
Modularization of XHTML™

W3C Working Draft 10 September 1999
This version:

http://www.w3.org/TR/1999/WD-xhtml-modularization-19990910
(Single HTML file [p.1] , Postscript version, PDF version, ZIP archive, or Gzip’d TAR
archive)

Latest version:
http://www.w3.org/TR/xhtml-modularization

Previous version:
http://www.w3.org/TR/1999/xhtml-modularization-19990406/

Editors:
Murray Altheim, Sun Microsystems
Frank Boumphrey, HTML Writers Guild
Sam Dooley, IBM
Shane McCarron, Applied Testing and Technology
Ted Wugofski, Gateway

Copyright © 1999 W3C (MIT, INRIA, Keio), All Rights Reserved. W3C liability, trademark,
document use and software licensing rules apply.

Abstract
This working draft specifies an abstract modularization of XHTML 1.0. A companion document,
Building XHTML Modules, implements this abstraction as a collection of component XML
Document Type Definitions (DTDs). This modularization provide a means for subsetting and
extending XHTML, a feature desired for extending XHTML’s reach onto emerging platforms.

Status of this document
This document is nearly complete, and is being circulated for a final public review prior to last
call.

This document is a working draft of the W3C’s HTML Working Group. This working draft may be
updated, replaced or rendered obsolete by other W3C documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in
progress". This document is work in progress and does not imply endorsement by the W3C
membership.

- 1 -

 Modularization of XHTML™Modularization of XHTML

http://www.w3.org/Consortium/Member/List.html
http://www.w3.org/Consortium/Member/List.html
http://www.w3.org/Consortium/Legal/copyright-software
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.keio.ac.jp/
http://www.inria.fr/
http://www.lcs.mit.edu/
http://www.w3.org/
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/TR/1999/xhtml-modularization-19990406/
http://www.w3.org/TR/xhtml-modularization
http://www.w3.org/TR/1999/WD-xhtml-modularization-19990910
http://www.w3.org/

This document has been produced as part of the W3C HTML Activity. The goals of the HTML
Working Group (members only) are discussed in the HTML Working Group charter (members
only).

Please send detailed comments on this document to www-html-editor@w3.org. We cannot
guarantee a personal response, but we will try when it is appropriate. Public discussion on
HTML features takes place on the mailing list www-html@w3.org.

Quick Table of Contents
................... 51. Introduction
................ 92. Terms and Definitions
................ 133. Conformance Definition
............... 174. XHTML Abstract Modules
................... 33A. References
.................. 37B. Design Goals

Full Table of Contents
................... 51. Introduction
................ 51.1. What is XHTML?
............ 51.2. What is XHTML Modularization?
.............. 51.3. Why Modularize XHTML?

1.3.1. Abstract modules
1.3.2. DTD modules
1.3.3. Hybrid document types
1.3.4. Validation

................ 92. Terms and Definitions

................ 133. Conformance Definition
3.1. XHTML Family Document Type Conformance

.......... 133.2. XHTML Family Document Conformance

.......... 133.3. XHTML Family User Agent Conformance
3.4. Naming Rules

............ 153.4.1. Rationale for Naming Rules

............... 174. XHTML Abstract Modules

........... 174.1. Common Characteristics of Modules

............. 174.1.1. Syntactic Conventions
4.1.2. Content Types
4.1.3. Attribute Types
4.1.4. Attribute Collections

................. 194.2. Basic Modules
4.2.1. Structure Module

.............. 204.2.2. Basic Text Module

- 2 -

Modularization of XHTML Quick Table of Contents

http://cgi.w3.org/MemberAccess/
http://cgi.w3.org/MemberAccess/
http://www.w3.org/MarkUp/Group/HTMLcharter
http://cgi.w3.org/MemberAccess/
http://www.w3.org/MarkUp/Group/
http://www.w3.org/MarkUp/Group/
http://www.w3.org/MarkUp/

4.2.3. Hypertext Module
................ 224.2.4. List Module
................. 224.3. Applet Module
.............. 234.4. Text Extension Modules

4.4.1. Presentation Module
................ 234.4.2. Edit Module
............... 244.4.3. BDO Module
................ 244.5. Forms Modules

4.5.1. Basic Forms Module
4.5.2. Forms Module

................. 264.6. Table Modules
4.6.1. Basic Tables Module

............... 264.6.2. Tables Module

................. 274.7. Image Module

............. 274.8. Client-side Image Map Module

............ 284.9. Server-side Image Map Module

................ 284.10. Object Module

................ 294.11. Frames Module

................ 294.12. Iframe Module
4.13. Intrinsic Events

.............. 304.14. Metainformation Module

................ 304.15. Scripting Module

............... 314.16. Stylesheet Module

................. 314.17. Link Module

................. 314.18. Base Module

................... 33A. References

............... 33A.1. Normative References

.............. 33A.2. Informative References

.................. 37B. Design Goals

................. 37B.1. Requirements

................ 37B.1.1. Granularity

............... 37B.1.2. Composibility

................ 38B.1.3. Ease of Use

............... 38B.1.4. Compatibility

............... 38B.1.5. Conformance

- 3 -

 Full Table of ContentsModularization of XHTML

- 4 -

Modularization of XHTML Full Table of Contents

1. Introduction
This section is normative.

1.1. What is XHTML?
XHTML is the reformulation of HTML 4.0 as an application of XML. XHTML 1.0 [XHTML1]
specifies three XML document types that correspond to the three HTML 4.0 DTDs: Strict,
Transitional, and Frameset. XHTML 1.0 is the basis for a family of document types that subset
and extend HTML.

1.2. What is XHTML Modularization?
XHTML Modularization is decomposition of XHTML 1.0, and by reference HTML 4.0, into a
collection of abstract modules that provide specific types of functionality. These abstract
modules are implemented in the XHTML 1.1 specification using the XML Document Type
Definition language, but other implementations are possible and expected. The mechanism for
defining the abstract modules defined in this document, and for implementing them using XML
DTDs, is defined in the document "Building XHTML Modules" [BUILDING].

These modules may be combined with each other and with other modules to create XHTML
subset and extension document types that qualify as members of the XHTML family of
document types.

1.3. Why Modularize XHTML?
The modularization of XHTML refers to the task of specifying well-defined sets of XHTML
elements that can be combined and extended by document authors, document type architects,
other XML standards specifications, and application and product designers to make it
economically feasible for content developers to deliver content on a greater number and
diversity of platforms.

Over the last couple of years, many specialized markets have begun looking to HTML as a
content language. There is a great movement toward using HTML across increasingly diverse
computing platforms. Currently there is activity to move HTML onto mobile devices (hand held
computers, portable phones, etc.), television devices (digital televisions, TV-based web
browsers, etc.), and appliances (fixed function devices). Each of these devices has different
requirements and constraints.

