Accessibility and Internationalization with Qt

Ot 3.0

Copyright (© 2001 Trolltech AS. All rights reserved.

TROLLTECH, Qt and the Trolltech logo are registered trademarks of Trolltech AS. Linux is a registered trademark of
Linus Torvalds. UNIX is a registered trademark of X/Open Company Ltd. Mac is a registered trademark of Apple Com-
puter Inc. MS Windows is a registered trademark of Microsoft Corporation. All other products named are trademarks

of their respective owners.

The definitive Qt documentation is provided in HTML format supplied with Qt, and available online at http://doc.trolltech.com.
This PDF file was generated automatically from the HTML source as a convenience to users, although PDF is not an official Qt

documentation format.

Contents

QAccessible Class Reference i i v i i i e i e e e e e e e e e e e e 3
QAccessibleInterface Class Reference o i i i i i i it e e e e e 10
QAccessibleObject Class Reference o i i i i i i it e e e e e e e e e e e e e e e e e 14
Internationalization with Qt e e e e e e e 16
Qs Text Engine e e e e e e e e e e e e e e e e 23
About Unicode L L e e e e e e e e e e e e e 25
QIMEvent Class Reference i i i i e e e e e e e e e e 27
QTranslator Class Reference i i it e e e e e e e e e 30
QTranslatorMessage Class Reference 0 it i i i ittt e e e e e e e e 35
QTextCodec Class Reference i i i i i i e e e e e e e e e e e e e e e e e e e 39
QTextDecoder Class Reference i i i i it it e e e e e e e e e e e e e e e 49
QTextEncoder Class Reference. v o v i i i i i i e et e e e e e e e e e e e e e e e 50
QEucJpCodec Class Reference i i i i e e e e e e e e e e e e e e e e e 51
QEucKrCodec Class Reference o i i i it i e e e e e e e e e e e e e e e 53
QGbkCodec Class Reference v i i v i it e e e et e e e e e e e e e e e 55
QHebrewCodec Class Reference i i i e e e e e e e e e e e e 57
QJisCodec Class Reference o i i i i e e e e e e e e e e e e 59
QSjisCodec Class Reference i i i i it e et e e e e e e e e e e e 61
QTsciiCodec Class Reference i i i i i i e e e e e e e e e e e 63
Index L e e e e e e e 64

QAccessible Class Reference

The QAccessible class provides enums and static functions relating to accessibility.
#incl ude <gaccessible. h>

Inherited by QAccessibleInterface [p. 10].

Public Members

m enum Event { SoundPlayed = 0x0001, Alert = 0x0002, ForegroundChanged = 0x0003, MenuStart = 0x0004,
MenuEnd = 0x0005, PopupMenuStart = 0x0006, PopupMenuEnd = 0x0007, ContextHelpStart = 0x000C,
ContextHelpEnd = 0x000D, DragDropStart = 0x000E, DragDropEnd = 0x000F, DialogStart = 0x0010,
DialogEnd = 0x0011, ScrollingStart = 0x0012, ScrollingEnd = 0x0013, MenuCommand = 0x0018,
ObjectCreated = 0x8000, ObjectDestroyed = 0x8001, ObjectShow = 0x8002, ObjectHide = 0x8003,
ObjectReorder = 0x8004, Focus = 0x8005, Selection = 0x8006, SelectionAdd = 0x8007, SelectionRemove =
0x8008, SelectionWithin = 0x8009, StateChanged = 0x800A, LocationChanged = 0x800B, NameChanged =
0x800C, DescriptionChanged = 0x800D, ValueChanged = 0x800E, ParentChanged = 0x800F HelpChanged =
0x80A0, DefaultActionChanged = 0x80B0, AcceleratorChanged = 0x80CO }

m enum State { Normal = 0x00000000, Unavailable = 0x00000001, Selected = 0x00000002, Focused =
0x00000004, Pressed = 0x00000008, Checked = 0x00000010, Mixed = 0x00000020, ReadOnly =
0x00000040, HotTracked = 0x00000080, Default = 0x00000100, Expanded = 0x00000200, Collapsed =
0x00000400, Busy = 0x00000800, Floating = 0x00001000, Marqueed = 0x00002000, Animated =
0x00004000, Invisible = 0x00008000, Offscreen = 0x00010000, Sizeable = 0x00020000, Moveable =
0x00040000, SelfVoicing = 0x00080000, Focusable = 0x00100000, Selectable = 0x00200000, Linked =
0x00400000, Traversed = 0x00800000, MultiSelectable = 0x01000000, ExtSelectable = 0x02000000,
AlertLow = 0x04000000, AlertMedium = 0x08000000, AlertHigh = 0x10000000, Protected = 0x20000000,
Valid = Ox3fffffff }

= enum Role { NoRole = 0x00000000, TitleBar = 0x00000001, MenuBar = 0x00000002, ScrollBar =
0x00000003, Grip = 0x00000004, Sound = 0x00000005, Cursor = 0x00000006, Caret = 0x00000007,
AlertMessage = 0x00000008, Window = 0x00000009, Client = 0x0000000A, PopupMenu = 0x0000000B,
Menultem = 0x0000000C, ToolTip = 0x0000000D, Application = 0x0000000E, Document = 0x0000000E
Pane = 0x00000010, Chart = 0x00000011, Dialog = 0x00000012, Border = 0x00000013, Grouping =
0x00000014, Separator = 0x00000015, ToolBar = 0x00000016, StatusBar = 0x00000017, Table =
0x00000018, ColumnHeader = 0x00000019, RowHeader = 0x0000001A, Column = 0x0000001B, Row =
0x0000001C, Cell = 0x0000001D, Link = 0x0000001E, HelpBalloon = 0x0000001F, Character = 0x00000020,
List = 0x00000021, ListItem = 0x00000022, Outline = 0x00000023, Outlineltem = 0x00000024, PageTab =
0x00000025, PropertyPage = 0x00000026, Indicator = 0x00000027, Graphic = 0x00000028, StaticText =
0x00000029, EditableText = 0x0000002A, PushButton = 0x0000002B, CheckBox = 0x0000002C, RadioButton
= 0x0000002D, ComboBox = 0x0000002E, DropLest = 0x0000002E, ProgressBar = 0x00000030, Dial =
0x00000031, HotkeyField = 0x00000032, Slider = 0x00000033, SpinBox = 0x00000034, Diagram =
0x00000035, Animation = 0x00000036, Equation = 0x00000037, ButtonDropDown = 0x00000038,

QAccessible Class Reference 4

ButtonMenu = 0x00000039, ButtonDropGrid = 0x0000003A, Whitespace = 0x0000003B, PageTabList =
0x0000003C, Clock = 0x0000003D }

m enum NavDirection { NavUp = 0x00000001, NavDown = 0x00000002, NavLeft = 0x00000003, NavRight =
0x00000004, NavNext = 0x00000005, NavPrevious = 0x00000006, NavFirstChild = 0x00000007,
NavLastChild = 0x00000008, NavFocusChild = 0x00000009 }

m enum Text { Name = 0, Description, Value, Help, Accelerator, DefaultAction }

Static Public Members

m QRESULT queryAccessibleInterface (QObject * object, QAccessibleInterface ** iface)
= void updateAccessibility (QObject * object, int control, Event reason)

Detailed Description

The QAccessible class provides enums and static functions relating to accessibility.

Accessibility clients use implementations of the QAccessibleInterface to read information an accessible object exposes,
or to call methods to manipulate the accessible object.

See the plugin documentation [Plugins with Qt] for more details about how to redistribute Qt plugins.

See also Miscellaneous Classes.

Member Type Documentation

QAccessible::Event
This enum type defines event types when the state of the accessible object has changed. Event types are

e (Accessi bl e:: SoundPl ayed

e QAccessible:: Alert

e (Accessi bl e: : For egr oundChanged
e QAccessi bl e:: MenuStart

e QAccessi bl e: : MenuEnd

e QAccessi bl e: : PopupMenuSt ar t

e (Accessi bl e: : PopupMenuEnd

e (Accessi bl e:: ContextHel pStart
e (Accessi bl e: : Cont ext Hel pEnd

e (Accessible::DragDropStart

e QAccessi bl e: : DragDr opEnd

e (Accessible::DialogSart

e (Accessible:: Dial ogknd

e (Accessible::ScrollingStart

e (Accessible:: ScrollingEnd

QAccessible Class Reference

e QAccessible:: hjectOeated

e QAccessi bl e:: nj ect Destroyed

e (Accessi bl e:: oj ect Show

e QAccessible:: hjectH de

e (Accessi bl e:: bj ect Reor der

e QAccessi bl e: : Focus

e QAccessible:: Selection

e QAccessi bl e:: Sel ectionAdd

e QAccessi bl e:: Sel ectionRenmove

e QAccessible:: SelectionWthin

e QAccessi bl e:: Stat eChanged

e (Accessi bl e:: Locati onChanged

e (Accessi bl e: : NameChanged

e (Accessi bl e: : Descri pti onChanged
e (Accessi bl e:: Val ueChanged

e (QAccessi bl e: : Par ent Changed

e (Accessi bl e: : Hel pChanged

e (Accessi bl e: : Def aul t Acti onChanged
e (Accessi bl e: : Accel erat or Changed
e QAccessi bl e: : MenuConmand

QAccessible::NavDirection
This enum specifies to which item to move when navigating.

e QAccessi bl e: : NavUp - sibling above

e (QAccessi bl e: : NavDown - sibling below

e (QAccessi bl e:: NavLeft - left sibling

e (QAccessi bl e:: NavRi ght - right sibling

e (Accessi bl e:: NavNext - next sibling

e QAccessi bl e:: NavPrevi ous - previous sibling

e QAccessi bl e:: NavFirst Chil d - first child

e QAccessi bl e:: NavLast Chi | d - last child

e QAccessi bl e: : NavFocusChi | d - child with focus

QAccessible::Role
This enum defines a number of roles an accessible object can have. Roles are

e QAccessi bl e: : NoRol e
e QAccessible::TitleBar

QAccessible Class Reference

e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::

MenuBar
Scrol | Bar
Gip

Sound
Cursor

Car et

Al ert Message
W ndow
Cient
PopupMenu
Menul t em
Tool Tip
Application
Document
Pane

Chart

Di al og

Bor der

G oupi ng
Separator
Tool Bar

St at usBar
Tabl e

Col umHeader
RowHeader
Col um

Row

Cel |

Li nk

Hel pBal | oon
Character

Li st
Listltem
Qutline
Qutlineltem
PageTab
PropertyPage
I ndi cator

G aphic
Stati cText

e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::

e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::

QAccessible Class Reference

Edi t abl eText
PushButt on
CheckBox

Radi oBut t on
ConmboBox
DropLest

Pr ogr essBar

Di al

Hot keyFi el d
Slider

Spi nBox

Di agram

Ani mation
Equat i on

But t onDr opDown
But t onMenu
ButtonDropGid
Wi t espace
PageTabLi st

d ock

QAccessible::State

This enum type defines bitflags that can be combined to indicate the state of the accessible object. Defined values are

Nor mal
Unavai | abl e
Sel ect ed
Focused
Pressed
Checked

M xed
ReadOnly
Hot Tr acked
Def aul t
Expanded
Col | apsed
Busy

Fl oati ng
Mar queed
Ani mat ed

e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::
e QAccessible::

QAccessible Class Reference

e QAccessible::Invisible

e QAccessible:: O fscreen

e QAccessi bl e:: Sizeable

e QAccessi bl e: : Moveabl e

e (Accessi bl e:: Sel f Voicing

e QAccessi bl e:: Focusabhl e

e QAccessible:: Selectable

e QAccessi bl e: : Li nked

e QAccessi bl e:: Traversed

e QAccessible::MiltiSel ectable

e QAccessi bl e:: Ext Sel ect abl e

e QAccessible::AertLow

e QAccessi bl e:: Al ert Medi um

e (Accessible::AlertHigh

e QAccessible::Protected

e QAccessible::Valid
QAccessible::Text

This enum specifies string information that an accessible object returns.

