
Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 1

Proposal for a Drag and Drop subsystem for
the Java Foundation Classes

(Draft: 0.95).
Laurence P. G. Cable.

THIS IS A DRAFT SPECIFICATION, IT IS THEREFORE SUBJECT TO CHANGE,
AND FURTHERMORE IMPLIES NO INTENT ON BEHALF OF JavaSoft TO
DELIVER SUCH BEHAVIOR

Send comments to java-beans@java.sun.com.

Note:

The API described herein is partially implemented in JDK1.2 Beta2
but will not be completely available until Beta3.

1.0 Requirements

This proposal is based upon an (incomplete) earlier work undertaken in 1996 to specify a
Uniform Data Transfer Mechanism, Clipboard, and Drag and Drop facilities for AWT.

The AWT implementation in JDK1.1 introduced the Uniform Data Transfer Mechanism
and the Clipboard protocol. This draft proposal defines the API for the Drag and Drop
facilities for JDK1.2 based upon, but extending these 1.1 UDT API’s.

The primary requirements that this proposal addresses, are:

1. Provision of a platform independent Drag and Drop facility for Java GUI clients

 implemented through AWT and JFC classes.

2. Integration with platform dependent Drag and Drop facilities, permitting Java

 clients to be able to participate in DnD operation with native applications using:

• OLE (Win32) DnD

• CDE/Motif dynamic protocol

• MacOS

3. Support for 100% pure JavaOS/Java implementation.

4. Leverages the existingjava.awt.datatransfer.* package to enable the transfer of

 data, described by an extensible data type system based on the MIME standard.

5. Does not preclude the use of “accessibility” features where available.

6. Extensible to support diverse input devices.

The proposal derives from the previous work mentioned above, but incorporates signifi-
cant differences from that original work as a result of the advent of the JavaBeans event

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 2

model, Lightweight Components, and an increasing understanding of the cross-platform
integration and interoperability issues.

2.0 API

2.1 Overview

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface
systems that provides a mechanism to transfer information between entities associated
with a presentation element in the GUI. Normally driven by the physical gesturing of a
human user, Drag and Drop provides both a mechanism to enable feedback regarding the
possible outcome of any subsequent data transfer to the user during navigation over the
presentation elements in the GUI, and the facilities to provide for any subsequent data
transfer.

A typical Drag and Drop operation can be decomposed into the following states (not
entirely sequentially):

• A DragSource comes into existence, associated with some presentation element (Com-
ponent) in the GUI, and some potentiallyTransferable data.

• 1 or moreDropTarget(s) come into/go out of existence, associated with presentation
elements in the GUI (Components), potentially capable of consumingTransferable
data.

• A human user gestures to initiate a Drag and Drop operation on aComponent associ-
ated with aDragSource.

Note: Although the body of this document consistently refers to the stimulus for a drag
and drop operation being a physical gesture by a human user this does not preclude a
programmatically driven DnD operation given the appropriate implementation of a
DragSource.

• TheDragSource initiates the Drag and Drop operation on behalf of the user, perhaps
animating the GUICursor and/or rendering anImage of the item(s) that are the subject
of the operation.

• As the user gestures navigate overComponents in the GUI associated withDropTar-
get(s), theDragSource receives notifications in order to provide “Drag Over” feedback
effects, and theDropTarget(s) receive notifications in order to provide “Drag Under”
feedback effects.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the
geometry of GUIComponent(s), possibly resulting in the logical “Drag” cursor enter-
ing, crossing, and subsequently leavingComponents associatedDropTarget(s).

TheDragSource object manifests “Drag Over” feedback to the user, in the typical case
by animating the GUICursor associated with the logical cursor.

DropTarget objects manifest “Drag Under” feedback to the user, in the typical case, by
rendering animations into their associated GUIComponent(s) under the GUICursor.

• The determination of the feedback effects, and the ultimate success or failure of the
data transfer, should one occur, is parameterized as follows:

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 3

• By the transfer “operation”:Copy, Move or Reference(link).

• By the intersection of the set of data types provided by theDragSource and the set of
data types comprehensible by theDropTarget.

• When the user terminates the drag operation, normally resulting in a successful Drop,
both theDragSource andDropTarget receive notifications that include, and result in
the transfer of, the information associated with theDragSourcevia aTransferable
object.

The remainder of this document details the proposed API changes to support this model.

