i, and returns a reference to the stream.

QDataStream & QDataStream::operator>> (float & f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a 32-bit floating point number from the stream into f, using the standard IEEE754 format. Returns a reference
to the stream.

QDataStream & QDataStream::operator>> (double & f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a 64-bit floating point number from the stream into f, using the standard IEEE754 format. Returns a reference
to the stream.

QDataStream & QDataStream::operator>> (char *& s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Reads the \0’-terminated string s from the stream and returns a reference to the stream.

Space for the string is allocated using new — the caller must destroy it with delete[].

QDataStream & QDataStream::readBytes (char *& s, uint & 1)

Reads the buffer s from the stream and returns a reference to the stream.

The buffer s is allocated using new. Destroy it with the del et e[] operator. If the length is zero or s cannot be allocated,
sissetto 0.

The [parameter will be set to the length of the buffer.
The serialization format is a Q_UINT32 length specifier first, then [bytes of data. Note that the data is not encoded.

See also readRawBytes() [p. 27] and writeBytes() [p. 28].

QDataStream Class Reference 27

QDataStream & QDataStream::readRawBytes (char * s, uint len)

Reads len bytes from the stream into s and returns a reference to the stream.
The buffer s must be preallocated. The data is not encoded.

See also readBytes() [p. 26], QIODevice::readBlock() [p. 83] and writeRawBytes() [p. 28].

void QDataStream::setByteOrder (int bo)

Sets the serialization byte order to bo.
The bo parameter can be QDataStream::BigEndian or QDataStream::LittleEndian.
The default setting is big endian. We recommend leaving this setting unless you have special requirements.

See also byteOrder() [p. 23].

void QDataStream::setDevice (QIODevice * d)

void QDataStream::setDevice(QIODevice *d) Sets the IO device to d.

See also device() [p. 23] and unsetDevice() [p. 28].

void QDataStream::setPrintableData (bool enable)

Sets (if enable is TRUE) or clears the printable data flag.
If this flag is set, the write functions will generate output that consists of printable characters (7 bit ASCII).

We recommend enabling printable data only for debugging purposes (it is slower and creates larger output).

void QDataStream::setVersion (int v)

Sets the version number of the data serialization format.
You don’t need to set a version if you are using the current version of Qt.

In order to accommodate new functionality, the datastream serialization format of some Qt classes has changed in
some versions of Qt. If you want to read data that was created by an earlier version of Qt, or write data that can be
read by a program that was compiled with an earlier version of Qt, use this function to modify the serialization format
of QDataStream.

e For Qt 3.0 compatibility, use v == 4.
e For Qt 2.1.x and Qt 2.2.x compatibility, use v == 3.
e For Qt 2.0.x compatibility, use v == 2.

e For Qt 1.x compatibility, use v ==

See also version() [p. 28].

QDataStream Class Reference

void QDataStream::unsetDevice ()

Unsets the 10 device. This is the same as calling setDevice(0).

See also device() [p. 23] and setDevice() [p. 27].

int QDataStream::version () const

Returns the version number of the data serialization format. In Qt 3.0, this number is 4.
See also setVersion() [p. 271.

QDataStream & QDataStream::writeBytes (const char * s, uint len)

Writes the length specifier len and the buffer s to the stream and returns a reference to the stream.

The len is serialized as a Q_UINT32, followed by len bytes from s. Note that the data is not encoded.

See also writeRawBytes() [p. 28] and readBytes() [p. 26].

QDataStream & QDataStream::writeRawBytes (const char * s, uint len)

Writes len bytes from s to the stream and returns a reference to the stream. The data is not encoded.

See also writeBytes() [p. 28], QIODevice::writeBlock() [p. 85] and readRawBytes() [p. 27].

28

QDir Class Reference

The QDir class provides access to directory structures and their contents in a platform-independent way.

#include <qdir. h>

Public Members

enum FilterSpec { Dirs = 0x001, Files = 0x002, Drives = 0x004, NoSymLinks = 0x008, All = 0x007,
TypeMask = 0x0O0E Readable = 0x010, Writable = 0x020, Executable = 0x040, RWEMask = 0x070, Modified
= 0x080, Hidden = 0x100, System = 0x200, AccessMask = 0x3F0, DefaultFilter = -1 }

enum SortSpec { Name = 0x00, Time = 0x01, Size = 0x02, Unsorted = 0x03, SortByMask = 0x03, DirsFirst =
0x04, Reversed = 0x08, IgnoreCase = 0x10, DefaultSort = -1 }

QDir ()

QDir (const QString & path, const QString & nameFilter = QString::null, int sortSpec = Name | IgnoreCase,
int filterSpec = All)

QDir (const QDir & d)

virtual ~QDir ()

QDir & operator= (const QDir & d)

QDir & operator= (const QString & path)

virtual void setPath (const QString & path)

virtual QString path () const

virtual QString absPath () const

virtual QString canonicalPath () const

virtual QString dirName () const

virtual QString filePath (const QString & fileName, bool acceptAbsPath = TRUE) const
virtual QString absFilePath (const QString & fileName, bool acceptAbsPath = TRUE) const
virtual bool ed (const QString & dirName, bool acceptAbsPath = TRUE)

virtual bool cdUp ()

QString nameFilter () const

virtual void setNameFilter (const QString & nameFilter)

FilterSpec filter () const

virtual void setFilter (int filterSpec)

SortSpec sorting () const

virtual void setSorting (int sortSpec)

bool matchAllDirs () const

virtual void setMatchAllDirs (bool enable)

uint count () const

29

QDir Class Reference

QString operator[] (int index) const
virtual QStrList encodedEntryList (int filterSpec = DefaultFilter, int sortSpec = DefaultSort) const (obsolete)

virtual QStrList encodedEntryList (const QString & namekFilter, int filterSpec = DefaultFilter, int sortSpec =
DefaultSort) const (obsolete)

virtual QStringList entryList (int filterSpec = DefaultFilter, int sortSpec = DefaultSort) const

virtual QStringList entryList (const QString & nameFilter, int filterSpec = DefaultFilter, int sortSpec =
DefaultSort) const

virtual const QFileInfoList * entryInfoList (int filterSpec = DefaultFilter, int sortSpec = DefaultSort) const

virtual const QFileInfoList * entryInfoList (const QString & nameFilter, int filterSpec = DefaultFilter,
int sortSpec = DefaultSort) const

virtual bool mkdir (const QString & dirName, bool acceptAbsPath = TRUE) const
virtual bool rmdir (const QString & dirName, bool acceptAbsPath = TRUE) const
virtual bool isReadable () const

virtual bool exists () const

virtual bool isRoot () const

virtual bool isRelative () const

virtual void convertToAbs ()

virtual bool operator== (const QDir & d) const

virtual bool operator!= (const QDir & d) const

virtual bool remove (const QString & fileName, bool acceptAbsPath = TRUE)
virtual bool rename (const QString & oldName, const QString & newName, bool acceptAbsPaths = TRUE)
virtual bool exists (const QString & name, bool acceptAbsPath = TRUE)

Static Public Members

QString convertSeparators (const QString & pathName)
const QFilelnfoList * drives ()

char separator ()

bool setCurrent (const QString & path)

QDir current ()

QDir home ()

QDir root ()

QString currentDirPath ()

QString homeDirPath ()

QString rootDirPath ()

bool match (const QStringList & filters, const QString & fileName)
bool match (const QString & filter, const QString & fileName)
QString cleanDirPath (const QString & filePath)

bool isRelativePath (const QString & path)

30

QDir Class Reference 31

Detailed Description

The QDir class provides access to directory structures and their contents in a platform-independent way.

A QDir is used to manipulate path names, access information regarding paths and files, and manipulate the underlying
file system.

A QDir can point to a file using either a relative or an absolute file path. Absolute file paths begin with the directory
separator "/" or with a drive specification (except under Unix). If you always use "/" as a directory separator, Qt will
translate your paths to conform to the underlying operating system. Relative file names begin with a directory name
or a file name and specify a path relative to the current directory.

The "current" path refers to the application’s working directory. A QDir’s own path is set and retrieved with setPath()
and path().

An example of an absolute path is the string "/tmp/quartz", a relative path might look like "src/fatlib". You can use
the function isRelative() to check if a QDir is using a relative or an absolute file path. Call convertToAbs() to convert
a relative QDir to an absolute one. For a simplified path use cleanDirPath(). To obtain a path which has no symbolic

links or redundant ".." elements use canonicalPath(). The path can be set with setPath(), or changed with cd() and
cdUpO.

QDir provides several static functions, for example, setCurrent() to set the application’s working directory and current-
DirPath() to retrieve the application’s working directory. Access to some common paths is provided with the static func-
tions, current(), home() and root() which return QDir objects or currentDirPath(), homeDirPath() and rootDirPath()
which return the path as a string.

The number of entries in a directory is returned by count(). Obtain a string list of the names of all the files and
directories in a directory with entryList(). If you prefer a list of QFileInfo pointers use entryInfoList(). Both these
functions can apply a name filter, an attributes filter (e.g. read-only, files not directories, etc.), and a sort order. The
filters and sort may be set with calls to setNameFilter(), setFilter() and setSorting(). They may also be specified in the
entryList() and entryInfoList()’s arguments.

Create a new directory with mkdir(), rename a directory with rename() and remove an existing directory with rmdir().
Remove a file with remove(). You can interrogate a directory with exists(), isReadable() and isRoot().

To get a path with a filename use filePath(), and to get a directory name use dirName(); neither of these functions
checks for the existence of the file or directory.

The list of root directories is provided by drives(); on Unix systems this returns a list containing one root directory, "/";
on Windows the list will usually contain "C:/", and possibly "D:/", etc.

If you need the path in a form suitable for the underlying operating system use convertSeparators().
Examples:
See if a directory exists.

Q@ir d("example"); Il ",/ exanple"

if (!d.exists())
gWarning("Cannot find the exanple directory”);

Traversing directories and reading a file.

Q@ir d=Qdr::root(); "

if (!d.ocd("tm")) { I " top"
gwarning("Cannot find the \"/tnp\" directory");

} else {

QFile f(d.filePath("exl.txt")); Il "/tnplexl. txt"

QDir Class Reference 32

}

if (!'f.open(10O ReadWite))
gwWarning("Cannot create the file %", f.nanme());

A program that lists all the files in the current directory (excluding symbolic links), sorted by size, smallest first.

#i ncl ude
#include <qdir.h>

int min(int argc, char **argv)

{

}

Qir d;
d.setFilter(QDir::Files | Qir::Hdden | Qir::NoSynLinks);
d.setSorting(QDir::Size | Qir::Reversed)

const QFilelnfolList *list = d.entrylnfolList();
QFilelnfoListlterator it(*list);
QFilelnfo *fi;

printf(" Bytes Filename\n");

while ((fi =it.current()) !'=0) {
printf("90li 9%\n", fi->size(), fi->fileName().latinl());
++it;

}

return 0;

See also Input/Output and Networking.

Member Type Documentation

QDir::FilterSpec

This enum describes how QDir is to select which entries in a directory to return. The filter value is specified by OR-ing
together values from the following list:

e (Dir::Dirs - List directories only.
e QDir::Files - List files only.
e QDir::Drives - List disk drives (ignored under Unix).

e QDir::NoSynlinks - Do not list symbolic links (ignored by operating systems that don’t support symbolic links).

e (Dir:: Al - List directories, files, drives and symlinks (this does not list borken symlinks unless you specify

System).

e QDir:: TypeMask - A mask for the the Dirs, Files, Drives and NoSymlLinks flags.

e (Dir:: Readabl e - List files for which the application has read access.

e Dir::Witabl e - List files for which the application has write access.

e (Dir:: Execut abl e - List files for which the application has execute access.
e (Dir:: RVEMask - A mask for the Readable, Writable and Executable flags.

QDir Class Reference 33

e Dir::Mdified - Only list files that have been modified (ignored under Unix).

e QDir:: H dden - List hidden files (on Unix, files starting with a .).

e (Dir:: System- List system files (on Unix, FIFOs, sockets and device files)

e QDir::AccessMask - A mask for the Readable, Writable, Executable Modified, Hidden and System flags
e (Dir::DefaultFilter -Internal flag.

If you do not set any of Readable, Writable or Executable, QDir will set all three of them. This makes the default easy
to write and at the same time useful.

Examples: Readabl ¢| Wi t abl e means list all files for which the application has read access, write access or both.
Di rs| Drives means list drives, directories, all files that the application can read, write or execute, and also symlinks
to such files/directories.

QDir::SortSpec

This enum describes how QDir is to sort the list of entries returned by entryList() or entryInfoList(). The sort value is
specified by OR-ing together values from the following list:

e (Dir::Name - Sort by name.

e QDir::Tine - Sort by time (modification time).

e (Dir:: Size - Sort by file size.

e QDir::Unsorted - Do not sort.

e QDir:: SortByMask - A mask for Name, Time and Size.

e QDir::DirsFirst - Put the directories first, then the files.
e QDir:: Reversed - Reverse the sort order.

e (QDir::1gnoreCase - Sort case-insensitively.

e (Dir::DefaultSort - Internal flag.

You can only specify one of the first four.

If you specify both DirsFirst and Reversed, directories are still put first, but in reverse order; the files will be listed after
the directories, again in reverse order.

Member Function Documentation

QDir::QDir ()

Constructs a QDir pointing to the current directory.

See also currentDirPath() [p. 36].
QDir::QDir (const QString & path, const QString & nameFilter = QString::null, int sortSpec
= Name | IgnoreCase, int filterSpec = All)

Constructs a QDir for with path path that filters its entries by name with nameFilter and by attributes with filterSpec. It
also sorts the names using sortSpec.

QDir Class Reference 34

The default nameFilter is an empty string, which excludes nothing; the default filterSpec is All, which also means
exclude nothing. The default sortSpec is Nane| | gnor eCase, i.e. sort by name case-insensitively.

Example that lists all the files in "/tmp":
Q@ir d("/tmp");

for (int i =0; i <d.count(); i++)
printf("%\n", di]);

nm

If path is " or null, QDir uses "." (the current directory). If nameFilter is "" or null, QDir uses the name filter "*" (all

files).
Note that path need not exist.
See also exists() [p. 381, setPath() [p. 43], setNameFilter() [p. 43], setFilter() [p. 43] and setSorting() [p. 44].

QDir::QDir (const QDir & d)

Constructs a QDir that is a copy of the directory d.

See also operator=() [p. 41].

QDir::~QDir () [virtual]

Destroys the QDir frees up its resources.

QString QDir::absFilePath (const QString & fileName, bool acceptAbsPath = TRUE)
const [virtual]

Returns the absolute path name of a file in the directory. Does not check if the file actually exists in the directory.

Redundant multiple separators or "." and ".." directories in fileName will not be removed (see cleanDirPath()).

If acceptAbsPath is TRUE a fileName starting with a separator "/" will be returned without change. If acceptAbsPath is
FALSE an absolute path will be prepended to the fileName and the resultant string returned.

See also filePath() [p. 38].

QString QDir::absPath () const [virtual]

Returns the absolute path (a path that starts with "/" or a drive specification), which may contain symbolic links, but

nn nn

never contains redundant ".", ".." or multiple separators.

See also setPath() [p. 431, canonicalPath() [p. 34], exists() [p. 381, cleanDirPath() [p. 35], dirName() [p. 36] and
absFilePath() [p. 34].

Example: fileiconview/qfileiconview.cpp.

QString QDir::canonicalPath () const [virtual]

nn

Returns the canonical path, i.e. a path without symbolic links or redundant "." or ".." elements.

QDir Class Reference 35

On systems that do not have symbolic links this function will always return the same string that absPath returns. If the
canonical path does not exist (normally due to dangling symbolic links) canonicalPath() returns a null string.

See also path() [p. 42], absPath() [p. 34], exists() [p. 38], cleanDirPath() [p. 35], dirName() [p. 36], absFilePath()
[p. 34] and QString::isNull() [Datastructures and String Handling with Qt].

bool QDir::cd (const QString & dirName, bool acceptAbsPath = TRUE) [virtual]

Changes the QDir’s directory to directory dirName.

If acceptAbsPath is TRUE a path starting with separator "/" will cause the function to change to the absolute directory.
If acceptAbsPath is FALSE any number of separators at the beginning of dirName will be removed and the function will
decend into dirName.

Returns TRUE if the new directory exists and is readable. Note that the logical cd() operation is not performed if the
new directory does not exist.

Calling cd("..") is equivalent to calling cdUp().
See also cdUp() [p. 35], isReadable() [p. 39], exists() [p. 38] and path() [p. 42].

Example: fileiconview/mainwindow.cpp.

bool QDir::cdUp () [virtual]

Changes directory by moving one directory up from the QDir’s current directory.

Returns TRUE if the new directory exists and is readable. Note that the logical cdUp() operation is not performed if
the new directory does not exist.

See also cd() [p. 351, isReadable() [p. 39], exists() [p. 38] and path() [p. 42].

QString QDir::cleanDirPath (const QString & filePath) [static]

Removes all multiple directory separators "/" and resolves any "."s or ".."s found in the path, filePath.

Symbolic links are kept. This function does not return the canonical path, but rather the most simplified version of the
input. "./local" becomes "local", "local/../bin" becomes "bin" and "/local/usr/../bin" becomes "/local/bin".

See also absPath() [p. 34] and canonicalPath() [p. 34].

QString QDir::convertSeparators (const QString & pathName) [static]

Converts the ’/’ separators in pathName to the separators appropriate for the underlying operating system. Returns the
translated string.

On Windows, convertSeparators("c:/winnt/system32") returns "c:\winnt\system32".
The returned string may be the same as the argument on some operating systems, for example on Unix.

void QDir::convertToAbs () [virtual]

Converts the directory path to an absolute path. If it is already absolute nothing is done.

QDir Class Reference 36
See also isRelative() [p. 39].

uint QDir::count () const

Returns the total number of directories and files that were found.
Equivalent to entryList().count().

See also operator[]() [p. 41] and entryList() [p. 38].

QDir QDir::current () [static]

Returns the application’s current directory.
Use path() to access a QDir object’s path.
See also currentDirPath() [p. 36] and QDir::QDir() [p. 33].

QString QDir::currentDirPath () [static]

Returns the absolute path of the application’s current directory.
See also current() [p. 36].

Examples: helpviewer/helpwindow.cpp and qdir/qdir.cpp.

QString QDir::dirName () const [virtual]

Returns the name of the directory; this is not the same as the path, e.g. a directory with the name "mail", might have
the path "/var/spool/mail". If the directory has no name (e.g. it is the root directory) a null string is returned.

No check is made to ensure that a directory with this name actually exists.

See also path() [p. 421, absPath() [p. 341, absFilePath() [p. 341, exists() [p. 38] and QString::isNull() [Datastructures
and String Handling with Qt].

const QFileInfoList * QDir::drives () [static]

Returns a list of the root directories on this system. On win32, this returns a number of QFileInfo objects containing
"C:/", "D:/" etc. On other operating systems, it returns a list containing just one root directory (e.g. "/™).

The returned pointer is owned by Qt. Callers should not delete or modify it.

Example: dirview/main.cpp.

QStrList QDir::encodedEntryList (int filterSpec = DefaultFilter, int sortSpec = DefaultSort)
const [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

This function is included to easy porting from Qt 1.x to Qt 2.0, it is the same as entryList(), but encodes the filenames
as 8-bit strings using QFile::encodedName().

QDir Class Reference 37
It is more efficient to use entryList().

QStrList QDir::encodedEntryList (const QString & nameFilter, int filterSpec = DefaultFilter,
int sortSpec = DefaultSort) const [virtual]

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is included to easy porting from Qt 1.x to Qt 2.0, it is the same as entryList(), but encodes the filenames
as 8-bit strings using QFile::encodedName().

It is more efficient to use entryList().

const QFileInfoList * QDir::entryInfoList (const QString & nameFilter, int filterSpec =
DefaultFilter, int sortSpec = DefaultSort) const [virtual]

Returns a list of QFileInfo objects for all files and directories in the directory, ordered in accordance with setSorting()
and filtered in accordance with setFilter() and setNameFilter().

The filter and sorting specifications can be overridden using the nameFilter, filterSpec and sortSpec arguments.
Returns O if the directory is unreadable or does not exist.

The returned pointer is a const pointer to a QFileInfoList. The list is owned by the QDir object and will be reused on
the next call to entryInfoList() for the same QDir instance. If you want to keep the entries of the list after a subsequent
call to this function you will need to copy them.

See also entryList() [p. 38], setNameFilter() [p. 43], setSorting() [p. 44] and setFilter() [p. 43].

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

const QFileInfoList * QDir::entryInfoList (int filterSpec = DefaultFilter, int sortSpec =
DefaultSort) const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a list of QFileInfo objects for all files and directories in the directory, ordered in accordance with setSorting()
and filtered in accordance with setFilter() and setNameFilter().

The filter and sorting specifications can be overridden using the filterSpec and sortSpec arguments.
Returns O if the directory is unreadable or does not exist.

The returned pointer is a const pointer to a QFileInfoList. The list is owned by the QDir object and will be reused on
the next call to entryInfoList() for the same QDir instance. If you want to keep the entries of the list after a subsequent
call to this function you will need to copy them.

See also entryList() [p. 38], setNameFilter() [p. 431, setSorting() [p. 44] and setFilter() [p. 43].

QDir Class Reference 38

QStringList QDir::entryList (const QString & nameFilter, int filterSpec = DefaultFilter,
int sortSpec = DefaultSort) const [virtual]

Returns a list of the names of all files and directories in the directory, ordered in accordance with setSorting() and
filtered in accordance with setFilter() and setNameFilter().

The filter and sorting specifications can be overridden using the nameFilter, filterSpec and sortSpec arguments.

Returns an empty list if the directory is unreadable or does not exist.

See also entryInfoList() [p. 371, setNameFilter() [p. 43], setSorting() [p. 441 and setFilter() [p. 43].

QStringList QDir::entryList (int filterSpec = DefaultFilter, int sortSpec = DefaultSort)
const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Returns a list of the names of all files and directories in the directory, ordered in accordance with setSorting() and
filtered in accordance with setFilter() and setNameFilter().

The filter and sorting specifications can be overridden using the filterSpec and sortSpec arguments.
Returns an empty list if the directory is unreadable or does not exist.

See also entryInfoList() [p. 371, setNameFilter() [p. 431, setSorting() [p. 441 and setFilter() [p. 43].

bool QDir::exists (const QString & name, bool acceptAbsPath = TRUE) [virtual]

Checks for existence of the file name.

If acceptAbsPath is TRUE a path starting with separator "/" will check the file with the absolute path. If acceptAbsPath is
FALSE any number of separators at the beginning of name will be removed and the resultant file name will be checked.

Returns TRUE if the file exists; otherwise returns FALSE.

See also QFileInfo::exists() [p. 63] and QFile::exists() [p. 541.

bool QDir::exists () const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the directory exists. (If a file with the same name is found this function will return FALSE).
See also QFileInfo::exists() [p. 63] and QFile::exists() [p. 54].

QString QDir::filePath (const QString & fileName, bool acceptAbsPath = TRUE)
const [virtual]

Returns the path name of a file in the directory. Does not check if the file actually exists in the directory. If the QDir

is relative the returned path name will also be relative. Redundant multiple separators or "." and ".." directories in
fileName will not be removed (see cleanDirPath()).

If acceptAbsPath is TRUE a fileName starting with a separator "/" will be returned without change. If acceptAbsPath is
FALSE an absolute path will be prepended to the fileName and the resultant string returned.

QDir Class Reference 39

See also absFilePath() [p. 341, isRelative() [p. 39] and canonicalPath() [p. 34].

FilterSpec QDir::filter () const

Returns the value set by setFilter()

QDir QDir::home () [static]

Returns the home directory.

Under Windows NT/2000 the function forms the path by concatenating the HOVEDRI VE and HOVEPATH environment
variables.

Under Windows 9x and non-Windows operating systems the HOVE environment variable is used.
If the environment variables aren’t set, rootDirPath() is used instead.

See also homeDirPath() [p. 39].

QString QDir::homeDirPath () [static]

Returns the absolute path of the user’s home directory,

See also home() [p. 39].

bool QDir::isReadable () const [virtual]

Returns TRUE if the directory is readable AND we can open files by name. This function will return FALSE if only one
of these is present. Warning: A FALSE value from this function is not a guarantee that files in the directory are not
accessible.

See also QFileInfo::isReadable() [p. 65].

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

bool QDir::isRelative () const [virtual]

Returns TRUE if the directory path is relative to the current directory and returns FALSE if the path is absolute (e.g.
under UNIX a path is relative if it does not start with a "/").

See also convertToAbs() [p. 35].

bool QDir::isRelativePath (const QString & path) [static]

Returns TRUE if path is relative; returns FALSE if it is absolute.

See also isRelative() [p. 39].

QDir Class Reference 40

bool QDir::isRoot () const [virtual]

Returns TRUE if the directory is the root directory, otherwise FALSE.

Note: If the directory is a symbolic link to the root directory this function returns FALSE. If you want to test for this
you can use canonicalPath():

Example:
Qir d("/tnp/root_link");
d = d. canonical Path();

if (d.isRoot())
gwarning("It IS aroot link!");

See also root() [p. 42] and rootDirPath() [p. 43].

bool QDir::match (const QString & filter, const QString & fileName) [static]

Returns TRUE if the fileName matches the wildcard (glob) pattern filter. The filter may also contain multiple patterns
separated by spaces or semicolons.

(See QRegExp wildcard matching.)

See also QRegFExp::match() [Additional Functionality with Qt].

bool QDir::match (const QStringList & filters, const QString & fileName) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if the fileName matches any the wildcard (glob) patterns in the list of filters.

(See QRegExp wildcard matching.)

See also QRegExp::match() [Additional Functionality with Qt].

bool QDir::matchAllDirs () const

Returns the value set by setMatchAlIDirs()
See also setMatchAlIDirs() [p. 43].

bool QDir::mkdir (const QString & dirName, bool acceptAbsPath = TRUE) const [virtual]

Creates a directory.

If acceptAbsPath is TRUE a path starting with a separator (/’) will create the absolute directory, if acceptAbsPath is
FALSE any number of separators at the beginning of dirName will be removed.

Returns TRUE if successful, otherwise FALSE.
See also rmdir() [p. 42].

QDir Class Reference 41

QString QDir::nameFilter () const

Returns the string set by setNameFilter()

bool QDir::operator!= (const QDir & d) const [virtual]
Returns TRUE if directory d and this directory have different paths or different sort or filter settings; otherwise returns
FALSE.
Example:
[l The current directory is "/usr/local"
Qir di("/usr/local/bin");

Qir d2("bin");
if (dl'!'=d2) qgDebug("They differ\n"); // This is printed

QDir & QDir::operator= (const QDir & d)

Makes a copy of QDir d and assigns it to this QDir.

QDir & QDir::operator= (const QString & path)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the directory path to be the given path.

bool QDir::operator== (const QDir & d) const [virtual]
Returns TRUE if directory d and this directory have the same path and their sort and filter settings are the same;
otherwise returns FALSE.

Example:

/I The current directory is "/usr/local"

Qir di("/usr/local/bin");

Q@ir d2("bin");

d2. convert ToAbs();

if (dl ==d2) qDebug("They're the same\n"); // This is printed

QString QDir::operator[] (int index) const

Returns the file name at position index in the list of file names. Equivalent to entryList().at(index).
Returns a null string if the index is out of range or if the entryList() function failed.

See also count() [p. 36] and entryList() [p. 38].

QDir Class Reference 42

QString QDir::path () const [virtual]

Returns the path, this may contain symbolic links, but never contains redundant ".", ".." or multiple separators.
The returned path can be either absolute or relative (see setPath()).

See also setPath() [p. 431, absPath() [p. 341, exists() [p. 381, cleanDirPath() [p. 35], dirName() [p. 361, absFilePath()
[p. 34] and convertSeparators() [p. 35].

bool QDir::remove (const QString & fileName, bool acceptAbsPath = TRUE) [virtual]

Removes a file.

If acceptAbsPath is TRUE a path starting with separator "/" will remove the file with the absolute path. If acceptAbsPath
is FALSE any number of separators at the beginning of fileName will be removed and the resultant file name will be
removed.

Returns TRUE if the file is removed successfully; otherwise returns FALSE.

bool QDir::rename (const QString & oldName, const QString & newName,
bool acceptAbsPaths = TRUE) [virtual]

Renames a file or directory.

If acceptAbsPaths is TRUE a path starting with a separator (*/”) will rename the file with the absolute path, if acceptAb-
sPaths is FALSE any number of separators at the beginning of the names will be removed.

Returns TRUE if successful; otherwise returns FALSE.

On most file systems, rename() fails only if oldName does not exist or if newName and oldName are not on the same
partition. On Windows, rename() will fail if newName already exists. However, there are also other reasons why
rename() can fail. For example, on at least one file system rename() fails if newName points to an open file.

Example: fileiconview/qfileiconview.cpp.

bool QDir::rmdir (const QString & dirName, bool acceptAbsPath = TRUE) const [virtual]

Removes a directory.

If acceptAbsPath is TRUE a path starting with a separator (’/’) will remove the absolute directory, if acceptAbsPath is
FALSE any number of separators at the beginning of dirName will be removed.

The directory must be empty for rmdir() to succeed.
Returns TRUE if successful, otherwise FALSE.
See also mkdir() [p. 40].

QDir QDir::root () [static]

Returns the root directory.

See also rootDirPath() [p. 43] and drives() [p. 36].

QDir Class Reference 43

QString QDir::rootDirPath () [static]

Returns the absolute path for the root directory.
For UNIX operating systems this returns "/". For Windows file systems this returns "c:/".

See also root() [p. 42] and drives() [p. 36].

char QDir::separator () [static]

Returns the native directory separator; "/" under UNIX and "\" under MS-DOS, Windows NT and OS/2.

You do not need to use this function to build file paths. If you always use "/", Qt will translate your paths to conform
to the underlying operating system.

bool QDir::setCurrent (const QString & path) [static]

Sets the application’s current working directory to path. Returns TRUE if the directory was successfully changed;
otherwise returns FALSE.

void QDir::setFilter (int filterSpec) [virtual]

Sets the filter used by entryList() and entryInfoList() to filterSpec. The filter is used to specify the kind of files that
should be returned by entryList() and entryInfoList(). See QDir::FilterSpec.

See also filter() [p. 39] and setNameFilter() [p. 43].

void QDir::setMatchAllDirs (bool enable) [virtual]

If enable is TRUE then all directories are included (e.g. in entryList()), and the nameFilter() is only applied to the files.
If enable is FALSE then the nameFilter() is applied to both directories and files.

See also matchAllDirs() [p. 40].

void QDir::setNameFilter (const QString & nameFilter) [virtual]

Sets the name filter used by entryList() and entryInfoList() to nameFilter.

The nameFilter is a wildcard (globbing) filter that understands "*" and "?" wildcards. (See QRegExp wildcard matching.)

You may specify several filter entries all separated by a single space " " or by a semi-colon ";".

For example, if you want entryList() and entryInfoList() to list all files ending with ".cpp" and all files ending with ".h",
you would use either dir.setNameFilter("*.cpp *.h") or dir.setNameFilter("*.cpp;*.h").

See also nameFilter() [p. 41] and setFilter() [p. 43].

void QDir::setPath (const QString & path) [virtual]

nn nn

Sets the path of the directory to path. The path is cleaned of redundant ".", ".." and of multiple separators. No check is
made to ensure that a directory with this path exists.

QDir Class Reference 44

The path can be either absolute or relative. Absolute paths begin with the directory separator "/" or a drive specification
(except under Unix). Relative file names begin with a directory name or a file name and specify a path relative to the
current directory. An example of an absolute path is the string "/tmp/quartz", a relative path might look like "src/fatlib".

See also path() [p. 42], absPath() [p. 341, exists() [p. 38], cleanDirPath() [p. 35], dirName() [p. 36], absFilePath()
[p. 341, isRelative() [p. 39] and convertToAbs() [p. 35].

void QDir::setSorting (int sortSpec) [virtual]

Sets the sort order used by entryList() and entryInfoList().
The sortSpec is specified by OR-ing values from the enum QDir::SortSpec.

See also sorting() [p. 44] and SortSpec [p. 33].

SortSpec QDir::sorting () const

Returns the value set by setSorting()

See also setSorting() [p. 44] and SortSpec [p. 33].

QDns Class Reference

The QDns class provides asynchronous DNS lookups.
This class is part of the network module.
#i ncl ude <qgdns. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m enum RecordType { None, A, Aaaa, Mx, Srv, Cname, Ptr, Txt }
= QDns ()

m QDns (const QString & label, RecordType rr = A)

m QDns (const QHostAddress & address, RecordType rr = Ptr)
virtual ~QDns ()

virtual void setLabel (const QString & label)

virtual void setLabel (const QHostAddress & address)
QString label () const

virtual void setRecordType (RecordType rr = A)
RecordType recordType () const

m bool isWorking () const

m QValueList<QHostAddress> addresses () const

= QValueList<MailServer> mailServers () const

m QValueList<Server> servers () const

m QStringList hostNames () const

m QStringList texts () const

m QString canonicalName () const
e QStringList qualifiedNames () const

Signals

m void resultsReady ()

45

QDns Class Reference 46

Detailed Description

The QDns class provides asynchronous DNS lookups.