Nane - The name of the object

Description - A short text describing the object

Val ue - The value of the object

Hel p - A longer text giving information about how to use the object
Def aul t Acti on - The default method to interact with the object

Accel erat or - The keyboard shortcut that executes the default action

Member Function Documentation

QRESULT QAccessible::queryAccessibleInterface (QObject * object,
QAccessibleInterface ** iface) [static]

Sets iface to point to the implementation of the QAccessibleInterface for object, and returns QS_OK if successfull, or
sets iface to 0 and returns QE_NOCOMPONENT if no accessibility implementation for object exists.

The function uses the classname of object to find a suitable implementation. If no implementation for the object’s class
is available the function tries to find an implementation for the object’s parent class.

This function is called to answer an accessibility client’s request for object information. You should never need to call
this function yourself.

QAccessible Class Reference 9

void QAccessible::updateAccessibility (QObject * object, int control, Event reason) [static]

Notifies accessibility clients about a change of the accessibility information of object.

reason designates the cause of this change, e.g. ValueChange when the position of e.g. a slider has been changed.
control is the ID of the child element that has changed. When control is null, the object itself has changed.

Call this function whenever the state of your accessible object or one of it’s subelements has been changed either
programmatically (e.g. by calling QLabel::setText()) or by user interaction.

If there are no accessibility tools listening to this event, the performance penalty for calling this function is minor.

QAccessibleInterface Class Reference

The QAccessibleInterface class defines an interface that exposes information about accessible objects.

#incl ude <gaccessible. h>

Inherits QAccessible [p. 3].
Inherited by QAccessibleObject [p. 14].

Public Members

virtual bool isValid () const

virtual int childCount () const

virtual QRESULT queryChild (int control, QAccessibleInterface ** iface) const
virtual QRESULT queryParent (QAccessibleInterface ** iface) const
virtual int controlAt (int x, int y) const

virtual QRect rect (int control) const

virtual int navigate (NavDirection direction, int startControl) const
virtual QString text (Text t, int control) const

virtual void setText (Text t, int control, const QString & text)
virtual Role role (int control) const

virtual State state (int control) const

virtual QMemArray<int> selection () const

virtual bool doDefaultAction (int control)

virtual bool setFocus (int control)

virtual bool setSelected (int control, bool on, bool extend)

virtual void clearSelection ()

Detailed Description

The QAccessibleInterface class defines an interface that exposes information about accessible objects.

See also Miscellaneous Classes.

10

QAccessibleInterface Class Reference 11

Member Function Documentation

int QAccessibleInterface::childCount () const [virtual]

Returns the number of children that belong to this object. A child can provide accessibility information on it’s own (e.g.
a child widget), or be a subelement of this accessible object.

All objects provide this information.

See also queryChild() [p. 12].

void QAccessibleInterface::clearSelection () [virtual]

Removes any selection from the object.

See also setSelected() [p. 12].

int QAccessibleInterface::controlAt (int x, int y) const [virtual]
Returns the ID of the child that contains the screen coordinates (x, y). This function returns 0 if the point is positioned
on the object itself. If the tested point is outside the boundaries of the object this function returns -1.

All visual objects provide this information.

bool QAccessibleInterface::doDefaultAction (int control) [virtual]

Calling this function performs the default action of the child object specified by control, or the default action of the
object itself if control is 0.

bool QAccessibleInterface::isValid () const [virtual]

Returns TRUE if all data necessary to use this interface implementation is valid (e.g. all pointers are non-null), other-
wise returns FALSE.

int QAccessibleInterface::navigate (NavDirection direction, int startControl) const [virtual]

This function traverses to another object, or to a subelement of the current object. direction specifies in which direction
to navigate, and startControl specifies the start point of the navigation, which is either O if the navigation starts at the
object itself, or an ID of one of the object’s subelements.

The function returns the ID of the subelement located in the direction specified. If there is nothing at the navigated
direction, this function returns -1.

All objects support navigation.

QAccessibleInterface Class Reference 12

QRESULT QAccessibleInterface::queryChild (int control, QAccessibleInterface ** iface)
const [virtual]

Sets iface to point to the implementation of the QAccessibleInterface for the child specified with control. If the child
doesn’t provide accessibility information on it’s own, the value of iface is set to null. For those elements, this object is
responsible for exposing the child’s properties.

All objects provide this information.

See also childCount() [p. 11] and queryParent() [p. 12].

QRESULT QAccessibleInterface::queryParent (QAccessibleInterface ** iface) const [virtual]

Sets iface to point to the implementation of the QAccessibleInterface for the parent object, or to null if there is no such
implementation or object.

All objects provide this information.

See also queryChild() [p. 12].

QRect QAccessibleInterface::rect (int control) const [virtual]

Returns the location of the child specified with control in screen coordinates. This function returns the location of the
object itself if control is O.

All visual objects provide this information.

Role QAccessiblelnterface::role (int control) const [virtual]

Returns the role of the object if control is 0, or the role of the object’s subelement with ID control. The role of an object
is usually static. All accessible objects have a role.

See also text() [p. 131, state() [p. 13] and selection() [p. 12].

QMemArray<int> QAccessibleInterface::selection () const [virtual]

Returns the list of all element IDs that are selected.

See also text() [p. 131, role() [p. 12] and state() [p. 13].

bool QAccessibleInterface::setFocus (int control) [virtual]

Gives the focus to the child object specified by control, or to the object itself if control is O.

Returns TRUE if the focus could be set, otherwise returns FALSE.

bool QAccessibleInterface::setSelected (int control, bool on, bool extend) [virtual]

Sets the selection of the child object with ID control to on. If extend is TRUE, all child elements between the focused
item and the specified child object set the selection to on.

QAccessiblelnterface Class Reference 13

Returns TRUE if the selection could be set, otherwise returns FALSE.

See also setFocus() [p. 12] and clearSelection() [p. 11].

void QAccessibleInterface::setText (Text t, int control, const QString & text) [virtual]

Sets the text property t of the child object control to text. If control is O, the text property of the object itself is set.

State QAccessibleInterface::state (int control) const [virtual]

Returns the current state of the object if control is O, or the state of the object’s subelement element with ID control. All
objects have a state.

See also text() [p. 131, role() [p. 12] and selection() [p. 12].

QString QAccessibleInterface::text (Text t, int control) const [virtual]

Returns a string property t of the child object specified by control, or the string property of the object itself if control is
0.

The Name is a string used by clients to identify, find or announce an accessible object for the user. All objects must have
a name that is unique within their container.

An accessible object’s Description provides textual information about an object’s visual appearance. The description is
primarily used to provide greater context for low-vision or blind users, but is also used for context searching or other
applications. Not all objects have a description. An "OK" button would not need a description, but a toolbutton that
shows a picture of a smiley would.

The Value of an accessible object represents visual information contained by the object, e.g. the text in a line edit.
Usually, the value can be modified by the user. Not all objects have a value, e.g. static text labels don’t, and some
objects have a state that already is the value, e.g. toggle buttons.

The Help text provides information about the function and useage of an accessible object. Not all objects provide this
information.

An accessible object’s DefaultAction describes the object’s primary method of manipulation, and should be a verb or a
short phrase, e.g. "Press" for a button.

The accelerator is a keyboard shortcut that activates the default action of the object. A keyboard shortcut is the
underlined character in the text of a menu, menu item or control, and is either the character itself, or a combination of
this character and a modifier key like ALT, CTRL or SHIFT. Command controls like tool buttons also have shortcut keys
and usually display them in their tooltip.

See also role() [p. 12], state() [p. 13] and selection() [p. 12].

QAccessibleObject Class Reference

The QAccessibleObject class implements parts of the QAccessibleInterface for QObjects.
#i ncl ude <gaccessi bl e. h>

Inherits QObject [Additional Functionality with Qt] and QAccessibleInterface [p. 10].

Public Members

m QAccessibleObject (QObject * object)
m virtual ~QAccessibleObject ()

Protected Members

m QObject * object () const

Detailed Description

The QAccessibleObject class implements parts of the QAccessibleInterface for QObjects.

This class is mainly provided for convenience. All further implementations of the QAccessibleInterface should use this
class as the base class.

See also Miscellaneous Classes.

Member Function Documentation

QAccessibleObject::QAccessibleObject (QObject * object)

Creates a QAccessibleObject for object.

QAccessibleObject::~QAccessibleObject () [virtual]

Destroys the QAccessibleObject.

This will only happen if a call to release() decrements the internal reference counter to zero.

14

QAccessibleObject Class Reference 15

QObject * QAccessibleObject::object () const [protected]

Returns the QObject for which this QAccessibleInterface implementation provides information. Use isValid() to make
sure the object pointer is safe to use.

Internationalization with Qt

The internationalization of an application is the process of making the application usable by people in countries other
than one’s own.

In some cases internationalization is simple, for example, making a US application accessible to Australian or British
users may require little more than a few spelling corrections. But to make a US application usable by Japanese users,
or a Korean application usable by German users, will require that the software operate not only in different languages,
but use different input techniques, character encodings and presentation conventions.

See also the Qt Linguist manual.

Step by Step

Writing cross-platform international software with Qt is a gentle, incremental process. Your software can become
internationalized in the following stages:

Use QString for all User-visible Text

Since QString uses the Unicode encoding internally, every language in the world can be processed transparently using
familiar text processing operations. Also, since all Qt functions that present text to the user take a QString as a
parameter, there is no char* to QString conversion time overhead.

Strings that are in "programmer space” (such as QObject names and file format texts) need not use QString; the
traditional char* or the QCString class will suffice.

You're unlikely to notice that you are using Unicode; QString, and QChar are just like easier versions of the crude const
char* and char from traditional C.

Use tr() for all Literal Text

Wherever your program uses "quoted text" for text that will be presented to the user, ensure that it is processed
by the QApplication::translate() function. Essentially all that is necessary to achieve this is to use QObject::tr(). For
example, assuming Logi nW dget is a subclass of QWidget:

Logi nW dget : : Logi nWdget ()

{
Q.abel *label = new QLabel (tr("Password:"), this);

16

Internationalization with Qt 17

This accounts for 99% of the user-visible strings you're likely to write.

If the quoted text is not in a member function of a QObject subclass, use either the tr() function of an appropriate class,
or the QApplication::translate() function directly:

voi d sone_gl obal function(Logi nWdget *logwid)

{
QLabel *label = new QLabel (

Logi nWdget::tr("Password:"), logwid);
}

voi d sane_gl obal function(Logi nWdget *logwid)

QLabel *label = new QLabel (
qApp- >transl at e(" Logi nW dget", "Password:"),
logwid);
}

If you need to have translatable text completely outside a function, there are two macros to help: QT TR _NOOP() and
QT _TRANSLATE_NOOP(). They merely mark the text for extraction by the lupdate utility described below. The macros
expand to just the text (without the context).