2.2 Drag Source

TheDragSource is the entity responsible for the initiation of the Drag and Drop operation:

2.2.1 TheDragSource definition

TheDragSource and associated constant interfaces are defined as follows:

TheDnDConstants class defines the operations that may be applied to the subject of the
transfer:

public class java.awt.dnd.DnDConstants {

public static int ACTION_NONE= 0x0;

public static int ACTION_COPY= 0x1;

public static int ACTION_MOVE= 0x2;

public static int ACTION_COPY_OR_MOVE= ACTION_COPY |

ACTION_MOVE;

public static int ACTION_REFERENCE = 0x40000000;

}

public class java.awt.dnd.DragSource {

 public static Cursor getDefaultCopyDropCursor();

 public static Cursor getDefaultMoveDropCursor();

 public static Cursor getDefaultLinkDropCursor();

 public static Cursor getDefaultCopyNoDropCursor();

 public static Cursor getDefaultMoveNoDropCursor();

 public static Cursor getDefaultLinkNoDropCursor();

public static DragSource getDefaultDragSource();

public void

 startDrag(Component c,

 AWTEvent trigger,

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 4

 int actions,

 Cursor dragCursor,

 Image dragImage,

 Point dragImageOffset,

 Transferable transferable,

 DragSourceListener dsl)

 throws InvalidDnDOperationException;

protected DragSourceContext

createDragSourceContext(

DragSourceContextPeer dscp,

Component c,

int actions,

Cursor dragCursor,

Image dragImage,

Point dragImageOffset,

Transferable transferable,

DragSourceListener dsl

);

public FlavorMap getFlavorMap();

}

TheDragSource may be used in a number of scenarios:

• 1 default instance per JVM for the lifetime of that JVM. (defined by this spec)

• 1 instance per class of potential Drag Initiator object (e.gTextField). [implementation
dependent]

• 1 per instance of a particularComponent, or application specific object associated with
aComponent instance in the GUI. [Implementation dependent]

• some other arbitrary association. [implementation dependent]

 A controlling object, the Drag Initiator, shall obtain aDragSource instance either prior to,
or at the time a users gesture, effecting an associatedComponent, in order to process the
operation.

The initial interpretation of the users gesture, and the subsequent starting of the Drag oper-
ation are the responsibility of the implementingComponent, or associated controlling
entity.

When a gesture occurs, theDragSource’s startDrag() method shall be invoked in order to
cause processing of the users navigational gestures and delivery of Drag and Drop proto-
col notifications.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 5

In order to start a drag operation the caller of thestartDrag() method shall provide the fol-
lowing parameters:

• TheComponent that received theAWTEvent that was interpreted as the starting gesture.

• TheAWTEvent itself that was interpreted as the starting gesture.

• The Drop actions that may be performed; the union ofACTION_COPY,
ACTION_MOVE, andACTION_REFERENCE, as appropriate.

• A Cursor representing the initial “Drag Over” feedback for the operation(s) specified.
(This shall be aCursor that provides “No Drop” visual feedback to the user).

• An (optional)Image to visually represent the item, or item(s) that are the subject(s) of
the operation.

On platforms that can support this feature, a “Drag” image may be associated with the
operation to enhance the fidelity of the “Drag Over” feedback. This image would typi-
cally be a small “iconic” representation of the object, or objects being dragged, and
would be rendered by the underlying system, tracking the movement of, and coincident
with, but typically in addition to theCursor animation.

Where this facility is not available, or where the image is not of a suitable type to be
rendered by the underlying system, this parameter is ignored and onlyCursor “Drag
Over” animation results, so applications should not depend upon this feature.

• Where anImage is provided; aPoint (in the co-ordinate space of theComponent)spec-
ifying the initial origin of thatImage in theComponent for the purposes of initiating
“Drag Over” animation of thatImage.

• A Transferable that describes the variousDataFlavor(s) that represent the subject(s) of
any subsequent data transfer that may result from a successful Drop.

TheTransferableinstance associated with theDragSource at the start of the Drag oper-
ation, represent the object(s) or data that are the operand(s), or the subject(s), of the
Drag and Drop operation, that is the information that will subsequently be passed from
theDragSource to theDropTargetas a result of a successful Drop on theComponent
associated with thatDropTarget.