Both Windows and Unix provide synchronous DNS lookups; Windows provides some asynchronous support too. At the
time of writing neither operating system provides asynchronous support for anything other than hostname-to-address

mapping.

QDns rectifies this shortcoming, by providing asynchronous caching lookups for the record types that we expect modern
GUI applications to need in the near future.

The class is not straightforward to use (although it is much simpler than the native APIs); QSocket provides much
easier to use TCP connection facilities. The aim of QDns is to provide a correct and small API to the DNS and nothing
more. (We use "correctness" to mean that the DNS information is correctly cached, and correctly timed out.)

The API comprises a constructor, functions to set the DNS node (the domain in DNS terminology) and record type
(setLabel() and setRecordType()), the corresponding get functions, an isWorking() function to determine whether
QDns is working or reading, a resultsReady() signal and query functions for the result.

There is one query function for each RecordType, namely addresses(), mailServers(), servers(), hostNames() and
texts(). There are also two generic query functions: canonicalName() returns the name you’ll presumably end up
using (the exact meaning of this depends on the record type) and qualifiedNames() returns a list of the fully qualified
names label() maps to.

See also QSocket [p. 126] and Input/Output and Networking.

Member Type Documentation

QDns::RecordType

This enum type defines the record types QDns can handle. The DNS provides many more; these are the ones we've
judged to be in current use, useful for GUI programs and important enough to support right away:

e (Dns: : None - No information. This exists only so that QDns can have a default.

e (Dns:: A-IPv4 addresses. By far the most common type.

e (Dns:: Aaaa - IPv6 addresses. So far mostly unused.

e (Dns:: M - Mail eXchanger names. Used for mail delivery.

e (Dns:: Srv - SeRVer names. Generic record type for finding servers. So far mostly unused.

e (Dns:: Cnane - Canonical names. Maps from nicknames to the true name (the canonical name) for a host.
e (Dns:: Ptr - name PoinTeRs. Maps from IPv4 or IPv6 addresses to hostnames.

e (Dns:: Txt - arbitrary TeXT for domains.

We expect that some support for the RFC-2535 extensions will be added in future versions.

Member Function Documentation

QDns::QDns ()

Constructs a DNS query object with invalid settings for both the label and the search type.

QDns Class Reference 47

QDns::QDns (const QString & label, RecordType rr = A)

Constructs a DNS query object that will return record type rr information about label.

The DNS lookup is started the next time the application enters the event loop. When the result is found the signal
resultsReady() is emitted.

rr defaults to A, IPv4 addresses.

QDns::QDns (const QHostAddress & address, RecordType rr = Ptr)

Constructs a DNS query object that will return record type rr information about host address address. The label is set
to the IN-ADDR.ARPA domain name. This is useful in combination with the Ptr record type (e.g. if you want to look
up a hostname for a given address).

The DNS lookup is started the next time the application enters the event loop. When the result is found the signal
resultsReady() is emitted.

rr defaults to Ptr, that maps addresses to hostnames.

QDns::~QDns () [virtual]

Destroys the DNS query object and frees its allocated resources.

QValueList<QHostAddress> QDns::addresses () const

Returns a list of the addresses for this name if this QDns object has a recordType() of QDns::A or QDns::Aaaa and the
answer is available; otherwise returns an empty list.

As a special case, if label() is a valid numeric IP address, this function returns that address.

QString QDns::canonicalName () const

Returns the canonical name for this DNS node. (This works regardless of what recordType() is set to.)
If the canonical name isn’t known, this function returns a null string.

The canonical name of a DNS node is its full name, or the full name of the target of its CNAME. For example, if
L.trolltech.com is a CNAME to lupinella.troll.no, and the search path for QDns is "trolltech.com", then the canonical
name for all of "lupinella”, "I", "lupinella.troll.no." and "l.trolltech.com" is "lupinella.troll.no.".

QStringList QDns::hostNames () const

Returns a list of host names if the record type is Ptr.

bool QDns::isWorking () const

Returns TRUE if QDns is doing a lookup for this object, and FALSE if this object already has the information it wants.

QDns emits the resultsReady() signal when the status changes to FALSE.

QDns Class Reference 48

Example: network/mail/smtp.cpp.

QString QDns::label () const

Returns the domain name for which this object returns information.

See also setLabel() [p. 49].

QValueList<MailServer> QDns::mailServers () const

Returns a list of mail servers if the record type is Mx. The class QDns:: Mai | Server contains the following public
variables:

e QString QDns::MailServer::name
e Q UINT16 QDns::MailServer::priority

Example: network/mail/smtp.cpp.

QStringList QDns::qualifiedNames () const

Returns a list of the fully qualified names label() maps to.

RecordType QDns::recordType () const

Returns the record type of this DNS query object.
See also setRecordType() [p. 491 and RecordType [p. 46].

void QDns::resultsReady () [signal]

This signal is emitted when results are available for one of the qualifiedNames().

Example: network/mail/smtp.cpp.

QValueList<Server> QDns::servers () const
Returns a list of servers if the record type is Srv. The class QDns: : Server contains the following public variables:

e QString QDns::Server::name

e Q UINT16 QDns::Server::priority
e Q UINT16 QDns::Server::weight
e Q UINT16 QDns::Server::port

QDns Class Reference 49

void QDns::setLabel (const QString & label) [virtual]

Sets this DNS query object to query for information about label.
This does not change the recordType(), but its isWorking() status will probably change as a result.

The DNS lookup is started the next time the application enters the event loop. When the result is found the signal
resultsReady() is emitted.

void QDns::setLabel (const QHostAddress & address) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets this DNS query object to query for information about the host address address. The label is set to the IN-
ADDR.ARPA domain name. This is useful in combination with the Ptr record type (e.g. if you want to look up a
hostname for a given address).

void QDns::setRecordType (RecordType rr = A) [virtual]

Sets this object to query for record type rr records.

The DNS lookup is started the next time the application enters the event loop. When the result is found the signal
resultsReady() is emitted.

See also RecordType [p. 46].

QStringList QDns::texts () const

Returns a list of texts if the record type is Txt.

QFile Class Reference

The QFile class is an I/0O device that operates on files.
#include <qgfile.h>

Inherits QIODevice [p. 76].

Public Members

m QFile ()

m QFile (const QString & name)

m ~QFile ()

m QString name () const

void setName (const QString & name)

typedef QCString (* EncoderFn) (const QString & fileName)
typedef QString (* DecoderFn) (const QCString & localfileName)
bool exists () const

bool remove ()

m virtual bool open (int m)

m bool open (int m, FILE * f)
bool open (int m, int f)
virtual void close ()

virtual void flush ()

virtual Offset size () const

virtual Offset at () const

virtual bool at (Offset pos)

virtual bool atEnd () const

m virtual Q_LONG readBlock (char * p, Q_ ULONG len)

m virtual Q_LONG readLine (char * p, Q_ ULONG maxlen)
m Q LONG readLine (QString & s, Q ULONG maxlen)

m virtual int getch ()

m virtual int putch (int ch)
e virtual int ungetch (int ch)
e int handle () const

50

QFile Class Reference 51

Static Public Members

m QCString encodeName (const QString & fileName)

m QString decodeName (const QCString & localFileName)
» void setEncodingFunction (EncoderFn f)

» void setDecodingFunction (DecoderFn f)

m bool exists (const QString & fileName)

m bool remove (const QString & fileName)

Important Inherited Members

m virtual QByteArray readAll ()

Detailed Description

The QFile class is an I/0 device that operates on files.

QFile is an I/0 device for reading and writing binary and text files. A QFile may be used by itself or more conveniently
with a QDataStream or QTextStream.

The file name is usually passed in the constructor but can be changed with setName(). You can check for a file’s
existence with exists() and remove a file with remove().

The file is opened with open(), closed with close() and flushed with flush(). Data is usually read and written using
QDataStream or QTextStream, but you can read with readBlock() and readLine() and write with writeBlock(). QFile
also supports getch(), ungetch() and putch().

The size of the file is returned by size(). You can get the current file position or move to a new file position using the
at() functions. If you've reached the end of the file, atEnd() returns TRUE. The file handle is returned by handle().

Here is a code fragment that uses QTextStream to read a text file line by line. It prints each line with a line number.

QFile f("file.txt");
if (f.open(l10O ReadOnly)) { Il file opened successfully

Qlext Streamt (&); Il use a text stream

@String s;

int n=1,

while ('t.eof()) { Il until end of file...
s = t.readLine(); Il line of text excluding "\n’
printf("9%8d: %\n", n++, s.latinl());

}

f.close();

}

The QFileInfo class holds detailed information about a file, such as access permissions, file dates and file types.
The QDir class manages directories and lists of file names.

Qt uses Unicode file names. If you want to do your own I/O on Unix systems you may want to use encodeName() (and
decodeName()) to convert the file name into the local encoding.

See also QDataStream [p. 19], QTextStream [p. 150] and Input/Output and Networking.

QFile Class Reference 52

Member Type Documentation

QFile::DecoderFn

This is used by QFile::setDecodingFunction().

QFile::EncoderFn

This is used by QFile::setEncodingFunction().

Member Function Documentation

QFile::QFile ()

Constructs a QFile with no name.

QFile::QFile (const QString & name)
Constructs a QFile with a file name name.

See also setName() [p. 58].

QFile::~QFile ()

Destroys a QFile. Calls close().

bool QFile::at (Offset pos) [virtual]

Sets the file index to pos. Returns TRUE if successful; otherwise returns FALSE.

Example:

QFile f("data.hin");

f.open(10 ReadOnly); Il index set to O

f.at(100); Il set index to 100

f.at(f.at()+50); Il set index to 150

f.at(f.size()-80); Il set index to 80 bhefore ECF
f.close()

Use at() without arguments to retrieve the file offset.

Warning: The result is undefined if the file was open()’ed using the IO Append specifier.
See also size() [p. 58] and open() [p. 55].

Reimplemented from QIODevice [p. 79].

QFile Class Reference 53

Offset QFile::at () const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns the position in the file.

See also size() [p. 58].

Reimplemented from QIODevice [p. 79].

bool QFile::atEnd () const [virtual]

Returns TRUE if the end of file has been reached; otherwise returns FALSE.
See also size() [p. 58].
Reimplemented from QIODevice [p. 79].

void QFile::close () [virtual]

Closes an open file.

The file is not closed if it was opened with an existing file handle. If the existing file handle is a FI LE*, the file is
flushed. If the existing file handle is an i nt file descriptor, nothing is done to the file.

Some "write-behind" filesystems may report an unspecified error on closing the file. These errors only indicate that
something may have gone wrong since the previous open(). In such a case status() reports I0_UnspecifiedError after
close(), otherwise I0_Ok.

See also open() [p. 55] and flush() [p. 54].

Examples: addressbook/centralwidget.cpp, application/application.cpp, helpviewer/helpwindow.cpp,
mdi/application.cpp, qdir/qdir.cpp, qwerty/qwerty.cpp and xml/outliner/outlinetree.cpp.

Reimplemented from QIODevice [p. 79].

QString QFile::decodeName (const QCString & localFileName) [static]

This does the reverse of QFile::encodeName() using localFileName.

See also setDecodingFunction() [p. 57].

QCString QFile::encodeName (const QString & fileName) [static]

When you use QFile, QFileInfo, and QDir to access the file system with Qt, you can use Unicode file names. On Unix,
these file names are converted to an 8-bit encoding. If you want to do your own file I/0 on Unix, you should convert
the file name using this function. On Windows NT, Unicode file names are supported directly in the file system and this
function should be avoided. On Windows 95, non-Latin1 locales are not supported at this time.

By default, this function converts fileName to the local 8-bit encoding determined by the user’s locale. This is sufficient
for file names that the user chooses. File names hard-coded into the application should only use 7-bit ASCII filename
characters.

The conversion scheme can be changed using setEncodingFunction(). This might be useful if you wish to give the user
an option to store file names in utf-8, etc., but be ware that such file names would probably then be unrecognizable

QFile Class Reference 54

when seen by other programs.

See also decodeName() [p. 53].

bool QFile::exists (const QString & fileName) [static]

Returns TRUE if the file given by fileName exists; otherwise returns FALSE.

Examples: dirview/dirview.cpp and helpviewer/helpwindow.cpp.

bool QFile::exists () const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Returns TRUE if this file exists; otherwise returns FALSE.

See also name() [p. 54].

void QFile::flush () [virtual]

Flushes the file buffer to the disk.
close() also flushes the file buffer.

Reimplemented from QIODevice [p. 80].

int QFile::getch () [virtual]

Reads a single byte/character from the file.

Returns the byte/character read, or -1 if the end of the file has been reached.
See also putch() [p. 56] and ungetch() [p. 58].

Reimplemented from QIODevice [p. 80].

int QFile::handle () const

Returns the file handle of the file.

This is a small positive integer, suitable for use with C library functions such as fdopen() and fentl(), as well as with
QSocketNotifier.

If the file is not open or there is an error, handle() returns -1.

See also QSocketNotifier [p. 142].

QString QFile::name () const

Returns the name set by setName().

See also setName() [p. 58] and QFilelnfo::fileName() [p. 64].

QFile Class Reference 55

bool QFile::open (int m) [virtual]

Opens the file specified by the file name currently set, using the mode m. Returns TRUE if successful, otherwise FALSE.

The mode parameter m must be a combination of the following flags:

e 10 Raw specified raw (non-buffered) file access.

e 10 ReadOnly opens the file in read-only mode.

e 10 WriteOnly opens the file in write-only mode (and truncates).

e 10 _ReadWrite opens the file in read/write mode, equivalent to (1 O_ReadOnly | 10 WiteOly).

e 10 Append opens the file in append mode. This mode is very useful when you want to write something to a log
file. The file index is set to the end of the file. Note that the result is undefined if you position the file index
manually using at() in append mode.

e 10 Truncate truncates the file.

e 10_Translate enables carriage returns and linefeed translation for text files under MS-DOS, Windows and OS/2.
The raw access mode is best when I/0 is block-operated using 4kB block size or greater. Buffered access works better
when reading small portions of data at a time.

Important: When working with buffered files, data may not be written to the file at once. Call flush() to make sure the
data is really written.

Warning: We have experienced problems with some C libraries when a buffered file is opened for both reading and
writing. If a read operation takes place immediately after a write operation, the read buffer contains garbage data.
Worse, the same garbage is written to the file. Calling flush() before readBlock() solved this problem.

If the file does not exist and I0_WriteOnly or I0_ReadWrite is specified, it is created.
Example:

QFile f1("/tnp/data.bin");

QFile f2("readme.txt");

fl.open(10O Raw | 10 ReadWite | 1O Append)

f2.open(10 ReadOnly | 10 Translate);
See also name() [p. 541, close() [p. 531, isOpen() [p. 81] and flush() [p. 541.

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp,
qdir/qdir.cpp, qwerty/qwerty.cpp and xml/outliner/outlinetree.cpp.

Reimplemented from QIODevice [p. 82].

bool QFile::open (int m, FILE * f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Opens a file in the mode m using an existing file handle f. Returns TRUE if successful, otherwise FALSE.

Example:
#i ncl ude

void printError(const char* nsg)

{

QFile Class Reference 56

Gile f;

f.open(IO WiteOnly, stderr);

f.witeBlock(msg, gstrlen(nsg)); Il wite to stderr
f.close();

}

When a QFile is opened using this function, close() does not actually close the file, only flushes it.

Warning: If fis stdin, stdout, stderr, you may not be able to seek. See QIODevice::isSequentialAccess() for more
information.

See also close() [p. 531.

bool QFile::open (int m, int f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Opens a file in the mode m using an existing file descriptor f. Returns TRUE if successful, otherwise FALSE.
When a QFile is opened using this function, close() does not actually close the file.

The QFile that is opened using this function, is automatically set to be in raw mode; this means that the file input/output
functions are slow. If you run into performance issues, you should try to use one of the other open functions.

Warning: If f is one of 0 (stdin), 1 (stdout) or 2 (stderr), you may not be able to seek. size() is set to | NT_MAX (in
limits.h).

See also close() [p. 53].

int QFile::putch (int ch) [virtual]

Writes the character ch to the file.

Returns ch, or -1 if some error occurred.

See also getch() [p. 54] and ungetch() [p. 58].
Reimplemented from QIODevice [p. 83].

QByteArray QIODevice::readAll () [virtual]

This convenience function returns all of the remaining data in the device.

Q_LONG QFile::readBlock (char * p, Q_ ULONG len) [virtual]

Reads at most len bytes from the file into p and returns the number of bytes actually read.
Returns -1 if a serious error occurred.

Warning: We have experienced problems with some C libraries when a buffered file is opened for both reading and
writing. If a read operation takes place immediately after a write operation, the read buffer contains garbage data.
Worse, the same garbage is written to the file. Calling flush() before readBlock() solved this problem.

See also writeBlock() [p. 85].

QFile Class Reference 57

Example: qwerty/qwerty.cpp.
Reimplemented from QIODevice [p. 83].

Q_LONG QFile::readLine (char * p, Q ULONG maxlen) [virtual]

Reads a line of text.

Reads bytes from the file into the char* p, until end-of-line or maxlen bytes have been read, whichever occurs first.
Returns the number of bytes read, or -1 if there was an error. The terminating newline is not stripped.

This function is efficient only for buffered files. Avoid readLine() for files that have been opened with the I0 Raw flag.
See also readBlock() [p. 56] and QTextStream::readLine() [p. 159].
Reimplemented from QIODevice [p. 83].

Q_LONG QFile::readLine (QString & s, Q_ ULONG maxlen)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Reads a line of text.

Reads bytes from the file into string s, until end-of-line or maxlen bytes have been read, whichever occurs first. Returns
the number of bytes read, or -1 if there was an error.g. end of file. The terminating newline is not stripped.

This function is efficient only for buffered files. Avoid readLine() for files that have been opened with the I0_Raw flag.
Note that the string is read as plain Latinl bytes, not Unicode.
See also readBlock() [p. 56] and QTextStream::readLine() [p. 159].

bool QFile::remove ()

Removes the file specified by the file name currently set. Returns TRUE if successful; otherwise returns FALSE.
The file is closed before it is removed.

bool QFile::remove (const QString & fileName) [static]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Removes the file fileName. Returns TRUE if successful, otherwise FALSE.

void QFile::setDecodingFunction (DecoderFn f) [static]

Sets the function for decoding 8-bit file names to f. The default uses the locale-specific 8-bit encoding.

See also encodeName() [p. 53] and decodeName() [p. 53].

void QFile::setEncodingFunction (EncoderFn f) [static]

Sets the function for encoding Unicode file names to f. The default encodes in the locale-specific 8-bit encoding.

QFile Class Reference 58
See also encodeName() [p. 53].

void QFile::setName (const QString & name)

Sets the name of the file to name. The name may have no path, a relative path or an absolute absolute directory path.
Do not call this function if the file has already been opened.

If the file name has no path or a relative path, the path used will be whatever the application’s current directory path
is at the time of the open() call.

Example:

Gile f;

Qir::setCurrent("/tnp");

f.setNang("readnme.txt");

Qir::setCurrent("/home");

f.open(10 ReadOnly); /1 opens "/hone/readne.txt" under Unix
Note that the directory separator "/" works for all operating systems supported by Qt.

See also name() [p. 541, QFileInfo [p. 59] and QDir [p. 29].

Offset QFile::size () const [virtual]

Returns the file size.
See also at() [p. 52].
Reimplemented from QIODevice [p. 84].

int QFile::ungetch (int ch) [virtual]

Puts the character ch back into the file and decrements the index if it is not zero.
This function is normally called to "undo" a getch() operation.

Returns ch, or -1 if some error occurred.

See also getch() [p. 54] and putch() [p. 56].

Reimplemented from QIODevice [p. 841.

QFileInfo Class Reference

The QFilelnfo class provides system-independent file information.

#include <qgfileinfo.h>

Public Members

m enum PermissionSpec { ReadUser = 0400, WriteUser = 0200, ExeUser = 0100, ReadGroup = 0040,
WriteGroup = 0020, ExeGroup = 0010, ReadOther = 0004, WriteOther = 0002, ExeOther = 0001 }

= QFileInfo ()

QFileInfo (const QString & file)

QFilelnfo (const QFile & file)

QFilelInfo (const QDir & d, const QString & fileName)
QFilelnfo (const QFileInfo & fi)

~QFilelnfo ()

m QFileInfo & operator= (const QFilelnfo & fi)

m void setFile (const QString & file)

m void setFile (const QFile & file)

m void setFile (const QDir & d, const QString & fileName)
= bool exists () const

m void refresh () const

» bool caching () const

m void setCaching (bool enable)

m QString filePath () const

m QString fileName () const

m QString absFilePath () const

m QString baseName (bool complete = FALSE) const
m QString extension (bool complete = TRUE) const
m QString dirPath (bool absPath = FALSE) const

= QDir dir (bool absPath = FALSE) const

m bool isReadable () const

= bool isWritable () const

m bool isExecutable () const

m bool isRelative () const
= bool convertToAbs ()

m bool isFile () const

m bool isDir () const

59

QFilelnfo Class Reference 60

m bool isSymLink () const

m QString readLink () const

m QString owner () const

m uint ownerId () const

m QString group () const

m uint groupld () const

m bool permission (int permissionSpec) const
m uint size () const

e QDateTime created () const

e QDateTime lastModified () const
e QDateTime lastRead () const

Detailed Description

The QFilelnfo class provides system-independent file information.

QFilelnfo provides information about a file’s name and position (path) in the file system, its access rights and whether
it is a directory or symbolic link, etc. The file’s size and last modified/read times are also available.

A QFilelnfo can point to a file with either a relative or an absolute file path. Absolute file paths begin with the directory
separator "/" or a drive specification (except on Unix). Relative file names begin with a directory name or a file name
and specify a path relative to the current working directory. An example of an absolute path is the string "/tmp/quartz".
A relative path might look like "src/fatlib". You can use the function isRelative() to check whether a QFileInfo is using
a relative or an absolute file path. You can call the function convertToAbs() to convert a relative QFileInfo’s path to an
absolute path.

The file that the QFileInfo works on is set in the constructor or later with setFile(). Use exists() to see if the file exists
and size() to get its size.

To speed up performance, QFileInfo caches information about the file. Because files can be changed by other users or
programs, or even by other parts of the same program, there is a function that refreshes the file information: refresh().
If you want to switch off a QFileInfo’s caching and force it to access the file system every time you request information
from it call setCaching(FALSE).

The file’s type is obtained with isFile(), isDir() and isSymLink(). The readLink() function provides the name of the file
the symlink points to.

Elements of the file’s name can be extracted with dirPath() and fileName(). The fileName()’s parts can be extracted
with baseName() and extension().

The file’s dates are returned by created(), lastModified() and lastRead(). Information about the file’s access permis-
sions is obtained with isReadable(), isWritable() and isExecutable(). The file’s ownership is available from owner(),
ownerId(), group() and groupld(). You can examine a file’s permissions and ownership in a single statement using the
permission() function.

If you need to read and traverse directories, see the QDir class.

See also Input/Output and Networking.

QFilelnfo Class Reference 61

Member Type Documentation

QFileInfo::PermissionSpec

This enum is used by the permission() function to report the permissions and ownership of a file. The values may be
OR-ed together to test multiple permissions and ownership values.

e (Filelnfo::ReadUser - The file is readable by the user.

e (Filelnfo::WiteUser - The file is writable by the user.

e (Filelnfo:: ExeUser - The file is executable by the user.

e (Filelnfo::ReadG oup - The file is readable by the group.
e (Filelnfo::WiteG oup - The file is writable by the group.
e (Filelnfo:: ExeG oup - The file is executable by the group.
e (Filelnfo::ReadQ her - The file is readable by anyone.

e (Filelnfo::WiteQher - The file is writable by anyone.

e (Filelnfo::ExeQ her - The file is executable by anyone.

Member Function Documentation

QFilelnfo::QFilelnfo ()

Constructs a new empty QFileInfo.

QFilelnfo::QFileInfo (const QString & file)

Constructs a new QFileInfo that gives information about the given file. The file can be an absolute or a relative file
path.

See also setFile() [p. 671, isRelative() [p. 651, QDir::setCurrent() [p. 43] and QDir::isRelativePath() [p. 39].

QFilelnfo::QFileInfo (const QFile & file)

Constructs a new QFileInfo that gives information about file file.
If the file has a relative path, the QFileInfo will also have a relative path.

See also isRelative() [p. 65].

QFilelnfo::QFileInfo (const QDir & d, const QString & fileName)

Constructs a new QFilelnfo that gives information about the file named fileName in the directory d.
If the directory has a relative path, the QFileInfo will also have a relative path.

See also isRelative() [p. 65].

QFilelnfo Class Reference 62

QFileInfo::QFileInfo (const QFileInfo & fi)

Constructs a new QFilelnfo that is a copy of fi.

QFileInfo::~QFileInfo ()

Destroys the QFileInfo and frees its resources.

QString QFileInfo::absFilePath () const

Returns the absolute path including the file name.

The absolute path name consists of the full path and the file name. On Unix this will always begin with the root, ’/,
directory. On Windows this will always begin ’D:/” where D is a drive letter, except for network shares that are not
mapped to a drive letter, in which case the path will begin °//sharename/’.

This function returns the same as filePath(), unless isRelative() is TRUE.

This function can be time consuming under Unix (in the order of milliseconds).
See also isRelative() [p. 65] and filePath() [p. 64].

Examples: biff/biff.cpp and fileiconview/qfileiconview.cpp.

QString QFileInfo::baseName (bool complete = FALSE) const

Returns the base name of the file.

If complete is FALSE (the default) the base name consists of all characters in the file name up to (but not including) the
first’.” character.

If complete is TRUE the base name consists of all characters in the file up to (but not including) the last’.’ character.
The path is not included in either case.
Example:

QFilelnfo fi("/tnp/archive.tar.gz");

String base = fi.baseNanme(); // base
base = fi.baseNane(TRUE); Il base

"archive"
"archive.tar"

See also fileName() [p. 64] and extension() [p. 63].

bool QFileInfo::caching () const

Returns TRUE if caching is enabled; otherwise returns FALSE.
See also setCaching() [p. 67] and refresh() [p. 671.

bool QFileInfo::convertToAbs ()

Converts the file path name to an absolute path.

QFilelnfo Class Reference 63

If it is already absolute, nothing is done.

See also filePath() [p. 64] and isRelative() [p. 65].

QDateTime QFilelnfo::created () const

Returns the date and time when the file was created.
On platforms where this information is not available, returns the same as lastModified ().

See also lastModified() [p. 65] and lastRead() [p. 66].

QDir QFilelnfo::dir (bool absPath = FALSE) const

Returns the directory path of the file.
If the QFilelnfo is relative and absPath is FALSE, the QDir will be relative; otherwise it will be absolute.
See also dirPath() [p. 631, filePath() [p. 641, fileName() [p. 64] and isRelative() [p. 65].

Example: fileiconview/qfileiconview.cpp.

QString QFileInfo::dirPath (bool absPath = FALSE) const

Returns the directory path of the file.
If absPath is TRUE an absolute path is returned.
See also dir() [p. 631, filePath() [p. 641, fileName() [p. 64] and isRelative() [p. 65].

Example: fileiconview/qfileiconview.cpp.

bool QFilelnfo::exists () const

Returns TRUE if the file exists; otherwise returns FALSE.

Examples: biff/biff.cpp and i18n/main.cpp.

QString QFileInfo::extension (bool complete = TRUE) const

Returns the file’s extension name.

If complete is TRUE (the default), extension() returns the string of all characters in the file name after (but not includ-
ing) the first’.” character.

If complete is FALSE, extension() returns the string of all characters in the file name after (but not including) the last’.’
character.

Example:
QFilelnfo fi("/tnp/archive.tar.gz");

QString ext = fi.extension(); // ext
ext = fi.extension(FALSE); Il ext

“tar.gz"
"gz"

QFilelnfo Class Reference 64

See also fileName() [p. 64] and baseName() [p. 62].
Example: qdir/qdir.cpp.

QString QFileInfo::fileName () const

Returns the name of the file, the file path is not included.

Example:

QFilelnfo fi("/tnp/archive.tar.gz");
QString name = fi.fileName(); Il nane = "archive.tar.gz"

See also isRelative() [p. 651, filePath() [p. 641, baseName() [p. 62] and extension() [p. 63].

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

QString QFilelnfo::filePath () const

Returns the file name, including the path (which may be absolute or relative).
See also isRelative() [p. 65] and absFilePath() [p. 62].

Examples: dirview/main.cpp and fileiconview/qfileiconview.cpp.

QString QFileInfo::group () const

Returns the group of the file. On Windows, on systems where files do not have groups, or if an error occurs, a null
string is returned.

This function can be time consuming under Unix (in the order of milliseconds).

See also groupld() [p. 641, owner() [p. 66] and ownerId() [p. 66].

uint QFileInfo::groupld () const

Returns the id of the group the file belongs to.
On Windows and on systems where files do not have groups this function always returns (uint) -2.

See also group() [p. 641, owner() [p. 66] and ownerld() [p. 66].

bool QFilelnfo::isDir () const

Returns TRUE if this object points to a directory or to a symbolic link to a directory; otherwise returns FALSE.
See also isFile() [p. 65] and isSymLink() [p. 65].

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

QFilelnfo Class Reference 65

bool QFileInfo::isExecutable () const

Returns TRUE if the file is executable; otherwise returns FALSE.

See also isReadable() [p. 651, isWritable() [p. 65] and permission() [p. 66].

bool QFilelnfo::isFile () const

Returns TRUE if this object points to a file. Returns FALSE if the object points to something which isn’t a file, e.g. a
directory or a symlink.

See also isDir() [p. 64] and isSymLink() [p. 65].

Examples: dirview/dirview.cpp, fileiconview/qfileiconview.cpp and qdir/qdir.cpp.

bool QFilelnfo::isReadable () const

Returns TRUE if the file is readable; otherwise returns FALSE.

See also isWritable() [p. 65], isExecutable() [p. 65] and permission() [p. 66].

bool QFileInfo::isRelative () const

Returns TRUE if the file path name is relative. Returns FALSE if the path is absolute (e.g. under Unix a path is absolute
if it begins with a "/").

bool QFileInfo::isSymLink () const

Returns TRUE if this object points to a symbolic link (or to a shortcut on Windows); otherwise returns FALSE.
See also isFile() [p. 65], isDir() [p. 64] and readLink() [p. 66].

Examples: dirview/dirview.cpp and fileiconview/qfileiconview.cpp.

bool QFileInfo::isWritable () const

Returns TRUE if the file is writable; otherwise returns FALSE.

See also isReadable() [p. 651, isExecutable() [p. 65] and permission() [p. 66].

QDateTime QFileInfo::lastModified () const

Returns the date and time when the file was last modified.
See also created() [p. 63] and lastRead() [p. 66].
Example: biff/biff.cpp.

QFilelnfo Class Reference 66

QDateTime QFileInfo::lastRead () const

Returns the date and time when the file was last read (accessed).

On platforms where this information is not available, returns the same as lastModified ().
See also created() [p. 63] and lastModified() [p. 65].

Example: biff/biff.cpp.

QFilelnfo & QFilelnfo::operator= (const QFileInfo & fi)

Makes a copy of fi and assigns it to this QFileInfo.

QString QFileInfo::owner () const

Returns the owner of the file. On Windows, on systems where files do not have owners, or if an error occurs, a null
string is returned.

This function can be time consuming under Unix (in the order of milliseconds).

See also ownerlId() [p. 661, group() [p. 64] and groupld() [p. 64].

uint QFileInfo::ownerlId () const

Returns the id of the owner of the file.
On Windows and on systems where files do not have owners this function returns ((uint) -2).

See also owner() [p. 66], group() [p. 64] and groupld() [p. 64].

bool QFileInfo::permission (int permissionSpec) const
Tests for file permissions. The permissionSpec argument can be several flags of type PermissionSpec OR-ed together to
check for permission combinations.
On systems where files do not have permissions this function always returns TRUE.
Example:

QFilelnfo fi("/tnp/archive.tar.gz");

if (fi.permssion(QFilelnfo::WiteUser | QFilelnfo::ReadGoup))

gwarning("I can change the file; my group can read the file.");

if (fi.permssion(QFilelnfo::WiteGoup | QFilelnfo::WiteCther))
gwarning("The group or others can change the file!");

See also isReadable() [p. 651, isWritable() [p. 65] and isExecutable() [p. 65].

QString QFileInfo::readLink () const

Returns the name a symlink (or shortcut on Windows) points to, or a null QString if the object isn’t a symbolic link.

QFilelnfo Class Reference 67

This name may not represent an existing file; it is only a string. QFilelnfo::exists() returns TRUE if the symlink points
to an existing file.

See also exists() [p. 63], isSymLink() [p. 65], isDir() [p. 64] and isFile() [p. 65].

void QFilelnfo::refresh () const
Refreshes the information about the file, i.e. reads in information from the file system the next time a cached property
is fetched.

See also setCaching() [p. 671.

void QFilelnfo::setCaching (bool enable)

If enable is TRUE, enables caching of file information. If enable is FALSE caching is disabled.