Example of QT_TR_NOOP():

@String Friendl yConversation::greeting(int greet type)

{
static const char* greeting_strings[] = {
QT_TR_NOOP("Hel I 0"),
QT_TR_NOOP(" Goodbye")
b
return tr(greeting strings[greet type]);
}

Example of QT_TRANSLATE_NOOP():

static const char* greeting strings[] = {
QI_TRANSLATE_NOOP("Friendl yConversation", "Hello"),
QT_TRANSLATE_NOOP("Fri endl yConversation", "Coodbye")

b
QString Friendl yConversation::greeting(int greet type)
{
return tr(greeting_strings[greet_type]);
}
QString global _greeting(int greet type)
{
return gApp->translate("Friendl yConversation”,
greeting_strings[greet_type]);
}

If you disable the const char* to QString automatic conversion by compiling your software with the macro
QT NO_CAST ASCII defined, you’ll be very likely to catch any strings you are missing. See QString::fromLatin1()
for more information. Disabling the conversion makes programming cumbersome.

Internationalization with Qt 18

If your source language uses characters outside Latin-1, you might find QObject::trUtf8() more convenient than QOb-
ject::tr(), as tr() depends on the QApplication::defaultCodec(), which makes it more fragile than QObject::trUtf8().

Use QKeySequence() for Accelerator Values

Accelerator values such as Ctrl+Q or Alt+F need to be translated too. If you hardcode CTRL+Key_Q for "Quit" in your
application, translators won'’t be able to override it. The correct idiom is

QPopupMenu *file = new QPopupMenu(this);
file->insertliten tr("&Quit"), this, SLOT(quit()),
KeySequence(tr("Ctrl+Q', "FilelQit")));

Use QString::arg() for Simple Arguments

The printf() style of inserting arguments in strings is often a poor choice for internationalized text, as it is sometimes
necessary to change the order of arguments when translating. Nonetheless, the QString::arg() functions offer a simple
means for substituting arguments:

voi d FileCopier::showProgress(int done, int total,
const QString& current file)

{
| abel .set Text (tr("% of % files copied.\nCopying: %B")
.arg(done)
.arg(total)
.arg(current _file));
}

Produce Translations

Once you are using tr() throughout an application, you can start producing translations of the user-visible text in your
program.

Qt Linguist’s manual provides further information about Qt’s translation tools, Qt Linguist, lupdate and lrelease.

Translation of a Qt application is a three-step process:

1. Run lupdate to extract translatable text from the C+ + source code of the Qt application, resulting in a message
file for translators (a .ts file). The utility recognizes the tr() construct and the QT_* NOOP macros described
above and produces .ts files (usually one per language).

2. Provide translations for the source texts in the .ts file, using Qt Linguist. Since .ts files are in XML format, you
can also edit them by hand.

3. Run Irelease to obtain a light-weight message file (a .qm file) from the .ts file, suitable only for end use. You can
see the .ts files as "source files", and .qm as "object files". The translator edits the .ts files, but the users of your
application only need the .qm files. Both kinds of files are platform and locale independent.

Typically, you will repeat these steps for every release of your application. The lupdate utility does its best to reuse the
translations from previous releases.

Before you run lupdate, you should prepare a project file. Here’s an example project file (.pro file):

Internationalization with Qt 19

HEADERS = funnydi al 0og. h \
wackywi dget . h
SQURCES = funnydi al og. cpp \
mai n. cpp \
wackywi dget . cpp
FORMVS = fancybox. u
TRANSLATI ONS = superapp_dk.ts \

superapp_fi.ts \
superapp_no.ts \
superapp_se. ts

When you run lupdate or Irelease, you must give the name of the project file as a command-line argument.

In this example, four exotic languages are supported: Danish, Finnish, Norwegian and Swedish. If you use qmake (or
tmake), you usually don’t need an extra project file for lupdate; your gmake project file will work fine once you add
the TRANSLATIONS entry.

In your application, you must QTranslator::load() the translation files appropriate for the user’s language, and install
them using QApplication::installTranslator().

If you have been using the old Qt tools (findtr, msg2qm and mergetr), you can use gm2ts to convert your old .qm files.

linguist, lupdate and lrelease are installed in $QTDI R/ bi n. Click Help|Manual in Qt Linguist to access the user’s manual;
it contains a tutorial to get you started.

While these utilities offer a convenient way to create .qm files, any system that writes .qm files is sufficient. You could
make an application that adds translations to a QTranslator with QTranslator::insert() and then writes a .qm file with
QTranslator::save(). This way the translations can come from any source you choose.

Qt itself contains about 400 strings that will also need to be translated into the languages that you are targeting. You
will find translation files for French and German in $QTDI R/ transl ati ons as well as a template for translating to other
languages.

Typically, your application’s main() function will look like this:

int min(int argc, char **argv)
{
QApplication app(argc, argv);

Il translation file for Q

Qlranslator qt(0);

qt.load(Qstring("qt_") + QlextCodec::locale(), ".");
app.install Transl ator(>);

Il translation file for application strings

Qrransl ator myapp(0);
myapp. | oad(QString("myapp_") + QTextCodec::locale(), ".");
app.install Transl ator(&nmyapp);

return app. exec();

Internationalization with Qt 20

Support for Encodings

The QTextCodec class and the facilities in QTextStream make it easy to support many input and output encodings for
your users’ data. When an application starts, the locale of the machine will determine the 8-bit encoding used when
dealing with 8-bit data - such as for font selection, text display, 8-bit text I/O and character input.

The application may occasionally require encodings other than the default local 8-bit encoding. For example, an
application in a Cyrillic KOI8-R locale (the de-facto standard locale in Russia) might need to output Cyrillic in the ISO
8859-5 encoding. Code for this would be:

QString string = ...; // some Unicode text

Qrext Codec* codec = Qrext Codec: : codecFor Nane("1SO 8859-5");
QCString encoded_string = codec->fromni code(string);

.; Il use encoded_string in 8-bit operations

For converting Unicode to local 8-bit encodings, a shortcut is available: the local8Bit() method of QString returns such
8-bit data. Another useful shortcut is the utf8() method, which returns text in the 8-bit UTF-8 encoding - interesting in
that it perfectly preserves Unicode information while looking like plain US-ASCII if the Unicode is wholly US-ASCIL

For converting the other way, there are the QString::fromUtf8() and QString::fromLocal8Bit() convenience functions,
or the general code, demonstrated by this conversion from ISO 8859-5 Cyrillic to Unicode conversion:

QCString encoded_string = ...; // Some |SO 8859-5 encoded text.

Qrext Codec* codec = Qrext Codec: : codecFor Nane("1 SO 8859-5");
@String string = codec->t oUni code(encoded_string);

. I1 Use string in all of Q's QString operations.

Ideally Unicode 1/0 should be used as this maximizes the portability of documents between users around the world, but
in reality it is useful to support all the appropriate encodings that your users will need to process existing documents.
In general, Unicode (UTF16 or UTF8) is best for information transferred between arbitrary people, while within a
language or national group, a local standard is often more appropriate. The most important encoding to support is the
one returned by QTextCodec::codecForLocale(), as this is the one the user is most likely to need for communicating
with other people and applications (this is the codec used by local8Bit()).

Since most Unix systems do not have built-in support for converting between local 8-bit encodings and Unicode, it may
be necessary to write your own QTextCodec subclass. Depending on the urgency, it may be useful to contact Trolltech
technical support or ask on the gt-interest mailing list to see if someone else is already working on supporting the
encoding. A useful interim measure can be to use the QTextCodec::loadCharmapFile() function to build a data-driven
codec, although this approach has a memory and speed penalty, especially with dynamically loaded libraries. For
details of writing your own QTextCodec, see the main QTextCodec class documentation.

Localize

Localization is the process of adapting to local conventions such as date and time presentations. Such localizations can
be accomplished using appropriate tr() strings, even "magic" words, as this somewhat contrived example shows:

voi d C ock::setTinme(const Qline&t)
{

Internationalization with Qt 21

if (tr("AMPM) == "AWPM') {
/1 12-hour clock

} else {
/'l 24-hour clock

}

Localizing images is not recommended. Choose clear icons that are appropriate for all localities, rather than relying on
local puns or stretched metaphors.

System Support

Operating systems and window systems supporting Unicode are still in the early stages of development. The level of
support available in the underlying system influences the support Qt provides on that platform, but applications written
with Qt need not generally be too concerned with the actual limitations.

Unix/X11

e Locale-oriented fonts and input methods. Qt hides these and provides Unicode input and output.

e Filesystem conventions such as UTF-8 are under development in some Unix variants. All Qt file functions
allow Unicode, but convert all filenames to the local 8-bit encoding, as this is the Unix convention (see
QFile::setEncodingFunction() to explore alternative encodings).

e File I/0 defaults to the local 8-bit encoding, with Unicode options in QTextStream.

Windows 95/98/NT

e Qt provides full Unicode support, including input methods, fonts, clipboard, drag-and-drop and file names.

e File I/0 defaults to Latin-1, with Unicode options in QTextStream. Note that some Windows programs do not
understand big-endian Unicode text files even though that is the order prescribed by the Unicode Standard in the
absence of higher-level protocols.

e Unlike programs written with MFC or plain winlib, Qt programs are portable between Windows 95/98 and
Windows NT. You do not need different binaries to support Unicode.

Supporting More Input Methods

While Trolltech doesn’t have the resources or expertise in all the languages of the world to immediately include support
in Qt, we are very keen to work with people who do have the expertise. Over the next few minor version numbers, we
hope to add support for your language of choice, until everyone can use Qt and all the programs developed with Qt,
regardless of their language.

Languages with single-byte encodings (European Latin-1 and KOI8-R, etc.) and multi-byte encodings (East Asian EUC-
JB etc.) are supported. Support for the "complex" encodings - those requiring right-to-left input or complex character
composition (eg. Arabic, Hebrew, and Thai script) is implemented, but the range of Indic scripts (Hindi, Devanagari,
Bengali, etc.) is still under development. The current state of activity is:

Internationalization with Qt 22

Encodings Status
All encodings on Windows The local encoding is always supported.
ISO standard encodings ISO Fully supported.

8859-1, ISO 8859-2, ISO
8859-3, ISO 8859-4, ISO
8859-5, ISO 8859-7, ISO
8859-9, and ISO 8859-15
KOI8-R Fully supported.

eucJB JIS, and ShiftJIS Fully supported. Uses eucJP with the XIM protocol on X11, and the IME Windows NT in
Japanese Windows NT. Serika Kurusugawa and others are assisting with this effort.
kinput2 is the tested input method for X11.

euckR Supported. Mizi Research are assisting with this effort. hanIM is the tested input method.

Big5 Qt contains a Big5 codec developed by Ming Che-Chuang. Testing is underway with the
xcin (2.5.x) XIM server.

eucTW Under external development.

More information on the support of different writing systems in Qt can be found in the documentation about writing
systems.

If you are interested in contributing to existing efforts, or supporting new encodings beyond those mentioned above,
your work can be considered for inclusion in the official Qt distribution, or just included with your application.