Modularizing XHTML provides a means for product designers to specify which elements are
supported by a device using standard building blocks and standard methods for specifying which
building blocks are used. These modules serve as "points of conformance" for the content
community. The content community can now target the installed base that supports a certain
collection of modules, rather than worry about the installed base that supports this permutation
of XHTML elements or that permutation of XHTML elements. The use of standards is critical for

- 5 -

1. IntroductionModularization of XHTML

modularized XHTML to be successful on a large scale. It is not economically feasible for content
developers to tailor content to each and every permutation of XHTML elements. By specifying a
standard, either software processes can autonomously tailor content to a device, or the device
can automatically load the software required to process a module.

Modularization also allows for the extension of XHTML’s layout and presentation capabilities,
using the extensibility of XML, without breaking the XHTML standard. This development path
provides a stable, useful, and implementable framework for content developers and publishers
to manage the rapid pace of technological change on the Web.

The modularization of XHTML is accomplished on two major levels: at the abstract level, and at
the document type level. Roughly speaking, the abstract level provides a conceptual approach
to the modularization of XHTML, while the document type level provides DTD-level building
blocks that allow document type designers to support the abstract modules.

1.3.1. Abstract modules

An XHTML document type is defined as a set of abstract modules. A abstract module defines, in
a document type, one kind of data that is semantically different from all others. Abstract modules
can be combined into document types without a deep understanding of the underlying schema
that defines the modules.

1.3.2. DTD modules

A DTD module consists of a set of element types, a set of attribute list declarations, and a set of
content model declarations, where any of these three sets may be empty. An attribute list
declaration in a DTD module may modify an element type outside the element types in the
module, and a content model declaration may modify an element type outside the element type
set.

An XML DTD is a means of describing the structure of a class of XML documents, collectively
known as an XML document type. XML document types are currently represented as DTDs, as
described in the XML 1.0 Recommendation [XML]. Where possible, this document also allows
for the potential use of other schema languages that are currently under consideration by the
W3C XML Schema Working Group. (e.g. DCD, SOX, DDML, XSchema)

1.3.3. Hybrid document types

A hybrid document type is an XML DTD composed from a collection of XML DTDs or DTD
Modules. The primary purpose of the modularization framework described in this document is to
allow a DTD author to combine elements from multiple abstract modules into a hybrid document
type, develop documents against that hybrid document type, and to validate that document
against the associated hybrid document type definition.

- 6 -

Modularization of XHTML1.3.1. Abstract modules

One of the most valuable benefits of XML over SGML is that XML reduces the barrier to entry for
standardization of element sets that allow communities to exchange data in an interoperable
format. However, the relatively static nature of HTML as the content language for the Web has
meant that any one of these communities have previously held out little hope that their XML
document types would be able to see widespread adoption as part of Web standards. The
modularization framework allows for the dynamic incorporation of these diverse document types
within the XHTML family of document types, further reducing the barriers to the incorporation of
these domain-specific vocabularies in XHTML documents.

1.3.4. Validation

The use of well-formed, but not valid, documents is an important benefit of XML. In the process
of developing a document type, however, the additional leverage provided by a validating parser
for error checking is important. The same statement applies to XHTML document types with
elements from multiple abstract modules.

The general problem of fragment validation - validation of XML documents with different
schemas from multiple XML Namespaces [XMLNAMES] [p.36] in different portions of the
document - is beyond the scope of this framework. An essential feature of this framework,
however, is a collection of conventions for creating, from a set of abstract modules, hybrid
DTDs.

- 7 -

 1.3.4. ValidationModularization of XHTML

- 8 -

Modularization of XHTML 1.3.4. Validation

2. Terms and Definitions
This section is informative.

While some terms are defined in place, the following definitions are used throughout this
document. Familiarity with the W3C XML 1.0 Recommendation [XML] is highly recommended.

document type
a class of documents sharing a common abstract structure. The ISO 8879 [SGML] [p.33]
definition is as follows: "a class of documents having similar characteristics; for example,
journal, article, technical manual, or memo. (4.102)"

document model
the effective structure and constraints of a given document type. The document model
constitutes the abstract representation of the physical or semantic structures of a class of
documents.

markup model
the markup vocabulary (ie., the gamut of element and attribute names, notations, etc.) and
grammar (ie., the prescribed use of that vocabulary) as defined by a document type
definition (ie., a schema) The markup model is the concrete representation in markup
syntax of the document model, and may be defined with varying levels of strict conformity.
The same document model may be expressed by a variety of markup models.

document type definition (DTD)
a formal, machine-readable expression of the XML structure and syntax rules to which a
document instance of a specific document type must conform; the schema type used in
XML 1.0 to validate conformance of a document instance to its declared document type.
The same markup model may be expressed by a variety of DTDs.

reference DTD
a DTD whose markup model represents the foundation of a complete document type. A
reference DTD provides the basis for the design of a "family" of related DTDs, such as
subsets, extensions and variants. XHTML 1.1 [XHTML11] acts as a reference DTD for the
XHTML family of document types.

subset DTD
a DTD whose document model is the proper subset of a reference document type, whose
conforming document instances are still valid according to the reference DTD. A subset
may place tighter restrictions on the markup than the reference, remove elements or
attributes, or both.

extension DTD
a DTD whose document model extends a reference document type (usually by the addition
of element types or attributes), but generally makes no profound changes to the reference
document model other than required to add the extension’s semantic components. An
extension can also be considered a proper superset if the reference document type is a
proper subset of the extension.

variant DTD
a DTD whose document model alters (through subsetting, extension, and/or substitution)
the basic data model of a reference document type. It is often difficult to transform without
loss between instances conforming to a variant DTD and the reference DTD. XHTML

- 9 -

2. Terms and DefinitionsModularization of XHTML

Family Conforming Document Types are not permitted to be "variant DTDs" of the XHTML
1.1 DTD.

fragment DTD
a portion of a DTD used as a component either for the creation of a compound or variant
document type, or for validation of a document fragment. Neither SGML nor XML current
have standardized methods for such partial validation.

content model
the declared markup structure allowed within instances of an element type. XML 1.0
differentiates two types: elements containing only element content (no character data) and
mixed content (elements that may contain character data optionally interspersed with child
elements). The latter are characterized by a content specification beginning with the
"#PCDATA" string (denoting character data).

minimal content model
Some XHTML modules define minimal content models for their elements. When these
modules are used in an XHTML Family DTD, their content models cannot be altered except
that they may be extended beyond that of the minimal content model defined.

abstract module
a unit of document type specification corresponding to a distinct type of content,
corresponding to a markup construct reflecting this distinct type.

element type
the definition of an element that is a container for a distinct semantic class of document
content.

element
an instance of an element type.

generic identifier
the name identifying the element type of an element. Also, element type name.

tag
descriptive markup delimiting the start and end (including its generic identifier and any
attributes) of an element.

markup declaration
a syntactical construct within a DTD declaring an entity or defining a markup structure.
Within XML DTDs, there are four specific types: entity declaration defines the binding
between a mnemonic symbol and its replacement content. element declaration constrains
which element types may occur as descendants within an element. See also content model.
attribute definition list declaration defines the set of attributes for a given element type, and
may also establish type constraints and default values. notation declaration defines the
binding between a notation name and an external identifier referencing the format of an
unparsed entity

entity
an entity is a logical or physical storage unit containing document content. Entities may be
composed of parse-able XML markup or character data, or unparsed (ie., non-XML,
possibly non-textual) content. Entity content may be either defined entirely within the
document entity ("internal entities") or external to the document entity ("external entities"). In
parsed entities, the replacement text may include references to other entities.