When caching is enabled, QFileInfo reads the file information from the file system the first time it’s needed, but
generally not later.

Caching is enabled by default.
See also refresh() [p. 67] and caching() [p. 62].

void QFilelnfo::setFile (const QString & file)

Sets the file that the QFileInfo provides information about to file.

The string given can be an absolute or a relative file path. Absolute paths begin with the directory separator (e.g. "/"
under Unix) or a drive specification (not applicable to Unix). Relative file names begin with a directory name or a file
name and specify a path relative to the current directory.

Example:
QString absolute = "/local/bin";
QString relative = "l ocal /bin";

QFilelnfo absFile(absolute);
QFilelnfo relFile(relative);

Qir::setCurrent(QDir::rootDirPath());
/] absFile and relFile now point to the sane file

Qir::setCurrent("/tnp");

/] absFile now points to "/local/bin",
Il while relFile points to "/tnp/local/hbin"

See also isRelative() [p. 65], QDir::setCurrent() [p. 43] and QDir::isRelativePath() [p. 39].

Example: biff/biff.cpp.

void QFilelnfo::setFile (const QFile & file)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QFilelnfo Class Reference 68

Sets the file that the QFileInfo provides information about to file.
If the file has a relative path, the QFileInfo will also have a relative path.

See also isRelative() [p. 65].

void QFilelnfo::setFile (const QDir & d, const QString & fileName)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the file that the QFileInfo provides information about to fileName in directory d.
If the file has a relative path, the QFileInfo will also have a relative path.

See also isRelative() [p. 65].

uint QFileInfo::size () const

Returns the file size in bytes, or 0 if the file does not exist or if the size is O or if the size cannot be fetched.

Example: qdir/qdir.cpp.

QFtp Class Reference

The QFtp class provides an implementation of the FTP protocol.
This class is part of the network module.

#include <qgftp. h>

Inherits QNetworkProtocol [p. 99].

Public Members

m QFtp ()
m virtual ~QFtp ()

Protected Members

m void parseDir (const QString & buffer, QUrlInfo & info)

Protected Slots

void readyRead ()

m void dataConnected ()

void dataClosed ()

void dataReadyRead ()

void dataBytesWritten (int nbytes)

Detailed Description

The QFtp class provides an implementation of the FTP protocol.

This class is derived from QNetworkProtocol. QFtp is not normally used directly, but rather through a QUrlOperator,
for example:

QUrl Qperator op("ftp://ftp.trolltech. con);
op.listChildren(); // Asks the server to provide a directory listing

69

QFtp Class Reference 70

This code will only work if the QFtp class is registered; to register the class, you must call gInitNetworkProtocols()
before using a QUrlOperator with QFtp.

If you really need to use QFtp directly, don’t forget to set its QUrlOperator with setUrl().

See also Qt Network Documentation [p. 4], QNetworkProtocol [p. 99], QUrlOperator [p. 179] and Input/Output and
Networking.

Member Function Documentation

QFtp::QFtp)

Constructs a QFtp object.

QFtp::~QFtp () [virtual]

Destructor

void QFtp::dataBytesWritten (int nbytes) [protected slot]

This function is called, when nbytes have been successfully written to the data socket.

void QFtp::dataClosed () [protected slot]

This function is called when the data connection has been closed.

void QFtp::dataConnected () [protected slot]

Some operations require a data connection to the server. If this connection could be opened, this function handles the
data connection.

void QFtp::dataReadyRead () [protected slot]

This function is called when new data arrived on the data socket.

void QFtp::parseDir (const QString & buffer, QUrlInfo & info) [protected]

Parses the string, buffer, which is one line of a directory listing which came from the FTP server, and sets the values
which have been parsed to the url info object, info.

void QFtp::readyRead () [protected slot]

If data has arrived on the command socket, this slot is called. The function loks at the data and passes it on to the
function which can handle it

QHostAddress Class Reference

The QHostAddress class provides an IP address.
This class is part of the network module.

#i ncl ude <ghost address. h>

Public Members

m QHostAddress ()

» QHostAddress (Q_UINT32 ip4Addr)

» QHostAddress (Q_UINTS8 * ip6Addr)

m QHostAddress (const QHostAddress & address)

m virtual ~QHostAddress ()

m QHostAddress & operator= (const QHostAddress & address)
m void setAddress (Q_UINT32 ip4Addr)

m void setAddress (Q UINTS8 * ip6Addr)

m bool setAddress (const QString & address)

m bool isIp4Addr () const

m Q UINT32 ip4Addr () const

m QString toString () const

m bool operator== (const QHostAddress & other) const

Detailed Description

The QHostAddress class provides an IP address.

This class contains an IP address in a platform and protocol independent manner. It stores both IPv4 and IPv6 addresses
in a way that you can easily access on any platform.

QHostAddress is normally used with the classes QSocket, QServerSocket and QSocketDevice to set up a server or to
connect to a host.

Host addresses may be set with setAddress() and retrieved with ip4Addr() or toString().
See also QSocket [p. 126], QServerSocket [p. 118], QSocketDevice [p. 135] and Input/Output and Networking.

71

QHostAddress Class Reference

Member Function Documentation

QHostAddress::QHostAddress ()

Creates a host address object with the IP address 0.0.0.0.

QHostAddress::QHostAddress (Q_UINT32 ip4Addr)

Creates a host address object for the IPv4 address ip4Addr.

QHostAddress::QHostAddress (Q _UINT8 * ip6Addr)

Creates a host address object with the specified IPv6 address.

ip6Addr must be a 16 byte array in network byte order (high-order byte first)

QHostAddress::QHostAddress (const QHostAddress & address)

Creates a copy of address.

QHostAddress::~QHostAddress () [virtual]

Destroys the host address object.

Q_UINT32 QHostAddress::ip4Addr () const

Returns the IPv4 address as a number.

For example, if the address is 127.0.0.1, the returned value is 2130706433 (hex: 7f000001).
This value is only valid when isIp4Addr() returns TRUE.

See also toString() [p. 73].

bool QHostAddress::isIp4Addr () const

Returns TRUE if the host address represents a IPv4 address; otherwise returns FALSE.

QHostAddress & QHostAddress::operator= (const QHostAddress & address)

Assigns another host address object address to this object and returns a reference to this object.

bool QHostAddress::operator== (const QHostAddress & other) const

Returns TRUE if this host address is the same as other; otherwise returns FALSE.

72

QHostAddress Class Reference 73

void QHostAddress::setAddress (Q_UINT32 ip4Addr)

Set the IPv4 address specified by ip4Addr.

void QHostAddress::setAddress (Q_UINTS8 * ip6Addr)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Set the IPv6 address specified by ip6Addr-.
ip6Addr must be a 16 byte array in network byte order (high-order byte first)

bool QHostAddress::setAddress (const QString & address)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the IPv4 or IPv6 address specified by the string representation address (e.g. "127.0.0.1"). Returns TRUE and sets
the address if the address was successfully parsed; otherwise returns FALSE and leaves the address unchanged.

QString QHostAddress::toString () const

Returns the address as a string.
For example, if the address is the IPv4 address 127.0.0.1, the returned string is "127.0.0.1".
See also ip4Addr() [p. 72].

QHttp Class Reference

The QHttp class provides an implementation of the HTTP protocol.
This class is part of the network module.

#include <ghttp. h>

Inherits QNetworkProtocol [p. 99].

Public Members

s QHttp ()
m virtual ~QHttp ()

Detailed Description

The QHttp class provides an implementation of the HTTP protocol.

This class is derived from QNetworkProtocol and can be used with QUrlOperator. In practice this class is used through
a QUrlOperator rather than directly, for example:

QUrl Qperator op("http://ww.trolltech.cont);
op.get("index.htm");

Note: this code will only work if the QHttp class is registered; to register the class, you must call glnitNetworkProto-
cols() before using a QUrlOperator with HTTP

QHttp only supports the operations operationGet() and operationPut(), i.e. QUrlOperator::get() and QUrlOpera-
tor::put(), if you use it with a QUrlOperator.

If you really need to use QHttp directly, don’t forget to set the QUrlOperator on which it operates using setUrl().

See also Qt Network Documentation [p. 4], QNetworkProtocol [p. 99], QUrlOperator [p. 179] and Input/Output and
Networking.

74

QHttp Class Reference 75

Member Function Documentation

QHttp::QHttp ()

Constructs a QHttp object. Usually there is no need to use QHttp directly, since it is more convenient to use it through
a QUrlOperator. If you want to use it directly, you must set the QUrlOperator on which it operates using setUrl().

QHttp::~QHttp () [virtual]

Destroys the QHttp object.

QIODevice Class Reference

The QIODevice class is the base class of I/0 devices.
#i ncl ude <qgi odevi ce. h>

Inherited by QBuffer [Graphics with Qt], QFile [p. 50], QSocket [p. 126] and QSocketDevice [p. 135].

Public Members

m typedef off t Offset

= QIODevice ()

m virtual ~QIODevice ()
int flags () const

int mode () const

int state () const

bool isDirectAccess () const

bool isSequentialAccess () const
bool isCombinedAccess () const

= bool isBuffered () const

m bool isRaw () const

bool isSynchronous () const
bool isAsynchronous () const
bool isTranslated () const
bool isReadable () const
bool isWritable () const
bool isReadWrite () const
bool isInactive () const

m bool isOpen () const

= int status () const

void resetStatus ()

virtual bool open (int mode)
virtual void close ()

virtual void flush ()

virtual Offset size () const
virtual Offset at () const

m virtual bool at (Offset pos)

m virtual bool atEnd () const

76

QIODevice Class Reference 77

bool reset ()

virtual Q_LONG readBlock (char * data, Q ULONG maxlen)
virtual Q _LONG writeBlock (const char * data, Q ULONG len)
virtual Q_LONG readLine (char * data, Q_ULONG maxlen)
Q_LONG writeBlock (const QByteArray & data)

virtual QByteArray readAll ()

e virtual int getch ()

e virtual int putch (int ch)

e virtual int ungetch (int ch)

Detailed Description

The QIODevice class is the base class of I/0 devices.

An 1/0 device represents a medium that one can read bytes from and/or write bytes to. The QIODevice class is the
abstract superclass of all such devices; classes such as QFile, QBuffer and QSocket inherit QIODevice and implement
virtual functions such as write() appropriately.

Although applications sometimes use QIODevice directly, it is usually better to go through QTextStream and QDataS-
tream, which provide stream operations on any QIODevice subclass. QTextStream provides text-oriented stream func-
tionality (for human-readable ASCII files, for example), whereas QDataStream deals with binary data in a totally
platform-independent manner.

The public member functions in QIODevice roughly fall into two groups: the action functions and the state access
functions. The most important action functions are:

e open() opens a device for reading and/or writing, depending on the argument to open().

close() closes the device and tidies up.

readBlock() reads a block of data from the device.

writeBlock() writes a block of data to the device.

readLine() reads a line (of text, usually) from the device.

flush() ensures that all buffered data are written to the real device.
There are also some other, less used, action functions:

e getch() reads a single character.

e ungetch() forgets the last call to getch(), if possible.

e putch() writes a single character.

e size() returns the size of the device, if there is one.

e at() returns the current read/write pointer’s position, if there is one for this device, or it moves the pointer.
e atEnd() says whether there is more to read, if that is a meaningful question for this device.

e reset() moves the read/write pointer to the start of the device, if that is possible for this device.

The state access are all "get" functions. The QIODevice subclass calls setState() to update the state, and simple access
functions tell the user of the device what the device’s state is. Here are the settings, and their associated access
functions:

QIODevice Class Reference 78

e Access type. Some devices are direct access (it is possible to read/write anywhere), whereas others are sequential.
QIODevice provides the access functions (isDirectAccess(), isSequentialAccess(), and isCombinedAccess()) to tell
users what a given 1/0 device supports.

e Buffering. Some devices are accessed in raw mode, whereas others are buffered. Buffering usually provides
greater efficiency, particularly for small read/write operations. isBuffered() tells the user whether a given device
is buffered. (This can often be set by the application in the call to open().)

e Synchronicity. Synchronous devices work immediately (for example, files). When you read from a file, the file
delivers its data straight away. Other kinds of device, such as a socket connected to a HTTP server, may not
deliver the data until seconds after you ask to read it. isSynchronous() and isAsynchronous() tell the user how
this device operates.

e CR/LF translation. For simplicity, applications often like to see just a single CR/LF style, and QIODevice subclasses
can provide this. isTranslated() returns TRUE if this object translates CR/LF to just LE (This can often be set by
the application in the call to open().)

e Permissions. Some files cannot be written. For example, isReadable(), isWritable() and isReadWrite() tell the
application whether it can read from and write to a given device. (This can often be set by the application in the
call to open().)

e Finally, isOpen() returns TRUE if the device is open, i.e. after an open() call.

QIODevice provides numerous pure virtual functions that you need to implement when subclassing it. Here is a
skeleton subclass with all the members you are certain to need and some that you probably will need:

class MyDevice : public Q QDevice
{
public:

MyDevi ce();

~MyDevi ce();

bool open(int node);
voi d close();
void flush();

uint size() const;

int at() const; /'l non-pure virtual
bool at(int); /'l non-pure virtual
bool atEnd() const; /'l non-pure virtual

int readBl ock(char *data, uint maxlen);
int witeBlock(const char *data, uint len);
int readLine(char *data, uint maxlen);

int getch();

int putch(int);

int ungetch(int);
b

The three non-pure virtual functions need not be reimplemented for sequential devices.

See also QDataStream [p. 19], QTextStream [p. 150] and Input/Output and Networking.

QIODevice Class Reference

Member Type Documentation

QIODevice::Offset

The offset within the device.

Member Function Documentation

QIODevice::QIODevice ()

Constructs an I/0 device.

QIODevice::~QIODevice () [virtual]

Destroys the /0 device.

Offset QIODevice::at () const [virtual]

Virtual function that returns the current I/O device position.
This is the position of the data read/write head of the 1/0 device.
See also size() [p. 841].

Reimplemented in QFile and QSocket.

bool QIODevice::at (Offset pos) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Virtual function that sets the I/0 device position to pos.
See also size() [p. 841].

Reimplemented in QFile and QSocket.

bool QIODevice::atEnd () const [virtual]

Virtual function that returns TRUE if the I/O device position is at the end of the input; otherwise returns FALSE.

Reimplemented in QFile and QSocket.

void QIODevice::close () [virtual]

Closes the I/0 device.
This virtual function must be reimplemented by all subclasses.

See also open() [p. 82].

79

QIODevice Class Reference 80

Reimplemented in QFile and QSocket.

int QIODevice::flags () const

Returns the current I/0 device flags setting.
Flags consists of mode flags and state flags.

See also mode() [p. 82] and state() [p. 84].

void QIODevice::flush () [virtual]

Flushes an open 1/0 device.
This virtual function must be reimplemented by all subclasses.

Reimplemented in QFile and QSocket.

int QIODevice::getch () [virtual]

Reads a single byte/character from the I/0 device.

Returns the byte/character read, or -1 if the end of the I/0 device has been reached.
This virtual function must be reimplemented by all subclasses.

See also putch() [p. 83] and ungetch() [p. 84].

Reimplemented in QFile and QSocket.

bool QIODevice::isAsynchronous () const

Returns TRUE if the device is an asynchronous device; otherwise returns FALSE, i.e. if the device is a synchronous
device.

This mode is currently not in use.

See also isSynchronous() [p. 82].

bool QIODevice::isBuffered () const

Returns TRUE if the I/0 device is a buffered device; otherwise returns FALSE, i.e. the device is a raw device.

See also isRaw() [p. 81].

bool QIODevice::isCombinedAccess () const

Returns TRUE if the I/0 device is a combined access (both direct and sequential) device; otherwise returns FALSE.

This access method is currently not in use.

QIODevice Class Reference 81

bool QIODevice::isDirectAccess () const

Returns TRUE if the 1/0 device is a direct access device; otherwise returns FALSE, i.e. if the device is a sequential
access device.

See also isSequentialAccess() [p. 81].

bool QIODevice::isInactive () const

Returns TRUE if the I/0 device state is 0, i.e. the device is not open; otherwise returns FALSE.

See also isOpen() [p. 811].

bool QIODevice::isOpen () const

Returns TRUE if the I/0 device has been opened; otherwise returns FALSE.
See also isInactive() [p. 81].

Example: network/networkprotocol/nntp.cpp.

bool QIODevice::isRaw () const

Returns TRUE if the device is a raw device; otherwise returns FALSE, i.e. if the device is a buffered device.

See also isBuffered() [p. 80].

bool QIODevice::isReadWrite () const

Returns TRUE if the /0O device was opened using I0_ReadWrite mode; otherwise returns FALSE.
See also isReadable() [p. 81] and isWritable() [p. 82].

bool QIODevice::isReadable () const

Returns TRUE if the I/0 device was opened using IO ReadOnly or IO _ReadWrite mode; otherwise returns FALSE.
See also isWritable() [p. 82] and isReadWrite() [p. 811].

bool QIODevice::isSequentialAccess () const

Returns TRUE if the device is a sequential access device; otherwise returns FALSE, i.e. if the device is a direct access
device.

Operations involving size() and at(int) are not valid on sequential devices.

See also isDirectAccess() [p. 811.

QIODevice Class Reference 82

bool QIODevice::isSynchronous () const
Returns TRUE if the I/0 device is a synchronous device; otherwise returns FALSE, i.e. the device is an asynchronous
device.

See also isAsynchronous() [p. 80].

bool QIODevice::isTranslated () const

Returns TRUE if the I/0 device translates carriage-return and linefeed characters; otherwise returns FALSE.

A QFile is translated if it is opened with the IO Translate mode flag.

bool QIODevice::isWritable () const

Returns TRUE if the 1/0 device was opened using I0_WriteOnly or I0_ReadWrite mode; otherwise returns FALSE.
See also isReadable() [p. 81] and isReadWrite() [p. 81].

int QIODevice::mode () const

Returns bits OR’ed together that specify the current operation mode.
These are the flags that were given to the open() function.

The flags are I0_ReadOnly, IO WriteOnly, IO _ReadWrite, I0_Append, IO _Truncate and IO Translate.

bool QIODevice::open (int mode) [virtual]

Opens the I/0 device using the specified mode. Returns TRUE if the device was successfully opened; otherwise returns
FALSE.

The mode parameter mode must be an OR’ed combination of the following flags.

e 10 Raw specified raw (unbuffered) file access.

e 10 ReadOnly opens a file in read-only mode.

e 10 WriteOnly opens a file in write-only mode.

e 10 ReadWrite opens a file in read/write mode.

e 10 Append sets the file index to the end of the file.
e 10 _Truncate truncates the file.

e 10 Translate enables carriage returns and linefeed translation for text files under MS-DOS, Windows and Mac-
intosh. On Unix systems this flag has no effect. Use with caution as it will also transform every linefeed written
to the file into a CRLF pair. This is likely to corrupt your file if you write write binary data. Cannot be combined
with I0_Raw.

This virtual function must be reimplemented by all subclasses.
See also close() [p. 791.

Reimplemented in QFile and QSocket.

QIODevice Class Reference 83

int QIODevice::putch (int ch) [virtual]

Writes the character ch to the I/0 device.

Returns ch, or -1 if an error occurred.

This virtual function must be reimplemented by all subclasses.
See also getch() [p. 80] and ungetch() [p. 841.

Reimplemented in QFile and QSocket.

QByteArray QIODevice::readAll () [virtual]

This convenience function returns all of the remaining data in the device.

Q_LONG QIODevice::readBlock (char * data, Q_ULONG maxlen) [virtual]

Reads at most maxlen bytes from the I/0O device into data and returns the number of bytes actually read.
This virtual function must be reimplemented by all subclasses.
See also writeBlock() [p. 85].

Reimplemented in QFile, QSocket and QSocketDevice.

Q_LONG QIODevice::readLine (char * data, Q_ULONG maxlen) [virtual]

Reads a line of text, (or up to maxlen bytes if a newline isn’t encountered) plus a terminating \0 into data. If there is a
newline at the end if the line, it is not stripped.

Returns the number of bytes read including the terminating \0, or -1 in case of error.

This virtual function can be reimplemented much more efficiently by the most subclasses.

See also readBlock() [p. 83] and QTextStream::readLine() [p. 159].

Reimplemented in QFile.

bool QIODevice::reset ()

Sets the device index position to O.

See also at() [p. 791.

void QIODevice::resetStatus ()

Sets the I/0 device status to IO0_Ok.
See also status() [p. 84].

QIODevice Class Reference

Offset QIODevice::size () const [virtual]

Virtual function that returns the size of the I/0 device.
See also at() [p. 791.

Reimplemented in QFile and QSocket.

int QIODevice::state () const

Returns bits OR’ed together that specify the current state.
The flags are: | O_Cpen.

Subclasses may define additional flags.

int QIODevice::status () const

Returns the I/0 device status.

84

The 1/0 device status returns an error code. If open() returns FALSE or readBlock() or writeBlock() return -1, this

function can be called to find out the reason why the operation did not succeed.

The status codes are:

e 10 Ok - The operation was successful.

e I0_ReadError - Could not read from the device.

e I0_WriteError - Could not write to the device.

e 10 FatalError - A fatal unrecoverable error occurred.
o 10 OpenError - Could not open the device.

e 10 ConnectError - Could not connect to the device.

e 10_AbortError - The operation was unexpectedly aborted.

e 10 TimeOutError - The operation timed out.

e 10 UnspecifiedError - An unspecified error happened on close.

See also resetStatus() [p. 83].

int QIODevice::ungetch (int ch) [virtual]

Puts the character ch back into the I/0 device and decrements the index position if it is not zero.

This function is normally called to "undo" a getch() operation.

Returns ch, or -1 if an error occurred.

This virtual function must be reimplemented by all subclasses.

See also getch() [p. 80] and putch() [p. 83].

Reimplemented in QFile and QSocket.

QIODevice Class Reference 85

Q_LONG QIODevice::writeBlock (const char * data, Q ULONG len) [virtual]

Writes len bytes from data to the 1/0 device and returns the number of bytes actually written.
This virtual function must be reimplemented by all subclasses.
See also readBlock() [p. 83].

Reimplemented in QBuffer, QSocket and QSocketDevice.

Q_LONG QIODevice::writeBlock (const QByteArray & data)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This convenience function is the same as calling writeBlock(data.data(), data.size()).

QLocalFs Class Reference

The QLocalFs class is an implementation of a QNetworkProtocol that works on the local file system.
This class is part of the network module.
#include <qgl ocal fs. h>

Inherits QNetworkProtocol [p. 99].

Public Members

m QLocalFs ()

Detailed Description

The QLocalFs class is an implementation of a QNetworkProtocol that works on the local file system.

This class is derived from QNetworkProtocol. QLocalFs is not normally used directly, but rather through a QUrlOpera-
tor, for example:

QUrl Qperator op("file:///tmp");
op.listChildren(); // Asks the server to provide a directory listing

This code will only work if the QLocalFs class is registered; to register the class, you must call qInitNetworkProtocols()
before using a QUrlOperator with QLocalFs.

If you really need to use QLocalFs directly, don’t forget to set its QUrlOperator with setUrl().

See also Qt Network Documentation [p. 4], QNetworkProtocol [p. 99], QUrlOperator [p. 179] and Input/Output and
Networking.

Member Function Documentation

QLocalFs::QLocalFs ()

Constructor.

86

QLock Class Reference

The QLock class is a wrapper round a System V shared semaphore.

#incl ude <qgl ock_gws. h>

Public Members

m QLock (const QString & filename, char id, bool create = FALSE)
~QLock ()

enum Type { Read, Write }

bool isvalid () const

void lock (Type t)

void unlock ()

= bool locked () const

Detailed Description

The QLock class is a wrapper round a System V shared semaphore.
It is used by Qt/Embedded for synchronizing access to the graphics card and shared memory region between processes.

See also Input/Output and Networking and Qt/Embedded.

Member Type Documentation

QLock::Type
e Qlock:: Read
e Qlock::Wite

87

QLock Class Reference 88

Member Function Documentation

QLock::QLock (const QString & filename, char id, bool create = FALSE)

Creates a lock. filename is the file path of the Unix-domain socket the Qt/Embedded client is using. id is the name of
the particular lock to be created on that socket. If create is TRUE the lock is to be created (as the Qt/Embedded server
does); if create is FALSE the lock should exist already (as the Qt/Embedded client expects).

QLock::~QLock ()

Destroys a lock

bool QLock::isValid () const

Returns TRUE if the lock constructor was succesful; returns FALSE if the lock could not be created or was not available
to connect to.

void QLock::lock (Type t)

Locks the semaphore with a lock of type t. Locks can either be Read or Write. If a lock is Read, attempts to lock
by other processes as Read will succeed, Write attempts will block until the lock is unlocked. If locked as Write, all
attempts to lock by other processes will block until the lock is unlocked. Locks are stacked: i.e. a given QLock can be
locked multiple times by the same process without blocking, and will only be unlocked after a corresponding number
of unlock() calls.

bool QLock::locked () const

Returns TRUE if the lock is currently held by the current process; otherwise returns FALSE.

void QLock::unlock ()

Unlocks the semaphore. If other processes were blocking waiting to lock() the semaphore, one of them will wake up
and succeed in lock()ing.

QMimeSource Class Reference

The QMimeSource class is an abstraction of objects which provide formatted data of a certain MIME type.
#incl ude <qmi ne. h>

Inherited by QDragObject [Events, Actions, Layouts and Styles with Qt] and QDropEvent [Events, Actions, Layouts
and Styles with Qt].

Public Members

QMimeSource ()

m virtual ~QMimeSource ()

virtual const char * format (inti = 0) const

virtual bool provides (const char * mimeType) const
virtual QByteArray encodedData (const char *) const

int serialNumber () const

Detailed Description

The QMimeSource class is an abstraction of objects which provide formatted data of a certain MIME type.
Drag-and-drop and clipboard use this abstraction.

See also TANA list of MIME media types, Drag And Drop Classes, Input/Output and Networking and Miscellaneous
Classes.

Member Function Documentation

QMimeSource::QMimeSource ()

Constructs a mime source and assigns a globally unique serial number to it.

See also serialNumber() [p. 90].

QMimeSource::~QMimeSource () [virtual]

Provided to ensure that subclasses destroy themselves correctly.

89

QMimeSource Class Reference 90

QByteArray QMimeSource::encodedData (const char *) const [virtual]

Returns the encoded data of this object in the specified MIME format.
Subclasses must reimplement this function.

Reimplemented in QStoredDrag, QDropEvent and QIconDrag.

const char * QMimeSource::format (inti = 0) const [virtual]

Returns the i-th supported MIME format, or 0.
Example: fileiconview/qfileiconview.cpp.

Reimplemented in QDropEvent.

bool QMimeSource::provides (const char * mimeType) const [virtual]

Returns TRUE if the object can provide the data in format mimeType; otherwise returns FALSE.

If you inherit from QMimeSource for consistency reasons it is better to implement the more abstract canDecode()
functions such as QTextDrag::canDecode() and QImageDrag::canDecode().

Reimplemented in QDropEvent.

int QMimeSource::serialNumber () const

Returns the globally unique serial number of the mime source

QMimeSourceFactory Class Reference

The QMimeSourceFactory class is an extensible provider of mime-typed data.

#include <gm ne. h>

Public Members

QMimeSourceFactory ()

virtual ~QMimeSourceFactory ()

virtual const QMimeSource * data (const QString & abs_name) const

virtual QString makeAbsolute (const QString & abs_or rel name, const QString & context) const
const QMimeSource * data (const QString & abs_or_rel name, const QString & context) const
virtual void setText (const QString & abs_name, const QString & text)

virtual void setImage (const QString & abs_name, const QImage & image)

virtual void setPixmap (const QString & abs name, const QPixmap & pixmap)

virtual void setData (const QString & abs name, QMimeSource * data)

virtual void setFilePath (const QStringList & path)

virtual QStringList filePath () const

void addFilePath (const QString & p)

virtual void setExtensionType (const QString & ext, const char * mimetype)

Static Public Members

» QMimeSourceFactory * defaultFactory ()

m void setDefaultFactory (QMimeSourceFactory * factory)
m QMimeSourceFactory * takeDefaultFactory ()

void addFactory (QMimeSourceFactory * f)

void removeFactory (QMimeSourceFactory * f)

Detailed Description

The QMimeSourceFactory class is an extensible provider of mime-typed data.

A QMimeSourceFactory provides an abstract interface to a collection of information. Each piece of information is
represented by a QMimeSource object which can be examined and converted to concrete data types by functions such
as QImageDrag::canDecode() and QImageDrag::decode().

91

QMimeSourceFactory Class Reference 92

The base QMimeSourceFactory can be used in two ways: as an abstraction of a collection of files or as specifically
stored data. For it to access files, call setFilePath() before accessing data. For stored data, call setData() for each item
(there are also convenience functions setText(), setimage(), and setPixmap() that simply call setData() with massaged
parameters).

The rich text widgets QTextEdit and QTextBrowser use QMimeSourceFactory to resolve references such as images or
links within rich text documents. They either access the default factory (see defaultFactory()) or their own (see QTextE-
dit::setMimeSourceFactory()). Other classes that are capable of displaying rich text (such as QLabel, QWhatsThis or
QMessageBox) always use the default factory.

As mentioned earlier, a factory can also be used as container to store data associated with a name. This technique is
useful whenever rich text contains images that are stored in the program itself, not loaded from the hard disk. Your
program may, for example, define some image data as

static const char* nyinmage data[]={

n n
ey

oy

To be able to use this image within some rich text, for example inside a QLabel, you have to create a QImage from the
raw data and insert it into the factory with a unique name:

QM neSour ceFact ory: : def aul t Fact ory() - >set | rage("nyi nage", Q mage(nyi nage_data));
Now you can create a rich text QLabel with

Q.abel * 1 abel = new QLabel (
"Rich text with enbedded i mage:"
"I'sn’t that cute?");

See also Environment Classes and Input/Output and Networking.

Member Function Documentation

QMimeSourceFactory::QMimeSourceFactory ()

Constructs a QMimeSourceFactory that has no file path and no stored content.

QMimeSourceFactory::~QMimeSourceFactory () [virtual]

Destroys the QMimeSourceFactory, deleting all stored content.

void QMimeSourceFactory::addFactory (QMimeSourceFactory * f) [static]

Adds the QMimeSourceFactory f to the list of available mimesource factories. If the defaultFactory() can’t resolve a
data() it iterates over the list of installed mimesource factories until the data can be resolved.

See also removeFactory() [p. 94].

QMimeSourceFactory Class Reference 93

void QMimeSourceFactory::addFilePath (const QString & p)

Adds another search path, p to the existing search paths.
See also setFilePath() [p. 941.

const QMimeSource * QMimeSourceFactory::data (const QString & abs_name)
const [virtual]

Returns a reference to the data associated with abs _name. The return value remains valid only until the next data() or
setData() call, so you should immediately decode the result.

If there is no data associated with abs_name in the factory’s store, the factory tries to access the local filesystem. If
abs_name isn’t an absolute file name, the factory will search for it on all defined paths (see setFilePath()).

The factory understands all image formats supported by QImageIO. Any other mime types are determined by the file
name extension. The default settings are

set Ext ensi onType("htm ", "text/htm ;charset=is08859-1");
set Ext ensi onType("htni', "text/htnl;charset=i s08859-1");
set Extensi onType("txt", "text/plain");

set Ext ensi onType("xm ", "text/xm ;charset=UTF8");

The effect of these is that file names ending in "html" or "htm" will be treated as text encoded in the is08859-1 encoding,
those ending in "txt" will be treated as text encoded in the local encoding; those ending in "xml" will be treated as text
encoded in the UTF8 encoding. The text subtype ("html", "plain", or "xml") does not affect the factory, but users of
the factory may behave differently. We recommend creating "xml" files where practical. These files can be viewed
regardless of the runtime encoding and can encode any Unicode characters without resorting to encoding definitions
inside the file.

Any file data that is not recognized will be retrieved as a QMimeSource providing the "application/octet-stream" mime
type, meaning uninterpreted binary data.

You can add further extensions or change existing ones with subsequent calls to setExtensionType(). If the extension
mechanism is not sufficient for your problem domain, you may inherit QMimeSourceFactory and reimplement this
function to perform some more clever mime-type detection. The same applies if you want to use the mime source
factory to access URL referenced data over a network.

const QMimeSource * QMimeSourceFactory::data (const QString & abs_or_rel name,
const QString & context) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

A convenience function. See data(const QString& abs name). The file name is given in abs_or rel name and the path
is in context.

QMimeSourceFactory * QMimeSourceFactory::defaultFactory () [static]

Returns the application-wide default mime source factory. This factory is used by rich text rendering classes such as
QSimpleRichText, QWhatsThis and QMessageBox to resolve named references within rich text documents. It serves
also as initial factory for the more complex render widgets QTextEdit and QTextBrowser.

See also setDefaultFactory() [p. 94].

QMimeSourceFactory Class Reference 94
Examples: action/application.cpp and application/application.cpp.

QStringList QMimeSourceFactory::filePath () const [virtual]

Returns the currently set search paths.