Eventually, we hope to help Unix become as Unicode-oriented as Windows is becoming. This means better font support
in the font servers, with new developments like the True Type font servers xfsft, xfstt, and x-tt, as well as UTF-8 (a
Unicode encoding) filenames such as with the Unicode support in Solaris 7.

Note about Locales on X11

Many Unix distributions contain only partial support for some locales. For example, if you have a
[usr/sharell ocal e/ja_JP. EUC directory, this does not necessarily mean you can display Japanese text; you also need
JIS encoded fonts (or Unicode fonts), and that / usr/share/ | ocal e/j a_JP. EUC directory needs to be complete. For
best results, use complete locales from your system vendor.

Relevant Qt Classes

These classes are relevant to internationalizing Qt applications.

QEucJpCodec Conversion to and from EUC-JP character sets
QEucKrCodec Conversion to and from EUC-KR character sets
QGbkCodec Conversion to and from the Chinese GBK encoding
QHebrewCodec Conversion to and from visually ordered Hebrew
QJisCodec Conversion to and from JIS character sets
QSjisCodec Conversion to and from Shift-JIS

QTextCodec Conversion between text encodings
QTextDecoder State-based decoder

QTextEncoder State-based encoder

QTranslator Internationalization support for text output
QTranslatorMessage Translator message and its properties
QTsciiCodec Conversion to and from the Tamil TSCII encoding

Qt’s Text Engine

Qt 3 comes with a completely redesigned text processing and layout engine that is used throughout the whole library.

It has support for most writing systems that are used throughout the world, including

e Arabic

e Chinese

e Cyrillic (Russian)

e Greek

e Hebrew

e Japanese

e Korean

e Latin languages (e.g. English and many other European languages)
e Thai

e Vietnamese
Many of these writing systems exhibit special features:

e Special line breaking behaviour. Some of the Asian languages are written without spaces between words. Line
breaking can occur either after every character (with exceptions) as in Chinese, Japanese and Korean, or after
logical word boundaries as in Thai.

e Bidirectional writing. Arabic and Hebrew are written from right to left, except for numbers and embedded English
text which is written left to right. The exact behaviour is defined in the Unicode Technical Report #9.

e Non spacing or diacritical marks (accents or umlauts in Furopean languages). Some languages such as Viet-
namese make extensive use of these marks and some characters can have a few marks at the same time to clarify
pronunciation.

e Ligatures. In special contexts, some characters following each other directly get replaced by a combined glyph
forming a ligature. Common examples are the ff and fi ligatures used in typesetting US and European books.

Except for ligatures which are currently only supported for the special case of Arabic, Qt tries to take care of all the
special features listed above. You will usually never have to worry about these features as long as you use Qt’s input
(e.g. QLineEdit, QTextView or derived classes) and displaying controls (e.g. QLabel).

Support for these writing systems is transparent to the programmer and completely encapsulated in Qt’s text engine.
This implies that you don’t need to have any knowledge about the writing system used in a particular language, except
for a couple of small things listed below.

23

t’s Text Engine 24
Q g

e QPainter::drawText(int X, int y, const QString &str) will always draw the string with it’s left edge at the position
specified with the x, y parameters. This will usually give you left aligned strings. Arabic and Hebrew application
strings are usually right aligned, so for these languages use the version of drawText() that takes a QRect since
this will align in accordance with the language.

e When you write your own text input controls, use QFontMetrics::charWidth() to determine the width of a char-
acter in a string. In some langauges (mainly Arabic), the width and shape of a glyph changes depending on the
surrounding characters. Writing input controls usually requires a certain knowledge of the scripts it is going to
be used in. Usually the easiest way is to subclass QLineEdit or QTextView.

About Unicode

Unicode is a 16-bit character set, portable across all major computing platforms and with decent coverage over most
of the world. It is also single-locale; it includes no code pages or other complexities that make software harder to write
and test. There is no competing character set that’s reasonably cross-platform. For these reasons, Trolltech has chosen
to make Unicode the native character set of Qt starting with version 2.0.

Information about Unicode on the web.
The Unicode Consortium has a number of documents available, including

o A technical introduction to Unicode

e The home page for the standard

The Standard

The current version of the standard is 3.0.1.

e The Unicode Standard, version 3.0. See also its home page.

e The Unicode Standard, version 2.0. See also the 2.1 update and 2.1.9 the 2.1.9 data files at www.unicode.org.

Unicode in Qt
In Qt, and in most applications that use Qt, most or all user-visible strings are stored in Unicode. Qt provides:

e Translation to/from legacy encodings for file I/0 - see QTextCodec and QTextStream.
e Translation from Input Methods and 8-bit keyboard input.
e Translation to legacy character sets for on-screen display.

e A string class, QString, that stores Unicode characters, with support for migrating from C strings including fast
(cached) translation to and from US-ASCII, and all the usual string operations.

e Unicode-aware widgets where appropriate.

e Unicode support detection on Windows 95/98/NT/2000, so that Qt provides Unicode even on Windows platforms
that do not support it.

25

About Unicode 26

To obtain the benefits of Unicode, we recommend using QString for storing all user-visible strings and performing all
text file I/0 using QTextStream. Use QKeyEvent::text() for keyboard input in any custom widgets you write; it does
not make much difference for slow typists in West Europe or North America, but for fast typists or people using special
input methods using text() is beneficial.

All the function arguments in Qt that may be user-visible strings, QLabel::setText() and a many others, take const
@tring &as type. QString provides implicit casting from const char * such that things like

myLabel - >set Text ("Hello, Dolly!");
will work. There is also a function, QObject::tr(), that provides translation support, like this:
myLabel - >set Text(tr("Hello, Dolly!"));

tr() (simplifying somewhat) maps from const char * to a Unicode string, and uses installable QTranslator objects to
do the mapping.

Programs that need to talk to other programs or read/write files in legacy file formats, Qt provides a number of built-in
QTextCodec classes, that is, classes that know how to translate between Unicode and legacy encodings.

By default, conversion to/from const char * uses a locale-dependent codec. However, the program can easily find
codecs for other locales, and set any open file or network connection to use a special codec. It is also possible to install
new codecs, for encodings that the built-in ones do not support. (At the time of writing, Vietnamese/VISCII is one such
example.)

Since US-ASCII and ISO-8859-1 are so common, there are also especially fast functions for mapping to and from them.
For example, to open an application’s icon one might do this:

QFile f(Qstring::fromatinl("appicon.png"));

Regarding output, Qt will do a best-effort conversion from Unicode to whatever encoding the system and fonts provide.
Depending on operating system, locale, font availability and Qt’s support for the characters used, this conversion may
be good or bad. We will extend this in upcoming versions, with emphasis on the most common locales first.

QIMEvent Class Reference

The QIMEvent class provides parameters for input method events.
#include <gevent. h>

Inherits QEvent [Events, Actions, Layouts and Styles with Qt].

Public Members

m QIMEvent (Type type, const QString & text, int cursorPosition)
const QString & text () const

int cursorPos () const

m bool isAccepted () const

void accept ()

void ignore ()

Detailed Description

The QIMEvent class provides parameters for input method events.

Input method events are send to widgets, when an input method is used to enter text into a widget. Input methods are
widely used to enter text in Asian languages.

The events are of interest to widgets that accept keyboard input and want to be able to correctly handle Asian lan-
guages. Text input in Asian languages is usually a three step process. When the user presses the first key on a keyboard
an input context is created. This input context will contain a string with the typed characters. With every new key
pressed, the input method will try to create a matching string for the text typed so far.

While the input context is active, the user can move the cursor only inside the string belonging to this input context. At
some point, when the user presses the Spacebar, they get to the second stage, where they can choose from a number of
strings that match the text they have typed so far. The user can press Enter to confirm their choice or Escape to cancel
the input; in either case the input context will be closed. Note that the particular key presses used for a given input
context may differ from those we’ve mentioned here, i.e. they may not be Spacebar, Enter and Escape.

These three stages are represented by three different types of events. The IMStartEvent, IMComposeEvent and IMEndE-
vent. When a new input context is created, an IMStartEvent will be sent to the widget and delivered to the QWid-
get::imStartEvent() function. The widget can then update internal data structures to reflect this.

After this, an IMComposeEvent will be send to the widget with every key the user presses. It will contain the current
composition string the widget has to show and the current cursor position within the composition string. This string
is temporary and can change with every key the user types, so the widget will need to store the state before the

27

QIMEvent Class Reference 28

composition started (the state it had when it received the IMStartEvent). IMComposeEvents will be delivered to the
QWidget::imComposeEvent() function.

Usually, widgets try to mark the part of the text that is part of the current composition in a way that is visible to the
user. Mostly this is achieved by using e.g. dotted underline.

After the user has selected the final string, and IMEndEvent will be sent to the widget. The event contains the final string
the user selected. This string has to be accepted as the final text the user entered, and the intermediate composition
string should be cleared. These events are delivered to QWidget::imEndEvent().

If the user clicks another widget, taking the focus out of the widget where the compose is taking place the IMEndEvent
will be sent and the string it holds will be the result of the composition up to that point (which could be an empty
string).

See also Event Classes.

Member Function Documentation

QIMEvent::QIMEvent (Type type, const QString & text, int cursorPosition)

Constructs a new QIMEvent with accept flag set to FALSE. type can be one of QEvent::IMStartEvent,
QEvent::IMComposeEvents and QEvent::IMEndEvent. text contains the current compostion string and cursorPosition
the current position of the cursor inside text.

void QIMEvent::accept ()

Sets the accept flag of the input method event object.
Setting the accept parameter indicates that the receiver of the event processed the input method event.
The accept flag is not set by default.

See also ignore() [p. 28].

int QIMEvent::cursorPos () const

Returns the current cursor position inside the composition string. Will return 0 for IMStartEvent and IMEndEvent.

void QIMEvent::ignore ()

Clears the accept flag parameter of the input method event object.

Clearing the accept parameter indicates that the event receiver does not want the input method event.
The accept flag is cleared by default.

See also accept() [p. 28].

bool QIMEvent::isAccepted () const

Returns TRUE if the receiver of the event processed the event; otherwise returns FALSE.

QIMEvent Class Reference 29

const QString & QIMEvent::text () const

Returns the composition text. This is a null string for an IMStartEvent, and contains the final accepted string in the
IMEndEvent.

QTranslator Class Reference

The QTranslator class provides internationalization support for text output.

#include <qgtranslator. h>

Inherits QObject [Additional Functionality with Qt].

Public Members

QTranslator (QObject * parent, const char * name = 0)
~QTranslator ()

QString find (const char * context, const char * sourceText, const char * comment = 0) const (obsolete)
virtual QTranslatorMessage findMessage (const char * context, const char * sourceText, const char * comment)

const

bool load (const QString & filename, const QString & directory = QString::null,

const QString & search_delimiters = QString::null, const QString & suffix = QString::null)
void clear ()

enum SaveMode { Everything, Stripped }

bool save (const QString & filename, SaveMode mode = Everything)

void insert (const QTranslatorMessage & message)

void insert (const char * context, const char * sourceText, const QString & translation) (obsolete)
void remove (const QTranslatorMessage & message)

void remove (const char * context, const char * sourceText) (obsolete)

bool contains (const char * context, const char * sourceText, const char * comment = 0) const
void squeeze (SaveMode mode = Everything)

void unsqueeze ()

QValuelist<QTranslatorMessage > messages () const

Detailed Description

The QTranslator class provides internationalization support for text output.