entity reference
a mnemonic or numeric string used as a reference to the content of a declared entity (eg.,

- 10 -

Modularization of XHTML2. Terms and Definitions

"&" for "&", "<" for "<", "©" for "©".)
instantiate

to replace an entity reference with an instance of its declared content.
parameter

entity an entity whose scope of use is within the document prolog (ie., the external
subset/DTD or internal subset). Parameter entities are disallowed within the document
instance.

module
an abstract unit within a document model expressed as a DTD fragment, used to
consolidate markup declarations to increase the flexibility, modifiability, reuse and
understanding of specific logical or semantic structures.

modularization
an implementation of a modularization model; the process of composing or de-composing a
DTD by dividing its markup declarations into units or groups to support specific goals.
Modules may or may not exist as separate file entities (ie., the physical and logical
structures of a DTD may mirror each other, but there is no such requirement).

modularization model
the abstract design of the document type definition (DTD) in support of the modularization
goals, such as reuse, extensibility, expressiveness, ease of documentation, code size,
consistency and intuitiveness of use. It is important to note that a modularization model is
only orthogonally related to the document model it describes, so that two very different
modularization models may describe the same document type.

driver
a generally short file used to declare and instantiate the modules of a DTD. A good rule of
thumb is that a DTD driver contains no markup declarations that comprise any part of the
document model itself.

parent document type
A parent document type of a compound document is the document type of the root element.

compound document
A compound document is a document that uses more than one XML Namespace.
Compound documents may be defined as documents that contain elements or attributes
from multiple document types.

module
A module is a collection of elements, attributes, values for attributes, content models, or any
combination of these.

- 11 -

2. Terms and DefinitionsModularization of XHTML

- 12 -

Modularization of XHTML2. Terms and Definitions

3. Conformance Definition
This section is normative.

In order to ensure that XHTML-family documents are maximally portable among XHTML-family
user agents, this specification rigidly defines conformance requirements for both of these and for
XHTML-family document types. While the conformance definitions can be found in this section,
they necessarily reference normative text within this document, within the base XHTML
specification [XHTML1], and within other related specifications. It is only possible to fully
comprehend the conformance requirements of XHTML through a complete reading of all
normative references.

3.1. XHTML Family Document Type Conformance
It is possible to modify existing document types and define wholly new document types using
both modules defined in this specification and other modules. Such a document type conforms
to this specification when it meets the following criteria:

1. The document type must be defined using one of the implementation methods defined by
the W3C (currently this is limited to XML DTDs, but XML Schema will be available soon).

2. The document type must have a unique identifier as defined in Naming Rules [p.14] .
3. The document type must include, at a minimum, the Structure, Hypertext, Basic Text, and

List modules defined in this specification.
4. The document type must declare a unique namespace identifier that can be used as the

value of the xmlns attribute and that is defined as the FIXED value of the xmlns attribute
of the html element defined in the Structure Module. When this identifier is expressed as a
URI, the URI must dereference to the implementation of the document type.

5. For each of the W3C-defined modules that are included, all of the elements, attributes, and
any required minimal content models must be included (and optionally extended) in the
document type’s content model.

6. The document type may define additional elements. However, these elements must not
have the same name as any other W3C-defined elements.

3.2. XHTML Family Document Conformance
Documents that rely upon XHTML-family document types are considered XHTML conforming if
they validate against their referenced document type.

3.3. XHTML Family User Agent Conformance
A conforming user agent must meet all of the following criteria (as defined in [XHTML1]):

- 13 -

3. Conformance DefinitionModularization of XHTML

1. In order to be consistent with the XML 1.0 Recommendation [XML] [p.??] , the user agent
must parse and evaluate an XHTML document for well-formedness. If the user agent claims
to be a validating user agent, it must also validate documents against their referenced DTDs
according to [XML].

2. When the user agent claims to support facilities defined within this specification or required
by this specification through normative reference, it must do so in ways consistent with the
facilities’ definition.

3. When a user agent processes a document of Internet media type text/xml, it shall only
recognize attributes of type ID (e.g. the id attribute on most XHTML elements) as fragment
identifiers.

4. If a user agent encounters an element it does not recognize, it must render the element’s
content.

5. If a user agent encounters an attribute it does not recognize, it must ignore the entire
attribute specification (i.e., the attribute and its value).

6. If a user agent encounters an attribute value it doesn’t recognize, it must use the default
attribute value.

7. If it encounters an entity reference (other than one of the predefined entities) for which the
User Agent has processed no declaration (which could happen if the declaration is in the
external subset which the User Agent hasn’t read), the entity reference should be rendered
as the characters (starting with the ampersand and ending with the semi-colon) that make
up the entity reference.

8. When rendering content, User Agents that encounter characters or character entity
references that are recognized but not renderable should display the document in such a
way that it is obvious to the user that normal rendering has not taken place.

9. XML does not specifically define whitespace handling characteristics for elements where
the xml:space attribute is set to default. For all such elements, XHTML User Agents are
required to suppress line breaks occurring immediately after the start tag or immediately
prior to the end tag.

3.4. Naming Rules
Names for XHTML-conforming document types must adhere to strict naming conventions so that
it is possible for software and users to readily determine the relationship of document types to
XHTML. The names for document types implemented as XML Document Type Definitions are
defined through XML Formal Public Identifiers (FPIs). Within FPIs, fields are separated by
double slash character sequences (//). The various fields MUST be composed as follows:

1. The leading field identifies the resources relationship to a formal standard. For privately
defined resources, this field MUST be "-". For formal standards, this field MUST be the
formal reference to the standard (e.g. ISO/IEC 15445:1999).

2. The second field MUST contain the name of the organization responsible for maintaining
the named item. There is no formal registry for these organization names. Each
organization SHOULD define a name that is unique. The name used by the W3C is, for
example, W3C.

3. The third field MUST take the form DTD XHTML- followed by an organization-defined

- 14 -

Modularization of XHTML 3.4. Naming Rules

unique identifier (e.g. MyML 1.0). This identifier SHOULD be composed of a unique name
and a version identifier that can be updated as the document type evolves.

4. The fourth field defines the language in which the item is developed (e.g. EN).

Using these rules, the name for an XHTML family conforming document type might be
-//MyCompany//DTD XHTML-MyML 1.0//EN.

3.4.1. Rationale for Naming Rules

Naming Rules are critical for portability of user agents and XHTML-conforming tools. These
rules need to be simple enough that they can be readily adhered to, and need to convey upon
document type and module designers the power to readily associate their creations with XHTML
(for marketing purposes, if nothing else). The above rules address these concerns. There were
some other possibilities for naming conventions, and they were not used for the following
reasons:

Use the XHTML version in the identifier.