QString QMimeSourceFactory::makeAbsolute (const QString & abs_or_rel name,
const QString & context) const [virtual]

Converts the absolute or relative data item name abs_or rel name to an absolute name, interpreted within the context
(path) of the data item named context (this must be an absolute name).

void QMimeSourceFactory::removeFactory (QMimeSourceFactory * f) [static]

Removes the mimesource factory f from the list of available mimesource factories.

See also addFactory() [p. 92].

void QMimeSourceFactory::setData (const QString & abs_name,
QMimeSource * data) [virtual]

Sets data to be the data item associated with the absolute name abs_name. Note that the ownership of data is trans-
ferred to the factory: do not delete or access the pointer after passing it to this function.

void QMimeSourceFactory::setDefaultFactory (QMimeSourceFactory * factory) [static]

Sets the default factory, destroying any previously set mime source provider. The ownership of the factory is transferred.

See also defaultFactory() [p. 931.

void QMimeSourceFactory::setExtensionType (const QString & ext,
const char * mimetype) [virtual]

Sets the mime-type to be associated with the file name extension, ext to mimetype. This determines the mime-type for
files found via the paths set by setFilePath().

void QMimeSourceFactory::setFilePath (const QStringList & path) [virtual]

Sets the list of directories that will be searched when named data is requested to the those given in the string list path.

See also filePath() [p. 94].

QMimeSourceFactory Class Reference

void QMimeSourceFactory::setlmage (const QString & abs_name,
const QImage & image) [virtual]

Sets image to be the data item associated with the absolute name abs_name.

Equivalent to setData(abs_name, new QImageDrag(image)).

void QMimeSourceFactory::setPixmap (const QString & abs name,
const QPixmap & pixmap) [virtual]

Sets pixmap to be the data item associated with the absolute name abs_name.

void QMimeSourceFactory::setText (const QString & abs_name,
const QString & text) [virtual]

Sets text to be the data item associated with the absolute name abs_name.
Equivalent to setData(abs_name, new QTextDrag(text)).
QMimeSourceFactory * QMimeSourceFactory::takeDefaultFactory () [static]

Sets the defaultFactory() to O and returns the previous one.

95

QNetworkOperation Class Reference

The QNetworkOperation class provides common operations for network protocols.
#i ncl ude <gnetworkprotocol . h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QNetworkOperation (QNetworkProtocol::Operation operation, const QString & arg0, const QString & argl,
const QString & arg2)

m QNetworkOperation (QNetworkProtocol::Operation operation, const QByteArray & argO,
const QByteArray & argl, const QByteArray & arg2)

» ~QNetworkOperation ()

m void setState (QNetworkProtocol::State state)

m void setProtocolDetail (const QString & detail)
m void setErrorCode (int ec)

m void setArg (int num, const QString & arg)

m void setRawArg (int num, const QByteArray & arg)
QNetworkProtocol::Operation operation () const
QNetworkProtocol::State state () const

QString arg (int num) const

QByteArray rawArg (int num) const

QString protocolDetail () const

int errorCode () const

e void free ()

Detailed Description

The QNetworkOperation class provides common operations for network protocols.

An object is created to describe the operation and the current state for each operation that a network protocol should
process.

For a detailed description of the Qt Network Architecture how to implement and use network protocols in Qt, see the
Qt Network Documentation.

See also QNetworkProtocol [p. 99] and Input/Output and Networking.

96

QNetworkOperation Class Reference 97

Member Function Documentation

QNetworkOperation::QNetworkOperation (QNetworkProtocol::Operation operation,
const QString & arg0, const QString & argl, const QString & arg2)

Constructs a network operation object. operation is the type of the operation, and arg0, argl and arg2 are the first
three arguments of the operation. The state is initialized to QNetworkProtocol::StWaiting.

See also QNetworkProtocol::Operation [p. 101] and QNetworkProtocol::State [p. 102].

QNetworkOperation::QNetworkOperation (QNetworkProtocol::Operation operation,
const QByteArray & arg0, const QByteArray & argl, const QByteArray & arg2)

Constructs a network operation object. operation is the type of the operation, and arg0, argl and arg2 are the first
three raw data arguments of the operation. The state is initialized to QNetworkProtocol::StWaiting.

See also QNetworkProtocol::Operation [p. 101] and QNetworkProtocol::State [p. 102].

QNetworkOperation:: ~QNetworkOperation ()

Destructor.

QString QNetworkOperation::arg (int num) const

Returns the argument num of the operation. If this argument was not already set, an empty string is returned.

Examples: network/ftpclient/ftpmainwindow.cpp and network/networkprotocol/nntp.cpp.

int QNetworkOperation::errorCode () const

Returns the error code for the last error that occurred.

Example: network/ftpclient/ftpmainwindow.cpp.

void QNetworkOperation::free ()

Sets this object to delete itself when it hasn’t been used for one second.

Because QNetworkOperation pointers are passed around a lot the QNetworkProtocol generally does not have enough
knowledge to delete these at the correct time. If a QNetworkProtocol doesn’t need an operation any more it will call
this function instead.

Note: you should never need to call the method yourself.

QNetworkProtocol::Operation QNetworkOperation::operation () const

Returns the type of the operation.

Example: network/ftpclient/ftpmainwindow.cpp.

QNetworkOperation Class Reference 98

QString QNetworkOperation::protocolDetail () const

Returns a detailed error message for the last error. This must have been set using setProtocolDetail().

Example: network/ftpclient/ftpmainwindow.cpp.

QByteArray QNetworkOperation::rawArg (int num) const

Returns the raw data argument num of the operation. If this argument was not already set, an empty bytearray is
returned.

void QNetworkOperation::setArg (int num, const QString & arg)

Sets the argument num of the network operation to arg.

void QNetworkOperation::setErrorCode (int ec)

Sets the error code to ec.

If the operation failed, the protocol should set an error code to describe the error in more detail. If possible, one of the
error codes defined in QNetworkProtocol should be used.

See also setProtocolDetail () [p. 98] and QNetworkProtocol::Error [p. 101].

void QNetworkOperation::setProtocolDetail (const QString & detail)

If the operation failed, the error message can be specified as detail.

void QNetworkOperation::setRawArg (int num, const QByteArray & arg)

Sets the raw data argument num of the network operation to arg.

void QNetworkOperation::setState (QNetworkProtocol::State state)

Sets the state of the operation object. This should be done by the network protocol during processing; at the end it
should be set to QNetworkProtocol::StDone or QNetworkProtocol::StFailed, depending on success or failure.

See also QNetworkProtocol::State [p. 102].

QNetworkProtocol::State QNetworkOperation::state () const

Returns the state of the operation. You can determine whether an operation is still waiting to be processed, is being
processed, has been processed successfully, or failed.

Example: network/ftpclient/ftpmainwindow.cpp.

QNetworkProtocol Class Reference

The QNetworkProtocol class provides a common API for network protocols.
#i ncl ude <gnetworkprotocol . h>

Inherits QObject [Additional Functionality with Qt].

Inherited by QFtp [p. 691, QHttp [p. 74] and QLocalFs [p. 86].

Public Members

m enum State { StWaiting = 0, StInProgress, StDone, StFailed, StStopped }

m enum Operation { OpListChildren = 1, OpMkDir = 2, OpMkdir = OpMkDir, OpRemove = 4, OpRename = 8,
OpGet = 32, OpPut = 64 }

= enum ConnectionState { ConHostFound, ConConnected, ConClosed }

m enum Error { NoError = 0, ErrValid, ErrUnknownProtocol, ErrUnsupported, ErrParse, ErrLoginIncorrect,
ErrHostNotFound, ErrListChildren, ErrListChlidren = ErrListChildren, ErrMkDir, ErrMkdir = ErrMkDir,
ErrRemove, ErrRename, ErrGet, ErrPut, ErrFileNotExisting, ErrPermissionDenied }

m QNetworkProtocol ()

m virtual ~QNetworkProtocol ()

m virtual void setUrl (QUrlOperator * u)

m virtual void setAutoDelete (bool b, int i = 10000)

= bool autoDelete () const

virtual int supportedOperations () const

virtual void addOperation (QNetworkOperation * op)
QUrlOperator * url () const

QNetworkOperation * operationInProgress () const
virtual void clearOperationQueue ()
virtual void stop ()

Signals

void data (const QByteArray & data, QNetworkOperation * op)

void connectionStateChanged (int state, const QString & data)

» void finished (QNetworkOperation * op)

void start (QNetworkOperation * op)

m void newChildren (const QValueList<QUrlInfo> & i, QNetworkOperation * op)

99

QNetworkProtocol Class Reference 100

void newChild (const QUrlInfo & i, QNetworkOperation * op)

void createdDirectory (const QUrlInfo & i, QNetworkOperation * op)

void removed (QNetworkOperation * op)

void itemChanged (QNetworkOperation * op)

void dataTransferProgress (int bytesDone, int bytesTotal, QNetworkOperation * op)

Static Public Members

» void registerNetworkProtocol (const QString & protocol, QNetworkProtocolFactoryBase * protocolFactory)
m QNetworkProtocol * getNetworkProtocol (const QString & protocol)
m bool hasOnlyLocalFileSystem ()

Protected Members

virtual void operationListChildren (QNetworkOperation * op)
virtual void operationMkDir (QNetworkOperation * op)
virtual void operationRemove (QNetworkOperation * op)
virtual void operationRename (QNetworkOperation * op)

virtual void operationGet (QNetworkOperation * op)

virtual void operationPut (QNetworkOperation * op)
m virtual bool checkConnection (QNetworkOperation * op)

Detailed Description

The QNetworkProtocol class provides a common API for network protocols.

This is a base class which should be used for implementations of network protocols that can then be used in Qt (e.g.
in the file dialog) together with the QUrlOperator.

The easiest way to implement a new network protocol is to reimplement the operation...() methods, e.g. opera-
tionGet(). Only the supported operations should be reimplemented. To specify which operations are supported, also
reimplement supportedOperations() and return an int that is OR’d together using the supported operations from the
QNetworkProtocol::Operation enum.

When you implement a network protocol this way, be careful to always emit the correct signals. Also, always emit
the finished() signal when an operation is done (on success and on failure). Qt relies on correctly emitted finished()
signals.

For a detailed description of the Qt Network Architecture and how to implement and use network protocols in Qt, see
the Qt Network Documentation.

See also Input/Output and Networking.

QNetworkProtocol Class Reference 101

Member Type Documentation

QNetworkProtocol::ConnectionState

When the connection state of a network protocol changes it emits the signal connectionStateChanged(). The first
argument is one of the following values:

e ONet wor kPr ot ocol : : ConHost Found - Host has been found.
e QNet wor kPr ot ocol : : ConConnect ed - Connection to the host has been established.
e (Net wor kProt ocol : : ConC osed - Connection has been closed.

QNetworkProtocol::Error

When an operation fails (finishes unsuccessfully), the QNetworkOperation of the operation returns an error code which
has one of the following values:

e (Net wor kProt ocol : : NoError - No error occurred.
e (Net wor kProt ocol :: ErrValid - The URL you are operating on is not valid.

e QNet wor kProt ocol : : Err UnknownPr ot ocol - There is no protocol implementation available for the protocol of the
URL you are operating on (e.g. if the protocol is http and no http implementation has been registered).

e Net wor kProt ocol : : Err Unsupport ed - The operation is not supported by the protocol.

e QNet wor kProt ocol : : Err Par se - Parse error of the URL.

e (Net wor kProt ocol : : ErrLogi nl ncorrect - You needed to login but the username and/or password are wrong.
e QNet wor kProt ocol : : Err Host Not Found - The specified host (in the URL) couldn’t be found.

e ONetwor kProtocol :: ErrLi st Children - An error occurred while listing the children (files).

e (Net wor kProt ocol : : Err MkDi r - An error occurred when creating a directory.

e QNet wor kProt ocol : : Err Renpbve - An error occurred when removing a child (file).

e QNet wor kProt ocol : : Err Renane - An error occurred when renaming a child (file).

e (Net wor kProt ocol :: ErrGet - An error occurred while getting (retrieving) data.

e ONetwor kProtocol :: ErrPut - An error occurred while putting (uploading) data.

e ONetwor kProtocol :: ErrFil eNot Exi sting - A file which is needed by the operation doesn’t exist.
e QNet wor kProt ocol : : Err Perni ssi onDeni ed - Permission for doing the operation has been denied.

You should also use these error codes when implementing custom network protocols. If this is not possible, you can
define your own error codes by using integer values that don’t conflict with any of these values.

QNetworkProtocol::Operation

This enum lists the possible operations that a network protocol can support. supportedOperations() returns an int of
these that is OR'd together. Also, the type() or a QNetworkOperation is always one of these values.

e QNet wor kProt ocol :: OpLi st Chi | dren - List the children of a URL, e.g. of a directory.
o Net wor kProtocol :: OQpMkDi r - Create a directory.
e QNet wor kProt ocol : : OpRenpve - Remove a child (e.g. a file).

QNetworkProtocol Class Reference 102

e (ONet wor kProt ocol : : OpRenane - Rename a child (e.g. a file).
e (ONet wor kProtocol : : OpGet - Get data from a location.
e (QNet wor kProt ocol : : QpPut - Put data to a location.

QNetworkProtocol::State

This enum contains the state that a QNetworkOperation can have:

e NetworkProtocol :: StWi ting - The operation is in the queue of the QNetworkProtocol and is waiting to be
preessed.

e Networ kProtocol :: St nProgress - The operation is being processed.
e QNet wor kProt ocol : : StDone - The operation has been processed succesfully.
e (Net wor kProtocol :: StFail ed - The operation has been processed but an error occurred.

e (Net wor kProt ocol : : St St opped - The operation has been processed but has been stopped before it finished, and
is waiting to be processed.

Member Function Documentation

QNetworkProtocol::QNetworkProtocol ()

Constructor of the network protocol base class. Does some initialization and connecting of signals and slots.

QNetworkProtocol::~QNetworkProtocol () [virtual]

Destructor.

void QNetworkProtocol::addOperation (QNetworkOperation * op) [virtual]

Adds the operation op to the operation queue. The operation will be processed as soon as possible. This method returns
immediately.

bool QNetworkProtocol::autoDelete () const

Returns TRUE if auto-deleting is enabled; otherwise returns FALSE.

See also QNetworkProtocol::setAutoDelete() [p. 1071].

bool QNetworkProtocol::checkConnection (QNetworkOperation * op) [virtual protected]

For processing operations the network protocol base class calls this method quite often. This should be reimplemented
by new network protocols. It should return TRUE if the connection is OK (open); otherwise it should return FALSE. If
the connection is not open the protocol should open it.

If the connection can’t be opened (e.g. because you already tried but the host couldn’t be found), set the state of op to
QNetworkProtocol::StFailed and emit the finished() signal with this QNetworkOperation as argument.

QNetworkProtocol Class Reference 103

op is the operation that needs an open connection.

Example: network/networkprotocol/nntp.cpp.

void QNetworkProtocol::clearOperationQueue () [virtual]

Clears the operation queue.

void QNetworkProtocol::connectionStateChanged (int state, const QString & data) [signal]

This signal is emitted whenever the state of the connection of the network protocol is changed. state describes the new
state, which is one of, ConHostFound, ConConnected or ConClosed. data is a message text.

void QNetworkProtocol::createdDirectory (const QUrlInfo & i,
QNetworkOperation * op) [signal]

This signal is emitted when mkdir() has been succesful and the directory has been created. i holds the information
about the new directory. op is the pointer to the operation object which contains all the information about the operation,
including the state, etc. Using op->arg(0), you can get the file name of the new directory.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

void QNetworkProtocol::data (const QByteArray & data, QNetworkOperation * op) [signal]

This signal is emitted when new data has been received after calling get() or put(). op holds the name of the file from
which data is retrieved or uploaded in its first argument, and the (raw) data in its second argument. You can get them
with op->arg(0) and op->rawArg(1). op is the pointer to the operation object, which contains all the information
about the operation, including the state, etc.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator (which is used by the
network protocol) emit its corresponding signal.

void QNetworkProtocol::dataTransferProgress (int bytesDone, int bytesTotal,
QNetworkOperation * op) [signal]

This signal is emitted during the transfer of data (using put() or get()). bytesDone is how many bytes of bytesTotal have
been transferred. bytesTotal may be -1, which means that the total number of bytes is not known. op is the pointer to
the operation object which contains all the information about the operation, including the state, etc.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

void QNetworkProtocol::finished (QNetworkOperation * op) [signal]

This signal is emitted when an operation finishes. This signal is always emitted, for both success and failure. op is the
pointer to the operation object which contains all the information about the operation, including the state, etc. Check
the state and error code of the operation object to determine whether or not the operation was successful.

QNetworkProtocol Class Reference 104

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

QNetworkProtocol *
QNetworkProtocol::getNetworkProtocol (const QString & protocol) [static]

Static method to get a new instance of the network protocol protocol. For example, if you need to do some FTP
operations, do the following:

QFtp *ftp = QNetwor kProtocol :: get Net wor kProtocol ("ftp");
This returns a pointer to a new instance of an ftp implementation or null if no protocol for ftp was registered. The
ownership of the pointer is transferred to you, so you must delete it if you don’t need it anymore.

Normally you should not work directly with network protocols, so you will not need to call this method yourself.
Instead, use QUrlOperator, which makes working with network protocols much more convenient.

See also QUrlOperator [p. 179].

bool QNetworkProtocol::hasOnlyLocalFileSystem () [static]

Returns TRUE if the only protocol registered is for working on the local filesystem; returns FALSE if other network
protocols are also registered.

void QNetworkProtocol::itemChanged (QNetworkOperation * op) [signal]

This signal is emitted whenever a file which is a child of this URL has been changed, e.g. by successfully calling
rename(). op holds the original and the new file names in the first and second arguments, accessible with op->arg(0
) and op->arg(1) respectively. op is the pointer to the operation object which contains all the information about the
operation, including the state, etc.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

void QNetworkProtocol::newChild (const QUrlInfo & i, QNetworkOperation * op) [signal]

This signal is emitted if a new child (file) has been read. QNetworkProtocol automatically connects it to a slot which
creates a list of QUrlInfo objects (with just one QUrlInfo i) and emits the newChildren() signal with this list. op is the
pointer to the operation object which contains all the information about the operation that has finished, including the
state, etc.

This is just a convenience signal useful for implementing your own network protocol. In all other cases connect to the
newChildren() signal with its list of QUrlInfo objects.

void QNetworkProtocol::newChildren (const QValueList<QUrlInfo> & i,
QNetworkOperation * op) [signal]

This signal is emitted after listChildren() was called and new children (files) have been read from the list of files. i holds
the information about the new children. op is the pointer to the operation object which contains all the information
about the operation, including the state, etc.

QNetworkProtocol Class Reference 105

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

When implementing your own network protocol and reading children, you usually don’t read one child at once, but
rather a list of them. That’s why this signal takes a list of QUrlInfo objects. If you prefer to read only one child at a
time you can use the convenience signal newChild(), which takes a single QUrlInfo object.

void QNetworkProtocol::operationGet (QNetworkOperation * op) [virtual protected]

When implementing a new network protocol, this method should be reimplemented if the protocol supports getting
data; this method should then process the QNetworkOperation.

When you reimplement this method it's very important that you emit the correct signals at the correct time (es-
pecially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

Example: network/networkprotocol/nntp.cpp.

QNetworkOperation * QNetworkProtocol::operationInProgress () const

Returns the operation, which is being processed, or 0 of no operation is being processed at the moment.

void QNetworkProto-
col::operationListChildren (QNetworkOperation * op) [virtual protected]

When implementing a new network protocol, this method should be reimplemented if the protocol supports listing
children (files); this method should then process this QNetworkOperation.

When you reimplement this method it’s very important that you emit the correct signals at the correct time (es-
pecially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

Example: network/networkprotocol/nntp.cpp.

void QNetworkProtocol::operationMkDir (QNetworkOperation * op) [virtual protected]

When implementing a new network protocol, this method should be reimplemented if the protocol supports making
directories; this method should then process this QNetworkOperation.

When you reimplement this method it's very important that you emit the correct signals at the correct time (es-
pecially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

QNetworkProtocol Class Reference 106

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

void QNetworkProtocol::operationPut (QNetworkOperation * op) [virtual protected]

When implementing a new network protocol, this method should be reimplemented if the protocol supports putting
(uploading) data; this method should then process the QNetworkOperation.

When you reimplement this method it’s very important that you emit the correct signals at the correct time (es-
pecially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

void QNetworkProtocol::operationRemove (QNetworkOperation * op) [virtual protected]

When implementing a new network protocol, this method should be reimplemented if the protocol supports removing
children (files); this method should then process this QNetworkOperation.

When you reimplement this method it’s very important that you emit the correct signals at the correct time (espe-
cially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which is
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

void QNetworkProtocol::operationRename (QNetworkOperation * op) [virtual protected]
When implementing a new newtork protocol, this method should be reimplemented if the protocol supports renaming
children (files); this method should then process this QNetworkOperation.

When you reimplement this method it's very important that you emit the correct signals at the correct time (es-
pecially the finished() signal after processing an operation). Take a look at the Qt Network Documentation which
describes in detail how to reimplement this method. You may also want to look at the example implementation in
examples/network/networkprotocol/nntp.cpp.

op is the pointer to the operation object which contains all the information on the operation that has finished, including
the state, etc.

void QNetworkProtocol::registerNetworkProtocol (const QString & protocol,
QNetworkProtocolFactoryBase * protocolFactory) [static]

Static method to register a network protocol for Qt. For example, if you have an implementation of NNTP (called Nntp)
which is derived from QNetworkProtocol, call:

Q\et wor kPr ot ocol : :regi st er Net wor kProt ocol ("nntp", new QNetwor kProtocol Factory);

after which your implementation is registered for future nntp operations.

QNetworkProtocol Class Reference 107
The name of the protocol is given in protocol and a pointer to the protocol factory is given in protocolFactory.

void QNetworkProtocol::removed (QNetworkOperation * op) [signal]

This signal is emitted when remove() has been succesful and the file has been removed. op holds the file name of
the removed file in the first argument, accessible with op->arg(0). op is the pointer to the operation object which
contains all the information about the operation, including the state, etc.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

void QNetworkProtocol::setAutoDelete (bool b, inti = 10000) [virtual]

Because it's sometimes hard to take care of removing network protocol instances, QNetworkProtocol provides an auto-
delete mechanism. If you set b to TRUE, the network protocol instance is removed after it has been inactive for i
milliseconds (i.e. i milliseconds after the last operation has been processed). If you set b to FALSE the auto-delete
mechanism is switched off.

If you switch on auto-delete, the QNetworkProtocol also deletes its QUrlOperator.

void QNetworkProtocol::setUrl (QUrlOperator * u) [virtual]

Sets the QUrlOperator, on which the protocol works to u.
See also QUrlOperator [p. 179].

void QNetworkProtocol::start (QNetworkOperation * op) [signal]

Some operations (such as listChildren()) emit this signal when they start processing the operation. op is the pointer to
the operation object which contains all the information about the operation, including the state, etc.

When a protocol emits this signal, QNetworkProtocol is smart enough to let the QUrlOperator, which is used by the
network protocol, emit its corresponding signal.

void QNetworkProtocol::stop () [virtual]

Stops the current operation that is being processed and clears all waiting operations.

int QNetworkProtocol::supportedOperations () const [virtual]

Returns an int that is OR’d together using the enum values of QNetworkProtocol::Operation, which describes which
operations are supported by the network protocol. Should be reimplemented by new network protocols.

Example: network/networkprotocol/nntp.cpp.

QUrlOperator * QNetworkProtocol::url () const

Returns the QUrlOperator on which the protocol works.

QProcess Class Reference

The QProcess class is used to start external programs and to communicate with them.
#i ncl ude <qprocess. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QProcess (QObject * parent = 0, const char * name = 0)

m QProcess (const QString & arg0, QObject * parent = 0, const char * name = 0)

m QProcess (const QStringList & args, QObject * parent = 0, const char * name = 0)
m ~QProcess ()

QStringList arguments () const

void clearArguments ()

virtual void setArguments (const QStringList & args)

virtual void addArgument (const QString & arg)

QDir workingDirectory () const

m virtual void setWorkingDirectory (const QDir & dir)

m enum Communication { Stdin = 0x01, Stdout = 0x02, Stderr = 0x04, DupStderr = 0x08 }
void setCommunication (int commFlags)

int communication () const

virtual bool start (QStringList * env = 0)

virtual bool launch (const QString & buf, QStringList * env = 0)
virtual bool launch (const QByteArray & buf, QStringList * env = 0)
bool isRunning () const

bool normalExit () const

= int exitStatus () const

m virtual QByteArray readStdout ()

virtual QByteArray readStderr ()

bool canReadLineStdout () const

bool canReadLineStderr () const

virtual QString readLineStdout ()
virtual QString readLineStderr ()
PID processIdentifier ()

108

QProcess Class Reference 109

Public Slots

void tryTerminate () const

void kill () const

virtual void writeToStdin (const QByteArray & buf)
virtual void writeToStdin (const QString & buf)
virtual void closeStdin ()

Signals

m void readyReadStdout ()
m void readyReadStderr ()
m void processExited ()

= void wroteToStdin ()

m void launchFinished ()

Detailed Description

The QProcess class is used to start external programs and to communicate with them.

You can write to the started program’s standard input, and can read the program’s standard output and standard error.
You can pass command line arguments to the program either in the constructor or with setArguments() or addArgu-
ment(). The program’s working directory can be set with setWorkingDirectory(). If you need to set up environment
variables pass them to the start() or launch() function (see below). The processExited() signal is emitted if the program
exits. The program’s exit status is available from exitStatus(), although you could simply call normalExit() to see if the
program terminated normally.

There are two different ways to start a process. If you just want to run a program, optionally passing data to its
standard input at the beginning, use one of the launch() functions. If you want full control of the program’s standard
input, standard output and standard error, use the start() function.

If you use start() you can write to the program’s standard input using writeToStdin() and you can close the standard
input with closeStdin(). The wroteToStdin() signal is emitted if the data sent to standard input has been written.
You can read from the program’s standard output using readStdout() or readLineStdout(). These functions return an
empty QByteArray if there is no data to read. The readyReadStdout() signal is emitted when there is data available to
be read from standard output. Standard error has a set of functions that correspond to the standard output functions,
i.e. readStderr(), readLineStderr() and readyReadStderr().

If you use one of the launch() functions the data you pass will be sent to the program’s standard input which will be
closed once all the data has been written. You should not use writeToStdin() or closeStdin() if you use launch(). If you
need to send data to the program’s standard input after it has started running use start() instead of launch().

Both start() and launch() can accept a string list of strings with the format, key=value, where the keys are the names
of environment variables.

You can test to see if a program is running with isRunning(). The program’s process identifier is available from
processldentifier(). If you want to terminate a running program use tryTerminate(), but note that the program may
ignore this. If you really want to terminate the program, without it having any chance to clean up, you can use kill().

As an example, suppose we want to start the ui c command (a Qt command line tool used with Qt Designer) and
perform some operations on the output (the ui ¢ outputs the code it generates to standard output by default). Suppose

QProcess Class Reference

110

further that we want to run the program on the file "small dialog.ui" with the command line options "-tr i18n". On the

command line we would write:

uic -tr i18n small _dial og. ui

A code snippet for this with the QProcess class might look like this:

Ui cManager : : Ui cManager ()

{
proc = new QProcess(this);
proc->addArgunent("uic");
proc->addArgunent("-tr");
proc->addArgunment ("i18n");
proc->addArgunent ("smal | _dialog.ui");
connect (proc, SIGNAL(readyReadSt dout (

this, SLOT(readFronttdout()))
if (!proc->start()) {
Il error handling

}

}

voi d Ui cManager: : readFron dout ()

Il Read and process the data.

/1 Bear in mind that the data mght be output in chunks.

}

Although you may need quotes for a file named on the command line (e.g. if it contains spaces) you shouldn’t use

extra quotes for arguments passed to addArgument() or setArguments().

The readyReadStdout() signal is emitted when there is new data on standard output. This happens asynchronously:
you don’t know if more data will arrive later. In the above example you could connect the processExited() signal to the
slot UicManager::readFromStdout() instead. If you do so, you will be certain that all the data is available when the

slot is called. On the other hand, you must wait until the process has finished before doing any processing.

See also QSocket [p. 126], Input/Output and Networking and Miscellaneous Classes.

Member Type Documentation

QProcess::Communication

This enum type defines the communication channels connected to the process.

e (Process:: Stdin - Data can be written to the process’s standard input.

QProcess Class Reference 111

e (Process:: Stdout - Data can be read from the process’s standard output.
e (Process:: Stderr - Data can be read from the process’s standard error.

e (Process:: DupStderr - Duplicates standard error to standard output for new processes; i.e. everything that the
process writes to standard error, is reported by QProcess on standard output instead. This is especially useful
if your application requires that the output on standard output and standard error is read in the same order as
the process output it. Please note that this is a binary flag, so if you want to activate this together with standard
input, output and error redirection (the default), you have to specify St di n| St dout | Stderr| DupSt derr for the
setCommunication() call.

See also setCommunication() [p. 116] and communication() [p. 112].

Member Function Documentation

QProcess::QProcess (QObject * parent = 0, const char * name = 0)

Constructs a QProcess object. The parent and name parameters are passed to the QObject constructor.

See also setArguments() [p. 116], addArgument() [p. 112] and start() [p. 116].

QProcess::QProcess (const QString & arg0, QObject * parent = 0, const char * name = 0)
Constructs a QProcess with arg0 as the command to be executed. The parent and name parameters are passed to the
QObject constructor.

The process is not started. You must call start() or launch() to start the process.

See also setArguments() [p. 116], addArgument() [p. 112] and start() [p. 116].

QProcess::QProcess (const QStringList & args, QObject * parent = 0, const char * name = 0)

Constructs a QProcess with args as the arguments of the process. The first element in the list is the command to be
executed. The other elements in the list are the arguments to this command. The parent and name parameters are
passed to the QObject constructor.

The process is not started. You must call start() or launch() to start the process.

See also setArguments() [p. 116], addArgument() [p. 112] and start() [p. 116].

QProcess::~QProcess ()

Destroys the class.

If the process is running, it is NOT terminated! Standard input, standard output and standard error of the process are
closed.

You can connect the destroyed() signal to the kill() slot, if you want the process to be terminated automatically when
the class is destroyed.

See also tryTerminate() [p. 117] and kill() [p. 113].

QProcess Class Reference 112

void QProcess::addArgument (const QString & arg) [virtual]

Adds arg to the end of the list of arguments.

The first element in the list of arguments is the command to be executed; the following elements are the arguments to
the command.

See also arguments() [p. 112] and setArguments() [p. 116].

Example: process/process.cpp.

QStringList QProcess::arguments () const

Returns the list of arguments that are set for the process. Arguments can be specified with the constructor or with the
functions setArguments() and addArgument().

See also setArguments() [p. 116] and addArgument() [p. 112].

bool QProcess::canReadLineStderr () const

Returns TRUE if it’s possible to read an entire line of text from standard error at this time; otherwise returns FALSE.

See also readLineStderr() [p. 114] and canReadLineStdout() [p. 112].

bool QProcess::canReadLineStdout () const

Returns TRUE if it’s possible to read an entire line of text from standard output at this time; otherwise returns FALSE.

See also readLineStdout() [p. 115] and canReadLineStderr() [p. 112].

void QProcess::clearArguments ()

Clears the list of arguments that are set for the process.

See also setArguments() [p. 116] and addArgument() [p. 112].

void QProcess::closeStdin () [virtual slot]

Closes standard input of the process.
This function also deletes pending data that is not written to standard input yet.

See also wroteToStdin() [p. 117].

int QProcess::communication () const

Returns the communication required with the process.

See also setCommunication() [p. 116].

QProcess Class Reference 113

int QProcess::exitStatus () const
Returns the exit status of the process or 0 if the process is still running. This function returns immediately and does
not wait until the process is finished.

If normalExit() is FALSE (e.g. if the program was killed or crashed), this function returns 0, so you should check the
return value of normalExit() before relying on this value.

See also normalExit() [p. 114] and processExited() [p. 114].

bool QProcess::isRunning () const

Returns TRUE if the process is running, otherwise FALSE.

See also normalExit() [p. 114], exitStatus() [p. 113] and processExited() [p. 114].

void QProcess::kill () const [slot]

Terminates the process. This is not a safe way to end a process since the process will not be able to do cleanup.
tryTerminate() is a safer way to do it, but processes might ignore a tryTerminate().

The nice way to end a process and to be sure that it is finished, is doing something like this:

process->tryTerni nate();
Qri mer : : si ngl eShot (5000, process, SLOT(kill()));

This tries to terminate the process the nice way. If the process is still running after 5 seconds, it terminates the process
the hard way. The timeout should be chosen depending on the time the process needs to do all the cleanup: use a
higher value if the process is likely to do heavy computation on cleanup.

The slot returns immediately: it does not wait until the process has finished. When the process really exited, the signal
processExited () is emitted.

See also tryTerminate() [p. 117] and processExited() [p. 114].

bool QProcess::launch (const QByteArray & buf, QStringList * env = 0) [virtual]

Runs the process and writes the data buf to the process’s standard input. If all the data is written to standard input,
standard input is closed. The command is searched for in the path for executable programs; you can also use an
absolute path in the command itself.