An object of this class contains a set of QTranslatorMessage objects, each of which specifies a translation from a source
language to a target language. QTranslator provides functions to look up such translations, add new ones, remove

them, load and save them, etc.

The most common use of QTranslator is expected to be loading a translator file made using Qt Linguist, installing it

using QApplication::installTranslator(), and using it via QObject::tr(), like this:

30

QTranslator Class Reference 31

int min(int argc, char ** argv)

{
QApplication app(argc, argv);
Qlranslator translator(0);
translator.load("french.gnt, ".");
app.installTranslator(&ranslator);
MW dget m
app. set Mai nWdget (&m);
m show() ;
return app. exec();

}

Most applications will never need to do anything else with this class. However, applications that work on translator
files need the other functions in this class.

It is possible to do lookup using findMessage() (as tr() and QApplication::translate() do) and contains(), insert a new
translation message using insert(), and remove it using remove().

Because end-user programs and translation tools have rather different requirements, QTranslator can use stripped
translator files in a way that uses a minimum of memory and provides very little functionality other than findMessage().

Thus, load() may not load enough information to make anything more than findMessage() work. save() has an
argument indicating whether to save just this minimum of information or to save everything.

"Everything" means that for each translation item the following information is kept:

e The translated text - the return value from tr().

e The input key:

— The source text - usually the argument to tr().
— The context - usually the class name for the tr() caller.
— The comment - a comment that helps disambiguate different uses of the same text in the same context.

The minimum for each item is just the information necessary for findMessage() to return the right text. This may
include the source, context and comment, but usually it is just a hash value and the translated text.

For example, the "Cancel" in a dialog might have "Anuluj" when the program runs in Polish (in this case the source text
would be "Cancel"). The context would (normally) be the dialog’s class name; there would normally be no comment,
and the translated text would be "Anuluy;j".

But it’s not always so simple. The Spanish version of a printer dialog with settings for two-sided printing and binding
would probably require both "Activado" and "Activada" as translations for "Enabled". In this case the source text
would be "Enabled" in both cases and the context would be the dialog’s class name, but the two items would have
disambiguating comments such as "two-sided printing" for one and "binding" for the other. The comment enables the
translator to choose the appropriate gender for the Spanish version, and enables Qt to distinguish between translations.

Note that when QTranslator loads a stripped file, most functions do not work. The functions that do work with stripped
files are explicitly documented as such.

See also QTranslatorMessage [p. 35], QApplication::installTranslator() [Additional Functionality with Qt],
QApplication::removeTranslator() [Additional Functionality with Qt], QObject::tr() [Additional Functionality with
Qt], QApplication::translate() [Additional Functionality with Qt], Environment Classes and Internationalization with
Qt [p. 16].

QTranslator Class Reference 32

Member Type Documentation

QTranslator::SaveMode
This enum type defines how QTranslator can write translation files. There are two modes:

e QTransl ator:: Everythi ng - files are saved with all contents

e Qlranslator:: Stripped - files are saved with just what’s needed for end-users

Note that when QTranslator loads a stripped file, most functions do not work. The functions that do work with stripped
files are explicitly documented as such.

Member Function Documentation

QTranslator::QTranslator (QObject * parent, const char * name = 0)

Constructs an empty message file object that is not connected to any file. The object has parent parent and name name.

QTranslator::~QTranslator ()

Destroys the object and frees any allocated resources.

void QTranslator::clear ()

Empties this translator of all contents.

This function works with stripped translator files.

bool QTranslator::contains (const char * context, const char * sourceText,
const char * comment = 0) const

Returns TRUE if this message file contains a message with the key (context, sourceText, comment); otherwise returns
FALSE.
This function works with stripped translator files.

(This is is a one-liner that calls find().)

QString QTranslator::find (const char * context, const char * sourceText,

const char * comment = 0) const
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.
Please use findMessage() instead.

Returns the translation for the key (context, sourceText, comment) or QString::null if there is none in this translator.

QTranslator Class Reference 33

QTranslatorMessage QTranslator::findMessage (const char * context,
const char * sourceText, const char * comment) const [virtual]

Returns the QTranslatorMessage for the key (context, sourceText, comment).

void QTranslator::insert (const QTranslatorMessage & message)

Inserts message into this message file.
This function does not work with stripped translator files. It may seem to, but that is not dependable.

See also remove() [p. 34].

void QTranslator::insert (const char * context, const char * sourceText,
const QString & translation)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

bool QTranslator::load (const QString & filename, const QString & directory =
QString::null, const QString & search_delimiters = QString::null, const QString & suffix
= QString::null)

Loads filename, which may be an absolute file name or relative to directory. The previous contents of this translator
object is discarded.

If the full file name does not exist, other file names are tried in the following order:

1. File name with suffix appended (".qm" if the suffix is QString::null).

2. File name with text after a character in search_delimiters stripped (" _." is the default for search_delimiters if it is
QString::null).

3. File name stripped and suffix appended.

4. File name stripped further, etc.

For example, an application running in the fr CA locale (French-speaking Canada) might call load("foo.fr ca",
"/opt/foolib"), which would then try to open these files:

/opt/foolib/foo.fr_ca
/opt/foolib/foo.fr ca.qm
/opt/foolib/foo.fr
/opt/foolib/foo.fr.qm
/opt/foolib/foo
/opt/foolib/foo.qm

AR

See also save() [p. 34].

Example: i18n/main.cpp.

QTranslator Class Reference 34

QValueList<QTranslatorMessage> QTranslator::messages () const

Returns a list of the messages in the translator. This function is rather slow; because it is seldom called, it’s optimized
for simplicity and small size, not speed.

void QTranslator::remove (const QTranslatorMessage & message)

Removes message from this translator.
This function works with stripped translator files.

See also insert() [p. 33].

void QTranslator::remove (const char * context, const char * sourceText)

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.
This function is obsolete. It is provided to keep old source working. We strongly advise against using it in new code.

Removes the translation associated to the key (context, sourceText, ") from this translator.

bool QTranslator::save (const QString & filename, SaveMode mode = Everything)

Saves this message file to filename, overwriting the previous contents of filename. If mode is Everything (the default),
all the information is preserved. If mode is Stripped, any information that is not necessary for findMessage() is stripped
away.

See also load() [p. 331.

void QTranslator::squeeze (SaveMode mode = Everything)

Converts this message file to the compact format used to store message files on disk.
You should never need to call this directly; save() and other functions call it as necessary. mode is for internal use.

See also save() [p. 34] and unsqueeze() [p. 34].

void QTranslator::unsqueeze ()

Converts this message file into an easily modifiable data structure, less compact than the format used in the files.
You should never need to call this function; it is called by insert() and friends as necessary.

See also squeeze() [p. 34].

QTranslatorMessage Class Reference

The API for this class is under development and is subject to change.
We do not recommend the use of this class for production work at this time.

The QTranslatorMessage class contains a translator message and its properties.

#include <qgtranslator. h>

Public Members

m QTranslatorMessage ()
m QTranslatorMessage (const char * context, const char * sourceText, const char * comment,
const QString & translation = QString::null)

m QTranslatorMessage (QDataStream & stream)

m QTranslatorMessage (const QTranslatorMessage & m)

m QTranslatorMessage & operator= (const QTranslatorMessage & m)
m uint hash () const

m const char * context () const

m const char * sourceText () const

const char * comment () const

void setTranslation (const QString & translation)
QString translation () const
enum Prefix { NoPrefix, Hash, HashContext, HashContextSourceText, HashContextSourceTextComment }

void write (QDataStream & stream, bool strip = FALSE, Prefix prefix = HashContextSourceTextComment)
const

Prefix commonPrefix (const QTranslatorMessage & m) const

bool operator== (const QTranslatorMessage & m) const
m bool operator!= (const QTranslatorMessage & m) const
m bool operator< (const QTranslatorMessage & m) const
m bool operator< = (const QTranslatorMessage & m) const
m bool operator> (const QTranslatorMessage & m) const
e bool operator>= (const QTranslatorMessage & m) const

35

QTranslatorMessage Class Reference 36

Detailed Description

The QTranslatorMessage class contains a translator message and its properties.

This class is of no interest to most applications, just for translation tools such as Qt Linguist. It is provided simply to
make the API complete and regular.

For a QTranslator object, a lookup key is a triple (context, source text, comment) that uniquely identifies a message. An
extended key is a quadruple (hash, context, source text, comment), where hash is computed from the source text and
the comment. Unless you plan to read and write messages yourself, you need not worry about the hash value.

QTranslatorMessage stores this triple or quadruple and the relevant translation if there is any.

See also QTranslator [p. 30], Environment Classes and Internationalization with Qt [p. 16].

Member Type Documentation

QTranslatorMessage::Prefix
Let (h, c, s, m) be the extended key. The possible prefixes are

e QIransl at or Message: : NoPrefi x - no prefix

e QIransl at or Message: : Hash - only (h)

e QIransl at or Message: : HashCont ext - only (h, ¢)

e QTransl at or Message: : HashCont ext Sour ceText - only (h, c, s)

e QIransl at or Message: : HashCont ext Sour ceText Comment - the whole extended key, (h, ¢, s, m)

See also write() [p. 38] and commonPrefix() [p. 37].

Member Function Documentation

QTranslatorMessage::QTranslatorMessage ()

Constructs a translator message with the extended key (0, 0, 0, 0) and QString::null as translation.

QTranslatorMessage::QTranslatorMessage (const char * context, const char * sourceText,
const char * comment, const QString & translation = QString::null)

Constructs an translator message with the extended key (h, context, sourceText, comment), where h is computed from
sourceText and comment, and possibly with a translation.

QTranslatorMessage::QTranslatorMessage (QDataStream & stream)

Constructs a translator message read from a stream. The resulting message may have any combination of content.

See also QTranslator::save() [p. 34].

QTranslatorMessage Class Reference 37

QTranslatorMessage::QTranslatorMessage (const QTranslatorMessage & m)

Constructs a copy of translator message m.

const char * QTranslatorMessage::comment () const

Returns the comment for this message (e.g. "File | Save").

Prefix QTranslatorMessage::commonPrefix (const QTranslatorMessage & m) const

Returns the widest lookup prefix that is common to this translator message and message m.

For example, if the extended key is for this message is (42, "PrintDialog", "Yes", "Print?") and that for m is (42, "Print-
Dialog", "No", "Print?"), this function returns HashContext.

See also write() [p. 38].

const char * QTranslatorMessage::context () const

Returns the context for this message (e.g. "MyDialog").

uint QTranslatorMessage::hash () const

Returns the hash value used internally to represent the lookup key. This value is zero only if this translator message
was constructed from a stream containing invalid data.

The hashing function is unspecified, but it will remain unchanged in future versions of Qt.

bool QTranslatorMessage::operator!= (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is different from that of m; otherwise returns FALSE.

bool QTranslatorMessage::operator< (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is lexicographically before than that of m; otherwise returns FALSE.

bool QTranslatorMessage::operator< = (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is lexicographically before that of m or if they are equal; otherwise
returns FALSE.

QTranslatorMessage & QTranslatorMessage::operator= (const QTranslatorMessage & m)

Assigns message m to this translator message and returns a reference to this translator message.