In the case of new modules, there is no need to associate the module iwth a specific
version of XHTML - the name does not need to identify version dependencies. In the case
of new document types, the new type does not necessarily have any relationship to a
specific version of XHTML. Instead, the new document type should itself have versioning
that will help iun its evolution. Document types will necessarily evolve out of step with
XHTML from the W3C.

- 15 -

3.4.1. Rationale for Naming RulesModularization of XHTML

- 16 -

Modularization of XHTML3.4.1. Rationale for Naming Rules

4. XHTML Abstract Modules
This section is normative.

This section specifies the contents of the XHTML abstract modules. These modules are abstract
definitions of collections of elements, attributes, and their content models. These abstract
modules can be mapped onto any appropriate specification mechanism. The XHTML 1.1
Specification, for example, maps these modules onto DTDs as described in [XML].

Content developers and device designers should view this section as a guide to the definition of
the functionality provided by the various XHTML-defined modules. When developing documents
or defining a profile for a class of documents, content developers can determine which of these
modules are essential for conveying their message. When designing clients, device designers
should develop their device profiles by choosing from among the abstract modules defined here.

4.1. Common Characteristics of Modules
Many of the abstract modules in this section describe elements, attributes on those elements,
and minimal content models for those elements or element sets. This section identifies some
shorthand expressions that are used throughout the abstract module definitions. These
expressions should in no way be considered normative or mandatory. They are an editorial
convenience for this document. When used in the remainder of this section, it is the expansion
of the term that is normative, not the term itself.

4.1.1. Syntactic Conventions

The abstract modules are not defined in a formal grammar. However, the definitions do adhere
to the following syntactic conventions (as defined in Building XHTML Modules [BUILDING [p.33]
]). These conventions are similar to those of XML DTDs, and should be familiar to XML DTD
authors. Each discrete syntactic element can be combined with others to make more complex
expressions that conform to the algebra defined here.

element name
When an element is included in a content model, its explicit name will be listed.

Content set
Some modules define lists of explicit element names called content sets. When a content
set is included in a content model, its name will be listed.

expr ?
Zero or one instances of expr are permitted.

expr +
One or more instances or expr are required.

expr *
Zero or more instances of expr are permitted.

a , b
Expression a is required, followed by expression b.

- 17 -

4. XHTML Abstract ModulesModularization of XHTML

a | b
Either expression a or expression b is required.

a - b
Expression a is permitted, omitting elements in expression b.

parentheses
When an expression is contained within parentheses, evaluation of any subexpressions
within the parentheses take place before evaluation of expressions outside of the
parentheses (starting at the deepest level of nesting first).

extending pre-defined elements
In some instances, a module adds attributes to an element. In these instances, the element
name is followed by an ampersand (&). +.

Defining the type of attribute values
When a module defines the type of an attribute value, it does so by listing the type in
parentheses after the attribute name.

Defining the legal values of attributes
When a module defines the legal values for an attribute, it does so by listing the explicit
legal values (enclosed in quotation marks), separated by verical bars |, inside of
parentheses following the attribute name.

4.1.2. Content Types

The abstract module definitions in this document define minimal, atomic content models for each
module. These minimal content models reference the elements in the module itself. They may
also reference elements in other modules upon which the abstract module depends. Finally, the
content model in many cases requires that text be permitted as content to one or more
elements. In these cases, the symbol used for text is PCDATA. This is a term, defined in the
XML 1.0 Recommendation, that refers to processed character data. A content type can also be
defined as EMPTY, meaning the element has no content in its minimal content model.

4.1.3. Attribute Types

In some instances, the types of attribute values or the explicit set of permitted values for
attributes are defined. The following attribute types (defined in the XML 1.0 Recommendation)
are used in the definitions of the Abstract Modules:

- 18 -

Modularization of XHTML4.1.2. Content Types

Attribute Type Definition

CDATA Character data

ID A document-unique identifier

IDREF A reference to a document-unique identifier

NAME A name with the same character constraints as ID above

NMTOKEN A name composed of CDATA characters but no whitespace

NMTOKENS Multiple names composed of CDATA characters separated by whitespace

PCDATA Processed character data

4.1.4. Attribute Collections

The following basic attribute sets are used on many elements. In each case where they are
used, their use is identified via their name rather than enumerating the list.

Collection
Name

Attributes in Collection

Core class (NMTOKEN), id (ID), title (CDATA)

I18N dir ("rtl" | "ltr"), xml:lang (NMTOKEN)

Events
onclick, ondblclick, onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout, onkeypress, onkeydown, onkeyup

Style style (CDATA)

Common Core + Events + Internationalization + Style

Note that the Events collection is only defined when the Intrinsic Events abstract module is
selected. Otherwise, the Events collection is empty.

Also note that the Style collection is only defined when the Stylesheet Module is selected.
Otherwise, the Style collection is empty.

4.2. Basic Modules
The basic modules are modules that are required to be present in any XHTML Family
Conforming Document Type [p.13] .

- 19 -

4.2. Basic ModulesModularization of XHTML

4.2.1. Structure Module

The Structure Module defines the major structural elements for XHTML. These elements
effectively act as the basis for the content model of many XHTML family document types. The
elements and attributes included in this module are:

Elements Attributes Minimal Content Model

body Common (Heading | Block | List)*

div Common (Heading | Block | List)*

head I18n, profile title

html I18n, version, xmlns head, body

span Common (PCDATA | Inline)*

title I18n PCDATA

This module is the basic structural definition for XHTML content. The html element acts as the
root element for all XHTML Family Document Types. The div element is added to the Block
content set and the span element is added to the Inline content set as these are defined in the
Basic Text Module below.

4.2.2. Basic Text Module

This module defines all of the basic text container elements, attributes, and their content model:

- 20 -

Modularization of XHTML4.2.1. Structure Module

Element Attributes Minimal Content Model

abbr Common (PCDATA | Inline)*

acronym Common (PCDATA | Inline)*

address Common (PCDATA | Inline)*

blockquote Common, cite (PCDATA | Heading | Block)*

br Core EMPTY

cite Common (PCDATA | Inline)*

code Common (PCDATA | Inline)*

dfn Common (PCDATA | Inline)*

em Common (PCDATA | Inline)*

h1 Common (PCDATA | Inline)*

h2 Common (PCDATA | Inline)*

h3 Common (PCDATA | Inline)*

h4 Common (PCDATA | Inline)*

h5 Common (PCDATA | Inline)*

h6 Common (PCDATA | Inline)*

kbd Common (PCDATA | Inline)*

p Common (PCDATA | Inline)*

pre Common (PCDATA | Inline)*

q Common (PCDATA | Inline)*

samp Common (PCDATA | Inline)*

strong Common (PCDATA | Inline)*

var Common (PCDATA | Inline)*

The minimal content model for this module defines some content sets:

Heading
h1 | h2 | h3 | h4 | h5 | h6

Block
address | blockquote | p | pre

- 21 -

4.2.2. Basic Text ModuleModularization of XHTML

Inline
abbr | acronym | br | cite | code | dfn | em | kbd | q | samp | strong | var

Flow
Heading | Block | Inline

4.2.3. Hypertext Module

The Hypertext Module provides the element that is used to define hypertext links to other
resources. This module supports the following element and attributes:

Element Attributes Minimal Content Model

a Common, charset, href, hreflang, rel, rev, type (PCDATA | Inline - a)*

This module adds the a element to the Inline content set of the Basic Text Module.