Note that multiple (collections) of either homogeneous, or heterogeneous, objects may
be subject of a Drag and Drop operation, by creating a container object, that is the sub-
ject of the transfer, and implementsTransferable. However it should be noted that since
none of the targeted native platforms systems support a standard mechanism for
describing and thus transferring such collections it is not possible to implement such
transfers in a transparent, or platform portable fashion.

• A DragSourceListener instance, which will subsequently receive events notifying it of
changes in the state of the ongoing operation in order to provide the “Drag Over” feed-
back to the user.

As stated above, the primary role of thestartDrag() method is to initiate a Drag on behalf
of the user. In order to accomplish this, thestartDrag() method must create aDragSource-
Context instance to track the operation itself, and more importantly it must initiate the
operation itself in the underlying platform implementation. In order to accomplish this, the
DragSource must first obtain aDragSourceContextPeer from the underlying system (usu-
ally via an invocation ofjava.awt.Toolkit.createDragSourceContextPeer() method) and
subsequently associate this newly createdDragSourceContextPeer (which provides a plat-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 6

form independent interface to the underlying systems capabilities) with aDragSource-
Context.ThestartDrag() method invokes thecreateDragSourceContext() method to
instantiate an appropriateDragSourceContext and associate theDragSourceContextPeer.

If the Drag and Drop System is unable to initiate a Drag operation for some reason the
startDrag() method shall throw ajava.awt.dnd.InvalidDnDOperationException to signal
such a condition. Typically this exception is thrown when the underlying platform system
is either not in a state to initiate a Drag, or the parameters specified are invalid.

Note that during the Drag neither the set of operations the source, nor the set ofDataFla-
vors exposed by theTransferable at the start of the Drag operation may change for the
duration of the operation, in other words the operation(s) and data are constant for the
duration of the operation with respect to theDragSource.

For security reasons the caller of thestartDrag() method is required to have the AWTPer-
mission “startDrag “, invoking this method without such permission shall result in a
SecurityException being thrown.

ThegetFlavorMap() method is used by the underlying system to obtain aFlavorMap
object in order to map theDataFlavors exposed by theTransferable to data type names of
the underlying DnD platform. [see later for details of theFlavorMap]

2.2.2 TheDragSourceContext Definition

As a result of aDragSource’s startDrag() method being successfully invoked an instance
of theDragSourceContext class is created. This instance is responsible for tracking the
state of the operation on behalf of theDragSource and dispatching state changes to the
DragSourceListener.

TheDragSourceContextclass is defined as follows:

public class DragSourceContext implements DragSourceListener
{

protected DragSourceContext(

DragSource ds,

DragSourceContextPeerdscp,

int actions,

Cursor dragCursor,

Image dragImage,

Point dragOffset,

Transferable transferable,

DragSourceListener dsl

);

public DragSource getDragSource();

public Component getComponent();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 7

public AWTEvent getTrigger();

public Image getDragImage();

public Point getDragImageOffset();

public int getSourceActions();

Cursor getCursor();

void setCursor(Cursor Cursor)

throws InvalidDnDOperationException;

void cancelDrag() throws InvalidDnDOperationException;

void addDragSourceListener(DragSourceListener dsl)

throws TooManyListenersException;

void removeDragSourceListener(DragSourceListener dsl);

}

Note that theDragSourceContext itself implementsDragSourceListener, this is to allow
the platform peer, theDragSourceContextPeer instance, created by theDragSource, to
notify theDragSourceContext of changes in state in the ongoing operation, and thus
allows theDragSourceContext to interpose itself between the platform and theDrag-
SourceListener provided by the initiator of the operation.

The state machine the platform exposes, with respect to the source, or initiator of the Drag
and Drop operation is detailed below:

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 8

Notifications of changes in state with respect to the initiator during a Drag and Drop oper-
ation, as illustrated above, are delivered from theDragSourceContextPeer,to the appropri-
ateDragSourceContext, which delegates notifications, via a unicast JavaBeans compliant
EventListener subinterface, to an arbitrary object that implementsDragSourceListener
registered with theDragSource via startDrag().

The primary responsibility of theDragSourceListener is to monitor the progress of the
users navigation during the Drag and Drop operation and provide the “Drag-Over” effects
feedback to the user. Typically this is accomplished via changes to the “Drag Cursor”.

EveryDragSource object has 2 logical cursor states associated with it:

• TheDrop Cursor, the cursor displayed when dragging over a validDropTarget.