QTranslatorMessage Class Reference 38

bool QTranslatorMessage::operator== (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is equal to that of m; otherwise returns FALSE.

bool QTranslatorMessage::operator> (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is lexicographically after that of m; otherwise returns FALSE.

bool QTranslatorMessage::operator>= (const QTranslatorMessage & m) const

Returns TRUE if the extended key of this object is lexicographically after that of m or if they are equal; otherwise
returns FALSE.

void QTranslatorMessage::setTranslation (const QString & translation)

Sets the translation of the source text to translation.

See also translation() [p. 38].

const char * QTranslatorMessage::sourceText () const

Returns the source text of this message (e.g. "&Save").

QString QTranslatorMessage::translation () const

Returns the translation of the source text (e.g., "&Sauvegarder").

See also setTranslation() [p. 38].

void QTranslatorMessage::write (QDataStream & stream, bool strip = FALSE, Prefix prefix =
HashContextSourceTextComment) const

Writes this translator message to the stream. If strip is FALSE (the default), all the information in the message is
written. If strip is TRUE, only the part of the extended key specified by prefix is written with the translation (HashCon-
textSourceTextComment by default).

See also commonPrefix() [p. 37].

QTextCodec Class Reference

The QTextCodec class provides conversion between text encodings.
#incl ude <qtextcodec. h>

Inherited by QEucJpCodec [p. 511, QEucKrCodec [p. 53], QGbkCodec [p. 55], QJisCodec [p. 59], QHebrewCodec
[p. 571, QSjisCodec [p. 61] and QTsciiCodec [p. 63].

Public Members

m virtual ~QTextCodec ()

m virtual const char * name () const

m virtual const char * mimeName () const

m virtual int mibEnum () const

m virtual QTextDecoder * makeDecoder () const

virtual QTextEncoder * makeEncoder () const

virtual QString toUnicode (const char * chars, int len) const

virtual QCString fromUnicode (const QString & uc, int & lenInOut) const
QCString fromUnicode (const QString & uc) const

m QString toUnicode (const QByteArray & a, int len) const

m QString toUnicode (const QByteArray & a) const

m QString toUnicode (const QCString & a, int len) const

m QString toUnicode (const QCString & a) const

QString toUnicode (const char * chars) const

virtual bool canEncode (QChar ch) const

virtual bool canEncode (const QString & s) const

virtual int heuristicContentMatch (const char * chars, int len) const
virtual int heuristicNameMatch (const char * hint) const

Static Public Members

m QTextCodec * loadCharmap (QIODevice * iod)

m QTextCodec * loadCharmapFile (QString filename)

m QTextCodec * codecForMib (int mib)

m QTextCodec * codecForName (const char * name, int accuracy = 0)
m QTextCodec * codecForContent (const char * chars, int len)

39

QTextCodec Class Reference 40

m QTextCodec * codecForIndex (inti)
QTextCodec * codecForLocale ()

m void setCodecForLocale (QTextCodec * ¢)
m void deleteAllCodecs ()

e const char * locale ()

Protected Members

m QTextCodec ()

Static Protected Members

m int simpleHeuristicNameMatch (const char * name, const char * hint)

Detailed Description

The QTextCodec class provides conversion between text encodings.

Qt uses Unicode to store, draw and manipulate strings. In many situations you may wish to deal with data that uses a
different encoding. For example, most japanese documents are still stored in Shift-JIS or ISO2022, while Russian users
often have their documents in koi8-r or CP1251.

Qt provides a set of QTextCodec classes to help with converting non-Unicode formats from and to Unicode. You can
also create your own codec classes (see later).

The supported encodings are:

e Big5 (Chinese encoding)

e eucJP (one of the many Japanese encodings)
e eucKkR (Korean)

e GBK (Chinese encoding)

e JIS7 (Japanese)

e Shift-JIS (Japanese)

o TSCII (Tamil)

e utf8 (Unicode, 8bit)

o utf16 (Unicode)

e KOI8-R (Russian)

e KOI8-U (Ukrainian)

e 1SO8859-1 (Western)

e 1SO8859-2 (Central Europe)
e 1S08859-3 (Central Europe)
e 1SO8859-4 (Baltic)

e 1SO8859-5 (Cyrillic)

e 1SO8859-6 (Arabic)

QTextCodec Class Reference 41

e 1SO8859-7 (Greek)

e 1SO8859-8 (Hebrew, visually ordered)
e 1SO8859-8-i (Hebrew, logically ordered)
e 1S0O8859-9 (Turkish)

e 1S08859-10

e 1SO8859-13

e 1SO8859-14

e 1SO8859-15 (Western)

e CP 874

e CP 1250 (Central Europe)

e CP 1251 (Cyrillic)

e CP 1252 (Western)

e CP 1253 (Greek)

e CP 1254 (Turkish)

e CP 1255 (Hebrew)

e CP 1256 (Arabic)

e CP 1257 (Baltic)

e CP 1258

e Apple Roman

e TIS-620 (Thai)

QTextCodecs can be used as follows to convert some locally encoded string to Unicode. Suppose you have some string
encoded in russian KOI8-R encoding, and want to convert it to Unicode. The simple way to do this is:

QCstring local l yEncoded = "..."; // text to convert
Qrext Codec *codec = Qrext Codec:: codecForNanme("KO 8-R'); // get the codec for KO 8-R
@String unicodeString = codec->t oUni code(| ocal | yEncoded);

After this, uni codeSt ri ng holds the text converted to Unicode. Converting a string from Unicode to the local encoding
is as simple:

@String unicodeString = ...;
Qrext Codec *codec = Qrext Codec: : codecForNane("KO 8-R'); // get the codec for KO 8-R
QCstring local | yEncoded = codec- >fronlni code(unicodeString);

Some care has to be taken when trying to convert the data in chunks (for example when receiving it over a network).
In this case the above approach is too simplistic, because some encodings use more than one byte per character. In
this case a character could be split between two chunks of data that are to be converted to Unicode, and the above
approach would, at best, lose one character and in some other cases fail completely.

The approach to use in these situations is to create a QTextDecoder object for the codec and use this QTextDecoder for
the whole decoding process, as shown below:

Qrext Codec *c = QText Codec: : codecFor Name("Shift-JIS");
Qrext Decoder *decoder = c->nmakeDecoder();

QTextCodec Class Reference 42

QString unicodeString;
while(receiving data) {
ByteArray chunk = new data;
uni codeString += decoder->toUni code(chunk.data(), chunk.length());

The QTextDecoder object maintains state between chunks and therefore works correctly even if a multi-byte character
is split between chunks.

Creating your own Codec class

By making objects of subclasses of QTextCodec, support for new text encodings can be added to Qt.

You may find it more convenient to make your codec class available as a plugin; see the plugin documentation for more
details.

The abstract virtual functions describe the encoder to the system and the coder is used as required in the different text
file formats supported by QTextStream, and under X11, for the locale-specific character input and output.

More recently created QTextCodec objects take precedence over earlier ones.

To add support for another 8-bit encoding to Qt, make a subclass of QTextCodec and implement at least the following
methods:

const char* name() const
Return the official name for the encoding.
int mbEnum() const

Return the MIB enum for the encoding if it is listed in the IANA character-sets encoding file.

If the encoding is multi-byte then it will have "state"; that is, the interpretation of some bytes will be dependent on
some preceding bytes. For such an encoding, you will need to implement:

Qrext Decoder * makeDecoder () const

Return a QTextDecoder that remembers incomplete multibyte sequence prefixes or other required state.

If the encoding does not require state, you should implement:
QString toUni code(const char* chars, int |en) const

Converts len characters from chars to Unicode.

The base QTextCodec class has default implementations of the above two functions, but they are mutually recursive, so
you must re-implement at least one of them, or both for improved efficiency.

For conversion from Unicode to 8-bit encodings, it is rarely necessary to maintain state. However, two functions similar
to the two above are used for encoding:

Qrext Encoder* makeEncoder () const

QTextCodec Class Reference 43

Return a QTextDecoder.
QCstring fronbni code(const QString& uc, int& lenlnQut) const

Converts lenInOut characters (of type QChar) from the start of the string uc, returning a QCString result, and also
returning the length of the result in lenInOut.

Again, these are mutually recursive so only one needs to be implemented, or both if better efficiency is possible.

Finally, you must implement:
i nt heuristicContentMtch(const char* chars, int |en) const

Gives a value indicating how likely it is that len characters from chars are in the encoding.
A good model for this function is the QWindowsLocalCodec::heuristicContentMatch function found in the Qt sources.

A QTextCodec subclass might have improved performance if you also re-implement:
bool canEncode(QChar) const

Test if a Unicode character can be encoded.
bool canEncode(const QString&) const

Test if a string of Unicode characters can be encoded.
i nt heuristicNameMat ch(const char* hint) const

Test if a possibly non-standard name is referring to the codec.
Codecs can also be created as plugins.

See also Internationalization with Qt [p. 16].

Member Function Documentation

QTextCodec::QTextCodec () [protected]

Constructs a QTextCodec, and gives it the highest precedence. The QTextCodec should always be constructed on
the heap (i.e. with new()), and once constructed it becomes the responsibility of Qt to delete it (which is done at
QApplication destruction).

QTextCodec::~QTextCodec () [virtual]

Destroys the QTextCodec. Note that you should not delete codecs yourself: once created they become Qt’s responsibil-

ity.

QTextCodec Class Reference 44

bool QTextCodec::canEncode (QChar ch) const [virtual]

Returns TRUE if the unicode character ch can be fully encoded with this codec; otherwise returns FALSE. The default
implementation tests if the result of toUnicode(fromUnicode(ch)) is the original ch. Subclasses may be able to improve
the efficiency.

bool QTextCodec::canEncode (const QString & s) const [virtual]

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

s contains the string being tested for encode-ability.

QTextCodec * QTextCodec::codecForContent (const char * chars, int len) [static]

Searches all installed QTextCodec objects, returning the one which most recognizes the given content. May return 0.

Note that this is often a poor choice, since character encodings often use most of the available character sequences,
and so only by linguistic analysis could a true match be made.

chars contains the string to check, and len contains the number of characters in the string to use.
See also heuristicContentMatch() [p. 45].

Example: qwerty/qwerty.cpp.

QTextCodec * QTextCodec::codecForIndex (int i) [static]

Returns the QTextCodec i positions from the most recently inserted codec, or 0 if there is no such QTextCodec. Thus,
codecForIndex(0) returns the most recently created QTextCodec.

Example: qwerty/qwerty.cpp.

QTextCodec * QTextCodec::codecForLocale () [static]
Returns a pointer to the codec most suitable for this locale.

Example: qwerty/qwerty.cpp.

QTextCodec * QTextCodec::codecForMib (int mib) [static]

Returns the QTextCodec which matches the MIBenum mib.

QTextCodec * QTextCodec::codecForName (const char * name, int accuracy = 0) [static]

Searches all installed QTextCodec objects and returns the one which best matches name. Returns a null pointer if no
codec’s heuristicNameMatch() reports a match better than accuracy, or if name is a null string.

See also heuristicNameMatch() [p. 45].

QTextCodec Class Reference 45

void QTextCodec::deleteAllCodecs () [static]

Deletes all the created codecs.
Warning: Do not call this function.