4.2.4. List Module

As its name suggests, the List Module provides list-oriented elements. Specifically, the List
Module supports the following elements and attributes:

Elements Attributes Minimal Content Model

dl Common (dt | dd)+

dt Common (PCDATA | Inline)*

dd Common (PCDATA | Inline)*

ol Common li+

ul Common li+

li Common (PCDATA | Inline)*

This module also defines the content set List with the minimal content model (dl | ol | ul)+ and
adds this set to the Flow content set of the Basic Text Module.

4.3. Applet Module
The Applet Module provides elements for referencing external applications. Specifically, the
Applet Module supports the following elements and attributes:

- 22 -

Modularization of XHTML4.3. Applet Module

Element Attributes
Minimal Content

Model

applet
Core, alt, archive, code, codebase, height, name, object,
width

param?

param id (ID), name (CDATA), type, value, valuetype EMPTY

When the Applet Module is used, it adds the applet element to the Inline content set of the
Basic Text Module.

4.4. Text Extension Modules
This section defines a variety of additional textual markup modules.

4.4.1. Presentation Module

This module defines elements, attributes, and a minimal content model for simple
presentation-related markup:

Element Attributes Minimal Content Model

b Common (PCDATA | Inline)*

big Common (PCDATA | Inline)*

hr Common EMPTY

i Common (PCDATA | Inline)*

small Common (PCDATA | Inline)*

sub Common (PCDATA | Inline)*

sup Common (PCDATA | Inline)*

tt Common (PCDATA | Inline)*

When this module is used, the hr element is added to the Block content set of the Basic Text
Module. In additional, the b, big, i, small, sub, sup, and tt elements are added to
the Inline content set of the Basic Text Module.

4.4.2. Edit Module

This module defines elements and attributes for use in editing-related markup:

- 23 -

4.4. Text Extension ModulesModularization of XHTML

Element Attributes Minimal Content Model

del Common (PCDATA | Inline)*

ins Common (PCDATA | Inline)*

When this module is used, the del and ins elements are added to the Inline content set of the
Basic Text Module.

4.4.3. BDO Module

The BDO module defines an element that can be used to declare the bi-directional rules for the
element’s content.

Elements Attributes Minimal Content Model

bdo Common (PCDATA | Inline)*

When this module is used, the bdo element are added to the Inline content set of the Basic Text
Module.

4.5. Forms Modules

4.5.1. Basic Forms Module

The Basic Forms Module provides the forms features found in HTML 3.2. Specifically, the Basic
Forms Module supports the following elements, attributes, and minimal content model:

Elements Attributes
Minimal Content

Model

form Common, action, method, enctype Heading | Block - form

input
Common, checked, maxlength, name, size, src, type,
value

EMPTY

select Common, multiple, name, size option+

option Common, selected, value Inline*

textarea Common, columns, name, rows PCDATA*

This module defines two content sets:

Form
form

- 24 -

Modularization of XHTML4.5. Forms Modules

Formctrl
input | select | textarea

When this module is used, it adds the Form content set to the Block content set and it adds the
Formctrl content set to the Inline content set as these are defined in the Basic Text Module.

4.5.2. Forms Module

The Forms Module provides all of the forms features found in HTML 4.0. Specifically, the Forms
Module supports:

Elements Attributes Minimal Content Model

form
Common, accept, accept-charset, action, method,
enctype

(Heading | Block - form |
fieldset)+

input
Common, accept, accesskey, alt, checked, disabled,
maxlength, name, readonly, size, src, tabindex,
type, value

EMPTY

select Common, disabled, multiple, name, size, tabindex (optgroup | option)+

option Common, disabled, label, selected, value PCDATA

textarea
Common, accesskey, columns, disabled, name,
readonly, rows, tabindex

PCDATA

button
Common, accesskey, disabled, name, tabindex,
type, value

(PCDATA | Heading | List |
Block - Form | Inline -
Formctrl)*

fieldset Common (PCDATA | legend | Flow)*

label Common, accesskey, for (PCDATA | Inline - label)*

legend Common, accesskey (PCDATA | Inline)+

optgroup Common, disabled, label option+

This module defines two content sets:

Form
form | fieldset

Formctrl
input | select | textarea | label | button

When this module is used, it adds the Form content set to the Block content set and it adds the
Formctrl content set to the Inline content set as these are defined in the Basic Text Module.

- 25 -

4.5.2. Forms ModuleModularization of XHTML

The Forms Module is a superset of the Basic Forms Module. These modules may not be used
together in a single document type.

4.6. Table Modules

4.6.1. Basic Tables Module

The Basic Tables Module provides table-related elements, but only in a limited form.
Specifically, the Basic Tables Module supports:

Elements Attributes
Minimal Content

Model

caption Common (PCDATA | Inline)*

table Common, border, cellpadding. cellspacing, summary, width caption?, tr+

td
Common, abbr, align, axis, colspan, headers, rowspan,
scope, valign

(PCDATA | Flow)*

th
Common, abbr, align, axis, colspan, headers, rowspan,
scope, valign

(PCDATA | Flow)*

tr Common, align, valign (th | td)+

When this module is used, it adds the table element to the Block content set as defined in the
Basic Text Module.

4.6.2. Tables Module

As its name suggests, the Tables Module provides table-related elements that are better able to
be accessed by non-visual user agents. Specifically, the Tables Module supports the following
elements, attributes, and content model:

- 26 -

Modularization of XHTML4.6. Table Modules

Elements Attributes Minimal Content Model

caption Common (PCDATA | Inline)*

table
Common, border, cellpadding. cellspacing,
datapagesize, frame, rules, summary, width

caption?, (col* | colgroup*), ((
thead?, tfoot?, tbody+) | (tr+))

td
Common, abbr, align, axis, colspan, headers,
rowspan, scope, valign

(PCDATA | Inline)*

th
Common, abbr, align, axis, colspan, headers,
rowspan, scope, valign

(PCDATA | Inline)*

tr Common, align, valign (td | th)+

col Common, align, span, valign, width EMPTY

colgroup Common, align, span, valign, width col*

tbody Common, align, valign tr+

thead Common, align, valign tr+

tfoot Common, align, valign tr+

When this module is used, it adds the table element to the Block content set of the Basic Text
Module.

4.7. Image Module
The Image Module provides basic image embedding, and may be used in some
implementations independently of client side image maps. The Image Module supports the
following element and attributes:

Elements Attributes Minimal Content Model

img Common, alt, height, longdesc, src, width EMPTY

When this module is used, it adds the img element to the Inline content set of the Basic Text
Module.