If env is null, then the process is started with the same environment as the starting process. If env is non-null, then the
values in the stringlist are interpreted as environment setttings of the form key=val ue and the process is started with
these environment settings. For convenience, there is a small exception to this rule under Unix: if env does not contain
any settings for the environment variable LD LI BRARY_PATH, € then this variable is inherited from the starting process.

Returns TRUE if the process could be started; otherwise returns FALSE.

Note that you should not use the slots writeToStdin() and closeStdin() on processes started with launch(), since the
result is not well-defined. If you need these slots, use start() instead.

The process may or may not read the buf data sent to its standard input.

You can call this function even when a process that was started with this instance is still running. Be aware that if you
do this the standard input of the process that was launched first will be closed, with any pending data being deleted,

QProcess Class Reference 114

and the process will be left to run out of your control. Similarly, if the process could not be started the standard input
will be closed and the pending data deleted. (On operating systems that have zombie processes, Qt will also wait() on
the old process.)

The object emits the signal launchFinished () when this function call is finished. If the start was successful, this signal is
emitted after all the data has been written to standard input. If the start failed, then this signal is emitted immediately.

See also start() [p. 116] and launchFinished() [p. 114].

bool QProcess::launch (const QString & buf, QStringList * env = 0) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The data buf is written to standard input with writeToStdin() using the QString::local8Bit() representation of the
strings.

void QProcess::launchFinished () [signal]

This signal is emitted when the process was started with launch(). If the start was successful, this signal is emitted
after all the data has been written to standard input. If the start failed, then this signal is emitted immediately.

See also launch() [p. 113] and QObject::deleteLater() [Additional Functionality with Qt].

bool QProcess::normalExit () const

Returns TRUE if the process has exited normally; otherwise returns FALSE. This implies that this function returns FALSE
if the process is still running.

See also isRunning() [p. 113], exitStatus() [p. 113] and processExited() [p. 114].

void QProcess::processExited () [signal]

This signal is emitted when the process has exited.
See also isRunning() [p. 113], normalExit() [p. 114], exitStatus() [p. 113], start() [p. 116] and launch() [p. 113].

Example: process/process.cpp.

PID QProcess::processldentifier ()

Returns platform dependent information about the process. This can be used together with platform specific system
calls.
Under Unix the return value is the PID of the process, or -1 if no process is belonging to this object.

Under Windows it is a pointer to the PROCESS_| NFORVATI CN struct, or O if no process is belonging to this object.

QString QProcess::readLineStderr () [virtual]

Reads a line of text from standard error, excluding any trailing newline or carriage return characters and returns it.
Returns QString::null if canReadLineStderr() returns FALSE.

QProcess Class Reference 115

See also canReadLineStderr() [p. 112], readyReadStderr() [p. 115], readStderr() [p. 115] and readLineStdout()
[p. 115].

QString QProcess::readLineStdout () [virtual]
Reads a line of text from standard output, excluding any trailing newline or carriage return characters, and returns it.
Returns QString::null if canReadLineStdout() returns FALSE.

See also canReadLineStdout() [p. 112], readyReadStdout() [p. 115], readStdout() [p. 115] and readLineStderr()
[p. 114].

QByteArray QProcess::readStderr () [virtual]
Reads the data that the process has written to standard error. When new data is written to standard error, the class
emits the signal readyReadStderr().

If there is no data to read, this function returns a QByteArray of size 0: it does not wait until there is something to
read.

See also readyReadStderr() [p. 115], readLineStderr() [p. 114], readStdout() [p. 115] and writeToStdin() [p. 117].

QByteArray QProcess::readStdout () [virtual]
Reads the data that the process has written to standard output. When new data is written to standard output, the class
emits the signal readyReadStdout().

If there is no data to read, this function returns a QByteArray of size 0: it does not wait until there is something to
read.

See also readyReadStdout() [p. 115], readLineStdout() [p. 115], readStderr() [p. 115] and writeToStdin() [p. 117].

Example: process/process.cpp.

void QProcess::readyReadStderr () [signal]

This signal is emitted when the process has written data to standard error. You can read the data with readStderr().

Note that this signal is only emitted when there is new data and not when there is old, but unread data. In the slot
connected to this signal, you should always read everything that is available at that moment to make sure that you
don’t lose any data.

See also readStderr() [p. 115], readLineStderr() [p. 114] and readyReadStdout() [p. 115].

void QProcess::readyReadStdout () [signal]

This signal is emitted when the process has written data to standard output. You can read the data with readStdout().

Note that this signal is only emitted when there is new data and not when there is old, but unread data. In the slot
connected to this signal, you should always read everything that is available at that moment to make sure that you
don’t lose any data.

See also readStdout() [p. 115], readLineStdout() [p. 115] and readyReadStderr() [p. 115].

QProcess Class Reference 116

Example: process/process.cpp.

void QProcess::setArguments (const QStringList & args) [virtual]
Sets args as the arguments for the process. The first element in the list is the command to be executed. The other
elements in the list are the arguments to the command. Any previous arguments are deleted.

See also arguments() [p. 112] and addArgument() [p. 112].

void QProcess::setCommunication (int commFlags)

Sets commFlags as the communication required with the process.
commFlags is a bitwise OR between the flags defined in Communication.
The default is St di n| St dout | St derr.

See also communication() [p. 112].

void QProcess::setWorkingDirectory (const QDir & dir) [virtual]

Sets dir as the working directory for a process. This does not affect running processes; only processes that are started
afterwards are affected.

Setting the working directory is especially useful for processes that try to access files with relative filenames.

See also workingDirectory() [p. 117] and start() [p. 116].

bool QProcess::start (QStringList * env = 0) [virtual]

Tries to run a process for the command and arguments that were specified with setArguments(), addArgument() or
that were specified in the constructor. The command is searched in the path for executable programs; you can also use
an absolute path to the command.

If env is null, then the process is started with the same environment as the starting process. If env is non-null, then
the values in the stringlist are interpreted as environment setttings of the form key=val ue and the process is started in
these environment settings. For convenience, there is a small exception to this rule: under Unix, if env does not contain
any settings for the environment variable LD LI BRARY_PATH then this variable is inherited from the starting process;
under Windows the same applies for the enverionment varialbe PATH.

Returns TRUE if the process could be started, otherwise FALSE.

You can write data to standard input of the process with writeToStdin(), you can close standard input with closeStdin()
and you can terminate the process tryTerminate() resp. kill().

You can call this function even when there already is a running process in this object. In this case, QProcess closes
standard input of the old process and deletes pending data, i.e., you loose all control over that process, but the process
is not terminated. This applies also if the process could not be started. (On operating systems that have zombie
processes, Qt will also wait() on the old process.)

See also launch() [p. 113] and closeStdin() [p. 112].

Example: process/process.cpp.

QProcess Class Reference 117

void QProcess::tryTerminate () const [slot]
Asks the process to terminate. Processes can ignore this wish. If you want to be sure that the process really terminates,
you must use kill() instead.

The slot returns immediately: it does not wait until the process has finished. When the process really exited, the signal
processExited () is emitted.

See also kill() [p. 113] and processExited() [p. 114].

QDir QProcess::workingDirectory () const

Returns the working directory that was set with setWorkingDirectory(), or the current directory if none has been set.

See also setWorkingDirectory() [p. 116] and QDir::current() [p. 36].

void QProcess::writeToStdin (const QByteArray & buf) [virtual slot]

Writes the data buf to the standard input of the process. The process may or may not read this data.

This function returns immediately; the QProcess class might write the data at a later point (you have to enter the event
loop for that). When all the data is written to the process, the signal wroteToStdin() is emitted. This does not mean
that the process really read the data, since this class only detects when it was able to write the data to the operating
system.

See also wroteToStdin() [p. 1171, closeStdin() [p. 112], readStdout() [p. 115] and readStderr() [p. 115].

void QProcess::writeToStdin (const QString & buf) [virtual slot]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

The string buf is handled as text using the QString::local8Bit() representation.

void QProcess::wroteToStdin () [signal]

This signal is emitted if the data sent to standard input (via writeToStdin()) was actually written to the process. This
does not imply that the process really read the data, since this class only detects when it was able to write the data to
the operating system. But it is now safe to close standard input without losing pending data.

See also writeToStdin() [p. 117] and closeStdin() [p. 112].

QServerSocket Class Reference

The QServerSocket class provides a TCP-based server.
This class is part of the network module.
#incl ude <gserversocket. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m QServerSocket (Q UINT16 port, int backlog = 1, QObject * parent = 0, const char * name = 0)

m QServerSocket (const QHostAddress & address, Q UINT16 port, int backlog = 1, QObject * parent = 0,
const char * name = 0)

m QServerSocket (QObject * parent = 0, const char * name = 0)

m virtual ~QServerSocket ()

= bool ok () const

m Q UINT16 port () const

m int socket () const

m virtual void setSocket (int socket)

m QHostAddress address () const

m virtual void newConnection (int socket)

Protected Members

m QSocketDevice * socketDevice ()

Detailed Description

The QServerSocket class provides a TCP-based server.

This class is a convenience class for accepting incoming TCP connections. You can specify the port or have QServer-
Socket pick one, and listen on just one address or on all the machine’s addresses.

Using the API is very simple: subclass QServerSocket, call the constructor of your choice, and implement newConnec-
tion() to handle new incoming connections. There is nothing more to do.

(Note that due to lack of support in the underlying APIs, QServerSocket cannot accept or reject connections condition-
ally.)

118

QServerSocket Class Reference 119

See also QSocket [p. 126], QSocketDevice [p. 135], QHostAddress [p. 71], QSocketNotifier [p. 142] and
Input/Output and Networking.

Member Function Documentation

QServerSocket::QServerSocket (Q_UINT16 port, int backlog = 1, QObject * parent = 0,
const char * name = 0)

Creates a server socket object, that will serve the given port on all the addresses of this host. If port is 0, QServerSocket
will pick a suitable port in a system-dependent manner. Use backlog to specify how many pending connections the
server can have.

The parent and name arguments are passed on to the QObject constructor.

Warning: On Tru64 Unix systems a value of 0 for backlog means that you don’t accept any connections at all; you
should specify a value larger than 0.

QServerSocket::QServerSocket (const QHostAddress & address, Q_UINT16 port, int backlog
= 1, QObject * parent = 0, const char * name = 0)

Creates a server socket object, that will serve the given port only on the given address. Use backlog to specify how many
pending connections the server can have.
The parent and name arguments are passed on to the QObject constructor.

Warning: On Tru64 Unix systems a value of 0 for backlog means that you don’t accept any connections at all; you
should specify a value larger than 0.

QServerSocket::QServerSocket (QObject * parent = 0, const char * name = 0)

Construct an empty server socket.

This constructor, in combination with setSocket(), allows us to use the QServerSocket class as a wrapper for other
socket types (e.g. Unix Domain Sockets under Unix).

The parent and name arguments are passed on to the QObject constructor.

See also setSocket() [p. 120].

QServerSocket::~QServerSocket () [virtual]

Destroys the socket.

This causes any backlogged connections (connections that have reached the host, but not yet been completely set up
by calling QSocketDevice::accept()) to be severed.

Existing connections continue to exist; this only affects the acceptance of new connections.

QServerSocket Class Reference 120

QHostAddress QServerSocket::address () const

Returns the address on which this object listens, or 0.0.0.0 if this object listens on more than one address. ok() must
be TRUE before calling this function.

See also port() [p. 120] and QSocketDevice::address() [p. 137]1.

void QServerSocket::newConnection (int socket) [virtual]

This pure virtual function is responsible for setting up a new incoming connection. socket is the fd (file descripor) for
the newly accepted connection.

bool QServerSocket::ok () const

Returns TRUE if the construction succeeded; otherwise returns FALSE.

Q _UINT16 QServerSocket::port () const

Returns the port number on which this server socket listens. This is always non-zero; if you specify 0 in the constructor,
QServerSocket will pick a non-zero port itself. ok() must be TRUE before calling this function.
See also address() [p. 120] and QSocketDevice::port() [p. 139].

Example: network/httpd/httpd.cpp.

void QServerSocket::setSocket (int socket) [virtual]

Sets the socket to use socket. bind() and listen() should already have been called for socket.

This allows us to use the QServerSocket class as a wrapper for other socket types (e.g. Unix Domain Sockets under
Unix).

int QServerSocket::socket () const

Returns the operating system socket.

QSocketDevice * QServerSocket::socketDevice () [protected]
Returns a pointer to the internal socket device. The returned pointer is null if there is no connection or pending
connection.

There is normally no need to manipulate the socket device directly since this class does all the necessary setup for most
client or server socket applications.

QSessionManager Class Reference

The QSessionManager class provides access to the session manager.

#i ncl ude <gsessi onmanager. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

QString sessionld () const

void * handle () const

bool allowsInteraction ()

bool allowsErrorInteraction ()

void release ()

void cancel ()

enum RestartHint { RestartIfRunning, RestartAnyway, RestartImmediately, RestartNever }
void setRestartHint (RestartHint hint)

RestartHint restartHint () const

void setRestartCommand (const QStringList & command)

QStringList restartCommand () const

void setDiscardCommand (const QStringList &)

QStringList discardCommand () const

void setManagerProperty (const QString & name, const QString & value)
void setManagerProperty (const QString & name, const QStringList & value)
bool isPhase2 () const

void requestPhase2 ()

Detailed Description

The QSessionManager class provides access to the session manager.

The session manager is responsible for session management, most importantly for interruption and resumption. A "ses-
sion" is a kind of record of the state of the system, e.g. which applications were run at start up and which applications
are currently running. The session manager is used to save the session, e.g. when the machine is shut down; and to
restore a session, e.g. when the machine is started up. Use QSettings to save and restore an individual application’s
settings, e.g. window positions, recently used files, etc.

121

QSessionManager Class Reference 122

QSessionManager provides an interface between the application and the session manager so that the program can work
well with the session manager. In Qt, session management requests for action are handled by the two virtual functions
QApplication::commitData() and QApplication::saveState(). Both provide a reference to a session manager object as
argument, to allow the application to communicate with the session manager.

During a session management action (i.e. within commitData() and saveState()), no user interaction is possible unless
the application got explicit permission from the session manager. You ask for permission by calling allowsInteraction()
or, if it’s really urgent, allowsErrorInteraction(). Qt does not enforce this, but the session manager may.

You can try to abort the shutdown process by calling cancel(). The default commitData() function does this if some
top-level window rejected its closeEvent().

For sophisticated session managers provided on Unix/X11, QSessionManager offers further possibilites to fine-tune an
application’s session management behavior: setRestartCommand(), setDiscardCommand(), setRestartHint(), setProp-
erty(), requestPhase2(). See the respective function descriptions for further details.

See also Main Window and Related Classes and Environment Classes.

Member Type Documentation

QSessionManager::RestartHint

This enum type defines the circumstances under which this application wants to be restarted by the session manager.
The current values are

e (Sessi onManager ; : Restart | f Runni ng - if the application is still running when the session is shut down, it wants
to be restarted at the start of the next session.

e (Sessi onManager : : Rest art Anyway - the application wants to be started at the start of the next session, no matter
what. (This is useful for utilities that run just after startup and then quit.)

e (Sessi onManager: : Restart| medi atel y - the application wants to be started immediately whenever it is not
running.
e (Sessi onManager : : Rest art Never - the application does not want to be restarted automatically.

The default hint is RestartIfRunning.

Member Function Documentation

bool QSessionManager::allowsErrorInteraction ()

This is similar to allowsInteraction(), but also tells the session manager that an error occurred. Session managers may
give error interaction request higher priority, which means that it is more likely that an error interaction is permitted.
However, you are still not guaranteed that the session manager will allow interaction.

See also allowsInteraction() [p. 1221, release() [p. 124] and cancel() [p. 123].

bool QSessionManager::allowsInteraction ()

Asks the session manager for permission to interact with the user. Returns TRUE if interaction is permitted; otherwise
returns FALSE.

QSessionManager Class Reference 123

The rationale behind this mechanism is to make it possible to synchronize user interaction during a shutdown. Ad-
vanced session managers may ask all applications simultaneously to commit their data, resulting in a much faster
shutdown.

When the interaction is completed we strongly recommend releasing the user interaction semaphore with a call to
release(). This way, other applications may get the chance to interact with the user while your application is still busy
saving data. (The semaphore is implicitly released when the application exits.)

If the user decides to cancel the shutdown process during the interaction phase, you must tell the session manager that
this has happened by calling cancel().

Here’s an example of how an application’s QApplication::commitData() might be implemented:

voi d MyApplication::comitData(QSessionManager& sm) {
if (smallowslInteraction()) {
switch (QvessageBox: : war ni ng(
your Mai nW ndow,
tr("AppI i cation Nanme"),
tr("Save changes to document Foo?"),
("&Yes),
tr("&No"),
tr("Cancel "),
0, 2)) {
case 0: // yes
smrel ease();
Il save docunent here; if saving fails, call smcancel ()
br eak;
case 1: // continue without saving
br eak;
default: // cancel
sm cancel ();
br eak;
}
} else {
Il we did not get permission to interact, then
/'l do sonething reasonabl e instead.

If an error occurred within the application while saving its data, you may want to try allowsErrorInteraction() instead.
See also QApplication::commitData() [Additional Functionality with Qt], release() [p. 124] and cancel() [p. 123].
void QSessionManager::cancel ()

Tells the session manager to cancel the shutdown process. Applications should not call this function without first asking
the user.

See also allowsInteraction() [p. 122] and allowsErrorInteraction() [p. 122].

QStringList QSessionManager::discardCommand () const

Returns the currently set discard command.

QSessionManager Class Reference 124

See also setDiscardCommand() [p. 125], restartCommand() [p. 124] and setRestartCommand() [p. 125].

void * QSessionManager::handle () const

X11 only: returns a handle to the current SntConnecti on.

bool QSessionManager::isPhase2 () const

Returns TRUE if the session manager is currently performing a second session management phase; otherwise returns
FALSE.

See also requestPhase2() [p. 124].

void QSessionManager::release ()

Releases the session manager’s interaction semaphore after an interaction phase.

See also allowsInteraction() [p. 122] and allowsErrorInteraction() [p. 122].

void QSessionManager::requestPhase2 ()

Requests a second session management phase for the application. The application may then return immediately from
the QApplication::commitData() or QApplication::saveState() function, and they will be called again once most or all
other applications have finished their session management.

The two phases are useful for applications such as the X11 window manager that need to store information about
another application’s windows and therefore have to wait until these applications have completed their respective
session management tasks.

Note that if another application has requested a second phase it may get called before, simultaneously with, or after
your application’s second phase.

See also isPhase2() [p. 124].

QStringList QSessionManager::restartCommand () const
Returns the currently set restart command.

See also setRestartCommand() [p. 125] and restartHint() [p. 124].
RestartHint QSessionManager::restartHint () const

Returns the application’s current restart hint. The default is RestartIfRunning.
See also setRestartHint() [p. 125].

QString QSessionManager::sessionld () const

Returns the identifier of the current session.

QSessionManager Class Reference 125

If the application has been restored from an earlier session, this identifier is the same as it was in that earlier session.

See also QApplication::sessionld() [Additional Functionality with Qt].

void QSessionManager::setDiscardCommand (const QStringList &)

See also discardCommand() [p. 123] and setRestartCommand() [p. 125].

void QSessionManager::setManagerProperty (const QString & name,
const QStringList & value)

Low-level write access to the application’s identification and state record are kept in the session manager.

The property called name has its value set to the string list value.

void QSessionManager::setManagerProperty (const QString & name, const QString & value)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Low-level write access to the application’s identification and state records are kept in the session manager.

The property called name has its value set to the string value.

void QSessionManager::setRestartCommand (const QStringList & command)

If the session manager is capable of restoring sessions it will execute command in order to restore the application. The
command defaults to

appnane -session id

The - sessi on option is mandatory; otherwise QApplication cannot tell whether it has been restored or what the current
session identifier is. See QApplication::isSessionRestored () and QApplication::sessionld() for details.

If your application is very simple, it may be possible to store the entire application state in additional command line
options. This is usually a very bad idea because command lines are often limited to a few hundred bytes. Instead, use
QSettings, or temporary files or a database for this purpose. By marking the data with the unique sessionId(), you will
be able to restore the application in a future session.

See also restartCommand() [p. 124], setDiscardCommand() [p. 125] and setRestartHint() [p. 125].

void QSessionManager::setRestartHint (RestartHint hint)

Sets the application’s restart hint to hint. On application startup the hint is set to RestartIfRunning.
Note that these flags are only hints, a session manager may or may not respect them.

We recommend setting the restart hint in QApplication::saveState() because most session managers perform a check-
point shortly after an application’s startup.

See also restartHint() [p. 1241].

QSocket Class Reference

The QSocket class provides a buffered TCP connection.
This class is part of the network module.
#incl ude <gsocket. h>

Inherits QObject [Additional Functionality with Qt] and QIODevice [p. 76].

Public Members

m enum Error { ErrConnectionRefused, ErrHostNotFound, ErrSocketRead }
m QSocket (QObject * parent = 0, const char * name = 0)

m virtual ~QSocket ()

m enum State { Idle, HostLookup, Connecting, Connected, Closing, Connection = Connected }
m State state () const

= int socket () const

m virtual void setSocket (int socket)

= QSocketDevice * socketDevice ()

m virtual void setSocketDevice (QSocketDevice * device)

m virtual void connectToHost (const QString & host, Q_ UINT16 port)
m QString peerName () const

m virtual bool open (int m)

m virtual void close ()

m virtual void flush ()

m virtual Offset size () const

m virtual Offset at () const

m virtual bool at (Offset index)

m virtual bool atEnd () const

» Q ULONG bytesAvailable () const

= Q ULONG waitForMore (int msecs) const

m Q ULONG bytesToWrite () const

m virtual Q_LONG readBlock (char * data, Q ULONG maxlen)

m virtual Q_LONG writeBlock (const char * data, Q_ULONG len)

m virtual int getch ()

m virtual int putch (int ch)

m virtual int ungetch (int ch)

m bool canReadLine () const

126

QSocket Class Reference 127

m virtual QString readLine ()

s Q UINT16 port () const

e Q UINT16 peerPort () const

e QHostAddress address () const

e QHostAddress peerAddress () const

Signals

m void hostFound ()

= void connected ()

= void connectionClosed ()

m void delayedCloseFinished ()
m void readyRead ()

m void bytesWritten (int nbytes)
m void error (int)

Protected Slots

m virtual void sn_read (bool force = FALSE)
m virtual void sn_write ()

Detailed Description

The QSocket class provides a buffered TCP connection.
It provides a totally non-blocking QIODevice, and modifies and extends the API of QIODevice with socket-specific code.

The functions you’re likely to call most are connectToHost(), bytesAvailable(), canReadLine() and the ones it inherits
from QIODevice.

connectToHost() is the most-used function. As its name implies, it opens a connection to a named host.

Most network protocols are either packet-oriented or line-oriented. canReadLine() indicates whether a connection
contains an entire unread line or not, and bytesAvailable() returns the number of bytes available for reading.

The signals error(), connected(), readyRead() and connectionClosed() inform you of the progress of the connection.
There are also some less commonly used signals. hostFound() is emitted when connectToHost() has finished its DNS
lookup and is starting its TCP connection. delayedCloseFinished() is emitted when close() succeeds. bytesWritten() is
emitted when QSocket moves data from its "to be written" queue into the TCP implementation.

There are several access functions for the socket: state() returns whether the object is idle, is doing a DNS lookup, is
connecting, has an operational connection, etc. address() and port() return the IP address and port used for the con-
nection. The peerAddress() and peerPort() functions return the IP address and port used by the peer, and peerName()
returns the name of the peer (normally the name that was passed to connectToHost()). socket() returns a pointer to
the QSocketDevice used for this socket.

QSocket inherits QIODevice, and reimplements some functions. In general, you can treat it as a QIODevice for writing,
and mostly also for reading. The match isn’t perfect, since the QIODevice API is designed for devices that are controlled
by the same machine, and an asynchronous peer-to-peer network connection isn’t quite like that. For example, there is

QSocket Class Reference 128

nothing that matches QIODevice::size() exactly. The documentation for open(), close(), flush(), size(), at(), atEnd(),
readBlock(), writeBlock(), getch(), putch(), ungetch() and readLine() describes the differences in detail.

See also QSocketDevice [p. 135], QHostAddress [p. 71], QSocketNotifier [p. 142] and Input/Output and Networking.

Member Type Documentation

QSocket::Error
This enum specifies the possible errors:

e (Bocket : : Err ConnectionRef used - if the connection was refused

e (Bocket : : Err Host Not Found - if the host was not found

e (Socket:: Err Socket Read - if a read from the socket failed
QSocket::State

This enum defines the connection states:

e (Bocket: : Idl e - if there is no connection

e (Socket : : Host Lookup - during a DNS lookup

e (Socket : : Connecti ng - during TCP connection establishment
e (Socket: : Connect ed - when there is an operational connection

e (Socket : : O osi ng - if the socket is closing down, but is not yet closed.

Member Function Documentation

QSocket::QSocket (QObject * parent = 0, const char * name = 0)
Creates a QSocket object in QSocket::Idle state.
The parent and name arguments are passed on to the QObject constructor.

QSocket::~QSocket () [virtual]

Destroys the socket. Closes the connection if necessary.

See also close() [p. 130].

QHostAddress QSocket::address () const

Returns the host address of this socket. (This is normally the main IP address of the host, but can be e.g. 127.0.0.1 for
connections to localhost.)

QSocket Class Reference 129

Offset QSocket::at () const [virtual]

Returns the current read index. Since QSocket is a sequential device, the current read index is always zero.

Reimplemented from QIODevice [p. 79].

bool QSocket::at (Offset index) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Moves the read index forward to index and returns TRUE if the operation was successful. Moving the index forward
means skipping incoming data.

Reimplemented from QIODevice [p. 79].

bool QSocket::atEnd () const [virtual]

Returns TRUE if there is no more data to read; otherwise returns FALSE.

Reimplemented from QIODevice [p. 79].

Q _ULONG QSocket::bytesAvailable () const

Returns the number of incoming bytes that can be read, i.e. the size of the input buffer. Equivalent to size().
See also bytesToWrite() [p. 129].

Example: network/networkprotocol/nntp.cpp.

Q_ULONG QSocket::bytesToWrite () const

Returns the number of bytes that are waiting to be written, i.e. the size of the output buffer.

See also bytesAvailable() [p. 129].

void QSocket::bytesWritten (int nbytes) [signal]
This signal is emitted when data has actually been written to the network. The nbytes parameter specifies how many
bytes were written.

The bytesToWrite() function is often used in the same context, and it says how many buffered bytes there are left to
write.

See also writeBlock() [p. 134] and bytesToWrite() [p. 129].

bool QSocket::canReadLine () const

Returns TRUE if it’s possible to read an entire line of text from this socket at this time; otherwise returns FALSE.

Note that if the peer closes the connection unexpectedly, this function returns FALSE. This means that loops such as
this won’t work:

QSocket Class Reference 130

whi | e(!socket->canReadLine()) // Wong.

See also readLine() [p. 132].

Examples: network/clientserver/client/client.cpp, network/httpd/httpd.cpp, network/mail/smtp.cpp and
network/networkprotocol/nntp.cpp.

void QSocket::close () [virtual]

Closes the socket.
The read buffer is cleared.

If the output buffer is empty, the state is set to QSocket::Idle and the connection is terminated immediately. If the
output buffer still contains data to be written, QSocket goes into the QSocket::Closing state and the rest of the data
will be written. When all of the outgoing data have been written, the state is set to QSocket::Idle and the connection
is terminated. At this point, the delayedCloseFinished () signal is emitted.

See also state() [p. 134] and bytesToWrite() [p. 129].
Examples: network/clientserver/client/client.cpp, network/httpd/httpd.cpp and network/networkprotocol/nntp.cpp.

Reimplemented from QIODevice [p. 79].

void QSocket::connectToHost (const QString & host, Q UINT16 port) [virtual]

Attempts to make a connection to host on the specified port and return immediately.

Any connection or pending connection is closed immediately, and QSocket goes into the HostLookup state. When the
lookup succeeds, it emits hostFound(), starts a TCP connection and goes into the Connecting state. Finally, when the
connection succeeds, it emits connected() and goes into the Connected state. If there is an error at any point, it emits
error().

host may be an IP address in string form, or it may be a DNS name. QSocket will do a normal DNS lookup if required.
Note that port is in native byte order, unlike some other libraries.

See also state() [p. 134].

Examples: network/clientserver/client/client.cpp, network/mail/smtp.cpp and network/networkprotocol/nntp.cpp.

void QSocket::connected () [signal]

This signal is emitted after connectToHost() has been called and a connection has been successfully established.
See also connectToHost() [p. 130] and connectionClosed() [p. 130].

Examples: network/clientserver/client/client.cpp, network/mail/smtp.cpp and network/networkprotocol/nntp.cpp.

void QSocket::connectionClosed () [signal]

This signal is emitted when the other end has closed the connection. The read buffers may contain buffered input data
which you can read after the connection was closed.

See also connectToHost() [p. 130] and close() [p. 130].

QSocket Class Reference 131

Examples: network/clientserver/client/client.cpp and network/networkprotocol/nntp.cpp.

void QSocket::delayedCloseFinished () [signal]

This signal is emitted when a delayed close is finished.

If you call close() and there is buffered output data to be written, QSocket goes into the QSocket::Closing state and
returns immediately. It will then keep writing to the socket until all the data has been written. Then, the delayed-
CloseFinished() signal is emitted.

See also close() [p. 130].

Examples: network/clientserver/client/client.cpp and network/httpd/httpd.cpp.

void QSocket::error (int) [signal]

This signal is emitted after an error occurred. The parameter is the Error value.

Examples: network/clientserver/client/client.cpp and network/networkprotocol/nntp.cpp.

void QSocket::flush () [virtual]

Implementation of the abstract virtual QIODevice::flush() function.

Reimplemented from QIODevice [p. 80].

int QSocket::getch () [virtual]

Reads a single byte/character from the internal read buffer. Returns the byte/character read, or -1 if there is nothing
to be read.
See also bytesAvailable() [p. 129] and putch() [p. 132].

Reimplemented from QIODevice [p. 80].

void QSocket::hostFound () [signal]

This signal is emitted after connectToHost() has been called and the host lookup has succeeded.
See also connected() [p. 130].

Example: network/networkprotocol/nntp.cpp.

bool QSocket::open (int m) [virtual]

Opens the socket using the specified QIODevice file mode m. This function is called automatically when needed and
you should not call it yourself.
See also close() [p. 130].

Reimplemented from QIODevice [p. 82].

QSocket Class Reference 132

QHostAddress QSocket::peerAddress () const

Returns the host address as resolved from the name specified to the connectToHost() function.

QString QSocket::peerName () const

Returns the host name as specified to the connectToHost() function. An empty string is returned if none has been set.

Example: network/mail/smtp.cpp.

Q_UINT16 QSocket::peerPort () const

Returns the peer’s host port number, normally as specified to the connectToHost() function. If none has been set, this
function returns O.

Note that Qt always uses native byte order, i.e. 67 is 67 in Qt, there is no need to call htons().

Q_UINT16 QSocket::port () const

Returns the host port number of this socket, in native byte order.

int QSocket::putch (int ch) [virtual]

Writes the character ch to the output buffer.
Returns ch, or -1 if some error occurred.
See also getch() [p. 131].

Reimplemented from QIODevice [p. 83].

Q_LONG QSocket::readBlock (char * data, Q_ULONG maxlen) [virtual]

Reads max maxlen bytes from the socket into data and returns the number of bytes read. Returns -1 if an error occurred.
Example: network/networkprotocol/nntp.cpp.

Reimplemented from QIODevice [p. 83].

QString QSocket::readLine () [virtual]

Returns a line of text including a terminating newline character (\n). Returns "" if canReadLine() returns FALSE.
See also canReadLine() [p. 129].

Examples: network/clientserver/client/client.cpp, network/httpd/httpd.cpp, network/mail/smtp.cpp and
network/networkprotocol/nntp.cpp.

QSocket Class Reference 133

void QSocket::readyRead () [signal]

This signal is emitted when there is incoming data to be read.

Every time there is new incoming data this signal is emitted once. Bear in mind that new incoming data is only reported
once; i.e. if you do not read all data, this signal is not emitted again unless new data arrives on the socket.

See also readBlock() [p. 132], readLine() [p. 132] and bytesAvailable() [p. 129].

Examples: network/clientserver/client/client.cpp, network/httpd/httpd.cpp, network/mail/smtp.cpp and
network/networkprotocol/nntp.cpp.

void QSocket::setSocket (int socket) [virtual]

Sets the socket to use socket and the state() to Connected. The socket should already be connected.
This allows us to use the QSocket class as a wrapper for other socket types (e.g. Unix Domain Sockets under Unix).

Example: network/httpd/httpd.cpp.

void QSocket::setSocketDevice (QSocketDevice * device) [virtual]
Sets the internal socket device to device. Passing a device of 0 will cause the internal socket device to be used. Any
existing connection will be disconnected before using the new device.

The new device should not be connected before being associated with a QSocket; after setting the socket call connect-
ToHost() to make the connection.