QApplication calls this just before exiting, to delete any QTextCodec objects that may be lying around. Since various
other classes hold pointers to QTextCodec objects, it is not safe to call this function earlier.

If you are using the utility classes (like QString) but not using QApplication, calling this function at the very end of
your application can be helpful to chase down memory leaks, as QTextCodec objects will not show up.

QCString QTextCodec::fromUnicode (const QString & uc, int & lenInOut) const [virtual]

Subclasses of QTextCodec must reimplement either this function or makeEncoder(). It converts the first lenlnOut
characters of uc from Unicode to the encoding of the subclass. If lenInOut is negative or too large, the length of uc is
used instead.

The value returned is owned by the caller, which is responsible for deleting it with "delete []". The length of the
resulting Unicode character sequence is returned in lenInOut.

The default implementation makes an encoder with makeEncoder() and converts the input with that. Note that
the default makeEncoder() implementation makes an encoder that simply calls this function, hence subclasses must
reimplement one function or the other to avoid infinite recursion.

Reimplemented in QHebrewCodec.

QCString QTextCodec::fromUnicode (const QString & uc) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

uc is the unicode source string.

int QTextCodec::heuristicContentMatch (const char * chars, int len) const [virtual]

Subclasses of QTextCodec must reimplement this function. It examines the first len bytes of chars and returns a value
indicating how likely it is that the string is a prefix of text encoded in the encoding of the subclass. A negative return
value indicates that the text is detectably not in the encoding (e.g. it contains characters undefined in the encoding).
A return value of 0 indicates that the text should be decoded with this codec rather than as ASCII, but there is no
particular evidence. The value should range up to len. Thus, most decoders will return -1, 0, or -len.

The characters are not null terminated.

See also codecForContent() [p. 44].

int QTextCodec::heuristicNameMatch (const char * hint) const [virtual]

Returns a value indicating how likely it is that this decoder is appropriate for decoding some format that has the given
name. The name is compared with the hint.

A good match returns a positive number around the length of the string. A bad match is negative.

The default implementation calls simpleHeuristicNameMatch () with the name of the codec.

QTextCodec Class Reference 46

QTextCodec * QTextCodec::loadCharmap (QIODevice * iod) [static]

Reads a POSIX2 charmap definition from iod. The parser recognizes the following lines:

<code_set name> name <escape_char> character % alias alias CHARMAP <token> /xhexbyte <Uunicode> ...
<token> /ddecbyte <Uunicode> ... <token> /octbyte <Uunicode> ... <token> /any/any... <Uunicode> ... END
CHARMAP

The resulting QTextCodec is returned (and also added to the global list of codecs). The name() of the result is taken
from the code set name.

Note that a codec constructed in this way uses much more memory and is slower than a hand-written QTextCodec
subclass, since tables in code are in memory shared by all applications simultaneously using Ot.

See also loadCharmapFile() [p. 46].
Example: qwerty/qwerty.cpp.

QTextCodec * QTextCodec::loadCharmapFile (QString filename) [static]

A convenience function for loadCharmap() that loads the charmap definition from the file filename.

const char * QTextCodec::locale () [static]

Returns a string representing the current language.

QTextDecoder * QTextCodec::makeDecoder () const [virtual]

Creates a QTextDecoder which stores enough state to decode chunks of char* data to create chunks of Unicode data.
The default implementation creates a stateless decoder, which is sufficient for only the simplest encodings where each
byte corresponds to exactly one Unicode character.

The caller is responsible for deleting the returned object.

QTextEncoder * QTextCodec::makeEncoder () const [virtual]

Creates a QTextEncoder which stores enough state to encode chunks of Unicode data as char* data. The default
implementation creates a stateless encoder, which is sufficient for only the simplest encodings where each Unicode
character corresponds to exactly one character.

The caller is responsible for deleting the returned object.

int QTextCodec::mibEnum () const [virtual]

Subclasses of QTextCodec must reimplement this function. It returns the MIBenum (see the IANA character-sets en-
coding file for more information). It is important that each QTextCodec subclass return the correct unique value for
this function.

Reimplemented in QEucJpCodec.

QTextCodec Class Reference 47

const char * QTextCodec::mimeName () const [virtual]

Returns the preferred mime name of the encoding as defined in the IANA character-sets encoding file.

Reimplemented in QEucJpCodec, QEucKrCodec, QGbkCodec, QJisCodec, QHebrewCodec and QSjisCodec.

const char * QTextCodec::name () const [virtual]

Subclasses of QTextCodec must reimplement this function. It returns the name of the encoding supported by the
subclass. When choosing a name for an encoding, consider these points:

e On X11, heuristicNameMatch(const char * hint) is used to test if a the QTextCodec can convert between Unicode
and the encoding of a font with encoding hint, such as "iso8859-1" for Latin-1 fonts, "koi8-r" for Russian KOI8
fonts. The default algorithm of heuristicNameMatch() uses name().

e Some applications may use this function to present encodings to the end user.

Example: qwerty/qwerty.cpp.

void QTextCodec::setCodecForLocale (QTextCodec * ¢) [static]
Set the codec to c; this will be returned by codecForLocale. This might be needed for some applications, that want to
use their own mechanism for setting the locale.

See also codecForLocale() [p. 44].

int QTextCodec::simpleHeuristicNameMatch (const char * name,
const char * hint) [static protected]

A simple utility function for heuristicNameMatch(): it does some very minor character-skipping so that almost-exact
matches score high. name is the text we’re matching and hint is used for the comparison.

QString QTextCodec::toUnicode (const char * chars, int len) const [virtual]
Subclasses of QTextCodec must reimplement this function or makeDecoder(). It converts the first len characters of
chars to Unicode.

The default implementation makes a decoder with makeDecoder() and converts the input with that. Note that the
default makeDecoder() implementation makes a decoder that simply calls this function, hence subclasses must reim-
plement one function or the other to avoid infinite recursion.

QString QTextCodec::toUnicode (const QByteArray & a, int len) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a contains the source characters; len contains the number of characters in a to use.

QTextCodec Class Reference

QString QTextCodec::toUnicode (const QByteArray & a) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a contains the source characters.

QString QTextCodec::toUnicode (const QCString & a, int len) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a contains the source characters; len contains the number of characters in a to use.

QString QTextCodec::toUnicode (const QCString & a) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

a contains the source characters.

QString QTextCodec::toUnicode (const char * chars) const

This is an overloaded member function, provided for convenience. It behaves essentially like the above function.

chars contains the source characters.

48

QTextDecoder Class Reference

The QTextDecoder class provides a state-based decoder.

#incl ude <qtextcodec. h>

Public Members

m virtual ~QTextDecoder ()
m virtual QString toUnicode (const char * chars, int len)

Detailed Description

The QTextDecoder class provides a state-based decoder.
The decoder converts a text format into Unicode, remembering any state that is required between calls.

See also QTextCodec::makeEncoder() [p. 46] and Internationalization with Qt [p. 16].

Member Function Documentation

QTextDecoder::~QTextDecoder () [virtual]

Destroys the decoder.

QString QTextDecoder::toUnicode (const char * chars, int len) [virtual]

Converts the first len bytes in chars to Unicode, returning the result.

If not all characters are used (e.g. if only part of a multi-byte encoding is at the end of the characters), the decoder
remembers enough state to continue with the next call to this function.

49

QTextEncoder Class Reference

The QTextEncoder class provides a state-based encoder.

#incl ude <qtextcodec. h>

Public Members

m virtual ~QTextEncoder ()
m virtual QCString fromUnicode (const QString & uc, int & lenInOut)

Detailed Description

The QTextEncoder class provides a state-based encoder.
The encoder converts Unicode into another format, remembering any state that is required between calls.

See also QTextCodec::makeEncoder() [p. 46] and Internationalization with Qt [p. 16].

Member Function Documentation

QTextEncoder::~QTextEncoder () [virtual]

Destroys the encoder.

QCString QTextEncoder::fromUnicode (const QString & uc, int & lenInOut) [virtual]

Converts lenInOut characters (not bytes) from uc, producing a QCString. lenInOut will be set to the length of the result
(in bytes).

The encoder is free to record state to use when subsequent calls are made to this function (for example, it might
change modes with escape sequences if needed during the encoding of one string, then assume that mode applies
when a subsequent call begins).

50

QEucJpCodec Class Reference

The QEucJpCodec class provides conversion to and from EUC-JP character sets.
#i ncl ude <geucj pcodec. h>

Inherits QTextCodec [p. 39].

Public Members

virtual int mibEnum () const

virtual const char * mimeName () const
QEucJpCodec ()

~QEucJpCodec ()

Detailed Description

The QEucJpCodec class provides conversion to and from EUC-JP character sets.

More precisely, the QEucJpCodec class subclasses QTextCodec to provide support for EUC-JB the main legacy encoding
for Unix machines in Japan.

The environment variable UNICODEMAP_JP can be used to fine-tune QJisCodec, QSjisCodec and QEucJpCodec. The
QJisCodec documentation describes how to use this variable.

Most of the code here was written by Serika Kurusugawa, a.k.a. Junji Takagi, and is included in Qt with the author’s
permission and the grateful thanks of the Trolltech team. Here is the copyright statement for that code:

Copyright (c) 1999 Serika Kurusugawa. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS". ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE

51

QEucJpCodec Class Reference 52

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

Member Function Documentation

QEucJpCodec::QEucJpCodec ()

Constructs a QEucJpCodec.

QEucJpCodec::~QEucJpCodec ()

Destroys the codec.

int QEucJpCodec::mibEnum () const [virtual]

Returns 18.
Reimplemented from QTextCodec [p. 46].
const char * QEucJpCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 471].

QEucKrCodec Class Reference

The QEucKrCodec class provides conversion to and from EUC-KR character sets.
#i ncl ude <geuckrcodec. h>

Inherits QTextCodec [p. 39].

Public Members

m virtual const char * mimeName () const

Detailed Description

The QEucKrCodec class provides conversion to and from EUC-KR character sets.

The QEucKrCodec class subclasses QTextCodec to provide support for EUC-KR, the main legacy encoding for UNIX
machines in Korea.

It was largely written by Mizi Research Inc. Here is the copyright statement for the code as it was at the point of
contribution (Trolltech’s subsequent modifications are covered by the usual copyright for Qt.)

Copyright (¢) 1999 Mizi Research Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

53

QEucKrCodec Class Reference

Member Function Documentation

const char * QEucKrCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 471.

54

QGbkCodec Class Reference

The QGbkCodec class provides conversion to and from the Chinese GBK encoding.
#i ncl ude <qgbkcodec. h>
Inherits QTextCodec [p. 39].

Public Members

m virtual const char * mimeName () const

Detailed Description

The QGbkCodec class provides conversion to and from the Chinese GBK encoding.

GBK, formally the Chinese Internal Code Specification, is a commonly used extension of GB 2312-80. Microsoft Win-
dows uses it under the name code page 936.

The GBK codec was contributed to Qt by Justin Yu <justiny@turbolinux.com.cn> and Sean Chen
<seanc@turbolinux.com.cn>. The copyright notice for their code follows:

Copyright 2000 TurboLinux, Inc. Written by Justin Yu and Sean Chen.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

55

QGbkCodec Class Reference

Member Function Documentation

const char * QGbkCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 47].