4.8. Client-side Image Map Module
The Client-side Image Map Module provides elements for client side image maps. It requires
that the Image Module (or another module that supports the img element) be included. The
Client-side Image Map Module supports the following elements:

- 27 -

4.7. Image ModuleModularization of XHTML

Elements Attributes Minimal Content Model

a& coords, shape n/a

area
Common, accesskey, alt, coords, href, nohref,
shape, tabindex

EMPTY

img& usemap n/a

map Common, name ((Heading | Block) | area)+

object& usemap
Note: Only when the object
module is included

When this module is used, the table element is added to the Block content set of the Basic
Text Module.

4.9. Server-side Image Map Module
The Server-side Image Map Module provides support for image-selection and transmission of
selection coordinates. It requires that the Image Module (or another module that supports the
img element) be included. The Server-side Image Map Module supports the following attributes:

Elements Attributes Minimal Content Model

img& ismap n/a

4.10. Object Module
The Object Module provides elements for general-purpose object inclusion. Specifically, the
Object Module supports:

Elements Attributes
Minimal Content

Model

object
Common, archive, classid, codebase, codetype, data,
declare, height, standby, tabindex, type, width

(PCDATA | Flow |
param)*

param id, type, value, valuetype EMPTY

When this module is used, it adds the object element to the Inline content set of the Basic Text
Module.

- 28 -

Modularization of XHTML4.9. Server-side Image Map Module

4.11. Frames Module
As its name suggests, the Frames Module provides frame-related elements. Specifically, the
Frames Module supports:

Elements Attributes
Minimal Content

Model

frameset Core, cols, rows (frame | noframes)+

frame
Core, frameborder, longdesc, marginheight, marginwidth,
noresize, scrolling, src

EMPTY

noframes Common body

a& target n/a

4.12. Iframe Module
The Iframe Module defines an element that can be used to define a base URL against which
relative URIs in the document will be resolved. The element and attribute included in this module
are:

Elements Attributes
Minimal Content

Model

iframe
Core, frameborder, height, longdesc, marginheight,
marginwidth, scrolling, src, width

Flow

When this module is used, the iframe element is added to the Block content set as defined by
the Basic Text Module.

4.13. Intrinsic Events
Intrinsic events are attributes that are used in conjunction with elements that can have specific
actions occur when certain events are performed by the user. The attributes indicated in the
following table are added to the attribute set for their respective elements ONLY when the
modules defining those elements are selected. Note also that selection of this module defines
the attribute collection Events [p.19] as described above. Attributes defined by this module are:

- 29 -

4.11. Frames ModuleModularization of XHTML

Elements Attributes Notes

a& onblur, onfocus

area& onblur, onfocus
When the Client-side Image Map module is also
used

form& onreset, onsubmit
When the Basic Forms or Forms module is
used

body& onload, onunload

label& onblur, onfocus When the Forms module is used

input&
onblur, onchange, onfocus,
onselect

When the Basic Forms or Forms module is
used

select& onblur, onchange, onfocus
When the Basic Forms or Forms module is
used

textarea&
onblur, onchange, onfocus,
onselect

When the Basic Forms or Forms module is
used

button& onblur, onfocus When the Forms module is used

4.14. Metainformation Module
The Metainformation Module defines an element that describes information within the
declarative portion of a document (in XHTML within the head element). This module includes the
following element:

Elements Attributes Minimal Content Model

meta I18n, content, http-equiv, name, scheme EMPTY

4.15. Scripting Module
The Scripting Module defines elements that are used to contain information pertaining to
executable scripts or the lack of support for executable scripts. Elements and attributes included
in this module are:

Elements Attributes Minimal Content Model

noscript Common (Heading | List | Block)+

script charset, defer, src, type PCDATA

- 30 -

Modularization of XHTML4.14. Metainformation Module

When this module is used, it adds the script and noscript elements are added to the
Block content set of the Basic Text Module.

4.16. Stylesheet Module
The Stylesheet Module enables style sheet processing. Note also that selection of this module
defines the attribute collection Style [p.19] as described above. The element and attributes
defined by this module are:

Elements Attributes Minimal Content Model

style I18n, media, title, type PCDATA

When this module is used, it adds the style element to the Block content set of the Basic Text
Module.

4.17. Link Module
The Link Module defines an element that can be used to define links to external resources.
These resources are often used to augment the user agent’s ability to process the associated
XHTML document. The element and attributes included in this module are:

Elements Attributes Minimal Content Model

link Common, charset, href, hreflang, media, rel, rev, type EMPTY

When this module is used, it adds the link element to the content model of the head element
as defined in the Structure Module.

4.18. Base Module
The Base Module defines an element that can be used to define a base URL against which
relative URIs in the document will be resolved. The element and attribute included in this module
are:

Elements Attributes Minimal Content Model

base href EMPTY

When this module is used, it adds the base element to the content model of the head element
of the Structure Module.

- 31 -

4.16. Stylesheet ModuleModularization of XHTML

- 32 -

Modularization of XHTML4.18. Base Module

A. References
This appendix is normative.

A.1. Normative References
[BUILDING]

Building XHTML Modules: W3C Working Draft, Murray Altheim, Shane P. McCarron, 9
September 1999.
See: http://www.w3.org/TR/1999/WD-xhtml-building-19990910

[HTML40]
HTML 4.0 Specification: W3C Recommendation, Dave Raggett, Arnaud Le Hors, Ian
Jacobs, 24 April 1998.
See: http://www.w3.org/TR/REC-html40

[SGML]
Information Processing -- Text and Office Systems -- Standard Generalized Markup
Language (SGML), ISO 8879:1986.
Please consult http://www.iso.ch/cate/d16387.html for information about the standard, or
http://www.oasis-open.org/cover/general.html#overview about SGML.

[XHTML1]
XHTML 1.0: The Extensible HyperText Markup Language, Steven Pemberton, et. al., 24
August 1999.
See: http://www.w3.org/TR/xhtml1

[XHTML11]
XHTML 1.1: Module-based XHTML, Murray Altheim, Shane McCarron, 16 August 1999.
See: http://www.w3.org/TR/1999/WD-xhtml11-199900910

[XML]
Extensible Markup Language (XML) 1.0: W3C Recommendation, Tim Bray, Jean Paoli, C.
M. Sperberg-McQueen, 10 February 1998.
See: http://www.w3.org/TR/REC-xml

A.2. Informative References
[CATALOG]

Entity Management: OASIS Technical Resolution 9401:1997 (Amendment 2 to TR 9401)
Paul Grosso, Chair, Entity Management Subcommittee, SGML Open, 10 September 1997.
See: http://www.oasis-open.org/html/a401.htm

[DEVDTD]
Developing SGML DTDs: From Text to Model to Markup, Eve Maler and Jeanne El
Andaloussi.
Prentice Hall PTR, 1996, ISBN 0-13-309881-8.

[STRUCTXML]
Structuring XML Documents, David Megginson. Part of the Charles Goldfarb Series on
Information Management.
Prentice Hall PTR, 1998, ISBN 0-13-642299-3.