This function is useful if you need to subclass QSocketDevice and want to use the QSocket API, for example, to
implement Unix domain sockets.

Offset QSocket::size () const [virtual]

Returns the number of incoming bytes that can be read right now (like bytesAvailable()).

Reimplemented from QIODevice [p. 841.

void QSocket::sn_read (bool force = FALSE) [virtual protected slot]

Internal slot for handling socket read notifications.

This function has can usually be only entered once (i.e. no recursive calls). If the argument force is TRUE, the function
is executed, but no readyRead() signals are emitted. This behaviour is useful for the waitForMore() function, so that it
is possible to call waitForMore() in a slot connected to the readyRead() signal.

void QSocket::sn_write () [virtual protected slot]

Internal slot for handling socket write notifications.

QSocket Class Reference 134

int QSocket::socket () const

Returns the socket number, or -1 if there is no socket at the moment.

QSocketDevice * QSocket::socketDevice ()

Returns a pointer to the internal socket device.

There is normally no need to manipulate the socket device directly since this class does the necessary setup for most
applications.

State QSocket::state () const

Returns the current state of the socket connection.
See also QSocket::State [p. 128].

Examples: network/clientserver/client/client.cpp and network/networkprotocol/nntp.cpp.

int QSocket::ungetch (int ch) [virtual]
This implementation of the virtual function QIODevice::ungetch() prepends the character ch to the read buffer so that
the next read returns this character as the first character of the output.

Reimplemented from QIODevice [p. 84].

Q_ULONG QSocket::waitForMore (int msecs) const

Wait up to msecs milliseconds for more data to be available.

If msecs is -1 the call will block indefinitely.

This is a blocking call and should be avoided in event driven applications.
Returns the number of bytes available.

See also bytesAvailable() [p. 129].

Q_LONG QSocket::writeBlock (const char * data, Q_ULONG len) [virtual]

Writes len bytes to the socket from data and returns the number of bytes written. Returns -1 if an error occurred.
Example: network/networkprotocol/nntp.cpp.

Reimplemented from QIODevice [p. 85].

QSocketDevice Class Reference

The QSocketDevice class provides a platform-independent low-level socket API.
This class is part of the network module.
#i ncl ude <gsocket devi ce. h>

Inherits QIODevice [p. 76].

Public Members

m enum Type { Stream, Datagram }

m QSocketDevice (Type type = Stream)

m QSocketDevice (int socket, Type type)

m virtual ~QSocketDevice ()

m bool isValid () const

= Type type () const

= int socket () const

m virtual void setSocket (int socket, Type type)

= bool blocking () const

m virtual void setBlocking (bool enable)

= bool addressReusable () const

m virtual void setAddressReusable (bool enable)

m int receiveBufferSize () const

m virtual void setReceiveBufferSize (uint size)

m int sendBufferSize () const

m virtual void setSendBufferSize (uint size)

m virtual bool connect (const QHostAddress & addr, Q UINT16 port)
m virtual bool bind (const QHostAddress & address, Q_UINT16 port)
m virtual bool listen (int backlog)

m virtual int accept ()

= Q LONG bytesAvailable () const

» Q LONG waitForMore (int msecs, bool * timeout = 0) const

m virtual Q_LONG readBlock (char * data, Q ULONG maxlen)

m virtual Q LONG writeBlock (const char * data, Q ULONG len)

m virtual Q LONG writeBlock (const char * data, Q ULONG len, const QHostAddress & host, Q UINT16 port)
m Q UINT16 port () const

m Q UINT16 peerPort () const

135

QSocketDevice Class Reference 136

m QHostAddress address () const
m QHostAddress peerAddress () const

e enum Error { NoError, AlreadyBound, Inaccessible, NoResources, Bug, Impossible, NoFiles, ConnectionRefused,
NetworkFailure, UnknownError }

e Error error () const

Protected Members

m void setError (Error err)

Detailed Description

The QSocketDevice class provides a platform-independent low-level socket API.

This class is not really intended for use outside Qt. It can be used to achieve some things that QSocket does not provide,
but it’s not particularly easy to understand or use.

The essential purpose of the class is to provide a QIODevice that works on sockets, wrapped in a platform-independent
APL.

See also QSocket [p. 126], QSocketNotifier [p. 142], QHostAddress [p. 71] and Input/Output and Networking.

Member Type Documentation

QSocketDevice::Error
This enum type describes the error states of QSocketDevice. At present these errors are defined:

e (Socket Devi ce: : NoError - all is fine.

e (Socket Devi ce: : Al readyBound - bind () said so.

e (Socket Devi ce: : | naccessi bl e - the operating system or firewall prohibits something.
e (Socket Devi ce: : NoResour ces - the operating system ran out of something.

e (Socket Devi ce: : Bug - there seems to be a bug in QSocketDevice.

e (Socket Devi ce: : | npossi bl e - the impossible happened, usually because you confused QSocketDevice horribly.
Simple example:

.. close(sd->socket());
sd->writeBl ock(soneData, 42);

The libc ::close() closes the socket, but QSocketDevice is not aware of this. So when you call writeBlock(), the
impossible happens.

e (Socket Devi ce: : NoFi | es - the operating system will not let QSocketDevice open another file.

e (Socket Devi ce: : Connect i onRef used - a connection attempt was rejected by the peer.

e (Bocket Devi ce: : Net wor kFai | ur e - there is a network failure between this host and... and whatever.

e (Socket Devi ce: : UnknownError - the operating system reacted in a way that the Qt developers did not foresee.

QSocketDevice Class Reference 137

QSocketDevice::Type
This enum type describes the type of the socket:

e (Socket Devi ce: : Stream- a stream socket (TCB usually)
e (Socket Devi ce: : Dat agram- a datagram socket (UDB usually)

Member Function Documentation

QSocketDevice::QSocketDevice (Type type = Stream)

Creates a QSocketDevice object for a stream or datagram socket.

The type argument must be either QSocketDevice::Stream for a reliable, connection-oriented TCP socket, or QSocket-
Device::Datagram for an unreliable UDP socket.

See also blocking() [p. 138].

QSocketDevice::QSocketDevice (int socket, Type type)

Creates a QSocketDevice object for the existing socket socket.

The type argument must match the actual socket type; use QSocketDevice::Stream for a reliable, connection-oriented
TCP socket, or QSocketDevice::Datagram for an unreliable, connectionless UDP socket.

QSocketDevice::~QSocketDevice () [virtual]

Destroys the socket device and closes the socket if it is open.

int QSocketDevice::accept () [virtual]

Extracts the first connection from the queue of pending connections for this socket and returns a new socket identifier.
Returns -1 if the operation failed.

See also bind() [p. 138] and listen() [p. 138].

QHostAddress QSocketDevice::address () const

Returns the address of this socket device. This may be 0.0.0.0 for a while, but is set to something sensible when there
is a sensible value it can have.

bool QSocketDevice::addressReusable () const

Returns TRUE if the address of this socket can be used by other sockets at the same time, and FALSE if this socket
claims exclusive ownership.

See also setAddressReusable() [p. 139].

QSocketDevice Class Reference 138

bool QSocketDevice::bind (const QHostAddress & address, Q_UINT16 port) [virtual]

Assigns a name to an unnamed socket. The name is the host address address and the port number port. If the operation
succeeds, bind() returns TRUE. Otherwise, it returns FALSE without changing what port() and address() return.

bind () is used by servers for setting up incoming connections. Call bind() before listen().

bool QSocketDevice::blocking () const

Returns TRUE if the socket is in blocking mode, or FALSE if it is in nonblocking mode or if the socket is invalid.
Note that this function does not set error().
Warning: On Windows, this function always returns TRUE since the ioctlsocket() function is broken.

See also setBlocking() [p. 140] and isValid() [p. 138].

Q_LONG QSocketDevice::bytesAvailable () const

Returns the number of bytes available for reading, or -1 if an error occurred.

Warning: On Microsoft Windows, we use the ioctlsocket() function to determine the number of bytes queued on the
socket. According to Microsoft (KB Q125486), ioctlsocket() sometimes return an incorrect number. The only safe way
to determine the amount of data on the socket is to read it using readBlock(). QSocket has workarounds to deal with
this problem.

bool QSocketDevice::connect (const QHostAddress & addr, Q_UINT16 port) [virtual]

Connects to the IP address and port specified by addr and port. Returns TRUE if it establishes a connection, and FALSE
if not. error() explains why.

Note that error() commonly returns NoError for non-blocking sockets; this just means that you can call connect() again
in a little while and it’ll probably succeed.

Error QSocketDevice::error () const

Returns the first error seen.

bool QSocketDevice::isValid () const

Returns TRUE if this is a valid socket; otherwise returns FALSE.

See also socket() [p. 141].

bool QSocketDevice::listen (int backlog) [virtual]

Specifies how many pending connections a server socket can have. Returns TRUE if the operation was successful,
otherwise FALSE.

QSocketDevice Class Reference 139

The listen() call only applies to sockets where type() is Stream, not Datagram sockets. listen() must not be called
before bind() or after accept(). It is common to use a backlog value of 50 on most Unix systems.

See also bind() [p. 138] and accept() [p. 137].

QHostAddress QSocketDevice::peerAddress () const

Returns the address of the port this socket device is connected to. This may be 0.0.0.0 for a while, but is set to
something sensible when there is a sensible value it can have.

Note that for Datagram sockets, this is the source port of the last packet received, and that it is in native byte order.

Q _UINT16 QSocketDevice::peerPort () const

Returns the port number of the port this socket device is connected to. This may be O for a while, but is set to something
sensible when there is a sensible value it can have.

Note that for Datagram sockets, this is the source port of the last packet received.

Q_UINT16 QSocketDevice::port () const

Returns the port number of this socket device. This may be 0 for a while, but is set to something sensible when there
is a sensible value it can have.

Note that Qt always uses native byte order, i.e. 67 is 67 in Qt, there is no need to call htons().

Q_LONG QSocketDevice::readBlock (char * data, Q_ ULONG maxlen) [virtual]

Reads max maxlen bytes from the socket into data and returns the number of bytes read. Returns -1 if an error occurred.

Reimplemented from QIODevice [p. 83].

int QSocketDevice::receiveBufferSize () const

Returns the size of the OS receive buffer.

See also setReceiveBufferSize() [p. 140].

int QSocketDevice::sendBufferSize () const

Returns the size of the OS send buffer.

See also setSendBufferSize() [p. 140].

void QSocketDevice::setAddressReusable (bool enable) [virtual]

Sets the address of this socket to be usable by other sockets too if enable is TRUE, and to be used exclusively by this
socket if enable is FALSE.

QSocketDevice Class Reference 140

When a socket is reusable, other sockets can use the same port number (and IP address), which is, in general, good.
Of course other sockets cannot use the same (address,port,peer-address,peer-port) 4-tuple as this socket, so there is no
risk of confusing the two TCP connections.

See also addressReusable() [p. 137].

void QSocketDevice::setBlocking (bool enable) [virtual]

Makes the socket blocking if enable is TRUE or nonblocking if enable is FALSE.

Sockets are blocking by default, but we recommend using nonblocking socket operations, especially for GUI programs
that need to be responsive.

Warning: On Windows, this function does nothing since the ioctlsocket() function is broken.
Whenever you use a QSocketNotifier on Windows, the socket is immediately made nonblocking.

See also blocking() [p. 138] and isValid() [p. 138].

void QSocketDevice::setError (Error err) [protected]

Allows subclasses to set the error state to err.

void QSocketDevice::setReceiveBufferSize (uint size) [virtual]

Sets the size of the OS receive buffer to size.

The OS receive buffer size effectively limits two things: how much data can be in transit at any one moment, and how
much data can be received in one iteration of the main event loop.

The default is OS-dependent. A socket that receives large amounts of data is probably best off with a buffer size of
49152.

void QSocketDevice::setSendBufferSize (uint size) [virtual]

Sets the size of the OS send buffer to size.
The OS send buffer size effectively limits how much data can be in transit at any one moment.

The default is OS-dependent. A socket that sends large amounts of data is probably best off with a buffer size of 49152.

void QSocketDevice::setSocket (int socket, Type type) [virtual]

Sets the socket device to operate on the existing socket socket.

The type argument must match the actual socket type; use QSocketDevice::Stream for a reliable, connection-oriented
TCP socket, or QSocketDevice::Datagram for an unreliable, connectionless UDP socket.

Any existing socket is closed.

See also isValid() [p. 138] and close() [p. 791.

QSocketDevice Class Reference 141

int QSocketDevice::socket () const

Returns the socket number, or -1 if it is an invalid socket.

See also isValid() [p. 138] and type() [p. 141].

Type QSocketDevice::type () const

Returns the socket type which is either QSocketDevice::Stream or QSocketDevice::Datagram.

See also socket() [p. 141].

Q_LONG QSocketDevice::waitForMore (int msecs, bool * timeout = 0) const

Wait up to msecs milliseconds for more data to be available. If msecs is -1 the call will block indefinitely.
This is a blocking call and should be avoided in event driven applications.
Returns the number of bytes available for reading, or -1 if an error occurred.

If timeout is non-null and no error occurred (i.e. it does not return -1), then this function sets timeout out to TRUE, if
the reason for returning was that the timeout was reached, otherwise it sets timeout to FALSE. This is useful to find out
if the peer closed the connection.

See also bytesAvailable() [p. 138].

Q_LONG QSocketDevice::writeBlock (const char * data, Q ULONG len) [virtual]

Writes len bytes to the socket from data and returns the number of bytes written. Returns -1 if an error occurred.
This is used for QSocketDevice::Stream sockets.

Reimplemented from QIODevice [p. 85].

Q_LONG QSocketDevice::writeBlock (const char * data, Q_ ULONG len,
const QHostAddress & host, Q UINT16 port) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes len bytes to the socket from data and returns the number of bytes written. Returns -1 if an error occurred.

This is used for QSocketDevice::Datagram sockets. You have to specify the host and port of the destination of the data.

QSocketNotifier Class Reference

The QSocketNotifier class provides support for socket callbacks.
#incl ude <gsocketnotifier.h>

Inherits QObject [Additional Functionality with Qt].

Public Members

m enum Type { Read, Write, Exception }

m QSocketNotifier (int socket, Type type, QObject * parent = 0, const char * name = 0)
= ~QSocketNotifier ()

= int socket () const

m Type type () const
m bool isEnabled () const
m virtual void setEnabled (bool enable)

Signals

m void activated (int socket)

Detailed Description

The QSocketNotifier class provides support for socket callbacks.

This class makes it possible to write asynchronous socket-based code in Qt. Using synchronous socket operations blocks
the program, which is clearly not acceptable for an event-driven GUI program.

Once you have opened a non-blocking socket (whether for TCB UDBE a UNIX-domain socket, or any other protocol
family your operating system supports), you can create a socket notifier to monitor the socket. Then you connect the
activated () signal to the slot you want to be called when a socket event occurs.

There are three types of socket notifiers (read, write and exception); you must specify one of these in the constructor.

The type specifies when the activated() signal is to be emitted:

1. QSocketNotifier::Read - There is data to be read (socket read event).

2. QSocketNotifier::Write - Data can be written (socket write event).

142

QSocketNotifier Class Reference 143

3. QSocketNofifier::Exception - An exception has occurred (socket exception event). We recommend against using
this.

For example, if you need to monitor both reads and writes for the same socket you must create two socket notifiers.

Example:
int sockfd,; /'l socket identifier
struct sockaddr_in sa; /'l shoul d contain host address

sockfd = socket (AF_INET, SOCK STREAM 0); // create TCP socket
/'l make the socket non-blocking here, usually using fentl(O NONBLOCK)
::connect (sockfd, (struct sockaddr*)&sa, /'l connect to host

sizeof (sa)); [l NOT QObject::connect()!
QSocket Noti fier *sn;
sn = new QSocket Notifier(sockfd, QSocketNotifier::Read, parent);
Qbj ect::connect(sn, SIGNAL(activated(int)),

myQbj ect, SLOT(dat aReceived()));

The optional parent argument can be set to make the socket notifier a child of any QObject, e.g. a widget, thus being
automatically destroyed when the widget is destroyed.

For read notifiers it makes little sense to connect the activated() signal to more than one slot because the data can be
read from the socket only once.

Also observe that if you do not read all the available data when the read notifier fires, it fires again and again.

If you disable the read notifier your program may deadlock. (The same applies to exception notifiers if you have to use
them, for instance if you have to use TCP urgent data.)

For write notifiers, immediately disable the notifier after the activated() signal has been received and you have sent
the data to be written on the socket. When you have more data to be written, enable it again to get a new activated()
signal. The exception is if the socket data writing operation (send() or equivalent) fails with a "would block" error,
which means that some buffer is full and you must wait before sending more data. In that case you do not need to
disable and re-enable the write notifier; it will fire again as soon as the system allows more data to be sent.

The behavior of a write notifier that is left in enabled state after having emitting the first activated() signal (and no
"would block" error has occurred) is undefined. Depending on the operating system, it may fire on every pass of the
event loop or not at all.

If you need a time-out for your sockets you can use either timer events or the QTimer class.

Socket action is detected in the main event loop of Qt. The X11 version of Qt has a single UNIX select() call that
incorporates all socket notifiers and the X socket.

Note that on XFree86 for OS/2, select() works only in the thread in which main() is running; you should therefore use
that thread for GUI operations.

See also QSocket [p. 126], QServerSocket [p. 118], QSocketDevice [p. 135] and Input/Output and Networking.

Member Type Documentation

QSocketNotifier::Type

e (Socket Notifier::Read
e (SocketNotifier::Wite

QSocketNotifier Class Reference

e (Socket Notifier::Exception

Member Function Documentation

QSocketNotifier::QSocketNotifier (int socket, Type type, QObject * parent = 0,
const char * name = 0)

Constructs a socket notifier with the parent and the name that watches socket for type events, and enables it.

It is generally advisable to explicitly enable or disable the socket notifier, especially for write notifiers.

See also setEnabled() [p. 144] and isEnabled() [p. 144].

QSocketNotifier:: ~QSocketNotifier ()

Destroys the socket notifier.

void QSocketNotifier::activated (int socket) [signal]
This signal is emitted under certain conditions specified by the notifier type():

1. QSocketNotifier::Read - There is data to be read (socket read event).
2. QSocketNotifier::Write - Data can be written (socket write event).

3. QSocketNofifier::Exception - An exception has occurred (socket exception event).

The socket argument is the socket identifier.

See also type() [p. 145] and socket() [p. 145].
bool QSocketNotifier::isEnabled () const
Returns TRUE if the notifier is enabled; otherwise returns FALSE.

See also setEnabled() [p. 1441.

void QSocketNotifier::setEnabled (bool enable) [virtual]

Enables the notifier if enable is TRUE or disables it if enable is FALSE.

The notifier is enabled by default.

144

If the notifier is enabled, it emits the activated() signal whenever a socket event corresponding to its type occurs. If it

is disabled, it ignores socket events (the same effect as not creating the socket notifier).

Write notifiers should normally be disabled immediately after the activated() signal has been emitted; see discussion

of write notifiers in the class description above.

See also isEnabled() [p. 144] and activated() [p. 144].

QSocketNotifier Class Reference 145

int QSocketNotifier::socket () const

Returns the socket identifier specified to the constructor.

See also type() [p. 145].
Type QSocketNotifier::type () const
Returns the socket event type specified to the constructor: QSocketNotifier::Read, QSocketNotifier::Write, or QSocket-

Notifier::Exception.

See also socket() [p. 145].

QTextIStream Class Reference

The QTextIStream class is a convenience class for input streams.
#incl ude <qtextstream h>

Inherits QTextStream [p. 150].

Public Members

m QTextIStream (const QString * s)
m QTextIStream (QByteArray ba)
m QTextIStream (FILE * f)

Detailed Description

The QTextIStream class is a convenience class for input streams.

For simple tasks code should be simple, so this class is a shorthand to avoid passing the mode argument to the normal
QTextStream constructors.

This class makes it easy, for example, to write things like this:

QString data = "123 456";
int a b;
Qlext | Strean(&data) >> a >> b;

See also QTextOStream [p. 148], Input/Output and Networking and Text Related Classes.

Member Function Documentation
QTextIStream::QTextIStream (const QString * s)
Constructs a stream to read from the string s.
QTextIStream::QTextIStream (QByteArray ba)
Constructs a stream to read from the array ba.

146

QTextIStream Class Reference 147

QTextIStream::QTextIStream (FILE * f)

Constructs a stream to read from the file f.

QTextOStream Class Reference

The QTextOStream class is a convenience class for output streams.
#incl ude <qtextstream h>

Inherits QTextStream [p. 150].

Public Members
m QTextOStream (QString * s)

m QTextOStream (QByteArray ba)
m QTextOStream (FILE * f)

Detailed Description

The QTextOStream class is a convenience class for output streams.

For simple tasks, code should be simple, so this class is a shorthand to avoid passing the mode argument to the normal
QTextStream constructors.

This makes it easy for example, to write things like this:

@String result;
Qlext OStreanm(&result) << "pi =" << 3.14;

See also Input/Output and Networking and Text Related Classes.

Member Function Documentation

QTextOStream::QTextOStream (QString * s)

Constructs a stream to write to string s.

QTextOStream::QTextOStream (QByteArray ba)

Constructs a stream to write to the array ba.

148

QTextOStream Class Reference 149

QTextOStream::QTextOStream (FILE * f)

Constructs a stream to write to the file f.

QTextStream Class Reference

The QTextStream class provides basic functions for reading and writing text using a QIODevice.
#incl ude <qtextstream h>

Inherited by QTextIStream [p. 146] and QTextOStream [p. 148].

Public Members

m enum Encoding { Locale, Latin1, Unicode, UnicodeNetworkOrder, UnicodeReverse, RawUnicode, UnicodeUTF8
¥

m void setEncoding (Encoding e)

m void setCodec (QTextCodec * codec)

m QTextStream ()

m QTextStream (QIODevice * iod)

m QTextStream (QString * str, int filemode)

m QTextStream (QString & str, int filemode) (obsolete)

m QTextStream (QByteArray a, int mode)

m QTextStream (FILE * fh, int mode)

m virtual ~QTextStream ()

= QIODevice * device () const

= void setDevice (QIODevice * iod)

m void unsetDevice ()

= bool atEnd () const

m bool eof () const (obsolete)

m QTextStream & operator>> (QChar & c)

m QTextStream & operator>> (char & c)

m QTextStream & operator>> (signed short & i)

m QTextStream & operator>> (unsigned short & i)

m QTextStream & operator>> (signed int & i)

m QTextStream & operator>> (unsigned int & i)

m QTextStream & operator>> (signed long & i)

m QTextStream & operator>> (unsigned long & i)

m QTextStream & operator>> (float & f)

m QTextStream & operator>> (double & f)

m QTextStream & operator>> (char * s)

m QTextStream & operator>> (QString & str)

150

QTextStream Class Reference 151

m QTextStream & operator>> (QCString & str)

m QTextStream & operator<< (QChar c)

m QTextStream & operator<< (charc)

m QTextStream & operator<< (signed short i)

m QTextStream & operator<< (unsigned short i)
m QTextStream & operator<< (signed int i)

m QTextStream & operator<< (unsigned inti)

m QTextStream & operator<< (signed longi)

m QTextStream & operator<< (unsigned long i)

m QTextStream & operator<< (float f)

m QTextStream & operator< < (double f)

m QTextStream & operator<< (const char * s)

m QTextStream & operator<< (const QString & s)
m QTextStream & operator< < (const QCString & s)
m QTextStream & operator<< (void * ptr)

m QTextStream & readRawBytes (char * s, uint len)
m QTextStream & writeRawBytes (const char * s, uint len)
m QString readLine ()

m QString read ()

m void skipWhiteSpace ()

m int flags () const

m int flags (int f)

m int setf (int bits)

m int setf (int bits, int mask)

m int unsetf (int bits)

= void reset ()

m int width () const

e int width (int w)

e int fill () const

e int fill (int f)

e int precision () const

e int precision (int p)

Detailed Description

The QTextStream class provides basic functions for reading and writing text using a QIODevice.

The text stream class has a functional interface that is very similar to that of the standard C++ iostream class. The
difference between iostream and QTextStream is that our stream operates on a QIODevice which is easily subclassed,
whereas iostream operates on FILE * pointers which cannot be subclassed.

Qt provides several global functions similar to the ones in iostream:

e bin sets the QTextStream to read/write binary numbers
e oct sets the QTextStream to read/write octal numbers

e dec sets the QTextStream to read/write decimal numbers

QTextStream Class Reference 152

e hex sets the QTextStream to read/write hexadecimal numbers

e endl forces a line break

e flush forces the QIODevice to flush any buffered data

e ws eats any available whitespace (on input)

e reset resets the QTextStream to its default mode (see reset())

e gSetW(int) sets the field width as specified with the argument

e gSetFill(int) sets the fill character as specified with the argument

e gSetPrecision(int) sets the precision as specified with the argument

Warning: By default QTextStream will automatically detect whether integers in the stream are in decimal, octal,
hexadecimal or binary format when reading from the stream. In particular, a leading ’0’ signifies octal, i.e. the
sequence "0100" will be interpreted as 64.

The QTextStream class reads and writes text; it is not appropriate for dealing with binary data (but QDataStream is).

By default, output of Unicode text (i.e. QString) is done using the local 8-bit encoding. This can be changed using the
setEncoding() method. For input, the QTextStream will auto-detect standard Unicode "byte order marked" text files;
otherwise the local 8-bit encoding is used.

The QIODevice is set in the constructor, or later using setDevice(). If the end of the input is reached atEnd() returns
TRUE. Data can be read into variables of the appropriate type using the operator> > () overloads, or read in its entirety
into a single string using read(), or read a line at a time using readLine(). Whitespace can be skipped over using
skipWhiteSpace(). You can set flags for the stream using flags() or setf(). The stream also supports width(), precision()
and fillQ); use reset() to reset the defaults.

See also QDataStream [p. 191, Input/Output and Networking and Text Related Classes.

Member Type Documentation

QTextStream::Encoding

e Qlext Stream : Local e

e Qlext Stream:Latinl

e Qlext Stream : Uni code

e Qrext Stream : Uni codeNet wor kOr der
e Qrlext Stream : Uni codeRever se

e Qrext St ream : Rawuni code

e Qlext Stream : Uni codeUTF8

Member Function Documentation

QTextStream::QTextStream ()

Constructs a data stream that has no IO device.

QTextStream Class Reference 153

QTextStream::QTextStream (QIODevice * iod)

Constructs a text stream that uses the IO device iod.

QTextStream::QTextStream (QString * str, int filemode)
Constructs a text stream that operates on the Unicode QString, str, through an internal device. The filemode argument
is passed to the device’s open() function; see QIODevice::mode().

If you set an encoding or codec with setEncoding() or setCodec(), this setting is ignored for text streams that operate
on QString.

Example:
QString str;
Qlext Streamts(&str, 10 WiteOnly);
ts << "pi =" << 3.14; /] str == "pi = 3.14"

Writing data to the text stream will modify the contents of the string. The string will be expanded when data is written
beyond the end of the string. Note that the string will not be truncated:

QString str ="pi = 3.14";
Qlext Streamts(&str, 10O WiteOnly);
ts << "2+42 = " << 2+42;] str == "2+2 = 414"

Note that because QString is Unicode, you should not use readRawBytes() or writeRawBytes() on such a stream.

QTextStream::QTextStream (QString & str, int filemode)

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

This constructor is equivalent to the constructor taking a QString* parameter.

QTextStream::QTextStream (QByteArray a, int mode)
Constructs a text stream that operates on the byte array, a, through an internal QBuffer device. The mode argument is
passed to the device’s open() function; see QIODevice::mode().
Example:
ByteArray array;

Qlext Streamts(array, 1O WiteOnly);
ts << "pi =" << 3.14 << ’\Q"; /] array == "pi = 3.14"

Writing data to the text stream will modify the contents of the array. The array will be expanded when data is written
beyond the end of the string.
Same example, using a QBulffer:

ByteArray array;
QBuffer buf(array);

QTextStream Class Reference 154

buf.open(10 Witenly);

Qlext Stream ts(&buf);

ts << "pi =" << 3.14 << ’\Q"; /] array == "pi = 3.14"
buf . cl ose();

QTextStream::QTextStream (FILE * fh, int mode)

Constructs a text stream that operates on an existing file handle fh through an internal QFile device. The mode
argument is passed to the device’s open() function; see QIODevice::mode().

Note that if you create a QTextStream cout or another name that is also used for another variable of a different type,
some linkers may confuse the two variables, which will often cause crashes.

QTextStream:: ~QTextStream () [virtual]

Destroys the text stream.

The destructor does not affect the current I0 device.

bool QTextStream::atEnd () const

Returns TRUE if the IO device has reached the end position (end of the stream or file) or if there is no 10 device set;
otherwise returns FALSE.

See also QIODevice::atEnd() [p. 79].
Examples: addressbook/centralwidget.cpp and grapher/grapher.cpp.

QIODevice * QTextStream::device () const
Returns the IO device currently set.

See also setDevice() [p. 160] and unsetDevice() [p. 161].

bool QTextStream::eof () const

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
This function has been renamed to atEnd().

See also QIODevice::atEnd() [p. 79].

int QTextStream::fill () const

Returns the fill character. The default value is’’ (space).

int QTextStream::fill (int f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QTextStream Class Reference 155

Sets the fill character to f. Returns the previous fill character.

int QTextStream::flags () const

Returns the current stream flags. The default value is 0.

The meanings of the flags are:

e skipws - Not currently used; whitespace always skipped

e [eft - Numeric fields are left-aligned

e right - Not currently used (by default, numerics are right-aligned)
e internal - Puts any padding spaces between +/- and value

e bin - Output and input only in binary

e oct - Output and input only in octal

e dec - Output and input only in decimal

e hex - Output and input only in hexadecimal

e showbase - Annotates numeric outputs with Ob, 0, or Ox if in bin, oct, or hex format
e showpoint - Not currently used

e uppercase - Uses 0B and 0X rather than Ob and 0x

e showpos - Shows + for positive numeric values

e scientific - Uses scientific notation for floating point values

e fixed - Uses fixed-point notation for floating point values

Note that unless bin, oct, dec, or hex is set, the input base is octal if the value starts with 0, hexadecimal if it starts with
0x, binary if it starts with Ob, and decimal otherwise.

See also setf() [p. 161] and unsetf() [p. 161].

int QTextStream::flags (int f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the stream flags to f. Returns the previous stream flags.

See also setf() [p. 161] and unsetf() [p. 161].

QTextStream & QTextStream::operator<< (QChar c)

Writes character char to the stream and returns a reference to the stream.

The character c is assumed to be Latinl encoded independent of the Encoding set for the QTextStream.

QTextStream & QTextStream::operator<< (char c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes character ¢ to the stream and returns a reference to the stream.

QTextStream Class Reference

QTextStream & QTextStream::operator<< (signed short i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a short integer i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (unsigned short i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsi gned short integer i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (signed inti)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an i nt i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (unsigned inti)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsi gned i nt i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (signed long i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a | ong i nt i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (unsigned long i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes an unsi gned | ong i nt i to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (float f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a f | oat f to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (double f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes a doubl e f to the stream and returns a reference to the stream.

156

QTextStream Class Reference 157

QTextStream & QTextStream::operator<< (const char * s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes a string to the stream and returns a reference to the stream.

The string s is assumed to be Latinl encoded independent of the Encoding set for the QTextStream.

QTextStream & QTextStream::operator<< (const QString & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Writes s to the stream and returns a reference to the stream.

QTextStream & QTextStream::operator<< (const QCString & s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes s to the stream and returns a reference to the stream.

The string s is assumed to be Latin1 encoded independent of the Encoding set for the QTextStream.

QTextStream & QTextStream::operator<< (void * ptr)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Writes a pointer to the stream and returns a reference to the stream.

The ptr is output as an unsigned long hexadecimal integer.

QTextStream & QTextStream::operator>> (QChar & ¢)

Reads a char ¢ from the stream and returns a reference to the stream. Note that whitespace is not skipped.

QTextStream & QTextStream::operator>> (char & c)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a char ¢ from the stream and returns a reference to the stream. Note that whitespace is skipped.

QTextStream & QTextStream::operator>> (signed short & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed short integer i from the stream and returns a reference to the stream. See flags() for an explanation of
the expected input format.

QTextStream & QTextStream::operator>> (unsigned short & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QTextStream Class Reference 158

Reads an unsigned short integer i from the stream and returns a reference to the stream. See flags() for an explanation
of the expected input format.

QTextStream & QTextStream::operator>> (signed int & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed int i from the stream and returns a reference to the stream. See flags() for an explanation of the
expected input format.

QTextStream & QTextStream::operator>> (unsigned int & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads an unsigned i nt i from the stream and returns a reference to the stream. See flags() for an explanation of the
expected input format.

QTextStream & QTextStream::operator>> (signed long & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a signed | ong int i from the stream and returns a reference to the stream. See flags() for an explanation of the
expected input format.

QTextStream & QTextStream::operator>> (unsigned long & i)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads an unsigned | ong int i from the stream and returns a reference to the stream. See flags() for an explanation of
the expected input format.