56

QHebrewCodec Class Reference

The QHebrewCodec class provides conversion to and from visually ordered Hebrew.
#include <qgrtlcodec. h>

Inherits QTextCodec [p. 39].

Public Members

m virtual const char * mimeName () const
m virtual QCString fromUnicode (const QString & uc, int & len_in_out) const

Detailed Description

The QHebrewCodec class provides conversion to and from visually ordered Hebrew.

Hebrew as a semitic language is written from right to left. As older computer systems couldn’t handle reordering a
string so that the first letter appears on the right, many older documents were encoded in visual order, so that the first
letter of a line is the rightmost one in the string.

Opposed to this, Unicode defines characters to be in logical order (the order you would read the string). This codec
tries to convert visually ordered Hebrew (8859-8) to Unicode. This might not always be 100%, as reversing the bidi
algorithm that transforms from logical to visual order is non trivial.

Transformation from Unicode to visual Hebrew (8859-8) is done using the BiDi algorithm in Qt, and will produce
correct results, as long as you feed one paragraph of text to the codec at a time. Places where newlines are supposed
to start can be indicated by a newline character ("\n’). Please be aware, that these newline characters change the re-
ordering behaviour of the algorithm, as the BiDi reordering only takes place within one line of text, whereas linebreaks
are determined in visual order.

Visually ordered Hebrew is still used quite often in some places, mainly in email communication (as most email
programs still don’t understand logically ordered Hebrew) and on web pages. The use on web pages is strongly
decreasing however, as there are nowadays a few browsers available that correctly support logically ordered Hebrew.

This codec has the name "iso8859-8". If you don’t want any bidi reordering to happen during conversion, use the
"is08859-8-i" codec, which assumes logical order for the 8bit string.

See also Internationalization with Qt [p. 16].

57

QHebrewCodec Class Reference 58

Member Function Documentation

QCString QHebrewCodec::fromUnicode (const QString & uc, int & len_in_out)
const [virtual]

Transforms the logically ordered QString, uc, into a visually ordered string in the 8859-8 encoding. Qt’s BiDi algorithm
is used to perform this task. Please note, that newline characters affect the reordering, as reordering is done on a line
by line basis.

You might get wrong results if you feed the string line by line to this method, as the algorithm is designed to operate
on a whole paragraph of text at a time, and the contents of a previous line may affect the reordering of the next line.

To ensure you get correct results always call this method with an entire paragraph of text to reorder.

Some encodings (for example japanese or utf8) are multibye (so one input character is mapped to two output charac-
ters). The len_in_out argument specifies the number of QChars that should be converted and is set to the number of
characters returned.

Reimplemented from QTextCodec [p. 45].

const char * QHebrewCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 471].

QJisCodec Class Reference

The QJisCodec class provides conversion to and from JIS character sets.
#incl ude <qjiscodec. h>

Inherits QTextCodec [p. 39].

Public Members

m virtual const char * mimeName () const

Detailed Description

The QJisCodec class provides conversion to and from JIS character sets.

More precisely, the QJisCodec class subclasses QTextCodec to provide support for JIS X 0201 Latin, JIS X 0201 Kana,
JIS X 0208 and JIS X 0212.

The environment variable UNICODEMAP_JP can be used to fine-tune QJisCodec, QSjisCodec and QEucJpCodec. The
mapping names are as for the Japanese XML working group’s XML Japanese Profile, because it names and explains all
the widely used mappings. Here are brief descriptions, written by Serika Kurusugawa:

e "unicode-0.9" or "unicode-0201" for Unicode style. This assumes JISX0201 for 0x00-0x7f. (0.9 is a table version
of jisx02xx mapping used for Uniocde spec version 1.1.)

e "unicode-ascii" This assumes US-ASCII for 0x00-0x7f; some chars (JISX0208 0x2140 and JISX0212 0x2237) are
different from Unicode 1.1 to avoid conflict.

e "open-19970715-0201" ("open-0201" for convenience) or "jisx0221-1995" for JISX0221-JISX0201 style. JIS X
0221 is JIS version of Unicode, but a few chars (0x5c, 0x7e, 0x2140, 0x216f, 0x2131) are different from Unicode
1.1. This is used when 0x5c is treated as YEN SIGN.

e "open-19970715-ascii" ("open-ascii" for convenience) for JISX0221-ASCII style. This is used when 0x5c is treated
as REVERSE SOLIDUS.

e "open-19970715-ms" ("open-ms" for convenience) or "cp932" for Microsoft Windows style. Windows Code Page
932. Some chars (0x2140, 0x2141, 0x2142, 0x215d, 0x2171, 0x2172) are different from Unicode 1.1.

e "jdk1.1.7" for Sun’s JDK style. Same as Unicode 1.1, except that JIS 0x2140 is mapped to UFF3C. Either ASCII or
JISX0201 can be used for 0x00-0x7f.

non;

In addition, the extensions "nec-vdc", "ibm-vdc" and "udc" are supported.

59

QJisCodec Class Reference 60

For example, if you want to use Unicode style conversion but with NEC’s extension, set UNI CODEMAP_JP to uni code- 0. 9,
nec-vdc. (You will probably need to quote that in the shell command.)

Most of the code here was written by Serika Kurusugawa, a.k.a. Junji Takagi, and is included in Qt with the author’s
permission and the grateful thanks of the Trolltech team. Here is the copyright statement for that code:

Copyright (c) 1999 Serika Kurusugawa. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS". ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

Member Function Documentation

const char * QJisCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 471.

QSjisCodec Class Reference

The QSjisCodec class provides conversion to and from Shift-JIS.
#incl ude <qgsjiscodec. h>

Inherits QTextCodec [p. 39].

Public Members

m virtual const char * mimeName () const
m QSjisCodec ()
m ~QSjisCodec ()

Detailed Description

The QSjisCodec class provides conversion to and from Shift-JIS.

More precisely, the QSjisCodec class subclasses QTextCodec to provide support for Shift-JIS, an encoding of JIS X 0201
Latin, JIS X 0201 Kana or JIS X 0208.

The environment variable UNICODEMAP_JP can be used to fine-tune QJisCodec, QSjisCodec and QEucJpCodec. The
QJisCodec documentation describes how to use this variable.

Most of the code here was written by Serika Kurusugawa, a.k.a. Junji Takagi, and is included in Qt with the author’s
permission and the grateful thanks of the Trolltech team. Here is the copyright statement for that code:

Copyright (c) 1999 Serika Kurusugawa. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS". ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

61

QSjisCodec Class Reference 62

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

Member Function Documentation

QSjisCodec::QSjisCodec ()

Creates a Shift-JIS codec. Note that this is done automatically by the QApplication, you do not need construct your
own.

QSjisCodec::~QSjisCodec ()

Destroys the Shift-JIS codec.

const char * QSjisCodec::mimeName () const [virtual]

Returns the codec’s mime name.

Reimplemented from QTextCodec [p. 47].

QTsciiCodec Class Reference

The QTsciiCodec class provides conversion to and from the Tamil TSCII encoding.
#incl ude <qtsciicodec. h>

Inherits QTextCodec [p. 39].

Detailed Description

The QTsciiCodec class provides conversion to and from the Tamil TSCII encoding.

TSCII, formally the Tamil Standard Code Information Interchange specification, is a commonly used charset for Tamils.
The official page for the standard is at http://www.tamil.net/tscii/

This codec uses the mapping table found at

http://www.geocities.com/Athens/5180/tsciiset.html. Unfortunately Tamil uses composed Unicode. This might cause
some trouble if you are using Unicode fonts instead of TSCII fonts.

The TSCII codec was contributed to Qt by Hans Petter Bieker <bieker@kde.org>. The copyright notice for his code
follows:

Copyright 2000 Hans Petter Bieker . All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS 1S” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

See also Internationalization with Qt [p. 16].

63

Index

accept()
QIMEvent, 28

canEncode()

QTextCodec, 44
childCount()

QAccessiblelnterface, 11
clear()

QTranslator, 32
clearSelection()

QAccessibleInterface, 11
codecForContent()

QTextCodec, 44
codecForIndex()

QTextCodec, 44
codecForLocale()

QTextCodec, 44
codecForMib()

QTextCodec, 44
codecForName()

QTextCodec, 44
comment()

QTranslatorMessage, 37
commonPrefix()

QTranslatorMessage, 37
contains()

QTranslator, 32
context()

QTranslatorMessage, 37
controlAt()

QAccessiblelnterface, 11
cursorPos()

QIMEvent, 28

deleteAllCodecs()
QTextCodec, 45

doDefaultAction()
QAccessiblelnterface, 11

Event
QAccessible, 4

find(Q
QTranslator, 32
findMessage()
QTranslator, 33
fromUnicode()

QHebrewCodec, 58
QTextCodec, 45
QTextEncoder, 50

hash()
QTranslatorMessage, 37
heuristicContentMatch()
QTextCodec, 45
heuristicNameMatch ()
QTextCodec, 45

ignore()

QIMEvent, 28
insert()

QTranslator, 33
internationalization, 16
isAccepted()

QIMEvent, 28
isvalid()

QAccessibleInterface, 11

load()
QTranslator, 33
loadCharmap()
QTextCodec, 46
loadCharmapFile()
QTextCodec, 46
locale()
QTextCodec, 46
localization, 20

makeDecoder()
QTextCodec, 46
makeEncoder()
QTextCodec, 46
messages()
QTranslator, 34
mibEnum()
QEucJpCodec, 52
QTextCodec, 46
mimeName()
QEucJpCodec, 52
QEucKrCodec, 54
QGbkCodec, 56
QHebrewCodec, 58
QJisCodec, 60
QSjisCodec, 62

64

QTextCodec, 47

name()

QTextCodec, 47
NavDirection

QAccessible, 5
navigate()

QAccessibleInterface, 11

object()
QAccessibleObject, 15
operator
=0
QTranslatorMessage, 37
operator=()
QTranslatorMessage, 37
operator==()
QTranslatorMessage, 38
operator< ()
QTranslatorMessage, 37
operator<=()
QTranslatorMessage, 37
operator> ()
QTranslatorMessage, 38
operator>=()
QTranslatorMessage, 38

Prefix
QTranslatorMessage, 36

queryAccessiblelnterface()
QAccessible, 8

queryChild()
QAccessiblelnterface, 12

queryParent()
QAccessibleInterface, 12

rect()
QAccessibleInterface, 12
remove()
QTranslator, 34
Role
QAccessible, 5
role()
QAccessibleInterface, 12

save()

Index

QTranslator, 34
SaveMode
QTranslator, 32
selection()
QAccessibleInterface, 12
setCodecForLocale()
QTextCodec, 47
setFocus()
QAccessibleInterface, 12
setSelected()
QAccessiblelnterface, 12
setText()
QAccessiblelnterface, 13
setTranslation()
QTranslatorMessage, 38

simpleHeuristicNameMatch ()
QTextCodec, 47
sourceText()
QTranslatorMessage, 38
squeeze()
QTranslator, 34
State
QAccessible, 7
state()
QAccessibleInterface, 13

Text
QAccessible, 8
text()
QAccessibleInterface, 13

QIMEvent, 29
toUnicode()

QTextCodec, 47, 48

QTextDecoder, 49
translation()

QTranslatorMessage, 38

unsqueeze()
QTranslator, 34

updateAccessibility ()
QAccessible, 9

write()
QTranslatorMessage, 38

65