- 33 -

A. ReferencesModularization of XHTML

http://www.phptr.com/ptrbooks/ptr_0136422993.html
http://www.phptr.com/ptrbooks/ptr_0133098818.html
http://www.oasis-open.org/html/a401.htm
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/1999/WD-xhtml11-19990910
http://www.w3.org/TR/xhtml1
http://www.oasis-open.org/cover/general.html#overview
http://www.iso.ch/cate/d16387.html
http://www.w3.org/TR/REC-html40
http://www.w3.org/TR/1999/WD-xhtml-building-19990910

[SGML-XML]
Comparison of SGML and XML: W3C Note, James Clark, 15 December 1997.
See: http://www.w3.org/TR/NOTE-sgml-xml-971215

[XLINK]
XML Linking Language (XLink): W3C Working Draft, Eve Maler and Steve DeRose, 3
March 1998.
A new XLink requirements document is expected soon, followed by a working draft update.
See: http://www.w3.org/TR/WD-xlink

[DOCBOOK]
DocBook DTD, Eve Maler and Terry Allen.
Originally created under the auspices of the Davenport Group, DocBook is now maintained
by OASIS. The Customizer’s Guide for the DocBook DTD V2.4.1 is available from this site.
See: http://www.oasis-open.org/docbook/index.html

[DUBLIN]
The Dublin Core: A Simple Content Description Model for Electronic Resources, The Dublin
Core Metadata Initiative.
See: http://purl.oclc.org/dc/

[HTML32]
HTML 3.2 Reference Specification: W3C Recommendation, Dave Raggett, 14 January
1997.
See: http://www.w3.org/TR/REC-html32

[ISO-HTML]
ISO/IEC 15445:1998 HyperText Markup Language (HTML), David M. Abrahamson and
Roger Price.
See: http://dmsl.cs.uml.edu/15445/FinalCD.html

[RDF]
Resource Description Framework (RDF): Model and Syntax Specification, Ora Lassila and
Ralph R. Swick, 19 August 1998.
See: http://www.w3.org/TR/PR-rdf-syntax

[SMIL]
Synchronized Multimedia Integration Language (SMIL) 1.0 Specification, Philipp Hoschka,
15 June 1998.
See: http://www.w3.org/TR/REC-smil

[TEI]
The Text Encoding Initiative (TEI)
See: http://www.uic.edu/orgs/tei/

[URI]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter, August 1998.
See: http://www.ietf.org/rfc/rfc2396.txt. This RFC updates RFC >1738 [URL] [p.??] and
[RFC1808] [p.??] .

[URL]
IETF RFC 1738, Uniform Resource Locators (URL), T. Berners-Lee, L. Masinter, M.
McCahill.
See: http://www.ietf.org/rfc/rfc1738.txt

- 34 -

Modularization of XHTMLA.2. Informative References

http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.uic.edu/orgs/tei/
http://www.w3.org/TR/REC-smil
http://www.w3.org/TR/PR-rdf-syntax
http://dmsl.cs.uml.edu/15445/FinalCD.html
http://www.w3.org/TR/REC-html32
http://purl.oclc.org/dc/
http://www.oasis-open.org/docbook/index.html
http://www.w3.org/TR/WD-xlink
http://www.w3.org/TR/NOTE-sgml-xml-971215

[RFC-1808]
Relative Uniform Resource Locators, R. Fielding.
See: http://www.ietf.org/rfc/rfc1808.txt

[CC/PP]
"Composite Capability/Preference Profiles (CC/PP): A user side framework for content
negotiation", F. Reynolds, J. Hjelm, S. Dawkins, S. Singhal, 30 November 1998.
This document describes a method for using the Resource Description Format (RDF) to
create a general, yet extensible framework for describing user preferences and device
capabilities. Servers can exploit this to customize the service or content provided.
Available at: http://www.w3.org/TR/NOTE-CCPP

[CSS2]
"Cascading Style Sheets, level 2 (CSS2) Specification", B. Bos, H. W. Lie, C. Lilley, I.
Jacobs, 12 May 1998.
Available at: http://www.w3.org/TR/REC-CSS2

[DOM]
"Document Object Model (DOM) Level 1 Specification", Lauren Wood et al., 1 October
1998.
Available at: http://www.w3.org/TR/REC-DOM-Level-1

[ERRATA]
"HTML 4.0 Specification Errata".
This document lists the errata for the HTML 4.0 specification.
Available at: http://www.w3.org/MarkUp/html40-updates/REC-html40-19980424-errata.html

[HTML]
"HTML 4.0 Specification", D. Raggett, A. Le Hors, I. Jacobs, 18 December 1997, revised 24
April 1998.
Available at: http://www.w3.org/TR/REC-html40

[POSIX.1]
"ISO/IEC 9945-1:1990 Information Technology - Portable Operating System Interface
(POSIX) - Part 1: System Application Program Interface (API) [C Language]", Institute of
Electrical and Electronics Engineers, Inc, 1990.

[RFC2119]
"RFC2119: Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March
1997.
Available at: http://www.ietf.org/rfc/rfc2119.txt

[RFC2376]
"RFC2376: XML Media Types", E. Whitehead, M. Murata, July 1998.
Available at: http://www.ietf.org/rfc/rfc2376.txt

[RFC2396]
"RFC2396: Uniform Resource Identifiers (URI): Generic Syntax", T. Berners-Lee, L.
Masinter, August 1998.
This document updates RFC1738 and RFC1808.
Available at: http://www.ietf.org/rfc/rfc2396.txt

[TIDY]
"HTML Tidy" is a tool for detecting and correcting a wide range of markup errors prevalent
in HTML. It can also be used as a tool for converting existing HTML content to be well
formed XML. Tidy is being made available on the same terms as other W3C sample code,

- 35 -

A.2. Informative ReferencesModularization of XHTML

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/TR/REC-html40
http://www.w3.org/MarkUp/html40-updates/REC-html40-19980424-errata.html
http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/REC-CSS2
http://www.w3.org/TR/NOTE-CCPP
http://www.ietf.org/rfc/rfc1808.txt

i.e. free for any purpose, and entirely at your own risk.
It is available from: http://www.w3.org/Status.html#TIDY

[XMLNAMES]
"Namespaces in XML", T. Bray, D. Hollander, A. Layman, 14 January 1999.
XML namespaces provide a simple method for qualifying names used in XML documents
by associating them with namespaces identified by URI.
Available at: http://www.w3.org/TR/REC-xml-names

[XMLSTYLE]
"Associating stylesheets with XML documents Version 1.0", J. Clark, 14 January 1999.
This document describes a means for a stylesheet to be associated with an XML document
by including one or more processing instructions with a target of xml-stylesheet in the
document’s prolog.
Available at: http://www.w3.org/TR/PR-xml-stylesheet

[FRMWRK]
"Protocol-independent content negotiation framework", Klyne G., 16 February 1999.
See: http://www.ietf.org/internet-drafts/draft-ietf-conneg-requirements-02.txt

[SYNTAX]
"A syntax for describing media feature sets", Klyne G., 14 December 1998.
See http://www.ietf.org/internet-drafts/draft-ietf-conneg-feature-syntax-04.txt