QTextStream & QTextStream::operator>> (float & f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a f| oat f from the stream and returns a reference to the stream. See flags() for an explanation of the expected
input format.

QTextStream & QTextStream::operator>> (double & f)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a doubl e f from the stream and returns a reference to the stream. See flags() for an explanation of the expected
input format.

QTextStream & QTextStream::operator>> (char * s)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

QTextStream Class Reference

Reads a "word" from the stream into s and returns a reference to the stream.

A word consists of characters for which isspace() returns FALSE.

QTextStream & QTextStream::operator>> (QString & str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a "word" from the stream into str and returns a reference to the stream.

A word consists of characters for which isspace() returns FALSE.

QTextStream & QTextStream::operator>> (QCString & str)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Reads a "word" from the stream into str and returns a reference to the stream.

A word consists of characters for which isspace() returns FALSE.

int QTextStream::precision () const

Returns the precision. The default value is 6.

int QTextStream::precision (int p)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the precision to p. Returns the previous precision setting.

QString QTextStream::read ()

Reads the entire stream and returns a string containing the text.

See also QIODevice::readLine() [p. 83].

Examples: action/application.cpp, application/application.cpp, helpviewer/helpwindow.cpp, mdi/application.cpp,

qdir/qdir.cpp and qwerty/qwerty.cpp.

QString QTextStream::readLine ()

Reads a line from the stream and returns a string containing the text.

159

The returned string does not contain any trailing newline or carriage return. Note that this is different from QIODe-

vice::readLine(), which does not strip the newline at the end of the line.
On EOF you will get a QString that is null. On reading an empty line the returned QString is empty but not null.
See also QIODevice::readLine() [p. 83].

Example: addressbook/centralwidget.cpp.

QTextStream Class Reference 160

QTextStream & QTextStream::readRawBytes (char * s, uint len)

Reads len bytes from the stream into s and returns a reference to the stream.

The buffer s must be preallocated.

Note that no encoding is done by this function.

Warning: The behavior of this function is undefined unless the stream’s encoding is set to Unicode or Latinl.

See also QIODevice::readBlock() [p. 83].

void QTextStream::reset ()

Resets the text stream.

e All flags are set to O.
o The field width is set to 0.
e The fill character is set to’’ (space).

e The precision is set to 6.

See also setf() [p. 161], width() [p. 162], fill() [p. 154] and precision() [p. 159].

void QTextStream::setCodec (QTextCodec * codec)

Sets the codec for this stream to codec. Will not try to autodetect Unicode.

Note that this function should be called before any data is read to/written from the stream.
See also setEncoding() [p. 160].

Example: qwerty/qwerty.cpp.

void QTextStream::setDevice (QIODevice * iod)

Sets the IO device to iod.

See also device() [p. 154] and unsetDevice() [p. 161].

void QTextStream::setEncoding (Encoding e)
Sets the encoding of this stream to e, where e is one of:

e Locale - Uses local file format (Latin1 if locale is not set), but autodetecting Unicode(utf16) on input.

e Unicode - Uses Unicode(utf16) for input and output. Output will be written in the order most efficient for the
current platform (i.e. the order used internally in QString).

e UnicodeUTF8 Using Unicode (utf8) for input and output. If you use it for input it will autodetect utf16 and use it
instead of utf8.

e Latinl - ISO-8859-1. Will not autodetect utf16.

QTextStream Class Reference 161

e UnicodeNetworkOrder - Uses network order Unicode(utf16) for input and output. Useful when reading Unicode
data that does not start with the byte order marker.

e UnicodeReverse - Uses reverse network order Unicode(utf16) for input and output. Useful when reading Unicode
data that does not start with the byte order marker or when writing data that should be read by buggy Windows
applications.

e RawUnicode - Like Unicode, but does not write the byte order marker nor does it auto-detect the byte order.
Useful only when writing to nonpersistent storage used by a single process.

Locale and all Unicode encodings, except RawUnicode, will look at the first two bytes in an input stream to determine
the byte order. The initial byte order marker will be stripped off before data is read.

Note that this function should be called before any data is read to or written from the stream.
See also setCodec() [p. 160].
Examples: network/httpd/httpd.cpp and qwerty/qwerty.cpp.

int QTextStream::setf (int bits)

Sets the stream flag bits bits. Returns the previous stream flags.
Equivalent to fl ags(flags() | bits).
See also unsetf() [p. 161].

int QTextStream::setf (int bits, int mask)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Sets the stream flag bits bits with a bit mask mask. Returns the previous stream flags.

Equivalent to fl ags((flags() & ~mask) | (bits & mask)).

See also unsetf() [p. 161].

void QTextStream::skipWhiteSpace ()

Positions the read pointer at the first non-whitespace character.

void QTextStream::unsetDevice ()

Unsets the 10 device. Equivalent to setDevice(0).

See also device() [p. 154] and setDevice() [p. 160].

int QTextStream::unsetf (int bits)

Clears the stream flag bits bits. Returns the previous stream flags.
Equivalent to fl ags(flags() & ~mask).
See also setf() [p. 161].

QTextStream Class Reference 162

int QTextStream::width () const

Returns the field width. The default value is 0.

int QTextStream::width (int w)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

Sets the field width to w. Returns the previous field width.

QTextStream & QTextStream::writeRawBytes (const char * s, uint len)

Writes the len bytes from s to the stream and returns a reference to the stream.
Note that no encoding is done by this function.

See also QIODevice::writeBlock() [p. 85].

QUrl Class Reference

The QUrl class provides a URL parser and simplifies working with URLs.

This class is part of the network module.

#include <qurl.h>

Inherited by QUrlOperator [p. 179].

Public Members

QUrl

QUrl (const QString & url)

QUrl (const QUrl & url)

QUrl (const QUrl & url, const QString & relUrl, bool checkSlash = FALSE)
virtual ~QUrl ()

QString protocol () const

virtual void setProtocol (const QString & protocol)
QString user () const

virtual void setUser (const QString & user)

bool hasUser () const

QString password () const

virtual void setPassword (const QString & pass)
bool hasPassword () const

QString host () const

virtual void setHost (const QString & host)

bool hasHost () const

int port () const

virtual void setPort (int port)

bool hasPort () const

QString path (bool correct = TRUE) const

virtual void setPath (const QString & path)

bool hasPath () const

virtual void setEncodedPathAndQuery (const QString & pathAndQuery)
QString encodedPathAndQuery ()

virtual void setQuery (const QString & txt)
QString query () const

QString ref () const

163

QUirl Class Reference

virtual void setRef (const QString & txt)

bool hasRef () const

bool isValid () const

bool isLocalFile () const

virtual void addPath (const QString & pa)
virtual void setFileName (const QString & name)
m QString fileName () const

m QString dirPath () const

QUrl & operator= (const QUrl & url)

QUrl & operator= (const QString & url)

bool operator== (const QUrl & url) const
bool operator== (const QString & url) const
operator QString () const

e virtual bool edUp ()

Static Public Members

m void decode (QString & url)
m void encode (QString & url)
m bool isRelativeUr] (const QString & url)

Protected Members

m virtual void reset ()
m virtual bool parse (const QString & url)

Detailed Description

The QUrl class provides a URL parser and simplifies working with URLs.

The QUrl class is provided for simple work with URLs. It can parse, decode, encode, etc.

QUrl works with the decoded path and encoded query in turn.
Example:

http://ww.trolltech.com 80/cgi-bin/test¥®0me. pl ?2cni=Hel | 0%20you

virtual QString toString (bool encodedPath = FALSE, bool forcePrependProtocol = TRUE) const

164

Function
protocol() "http"
host() "www.trolltech.com"
port() 80
path() "cgi-bin"
fileName() "test me.pl"
query() "emd=Hello%20you"

QUirl Class Reference 165

Example:

http://doc.trolltech.com/qdockarea.html#lines

Function Returns
protocol() "http"
host() "doc.trolltech.com"
fileName() "qdockarea.html"
ref() "lines"

The individual parts of a URL can be set with setProtocol(), setHost(), setPort(), setPath(), setFileName(), setRef() and
setQuery(). A URL could contain, for example, an ftp address which requires a user name and password; these can be
set with setUser() and setPassword().

Because path is always encoded internally you must not use "%00" in the path, although this it is okay (but not
recommended) for the query.

QUrl is normally used like this:
QUrl u("http://ww.trolltech.cont);
Il or
QUrl u("file:/home/nysel f/Mil", "lInbox");
You can then access and manipulate the various parts of the URL.
To make it easy to work with QUrls and QStrings, QUrl implements the necessary cast and assignment operators so

you can do following:

QUrl u("http://ww.trolltech.cont);
@String s = u;

Il or

@String s("http://ww trolltech.cont);

Qrl u(s);

Use the static functions, encode() and decode() to encode or decode a URL in a string. (They operate on the string
in-place.) The isRelativeUrl() static function returns TRUE if the given string is a relative URL.

If you want to use an URL to work on a hierarchical structure (e.g. a local or remote filesystem), you might want to
use the subclass QUrlOperator.

See also QUrlOperator [p. 179], Input/Output and Networking and Miscellaneous Classes.

Member Function Documentation

QUrl::QUr1

Constructs an empty URL that is invalid.

QUrl::QUrl (const QString & url)

Constructs a URL by parsing the string url.

If you pass a string like "/home/qt", the "file" protocol is assumed.

QUirl Class Reference 166

QUrl::QUrl (const QUrl & url)

Copy constructor. Copies the data of url.

QUrl::QUrl (const QUrl & url, const QString & relUrl, bool checkSlash = FALSE)

Constructs an URL taking url as the base (context) and relUrl as a relative URL to url. If relUrl is not relative, relUrl is
taken as the new URL.

For example, the path of
QUrl u("ftp://ftp.trolltech.com qt/source", "qt-2.1.0.tar.gz");

will be "/qt/srource/qt-2.1.0.tar.gz".
On the other hand,

QUrl u("ftp://ftp.trolltech. com gt/ source", "/usr/local");

will result in a new URL, "ftp://ftp.trolltech.com/usr/local", because "/usr/local" isn’t relative.

Similarly,
QUrl u("ftp://ftp.trolltech. com qt/source", "file:/usr/local");

will result in a new URL, with "/usr/local" as the path and "file" as the protocol.

Normally it is expected that the path of url points to a directory, even if the path has no slash at the end. But if you
want the constructor to handle the last part of the path as a file name if there is no slash at the end, and to let it be
replaced by the file name of relUrl (if it contains one), set checkSlash to TRUE.

QUrl::~QUrl () [virtual]

Destructor.

void QUrl::addPath (const QString & pa) [virtual]
Adds the path pa to the path of the URL.

See also setPath() [p. 170] and hasPath() [p. 167].

bool QUrl::cdUp () [virtual]

Changes the directory to one directory up.

See also setPath() [p. 170].

void QUrl::decode (QString & url) [static]

Decodes the string url in-place.

See also encode() [p. 167].

QUirl Class Reference 167

QString QUrl::dirPath () const

Returns the directory path of the URL. This is the part of the path of the URL without the fileName(). See the docu-
mentation of fileName() for a discussion of what is handled as file name and what is handled as directory path.

See also setPath() [p. 170] and hasPath() [p. 167].

Example: network/networkprotocol/nntp.cpp.

void QUrl::encode (QString & url) [static]

Encodes the string url in-place.

See also decode() [p. 166].

QString QUrl::encodedPathAndQuery ()

Returns the encoded path and query.
See also decode() [p. 166].

QString QUrl::fileName () const

Returns the file name of the URL. If the path of the URL doesn’t have a slash at the end, the part between the last slash
and the end of the path string is considered to be the file name. If the path has a slash at the end, an empty string is
returned here.

See also setFileName() [p. 170].

Example: network/networkprotocol/nntp.cpp.

bool QUrl::hasHost () const

Returns TRUE if the URL contains a hostname; otherwise returns FALSE.
See also setHost() [p. 170].

bool QUrl::hasPassword () const

Returns TRUE if the URL contains a password; otherise returns FALSE.
Warning: Passwords passed in URLs are normally insecure; this is due to the mechanism, not because of Qt.

See also setPassword() [p. 170] and setUser() [p. 171].

bool QUrl::hasPath () const

Returns TRUE if the URL contains a path, otherwise FALSE.
See also path() [p. 169] and setPath() [p. 170].

QUirl Class Reference

bool QUrl::hasPort () const

Returns TRUE if the URL contains a port; otherwise returns FALSE.

See also setPort() [p. 171].

bool QUrl::hasRef () const

Returns TRUE if the URL has a reference; otherwise returns FALSE.
See also setRef() [p. 171].

bool QUrl::hasUser () const

Returns TRUE if the URL contains a username; otherwise returns FALSE.

See also setUser() [p. 171] and setPassword () [p. 170].

QString QUrl::host () const

Returns the hostname of the URL.

See also setHost() [p. 170] and hasHost() [p. 167].

bool QUrl::isLocalFile () const

Returns TRUE if the URL is a local file, otherwise FALSE.
Example: qdir/qdir.cpp.

bool QUrl::isRelativeUrl (const QString & url) [static]

Returns TRUE if url is relative; otherwise returns FALSE.

bool QUrl::isValid () const

Returns TRUE if the URL is valid; otherwise returns FALSE. A URL is invalid if it cannot be parsed, for example.

QUrl::operator QString () const

Composes a string version of the URL and returns it.

See also QUrl::toString() [p. 171].

QUrl & QUrl::operator= (const QUrl & url)

Assigns the data of url to this class.

168

QUirl Class Reference

QUrl & QUrl::operator= (const QString & url)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Parses url and assigns the resulting data to this class.

If you pass a string like "/home/qt" the "file" protocol will be assumed.

bool QUrl::operator== (const QUrl & url) const

Compares this URL with url and returns TRUE if they are equal; otherwise returns FALSE.

bool QUrl::operator== (const QString & url) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Compares this URL with url. url is parsed first. Returns TRUE if url is equal to this url; otherwise returns FALSE.
bool QUrl::parse (const QString & url) [virtual protected]

Parses the url.

QString QUrl::password () const

Returns the password of the URL.
Warning: Passwords passed in URLs are normally insecure; this is due to the mechanism, not because of Qt.

See also setPassword() [p. 170] and setUser() [p. 171].

QString QUrl::path (bool correct = TRUE) const

169

Returns the path of the URL. If correct is TRUE, the path is cleaned (deals with too many or too few slashes, cleans

things like "/../..", etc). Otherwise path() returns exactly the path that was parsed or set.
See also setPath() [p. 170] and hasPath() [p. 167].
Example: qdir/qdir.cpp.

int QUrl::port () const
Returns the port of the URL or -1 if no port has been set.
See also setPort() [p. 1711].

QString QUrl::protocol () const

Returns the protocol of the URL. Typically, "file", "http", or "ftp", etc.
See also setProtocol() [p. 171].

QUirl Class Reference 170

QString QUrl::query () const

Returns the (encoded) query of the URL.
See also setQuery() [p. 171] and decode() [p. 166].

QString QUrl::ref () const

Returns the (encoded) reference of the URL.

See also setRef() [p. 1711, hasRef() [p. 168] and decode() [p. 166].

void QUrl::reset () [virtual protected]

Resets all parts of the URL to their default values and invalidates it.

void QUrl::setEncodedPathAndQuery (const QString & pathAndQuery) [virtual]

Parses pathAndQuery for a path and query and sets those values. The whole string has to be encoded.
See also encode() [p. 167].

void QUrl::setFileName (const QString & name) [virtual]

Sets the file name of the URL to name. If this URL contains a fileName(), the original file name is replaced by name.

See the documentation of fileName() for a more detailed discussion of what is handled as file name and what is handled
as a directory path.

See also fileName() [p. 167].

void QUrl::setHost (const QString & host) [virtual]

Sets the hostname of the URL to host.
See also host() [p. 168] and hasHost() [p. 167].

void QUrl::setPassword (const QString & pass) [virtual]

Sets the password of the URL to pass.
Warning: Passwords passed in URLs are normally insecure; this is due to the mechanism, not because of Qt.

See also password() [p. 169] and setUser() [p. 171].

void QUrl::setPath (const QString & path) [virtual]

Sets the path of the URL to path.
See also path() [p. 169] and hasPath() [p. 167].

QUirl Class Reference 171

void QUrl::setPort (int port) [virtual]

Sets the port of the URL to port.
See also port() [p. 169].

void QUrl::setProtocol (const QString & protocol) [virtual]

Sets the protocol of the URL to protocol. Typically, "file", "http", or "ftp", etc.
See also protocol() [p. 169].

void QUrl::setQuery (const QString & txt) [virtual]

Sets the query of the URL to txt. txt must be encoded.
See also query() [p. 170] and encode() [p. 167].

void QUrl::setRef (const QString & txt) [virtual]

Sets the reference of the URL to txt. txt must be encoded.

See also ref() [p. 1701, hasRef() [p. 168] and encode() [p. 167].

void QUrl::setUser (const QString & user) [virtual]

Sets the username of the URL to user.

See also user() [p. 171] and setPassword() [p. 170].
QString QUrl::toString (bool encodedPath = FALSE, bool forcePrependProtocol = TRUE)
const [virtual]

Composes a string version of the URL and returns it. If encodedPath is TRUE the path in the returned string is encoded.
If forcePrependProtocol is TRUE and encodedPath looks like a local filename, the "file:/" protocol is also prepended.

See also encode() [p. 167] and decode() [p. 166].

QString QUrl::user () const

Returns the username of the URL.

See also setUser() [p. 171] and setPassword () [p. 170].

QUrlInfo Class Reference

The QUrlInfo class stores information about URLs.

#incl ude <qurlinfo.h>

Public Members

= QUrlInfo ()
m QUrlInfo (const QUrlOperator & path, const QString & file)
= QUrlInfo (const QUrlInfo & ui)

m QUrlInfo (const QString & name, int permissions, const QString & owner, const QString & group, uint size,
const QDateTime & lastModified, const QDateTime & lastRead, bool isDir, bool isFile, bool isSymLink,
bool isWritable, bool isReadable, bool isExecutable)

m QUrlInfo (const QUrl & url, int permissions, const QString & owner, const QString & group, uint size,
const QDateTime & lastModified, const QDateTime & lastRead, bool isDir, bool isFile, bool isSymLink,
bool isWritable, bool isReadable, bool isExecutable)

m QUrlInfo & operator= (const QUrlInfo & ui)
m virtual ~QUrlInfo ()

virtual void setName (const QString & name)
virtual void setDir (bool b)

virtual void setFile (bool b)

virtual void setSymLink (bool b)

virtual void setOwner (const QString & s)
virtual void setGroup (const QString & s)

m virtual void setSize (uint s)

m virtual void setWritable (bool b)

m virtual void setReadable (bool b)

virtual void setPermissions (int p)

virtual void setLastModified (const QDateTime & dt)
bool isValid () const

QString name () const

int permissions () const

m QString owner () const

m QString group () const

= uint size () const

m QDateTime lastModified () const
m QDateTime lastRead () const

172

QUrllnfo Class Reference 173

m bool isDir () const

m bool isFile () const

m bool isSymLink () const

m bool isWritable () const

= bool isReadable () const

e bool isExecutable () const

e bool operator== (const QUrlInfo & i) const

Static Public Members

m bool greaterThan (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy)
m bool lessThan (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy)
m bool equal (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy)

Detailed Description

The QUrlInfo class stores information about URLs.

This class is just a container for storing information about URLSs, which is why all information must be passed in the
constructor.

Unless you're reimplementing a network protocol you’re unlikely to create QUrlInfo objects yourself, but you may get
QUirlInfo objects from functions, e.g. QUrlOperator::info().

See also Input/Output and Networking and Miscellaneous Classes.

Member Function Documentation

QUrlInfo::QUrlInfo ()

Constructs an invalid QUrlInfo object with default values.

See also isValid() [p. 175].

QUrlInfo::QUrlInfo (const QUrlOperator & path, const QString & file)
Constructs a QUrlInfo object with information about the file file in the path. It tries to find the information about the
file in the QUrlOperator path.

If the information is not found, this constructor creates an invalid QUrlInfo, i.e. isValid() returns FALSE. You should
always check if the URL info is valid before relying on the return values of any getter functions.

If file is empty, it defaults to the actual directory of the QUrlOperator path.
See also isValid() [p. 175] and QUrlOperator::info() [p. 184].

QUrllnfo Class Reference 174

QUrlInfo::QUrlInfo (const QUrlInfo & ui)

Copy constructor, copies ui to this URL info object.

QUrlInfo::QUrlInfo (const QString & name, int permissions, const QString & owner,
const QString & group, uint size, const QDateTime & lastModified,

const QDateTime & lastRead, bool isDir, bool isFile, bool isSymLink, bool isWritable,
bool isReadable, bool isExecutable)

Constructs a QUrlInfo object by specifying all the URTs information. The information that is passed is the name, the
permissions, the owner and group, as well as the size, lastModified date/time and lastRead date/time. Flags are also
passed, specifically, isDir, isFile, isSymLink, isWritable, isReadable and isExecutable.

QUrlInfo::QUrlInfo (const QUrl & url, int permissions, const QString & owner,
const QString & group, uint size, const QDateTime & lastModified,
const QDateTime & lastRead, bool isDir, bool isFile, bool isSymLink, bool isWritable,
bool isReadable, bool isExecutable)

Constructs a QUrlInfo object by specifying all the URIs information. The information that is passed is the url, the
permissions, the owner and group, as well as the size, lastModified date/time and lastRead date/time. Flags are also
passed, specifically, isDir, isFile, isSymLink, isWritable, isReadable and isExecutable.

QUrlInfo::~QUrlInfo () [virtual]

Destroys the URL ifno object. The QUrlOperator object to which this URL referred is not affected.

bool QUrlInfo::equal (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy) [static]

Returns TRUE if i1 equals to i2; otherwise returns FALSE. The objects are compared by the value, which is specified by
sortBy. This must be one of QDir::Name, QDir::Time or QDir::Size.

bool QUrlInfo::greaterThan (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy) [static]

Returns TRUE if i1 is greater than i2; otherwise returns FALSE. The objects are compared by the value, which is
specified by sortBy. This must be one of QDir::Name, QDir::Time or QDir::Size.

QString QUrlInfo::group () const

Returns the group of the URL.
See also isValid() [p. 175].

bool QUrlInfo::isDir () const

Returns TRUE if the URL is a directory; otherwise returns FALSE.

QUrllnfo Class Reference

See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

bool QUrlInfo::isExecutable () const

Returns TRUE if the URL is executable; otherwise returns FALSE.

See also isValid() [p. 175].

bool QUrlInfo::isFile () const

Returns TRUE if the URL is a file; otherwise returns FALSE.
See also isValid() [p. 175].

bool QUrlInfo::isReadable () const

Returns TRUE if the URL is readable; otherwise returns FALSE.
See also isValid() [p. 175].

bool QUrlInfo::isSymLink () const

Returns TRUE if the URL is a symbolic link; otherwise returns FALSE.

See also isValid() [p. 175].

bool QUrlInfo::isValid () const

175

Returns TRUE if the URL info is valid; otherwise returns FALSE. Valid means that the QUrlInfo contains real information.
E.g., a call to QUrlOperator::info() might return a an invalid QUrlInfo, if no information about the requested entry is

available.

You should always check if the URL info is valid before relying on the values.

bool QUrlInfo::isWritable () const

Returns TRUE if the URL is writable; otherwise returns FALSE.
See also isValid() [p. 175].

QDateTime QUrlInfo::lastModified () const

Returns the last modification date of the URL.

See also isValid() [p. 175].

QUrllnfo Class Reference 176

QDateTime QUrlInfo::lastRead () const

Returns the date when the URL was read the last time.

See also isValid() [p. 175].

bool QUrlInfo::lessThan (const QUrlInfo & i1, const QUrlInfo & i2, int sortBy) [static]

Returns TRUE if i1 is less than i2; otherwise returns FALSE. The objects are compared by the value, which is specified
by sortBy. This must be one of QDir::Name, QDir::Time or QDir::Size.

QString QUrlInfo::name () const

Returns the file name of the URL.
See also isValid() [p. 175].

Examples: network/ftpclient/ftpmainwindow.cpp and network/ftpclient/ftpview.cpp.

QUrlInfo & QUrlInfo::operator= (const QUrlInfo & ui)

Assigns the values of ui to this QUrlInfo object.

bool QUrlInfo::operator== (const QUrlInfo & i) const

Compares this QUrlInfo with i and returns TRUE if they are equal; otherwise returns FALSE.

QString QUrlInfo::owner () const

Returns the owner of the URL.

See also isValid() [p. 175].

int QUrlInfo::permissions () const

Returns the permissions of the URL.

See also isValid() [p. 175].

void QUrlInfo::setDir (bool b) [virtual]

If b is TRUE then the URL is set to be a directory; if \b is FALSE then the URL is set not to be a directory (which
normally means it is a file). (Note that a URL can refer both a file and a directory even though most file systems do not
support this duality.)

If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

QUrllnfo Class Reference 177
Example: network/networkprotocol/nntp.cpp.

void QUrlInfo::setFile (bool b) [virtual]

If b is TRUE then the URL is set to be a file; if \b is FALSE then the URL is set not to be a file (which normally means
it is a directory). (Note that a URL can refer both a file and a directory even though most file systems do not support
this duality.)

If you call this function for an invalid URL info, this function turns it into a valid one.
See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

void QUrlInfo::setGroup (const QString & s) [virtual]

Specifies that the owning group of the URL is called s.
If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

void QUrlInfo::setLastModified (const QDateTime & dt) [virtual]

Specifies that the object the URL refers to was last modified at dt.
If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

void QUrlInfo::setName (const QString & name) [virtual]

Sets the name of the URL to name. The name is the full text, for example, "http://doc.trolltech.com/qurlinfo.html".
If you call this function for an invalid URL info, this function turns it into a valid one.
See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

void QUrlInfo::setOwner (const QString & s) [virtual]

Specifies that the owner of the URL is called s.
If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

void QUrlInfo::setPermissions (int p) [virtual]

Specifies that the URL has access permision p.

QUrllnfo Class Reference

If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

void QUrlInfo::setReadable (bool b) [virtual]

Specifies that the URL is readable if b is TRUE and not readable if b is FALSE.
If you call this function for an invalid URL info, this function turns it into a valid one.
See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

void QUrlInfo::setSize (uint s) [virtual]

Specifies that the URL has size s.
If you call this function for an invalid URL info, this function turns it into a valid one.

See also isValid() [p. 175].

void QUrlInfo::setSymLink (bool b) [virtual]

Specifies that the URL refers to a symbolic link if b is TRUE and that it does not if b is FALSE.

If you call this function for an invalid URL info, this function turns it into a valid one.
See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

void QUrlInfo::setWritable (bool b) [virtual]

Specifies that the URL is writable if b is TRUE and not writable if b is FALSE.
If you call this function for an invalid URL info, this function turns it into a valid one.
See also isValid() [p. 175].

Example: network/networkprotocol/nntp.cpp.

uint QUrlInfo::size () const

Returns the size of the URL.

See also isValid() [p. 175].

178

QUrlOperator Class Reference

The QUrlOperator class provides common operations on URLs.
This class is part of the network module.
#incl ude <qurl operator. h>

Inherits QObject [Additional Functionality with Qt] and QUrl [p. 163].

Public Members

m QUrlOperator ()

m QUrlOperator (const QString & url)

m QUrlOperator (const QUrlOperator & url)

m QUrlOperator (const QUrlOperator & url, const QString & relUrl, bool checkSlash = FALSE)
m virtual ~QUrlOperator ()

m virtual const QNetworkOperation * listChildren ()

m virtual const QNetworkOperation * mkdir (const QString & dirname)

virtual const QNetworkOperation * remove (const QString & filename)

virtual const QNetworkOperation * rename (const QString & oldname, const QString & newname)
virtual const QNetworkOperation * get (const QString & location = QString::null)
virtual const QNetworkOperation * put (const QByteArray & data, const QString & location = QString::null)

virtual QPtrList <QNetworkOperation> copy (const QString & from, const QString & to, bool move = FALSE,
bool toPath = TRUE)

virtual void copy (const QStringList & files, const QString & dest, bool move = FALSE)
m virtual bool isDir (bool * ok = 0)

m virtual void setNameFilter (const QString & nameFilter)

m QString nameFilter () const

m virtual QUrlInfo info (const QString & entry) const

e virtual void stop ()

Signals

m void newChildren (const QValueList<QUrlInfo> & i, QNetworkOperation * op)
m void finished (QNetworkOperation * op)

m void start (QNetworkOperation * op)

m void createdDirectory (const QUrlInfo & i, QNetworkOperation * op)

179

QUrlOperator Class Reference 180

void removed (QNetworkOperation * op)

void itemChanged (QNetworkOperation * op)

void data (const QByteArray & data, QNetworkOperation * op)

void dataTransferProgress (int bytesDone, int bytesTotal, QNetworkOperation * op)
void startedNextCopy (const QPtrList<QNetworkOperation> & Ist)

void connectionStateChanged (int state, const QString & data)

Protected Members

m virtual void clearEntries ()
m void getNetworkProtocol ()
m void deleteNetworkProtocol ()

Related Functions

» void gInitNetworkProtocols ()

Detailed Description

The QUrlOperator class provides common operations on URLs.

This class operates on hierarchical structures (such as filesystems) using URLs. Its API allows all the common operations
(listing children, removing children, renaming, etc.). The class uses the functionality of registered network protocols
to perform these operations. Depending of the protocol of the URL, it uses an appropriate network protocol class for
the operations. Each of the operation functions of QUrlOperator creates a QNetworkOperation object that describes
the operation and puts it into the operation queue for the network protocol used. If no suitable protocol could be found
(because no implementation of the necessary network protocol is registered), the URL operator emits errors. Not every
protocol supports every operation, but error handling deals with this problem.

A QUrlOperator can be used like this e.g. for downloading a file:

QUrl Qperator op;
op. copy(Qstring("ftp://ftp.trolltech.com qt/source/qt-2.1.0.tar.gz"),

“file:/tmp");
You will also need to connect to some signals of the QUrlOperator to be informed of success, errors, progress and more
things.

Of course an implementation for the FTP protocol has to be registered for this example to work, e.g. QFtp. You can
use the function gInitNetworkProtocols() to register all the network protocols that are shipped with the Qt network
extension (at the moment FTB HTTP and local file system are supported).

For more information about the Qt Network Architecture see the Qt Network Documentation.

See also QNetworkProtocol [p. 99], QNetworkOperation [p. 96], Input/Output and Networking and Miscellaneous
Classes.

QUrlOperator Class Reference 181

Member Function Documentation

QUrlOperator::QUrlOperator ()

Constructs a QUrlOperator with an empty (i.e. invalid) URL.

QUrlOperator::QUrlOperator (const QString & url)

Constructs a QUrlOperator using url and parses this string.

If you pass strings like "/home/qt" the "file" protocol is assumed.

QUrlOperator::QUrlOperator (const QUrlOperator & url)

Constructs a copy of url.

QUrlOperator::QUrlOperator (const QUrlOperator & url, const QString & relUrl,
bool checkSlash = FALSE)

Constructs a QUrlOperator. The URL on which this QUrlOperator operates is constructed out of the arguments url,
relUrl and checkSlash: see the corresponding QUTrl constructor for an explanation of these arguments.

QUrlOperator::~QUrlOperator () [virtual]

Destructor.

void QUrlOperator::clearEntries () [virtual protected]

Clears the cache of children.

void QUrlOperator::connectionStateChanged (int state, const QString & data) [signal]

This signal is emitted whenever the state of the connection of the network protocol of the URL operator changes. state
describes the new state, which is a QNetworkProtocol::ConnectionState value.

data is a string that describes the change of the connection. This can be used to display a message to the user.

QPtrList<QNetworkOperation> QUrlOperator::copy (const QString & from,
const QString & to, bool move = FALSE, bool toPath = TRUE) [virtual]

Copies the file from to to. If move is TRUE, the file is moved (copied and removed). from must point to a file and to
points to a directory (into which from is copied) unless toPath is set to FALSE. If toPath is set to FALSE then the to vari-
able is assumed to be the absolute file path (destination file path + file name). The copying is done using the get() and
put() operations. If you want to be notified about the progress of the operation, connect to the dataTransferProgress()
signal. Bear in mind that the get() and put() operations emit this signal through the QUrlOperator. The number of

QUrlOperator Class Reference 182

transferred bytes and the total bytes that you receive as arguments in this signal do not relate to the the whole copy
operation; they relate first to the get() and then to the put() operation. Always check what type of operation the signal
comes from; this is given in the signal’s last argument.

At the end, finished() (with success or failure) is emitted, so check the state of the network operation object to see
whether or not the operation was successful.

Because a move or copy operation consists of multiple operations (get(), put() and maybe remove()), this function
doesn’t return a single QNetworkOperation, but rather a list of them. They are in the order: get(), put() and (if
applicable) remove().

See also get() [p. 183] and put() [p. 185].

void QUrlOperator::copy (const QStringList & files, const QString & dest, bool move =
FALSE) [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
Copies files to the directory dest. If move is TRUE the files are moved, not copied. dest must point to a directory.

This function calls copy() for each entry in files one after the other. You don’t get a result from this function; each
time a new copy begins, startedNextCopy() is emitted, with a list of QNetworkOperations that describe the new copy
operation.

void QUrlOperator::createdDirectory (const QUrlInfo & i, QNetworkOperation * op) [signal]

This signal is emitted when mkdir() succeeds and the directory has been created. i holds the information about the new
directory. op is the pointer to the operation object, which contains all the information about the operation, including
the state. Using op->arg(0) you also get the file name of the new directory.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

void QUrlOperator::data (const QByteArray & data, QNetworkOperation * op) [signal]

This signal is emitted when new data has been received after calling get() or put(). \op holds the name of the file
whose data is retrieved in op->arg(0) and the (raw) data in op->rawArg(1).

op is the pointer to the operation object which contains all the information about the operation, including the state.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

void QUrlOperator::dataTransferProgress (int bytesDone, int bytesTotal,
QNetworkOperation * op) [signal]

This signal is emitted during data transfer (using put() or get()). bytesDone specifies how many bytes of bytesTotal have
been transferred. More information about the operation is stored in op, the pointer to the network operation that is
processed. bytesTotal may be -1, which means that the total number of bytes is not known.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

QUrlOperator Class Reference 183

void QUrlOperator::deleteNetworkProtocol () [protected]

Deletes the currently used network protocol.

void QUrlOperator::finished (QNetworkOperation * op) [signal]

This signal is emitted when an operation of some sort finishes, whether with success or failure. op is the pointer to
the operation object, which contains all the information, including the state, of the operation which has been finished.
Check the state and error code of the operation object to see whether or not the operation was successful.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

const QNetworkOperation * QUrlOperator::get (const QString & location =
QString::null) [virtual]

Tells the network protocol to get data from location or, if this is QString::null, to get data from the location to which
this URL points (see QUrl::fileName() and QUrl::encodedPathAndQuery()). What happens then depends on the net-
work protocol. The data() signal is emitted when data comes in. Because it’s unlikely that all data will come in at
once, multiple data() signals will most likely be emitted. The dataTransferProgress() is emitted while processing the
operation. At the end, finished() (with success or failure) is emitted, so check the state of the network operation object
to see whether or not the operation was successful.

If location is QString::null, the path of this QUrlOperator should point to a file when you use this operation. If location
is not empty, it can be a relative URL (a child of the path to which the QUrlOperator points) or an absolute URL.

For example, to get a web page you might do something like this:

QUrl Qperator op("http://wmv whatever. org/cgi-bin/search. pl ?2cmd=Hel | 0");
op. get () ;

For most other operations, the path of the QUrlOperator must point to a directory. If you want to download a file you
could do the following:

QUrl Qperator op("ftp://ftp.whatever.org/pub");
Il do some other stuff like op.listChildren() or op.nkdir("newdir")
op.get("a file.txt");

This will get the data of ftp://ftp.whatever.org/pub/a_file.txt.
Never do anything like this:

QUrl Qperator op("http://ww whatever.org/cgi-bin");
op.get("search.pl ?cnd=Hel l 0"); // WRONG

If location is not empty and relative it must not contain any queries or references, just the name of a child. So
if you need to specify a query or reference, do it as shown in the first example or specify the full URL (such as
http://www.whatever.org/cgi-bin/search.pl?cmd =Hello) as location.

See also copy() [p. 181].

QUrlOperator Class Reference 184

void QUrlOperator::getNetworkProtocol () [protected]

Finds a network protocol for the URL and deletes the old network protocol.

QUrlInfo QUrlOperator::info (const QString & entry) const [virtual]

Returns the URL information for the child entry, or returns an empty QUrlInfo object if there is no information available
about entry.

bool QUrlOperator::isDir (bool * ok = 0) [virtual]

Returns TRUE if the URL is a directory; otherwise returns FALSE. This may not always work correctly, if the protocol
of the URL is something other than file (local filesystem). If you pass a bool pointer as the ok argument, *ok is set to
TRUE if the result of this function is known to be correct, and to FALSE otherwise.

void QUrlOperator::itemChanged (QNetworkOperation * op) [signal]

This signal is emitted whenever a file which is a child of the URL has been changed, for example by successfully
calling rename(). op holds the original and new file names in the first and second arguments, respectively; they can be
accessed with op->arg(0) and op->arg(1).

op is the pointer to the operation object which contains all the information about the operation, including the state.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

const QNetworkOperation * QUrlOperator::listChildren () [virtual]

Starts listing the children of this URL (e.g. of a directory). The signal start() is emitted before the first entry is listed
and finished() is emitted after the last one. The newChildren() signal is emitted for each list of new entries. If an error
occurs, the signal finished() is emitted, so be sure to check the state of the network operation pointer.

Because the operation may not be executed immediately, a pointer to the QNetworkOperation object created by this
function is returned. This object contains all the data about the operation and is used to refer to this operation later
(e.g. in the signals that are emitted by the QUrlOperator). The return value can also be O if the operation object
couldn’t be created.

The path of this QUrlOperator must to point to a directory (because the children of this directory will be listed), not to
a file.

const QNetworkOperation * QUrlOperator::mkdir (const QString & dirname) [virtual]

Tries to create a directory (child) with the name dirname. If it is successful, a newChildren() signal with the new child
is emitted, and the createdDirectory() signal with the information about the new child is emitted, too. finished() (with
success or failure) is also emitted after the operation has been processed, so check the state of the network operation
object to see whether or not the operation was successful.

Because the operation will not be executed immediately, a pointer to the QNetworkOperation object created by this
function is returned. This object contains all the data about the operation and is used to refer to this operation later
(e.g. in the signals that are emitted by the QUrlOperator). The return value can also be 0O if the operation object
couldn’t be created.

QUrlOperator Class Reference 185

The path of this QUrlOperator must to point to a directory because the new directory will be created in this path, not
to a file.

QString QUrlOperator::nameFilter () const

Returns the name filter of the URL.

See also QUrlOperator::setNamekFilter() [p. 186] and QDir::nameFilter() [p. 41].

void QUrlOperator::newChildren (const QValueList<QUrlInfo> & i,
QNetworkOperation * op) [signal]

This signal is emitted after listChildren() was called and new children (e.g. files) have been read from a list of files.
i holds the information about the new children. op is the pointer to the operation object which contains all the
information about the operation, including the state.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

const QNetworkOperation * QUrlOperator::put (const QByteArray & data,
const QString & location = QString::null) [virtual]

This function tells the network protocol to put data in location. If location is empty (QString::null), it puts the data in the
location to which the URL points. What happens depends on the network protocol. Depending on the network protocol,
some data might come back after putting data, in which case the data() signal is emitted. The dataTransferProgress()
is emitted during processing of the operation. At the end, finished() (with success or failure) is emitted, so check the
state of the network operation object to see whether or not the operation was successful.

If location is QString::null, the path of this QUrlOperator should point to a file when you use this operation. If location
is not empty, it can be a relative (a child of the path to which the QUrlOperator points) or an absolute URL.

For putting some data to a file you can do the following:

QUrl Qperator op("ftp://ftp.whatever.cont home/ ne/fil ename");
op. put(data);

For most other operations, however, the path of the QUrlOperator must point to a directory. If you want to upload data
to a file you could do the following:

QUrl Qperator op("ftp://ftp.whatever.con home/ me");
Il do some other stuff like op.listChildren() or op.nkdir("newdir")
op.put(data, "filename.dat");

This will upload the data to ftp://ftp.whatever.com/home/me/filename.dat.

See also copy() [p. 181].

const QNetworkOperation * QUrlOperator::remove (const QString & filename) [virtual]

Tries to remove the file (child) filename. If it succeeds the removed() signal is emitted. finished() (with success or
failure) is also emitted after the operation has been processed, so check the state of the network operation object to
see whether or not the operation was successful.

QUrlOperator Class Reference 186

Because the operation will not be executed immediately, a pointer to the QNetworkOperation object created by this
function is returned. This object contains all the data about the operation and is used to refer to this operation later
(e.g. in the signals that are emitted by the QUrlOperator). The return value can also be 0 if the operation object
couldn’t be created.

The path of this QUrlOperator must point to a directory; because if filename is relative, it will try to remove it in this
directory.

void QUrlOperator::removed (QNetworkOperation * op) [signal]

This signal is emitted when remove() has been succesful and the file has been removed. op holds the file name of the
removed file in the first argument which can be accessed with op->arg(0).

op is the pointer to the operation object which contains all the information about the operation, including the state.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

const QNetworkOperation * QUrlOperator::rename (const QString & oldname,
const QString & newname) [virtual]

Tries to rename the file (child) oldname to newname. If it succeeds, the signal itemChanged() is emitted. finished()
(with success or failure) is also emitted after the operation has been processed, so check the state of the network
operation object to see whether or not the operation was successful.

Because the operation may not be executed immediately, a pointer to the QNetworkOperation object created by this
function is returned. This object contains all the data about the operation and is used to refer to this operation later
(e.g. in the signals that are emitted by the QUrlOperator). The return value can also be 0O if the operation object
couldn’t be created.

This path of this QUrlOperator must to point to a directory because oldname and newname are handled relative to this
directory.

void QUrlOperator::setNameFilter (const QString & nameFilter) [virtual]

Sets the name filter of the URL to nameFilter.

See also QDir::setNameFilter() [p. 43].

void QUrlOperator::start (QNetworkOperation * op) [signal]

Some operations (such as listChildren()) emit this signal when they start processing the operation. op is the pointer to
the operation object which contains all the information about the operation, including the state.

See also QNetworkOperation [p. 96] and QNetworkProtocol [p. 99].

void QUrlOperator::startedNextCopy (const QPtrList<QNetworkOperation> & Ist) [signal]

This signal is emitted if copy() starts a new copy operation. Ist contains all QNetworkOperations related to this copy
operation.

See also copy() [p. 181].

QUrlOperator Class Reference 187

void QUrlOperator::stop () [virtual]

Stops the current network operation and removes all waiting network operations of this QUrlOperator.

Related Functions

void qInitNetworkProtocols ()

This function registers the network protocols for FTP and HTTR You have to call this function before you use QUrlOp-
erator for these protocols.

This function is declared in gnetwork.h.

QWindowsMime Class Reference

The QWindowsMime class maps open-standard MIME to Window Clipboard formats.

#incl ude <qmi ne. h>

Public Members

= QWindowsMime ()

m virtual ~QWindowsMime ()

virtual const char * convertorName ()
virtual int countCf ()

virtual int cf (int index)

virtual bool canConvert (const char * mime, int cf)
virtual const char * mimeFor (int cf)

m virtual int cfFor (const char * mime)
m virtual QByteArray convertToMime (QByteArray data, const char * mime, int cf)
m virtual QByteArray convertFromMime (QByteArray data, const char * mime, int cf)

Static Public Members

m void initialize ()

m QPtrList<QWindowsMime> all ()

» QWindowsMime * convertor (const char * mime, int cf)
m const char * cfToMime (int cf)

Detailed Description

The QWindowsMime class maps open-standard MIME to Window Clipboard formats.

Qt’s drag-and-drop and clipboard facilities use the MIME standard. On X11, this maps trivially to the Xdnd protocol,
but on Windows although some applications use MIME types to describe clipboard formats, others use arbitrary non-
standardized naming conventions, or unnamed built-in formats of Windows.

By instantiating subclasses of QWindowsMime that provide conversions between Windows Clipboard and MIME for-
mats, you can convert proprietary clipboard formats to MIME formats.

Qt has predefined support for the following Windows Clipboard formats:

188

QWindowsMime Class Reference 189

CF_UNICODETEXT - converted to "text/plain;charset=1SO-10646-UCS-2" and supported by QTextDrag.
CF_TEXT - converted to "text/plain;charset=system" or "text/plain" and supported by QTextDrag.

CF_DIB - converted to "image/*", where * is a Qt image format, and supported by QImageDrag.
CF_HDROP - converted to "text/uri-list", and supported by QUriDrag.

An example use of this class would be to map the Windows Metafile clipboard format (CF_METAFILEPICT) to and from
the MIME type "image/x-wmf". This conversion might simply be adding or removing a header, or even just passing on
the data. See the Drag-and-Drop documentation for more information on choosing and definition MIME types.

You can check if a MIME type is convertible using canConvert() and can perform conversions with convertToMime()
and convertFromMime().

See also Drag And Drop Classes, Input/Output and Networking and Miscellaneous Classes.

Member Function Documentation

QWindowsMime::QWindowsMime ()

Constructs a new conversion object, adding it to the globally accessed list of available convertors.

QWindowsMime:: ~QWindowsMime () [virtual]

Destroys a conversion object, removing it from the global list of available convertors.

QPtrList<QWindowsMime> QWindowsMime::all () [static]

Returns a list of all currently defined QWindowsMime objects.

bool QWindowsMime::canConvert (const char * mime, int cf) [virtual]

Returns TRUE if the convertor can convert (both ways) between mime and cf; otherwise returns FALSE.

All subclasses must reimplement this pure virtual function.

int QWindowsMime::cf (int index) [virtual]

Returns the Windows Clipboard format supported by this convertor that is ordinarily at position index. This means
that cf(0) returns the first Windows Clipboard format supported, and cf(countCf()-1) returns the last. If index is out of
range the return value is undefined.

All subclasses must reimplement this pure virtual function.

int QWindowsMime::cfFor (const char * mime) [virtual]

Returns the Windows Clipboard type used for MIME type mime, or 0 if this convertor does not support mime.

All subclasses must reimplement this pure virtual function.

QWindowsMime Class Reference 190

const char * QWindowsMime::cfToMime (int cf) [static]

Returns a MIME type for cf, or 0 if none exists.

QByteArray QWindowsMime::convertFromMime (QByteArray data, const char * mime,
int cf) [virtual]

Returns data converted from MIME type mime to Windows Clipboard format cf.
Note that Windows Clipboard formats must all be self-terminating. The return value may contain trailing data.

All subclasses must reimplement this pure virtual function.

QByteArray QWindowsMime::convertToMime (QByteArray data, const char * mime,
int cf) [virtual]

Returns data converted from Windows Clipboard format cf to MIME type mime.
Note that Windows Clipboard formats must all be self-terminating. The input data may contain trailing data.

All subclasses must reimplement this pure virtual function.

QWindowsMime * QWindowsMime::convertor (const char * mime, int cf) [static]

Returns the most-recently created QWindowsMime that can convert between the mime and cf formats. Returns 0 if no
such convertor exists.

const char * QWindowsMime::convertorName () [virtual]

Returns a name for the convertor.

All subclasses must reimplement this pure virtual function.

int QWindowsMime::countCf () [virtual]

Returns the number of Windows Clipboard formats supported by this convertor.
All subclasses must reimplement this pure virtual function.

void QWindowsMime::initialize () [static]

This is an internal function.

oo

const char * QWindowsMime::mimeFor (int cf) [virtual]

Returns the MIME type used for Windows Clipboard format cf, or 0 if this convertor does not support cf.

All subclasses must reimplement this pure virtual function.

Index

absFilePath()
QDir, 34
QFileInfo, 62
absPath()
QDir, 34
accept()
QSocketDevice, 137
activated()
QSocketNotifier, 144
addArgument()
QProcess, 112
addFactory()
QMimeSourceFactory, 92
addFilePath()
QMimeSourceFactory, 93
addOperation()
QNetworkProtocol, 102
addPath()
QUrl, 166
address()
QServerSocket, 120
QSocket, 128
QSocketDevice, 137
addresses()
QDns, 47
addressReusable()
QSocketDevice, 137
allO
QWindowsMime, 189
allowsErrorInteraction()
QSessionManager, 122
allowsInteraction()
QSessionManager, 122
arg()
QNetworkOperation, 97
arguments()
QProcess, 112
at()
QFile, 52, 53
QIODevice, 79
QSocket, 129
atEnd()
QDataStream, 23
QFile, 53
QIODevice, 79
QSocket, 129

QTextStream, 154
autoDelete()
QNetworkProtocol, 102

baseName()

QFilelnfo, 62
bind()

QSocketDevice, 138
blocking()

QSocketDevice, 138
ByteOrder

QDataStream, 22
byteOrder()

QDataStream, 23
bytesAvailable()

QSocket, 129

QSocketDevice, 138
bytesToWrite()

QSocket, 129
bytesWritten()

QSocket, 129

caching()

QFilelnfo, 62
cancel()

QSessionManager, 123
canConvert()

QWindowsMime, 189
canonicalName()

QDns, 47
canonicalPath()

QDir, 34
canReadLine()

QSocket, 129
canReadLineStderr()

QProcess, 112
canReadLineStdout()

QProcess, 112
cdQ

QDir, 35
cdUpQ

QDir, 35

QUrl, 166
cf()

QWindowsMime, 189
cfFor()

191

QWindowsMime, 189
cfToMime()

QWindowsMime, 190
checkConnection()

QNetworkProtocol, 102
cleanDirPath()

QDir, 35
clear()

QClipboard, 16
clearArguments()

QProcess, 112
clearEntries()

QUrlOperator, 181
clearOperationQueue()

QNetworkProtocol, 103
close()

QFile, 53

QIODevice, 79

QSocket, 130
closeStdin()

QProcess, 112
Communication

QProcess, 110
communication()

QProcess, 112
connect()

QSocketDevice, 138
connected()

QSocket, 130
connectionClosed ()

QSocket, 130
ConnectionState

QNetworkProtocol, 101
connectionStateChanged()

QNetworkProtocol, 103

QUrlOperator, 181
connectToHost()

QSocket, 130
convertFromMime ()

QWindowsMime, 190
convertor()

QWindowsMime, 190
convertorName()

QWindowsMime, 190
convertSeparators()

QDir, 35

Index

convertToAbs()

QDir, 35

QFilelnfo, 62
convertToMime()

QWindowsMime, 190
copy()

QUrlOperator, 181, 182
count()

QDir, 36
countCf()

QWindowsMime, 190
created()

QFilelnfo, 63
createdDirectory()

QNetworkProtocol, 103

QUrlOperator, 182
current()

QDir, 36
currentDirPath()

QDir, 36

data()

QClipboard, 16

QMimeSourceFactory, 93

QNetworkProtocol, 103

QUrlOperator, 182
dataBytesWritten()

QFtp, 70
dataChanged()

QClipboard, 16
dataClosed()

QFtp, 70
dataConnected()

QFtp, 70
dataReadyRead()

QFtp, 70
dataTransferProgress()

QNetworkProtocol, 103

QUrlOperator, 182
decode()

QUrl, 166
decodeName()

QFile, 53
DecoderFn

QFile, 52
defaultFactory()

QMimeSourceFactory, 93
delayedCloseFinished ()

QSocket, 131
deleteNetworkProtocol()

QUrlOperator, 183
device()

QDataStream, 23

QTextStream, 154
dir(Q)

QFilelnfo, 63
dirName()

QDir, 36

dirPath()

QFilelnfo, 63

Qurl, 167
discardCommand()

QSessionManager, 123
drives()

QDir, 36

encode()

QUrl, 167
encodedData()

QMimeSource, 90
encodedEntryList()

QDir, 36, 37
encodedPathAndQuery()

Qurl, 167
encodeName()

QFile, 53
EncoderFn

QFile, 52
Encoding

QTextStream, 152
entryInfoList()

QDir, 37
entryList()

QDir, 38
eof()

QDataStream, 23

QTextStream, 154
equal()

QUrlInfo, 174
Error

QNetworkProtocol, 101

QSocket, 128

QSocketDevice, 136
error()

QSocket, 131

QSocketDevice, 138
errorCode()

QNetworkOperation, 97
exists()

QDir, 38

QFile, 54

QFilelnfo, 63
exitStatus()

QProcess, 113
extension()

QFilelnfo, 63

fileName()

QFilelnfo, 64

QUrl, 167
filePath()

QDir, 38

QFilelnfo, 64

QMimeSourceFactory, 94
fill)

QTextStream, 154
filter)

QDir, 39
FilterSpec
QDir, 32
finished ()
QNetworkProtocol, 103
QUrlOperator, 183
flags()
QIODevice, 80
QTextStream, 155
flush()
QFile, 54
QIODevice, 80
QSocket, 131
format()
QMimeSource, 90
free()
QNetworkOperation, 97

get()

QUrlOperator, 183
getch()

QFile, 54

QIODevice, 80

QSocket, 131
getNetworkProtocol()

QNetworkProtocol, 104

QUrlOperator, 184
greaterThan()

QUrlinfo, 174
group()

QFilelnfo, 64

QUrlinfo, 174
groupld()

QFilelnfo, 64

handle()
QFile, 54
QSessionManager, 124
hasHost()
QUrl, 167
hasOnlyLocalFileSystem()
QNetworkProtocol, 104
hasPassword()
QUurl, 167
hasPath()
Qurl, 167
hasPort()
QUrl, 168
hasRef()
QUrl, 168
hasUser()
QUrl, 168
home()
QDir, 39
homeDirPath()
QDir, 39
host()
QUrl, 168
hostFound ()

192

Index

QSocket, 131
hostNames()
QDns, 47

image()

QClipboard, 17
info()

QUrlOperator, 184
initialize ()

QWindowsMime, 190
I0_AbortError, 84
I0_Append, 55
IO_ConnectError, 84
IO_FatalError, 84
I0 Ok, 84
I0_OpenError, 84
I0_Raw, 55
I0_ReadError, 84
I0_ReadOnly, 55
I0_ReadWrite, 55
I0_TimeOutError, 84
I0_Translate, 55
IO_Truncate, 55
I0_UnspecifiedError, 84
IO_WriteError, 84
IO_WriteOnly, 55
ip4Addr()

QHostAddress, 72
isAsynchronous()

QIODevice, 80
isBuffered()

QIODevice, 80
isCombinedAccess()

QIODevice, 80
isDir()

QFilelnfo, 64

QUirlInfo, 174

QUrlOperator, 184
isDirectAccess()

QIODevice, 81
isEnabled()

QSocketNotifier, 144
isExecutable()

QFilelnfo, 65

QUirlInfo, 175
isFile()

QFilelnfo, 65

QUirlinfo, 175
isInactive()

QIODevice, 81
isIp4Addr()

QHostAddress, 72
isLocalFile()

QUrl, 168
isOpen()

QIODevice, 81
isPhase2()

QSessionManager, 124

isPrintableData()
QDataStream, 23
isRaw()
QIODevice, 81
isReadable()
QDir, 39
QFilelnfo, 65
QIODevice, 81
QUrlInfo, 175
isReadWrite()
QIODevice, 81
isRelative()
QDir, 39
QFilelnfo, 65
isRelativePath()
QDir, 39
isRelativeUrl()
QUrl, 168
isRoot()
QDir, 40
isRunning()
QProcess, 113
isSequentialAccess()
QIODevice, 81
isSymLink()
QFilelnfo, 65
QUrlInfo, 175
isSynchronous()
QIODevice, 82
isTranslated()
QIODevice, 82
isvalid()
QLock, 88
QSocketDevice, 138
QUrl, 168
QUrlinfo, 175
isWorking()
QDns, 47
isWritable()
QFilelnfo, 65
QIODevice, 82
QUrlInfo, 175
itemChanged()
QNetworkProtocol, 104
QUrlOperator, 184

killO
QProcess, 113

label()
QDnmns, 48
lastModified)
QFilelnfo, 65
QUrlInfo, 175
lastRead()
QFilelnfo, 66
QUrlInfo, 176
launch()
QProcess, 113, 114

193

launchFinished()

QProcess, 114
lessThan()

QUrlInfo, 176
listChildren()

QUrlOperator, 184
listen()

QSocketDevice, 138
lock()

QLock, 88
locked()

QLock, 88

mailServers()

QDns, 48
makeAbsolute ()

QMimeSourceFactory, 94
match()

QDir, 40
matchAllDirs()

QDir, 40
mimeFor()

QWindowsMime, 190
mkdir()

QDir, 40

QUrlOperator, 184
mode()

QIODevice, 82

name()

QFile, 54

QUrlInfo, 176
nameFilter()

QDir, 41

QUrlOperator, 185
newChild()

QNetworkProtocol, 104
newChildren()

QNetworkProtocol, 104

QUrlOperator, 185
newConnection()

QServerSocket, 120
normalExit()

QProcess, 114

Offset
QIODevice, 79
ok(
QServerSocket, 120
open()
QFile, 55, 56
QIODevice, 82
QSocket, 131
Operation
QNetworkProtocol, 101
operation()
QNetworkOperation, 97
operationGet()
QNetworkProtocol, 105

Index

operationInProgress()
QNetworkProtocol, 105
operationListChildren()
QNetworkProtocol, 105
operationMkDir()
QNetworkProtocol, 105
operationPut()
QNetworkProtocol, 106
operationRemove ()
QNetworkProtocol, 106
operationRename()
QNetworkProtocol, 106
operator
=0
QDir, 41
operator QString()
QUrl, 168
operator=()
QDir, 41
QFilelnfo, 66
QHostAddress, 72
QUirl, 168, 169
QUrlinfo, 176
operator==()
QDir, 41
QHostAddress, 72
QUrl, 169
QUrlInfo, 176
operator[]()
QDir, 41
operator<<()
QDataStream, 24, 25
QTextStream, 155-157
operator>>()
QDataStream, 25, 26
QTextStream, 157-159
owner()
QFilelnfo, 66
QUirlInfo, 176
ownerld()
QFileInfo, 66
ownsClipboard()
QClipboard, 17
ownsSelection()
QClipboard, 17

parse()

QUrl, 169
parseDir()

QFtp, 70
password()

QUrl, 169
path(

QDir, 42

QUrl, 169
peerAddress()

QSocket, 132

QSocketDevice, 139

peerName()

QSocket, 132
peerPort()

QSocket, 132

QSocketDevice, 139
permission()

QFilelnfo, 66
permissions()

QUrlInfo, 176
PermissionSpec

QFilelnfo, 61
pixmap()

QClipboard, 17
port()

QServerSocket, 120

QSocket, 132

QSocketDevice, 139

QUrl, 169
precision()

QTextStream, 159
processExited()

QProcess, 114
processldentifier()

QProcess, 114
protocol()

QUrl, 169
protocolDetail ()

QNetworkOperation, 98
provides()

QMimeSource, 90
put()

QUrlOperator, 185
putch()

QFile, 56

QIODevice, 83

QSocket, 132

qualifiedNames()
QDnmns, 48

query()
QUrl, 170

rawArg()

QNetworkOperation, 98
read()

QTextStream, 159
readAll()

QIODevice, 56, 83
readBlock()

QFile, 56

QIODevice, 83

QSocket, 132

QSocketDevice, 139
readBytes()

QDataStream, 26
readLine()

QFile, 57

QIODevice, 83

QSocket, 132

QTextStream, 159
readLineStderr()

QProcess, 114
readLineStdout()

QProcess, 115
readLink()

QFilelnfo, 66
readRawBytes()

QDataStream, 27

QTextStream, 160
readStderr()

QProcess, 115
readStdout()

QProcess, 115
readyRead()

QFtp, 70

QSocket, 133
readyReadStderr()

QProcess, 115
readyReadStdout()

QProcess, 115
receiveBufferSize()

QSocketDevice, 139
RecordType

QDns, 46
recordType()

QDns, 48
ref()

QUrl, 170
refresh()

QFilelnfo, 67
registerNetworkProtocol()

QNetworkProtocol, 106
release()

QSessionManager, 124
remove()

QDir, 42

QFile, 57

QUrlOperator, 185
removed()

QNetworkProtocol, 107

QUrlOperator, 186
removeFactory()

QMimeSourceFactory, 94
rename()

QDir, 42

QUrlOperator, 186
requestPhase2()

QSessionManager, 124
reset()

QIODevice, 83

QTextStream, 160

QUrl, 170
resetStatus()

QIODevice, 83
restartCommand()

QSessionManager, 124
RestartHint

194

Index

QSessionManager, 122
restartHint()
QSessionManager, 124
resultsReady()
QDns, 48
rmdir()
QDir, 42
root()
QDir, 42
rootDirPath()
QDir, 43

selectionChanged()

QClipboard, 17
selectionModeEnabled()

QClipboard, 17
sendBufferSize()

QSocketDevice, 139
separator()

QDir, 43
serialNumber()

QMimeSource, 90
servers()

QDns, 48
sessionld()

QSessionManager, 124
setAddress()

QHostAddress, 73
setAddressReusable()

QSocketDevice, 139
setArg()

QNetworkOperation, 98
setArguments()

QProcess, 116
setAutoDelete ()

QNetworkProtocol, 107
setBlocking()

QSocketDevice, 140
setByteOrder()

QDataStream, 27
setCaching()

QFilelnfo, 67
setCodec()

QTextStream, 160
setCommunication()

QProcess, 116
setCurrent()

QDir, 43
setData()

QClipboard, 17

QMimeSourceFactory, 94
setDecodingFunction()

QFile, 57
setDefaultFactory()

QMimeSourceFactory, 94
setDevice()

QDataStream, 27

QTextStream, 160

setDir()

QUrlInfo, 176
setDiscardCommand()

QSessionManager, 125
setEnabled ()

QSocketNotifier, 144
setEncodedPathAndQuery()

QuUrl, 170
setEncoding()

QTextStream, 160
setEncodingFunction()

QFile, 57
setError()

QSocketDevice, 140
setErrorCode()

QNetworkOperation, 98
setExtensionType()

QMimeSourceFactory, 94
setf()

QTextStream, 161
setFile()

QFilelnfo, 67, 68

QUrlInfo, 177
setFileName()

Qurl, 170
setFilePath()

QMimeSourceFactory, 94
setFilter()

QDir, 43
setGroup()

QUrlInfo, 177
setHost()

QUrl, 170
setlmage()

QClipboard, 17

QMimeSourceFactory, 95
setLabel()

QDns, 49
setLastModified ()

QUrlInfo, 177
setManagerProperty()

QSessionManager, 125
setMatchAlIDirs()

QDir, 43
setName()

QFile, 58

QUrlInfo, 177
setNameFilter()

QDir, 43

QUrlOperator, 186
setOwner()

QUrlInfo, 177
setPassword()

QUrl, 170
setPath()

QDir, 43

QUrl, 170
setPermissions()

195

QUrlinfo, 177
setPixmap()

QClipboard, 18

QMimeSourceFactory, 95
setPort()

QUurl, 171
setPrintableData()

QDataStream, 27
setProtocol()

QUrl, 171
setProtocolDetail ()

QNetworkOperation, 98
setQuery()

Qurl, 171
setRawArg()

QNetworkOperation, 98
setReadable()

QUrlinfo, 178
setReceiveBufferSize()

QSocketDevice, 140
setRecordType()

QDns, 49
setRef()

Qurl, 171
setRestartCommand()

QSessionManager, 125
setRestartHint()

QSessionManager, 125
setSelectionMode()

QClipboard, 18
setSendBufferSize ()

QSocketDevice, 140
setSize()

QUrlinfo, 178
setSocket()

QServerSocket, 120

QSocket, 133

QSocketDevice, 140
setSocketDevice()

QSocket, 133
setSorting()

QDir, 44
setState()

QNetworkOperation, 98
setSymLink()

QUrlinfo, 178
setText()

QClipboard, 18

QMimeSourceFactory, 95
setUrl()

QNetworkProtocol, 107
setUser()

Qurl, 171
setVersion()

QDataStream, 27
setWorkingDirectory()

QProcess, 116
setWritable ()

Index

QUrlInfo, 178
size()

QFile, 58

QFileInfo, 68

QIODevice, 84

QSocket, 133

QUrlInfo, 178
skipWhiteSpace()

QTextStream, 161
sn_read()

QSocket, 133
sn_write()

QSocket, 133
socket()

QServerSocket, 120

QSocket, 134

QSocketDevice, 141

QSocketNotifier, 145
socketDevice()

QServerSocket, 120

QSocket, 134
sorting()

QDir, 44
SortSpec

QDir, 33
start()

QNetworkProtocol, 107

QProcess, 116

QUrlOperator, 186
startedNextCopy()

QUrlOperator, 186
State

QNetworkProtocol, 102

QSocket, 128
state()

QIODevice, 84
QNetworkOperation, 98
QSocket, 134
status()
QIODevice, 84
stop()
QNetworkProtocol, 107
QUrlOperator, 187
supportedOperations()
QNetworkProtocol, 107
supportsSelection()
QClipboard, 18

takeDefaultFactory()
QMimeSourceFactory, 95
text()
QClipboard, 18
texts()
QDns, 49
toString()
QHostAddress, 73
Qurl, 171
tryTerminate()
QProcess, 117
Type
QLock, 87
QSocketDevice, 137
QSocketNotifier, 143
type()
QSocketDevice, 141
QSocketNotifier, 145

ungetch()
QFile, 58
QIODevice, 84
QSocket, 134

unlock()
QLock, 88
unsetDevice()
QDataStream, 28
QTextStream, 161
unsetf()
QTextStream, 161
url()
QNetworkProtocol, 107
user()
QUrl, 171

version()
QDataStream, 28

waitForMore ()
QSocket, 134
QSocketDevice, 141
width()
QTextStream, 162
workingDirectory()
QProcess, 117
writeBlock()
QIODevice, 85
QSocket, 134
QSocketDevice, 141
writeBytes()
QDataStream, 28
writeRawBytes()
QDataStream, 28
QTextStream, 162
writeToStdin()
QProcess, 117
wroteToStdin()
QProcess, 117

196