[XMLMOD]
"XML Modularization of HTML 4.0", M. Altheim, Sun Microsystems, 2 February 1999
See http://www.altheim.com/specs/xhtml/NOTE-xhtml-modular.html

[REC FRAG]
XML Fragment Interchange - Working Draft Paul Grosso, et. al., 3 March, 1999
See: http://www.w3.org/TR/WD-xml-fragment

[TC9601]
SGML standard Technical Corrigendum 9601 Paul Grosso??
See:

[MSIE5]
Microsoft Internet Explorer Version 5.0
See: http://www.microsoft.com/windows/ie/ie5/default.asp

[XSCHEMA]
XML Schema Requirements - W3C Note Ashok Malhotra, et. al., 15 February 1999
See: http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215

- 36 -

Modularization of XHTMLA.2. Informative References

http://www.w3.org/TR/1999/NOTE-xml-schema-req-19990215
http://www.microsoft.com/windows/ie/ie5/default.asp
http://www.w3.org/TR/WD-xml-fragment
http://www.altheim.com/specs/xhtml/NOTE-xhtml-modular.html
http://www.ietf.org/internet-drafts/draft-ietf-conneg-feature-syntax-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-conneg-requirements-02.txt
http://www.w3.org/TR/PR-xml-stylesheet
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/Status.html#TIDY

B. Design Goals
This appendix is informative

There are six major design goals for the modularization framework for XHTML:

[G1] Provide a means for the W3C and third parties to integrate XHTML into other XML
languages.
[G2] Provide a means for the W3C to extend XHTML with new or optional features.
[G3] Provide a means for third parties to extend XHTML with domain-specific features.
[G4] Provide a means for third parties to integrate other XML languages into XHTML.
[G5] Improve the ability to create a close approximation to the HTML 4.0 DTDs.
[G6] Improve ease-of-use for DTD developers.

B.1. Requirements
The design goals listed in the previous section lead to a large number of requirements for the
modularization framework. These requirements, summarized in this section, can be further
classified according to the major features of the framework to be described.

B.1.1. Granularity

Collectively the requirements in this section express the desire that the modules defined within
the framework hit the right level of granularity:

[R1.1] Abstract modules should promote and maintain content portability.
[R1.2] Abstract modules should promote platform profile standardization.
[R1.3] Abstract modules should be large enough to promote interoperability.
[R1.4] Abstract modules should be small enough to avoid the need for subsets.
[R1.5] Abstract modules should collect elements with similar or related semantics.
[R1.6] Abstract modules should separate elements with dissimilar or unrelated semantics.
[R1.7] Modules should be small enough to allow single element document type modules.

B.1.2. Composibility

The composibility requirements listed here are intended to ensure that the modularization
framework be able to express the right set of target modules required by the communities that
will be served by the framework:

[R2.1] The module framework should allow construction of abstract modules for XHTML 1.0.
[R2.2] The module framework should allow construction of abstract modules that closely
approximate HTML 4.0.
[R2.3] The module framework should allow construction of abstract modules for other W3C
Recommendations.
[R2.4] The module framework should allow construction of abstract modules for other XML

- 37 -

B. Design GoalsModularization of XHTML

document types.
[R2.5] The module framework should allow construction of abstract modules for a wide
range of platform profiles.

B.1.3. Ease of Use

The modularization framework will only receive widespread adoption if it describes mechanisms
that make it easy for our target audience to use the framework:

[R3.1] The module framework should make it easy for document type designers to subset
and extend XHTML abstract modules.
[R3.2] The module framework should make it easy for document type designers to create
abstract modules for other XML document types.
[R3.3] The module framework should make it easy for document authors to validate
elements from different abstract modules.

B.1.4. Compatibility

The intent of this document is that the modularization framework described here should work
well with the XML and other standards being developed by the W3C Working Groups:

[R4.1] The module framework should strictly conform to the XML 1.0 Recommendation.
[R4.2] The module framework should be compatible with the XML linking specification.
[R4.3] The module framework should be compatible with the XML stylesheet specification.
[R4.4] The module framework should be able to adopt new W3C recommendations where
appropriate.
[R4.5] The module framework should not depend on W3C work in progress.
[R4.6] The module framework should not depend on work done outside W3C.

B.1.5. Conformance

The effectiveness of the framework will also be measured by how easy it is to test the behavior
of modules developed according to the framework, and to test the documents that employ those
modules for validation:

[R5.1] It should be possible to validate documents constructed using elements and
attributes from abstract modules.
[R5.2] It should be possible to explicitly describe the behavior of elements and attributes
from abstract modules.
[R5.3] It should be possible to verify the behavior of elements and attributes from abstract
modules.
[R5.4] It should be possible to verify a compound document type as an XHTML document
type.
[R5.5] Modules defined in accordance with the methods in this document shall not duplicate
the names of elements or parameter entities defined in XHTML modules.

- 38 -

Modularization of XHTMLB.1.3. Ease of Use

	 Modularization of XHTML�
	 W3C Working Draft 10 September 1999

	 Abstract
	 Status of this document
	 Quick Table of Contents
	 Full Table of Contents
	1. Introduction
	 1.1. What is XHTML?
	1.2. What is XHTML Modularization?
	1.3. Why Modularize XHTML?
	1.3.1. Abstract modules
	 1.3.2. DTD modules
	1.3.3. Hybrid document types
	 1.3.4. Validation

	2. Terms and Definitions
	3. Conformance Definition
	3.1. XHTML Family Document Type Conformance
	3.2. XHTML Family Document Conformance
	 3.3. XHTML Family User Agent Conformance
	 3.4. Naming Rules
	3.4.1. Rationale for Naming Rules

	4. XHTML Abstract Modules
	4.1. Common Characteristics of Modules
	4.1.1. Syntactic Conventions
	4.1.2. Content Types
	 4.1.3. Attribute Types
	 4.1.4. Attribute Collections

	4.2. Basic Modules
	4.2.1. Structure Module
	4.2.2. Basic Text Module
	4.2.3. Hypertext Module
	4.2.4. List Module

	4.3. Applet Module
	4.4. Text Extension Modules
	 4.4.1. Presentation Module
	4.4.2. Edit Module
	4.4.3. BDO Module

	4.5. Forms Modules
	4.5.1. Basic Forms Module
	4.5.2. Forms Module

	4.6. Table Modules
	 4.6.1. Basic Tables Module
	4.6.2. Tables Module

	4.7. Image Module
	4.8. Client-side Image Map Module
	4.9. Server-side Image Map Module
	4.10. Object Module
	4.11. Frames Module
	4.12. Iframe Module
	4.13. Intrinsic Events
	4.14. Metainformation Module
	4.15. Scripting Module
	4.16. Stylesheet Module
	4.17. Link Module
	4.18. Base Module

	A. References
	A.1. Normative References
	A.2. Informative References

	B. Design Goals
	 B.1. Requirements
	B.1.1. Granularity
	 B.1.2. Composibility
	B.1.3. Ease of Use
	 B.1.4. Compatibility
	B.1.5. Conformance