• TheNoDrop Cursor, the cursor displayed when dragging over everything else (the ini-
tial state of the cursor at the start of a Drag).

The state of theCursor may be modified by calling thesetCursor() method of theDrag-
SourceContext.

2.2.3 TheDragSourceListener Definition

TheDragSourceListener interface is defined as follows:

public interface java.awt.dnd.DragSourceListener

extends java.util.EventListener {

void dragEnter (DragSourceDragEvent dsde);

void dragOver (DragSourceDragEvent dsde);

void dragGestureChanged(DragSourceDragEvent dsde);

ds.startDrag()*

dsl.dragExit()*

dsl.dragEnter()*#

dsl.dragOver()*#

dsl.dragDropEnd()

ds = DragSource

dsl = DragSourceListener

dsl.dragGestureChanged()#(*) <next>

dc.cancelDrag()
dc = DragSourceContext

(#)

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 9

void dragExit (DragSourceEvent dse);

void dragDropEnd (DragSourceDropEvent dsde);

}

As the drag operation progresses, theDragSourceListener’sdragEnter(), dragOver(), and
dragExit() methods shall be invoked as a result of the users navigation of the logical
“Drag” cursor’s location intersecting the geometry of GUIComponent(s) with associated
DropTarget(s). [See below for details of theDropTarget’s protocol interactions].

TheDragSourceListener’s dragEnter() method is invoked when the following conditions
are true:

• The logical cursor’s hotspot initially intersects a GUIComponent’s visible geometry.

• ThatComponent has an activeDropTarget associated.

• TheDropTarget’s registeredDropTargetListener dragEnter() method is invoked and
returns successfully.

• The registeredDropTargetListenerinvokes theDropTargetDragEvent’s acceptDrag()
method to accept the Drag based upon interrogation of the source’s potential Drop
actions and available data types (DataFlavors).

TheDragSourceListener’s dragOver() method is invoked when the following conditions
are true:

• The cursor’s logical hotspot has moved but still intersects the visible geometry of the
Component associated with the previousdragEnter() invocation.

• ThatComponent still has aDropTarget associated.

• ThatDropTarget is still active.

• TheDropTarget’s registeredDropTargetListener dragOver() method is invoked and
returns successfully.

• TheDropTarget does not reject the drag viarejectDrag().

TheDragSourceListener’s dragExit() method is invoked when one of the following condi-
tions is true:

• The cursor’s logical hotspot no longer intersects the visible geometry of theComponent
associated with the previousdragEnter() invocation.

Or:

• TheComponent that the logical cursor’s hotspot intersected that resulted in the previ-
ousdragEnter() invocation, no longer has an activeDropTarget (or DropTargetLis-
tener) associated.

Or:

• The currentDropTarget’s DropTargetListener has invokedrejectDrag() since the last
dragEnter() or dragOver() invocation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 10

TheDragSourceListener’s dragGestureChanged() method is invoked when the state of the
input device(s), typically the mouse buttons or keyboard modifiers, that the user is inter-
acting with in order to preform the Drag operation, changes.

ThedragDropEnd() method is invoked to signify that the operation is completed. The
isDropAborted() andisDropSuccessful() methods of theDragSourceDropEvent can be
used to determine the termination state. ThegetDropAction() method returns the operation
that theDropTarget selected (via theDropTargetDropEvent acceptDrop() parameter) to
apply to the Drop operation.1

Once this method is complete theDragSourceContext and the associated resources are
invalid.

2.2.4 TheDragSourceEvent Definition

TheDragSourceEvent class is the rootEvent class for all events pertaining to the Drag-
Source, and is defined as follows:

public class java.awt.dnd.DragSourceEvent

 extends java.util.EventObject {

public DragSourceEvent(DragSourceContext dsc);

public DragSourceContext getDragSourceContext();

};

An instance of this event is passed to theDragSourceListener dragExit() method.

2.2.5 TheDragSourceDragEvent Definition

TheDragSourceDragEvent class is defined as follows:

public class java.awt.dnd.DragSourceDragEvent

 extends DragSourceEvent {

public int getTargetActions();

public int getGestureModifiers();

public boolean isDropTargetLocal();

}

1. It would be nice to design an API that would allow theDragSource to be notified of theDropTarget’s
selected operation before the DropTarget invokes the sourceTransferable’s getTransferData() method,
sadly however, OLE’s bass-ackwards DnD protocol forces the above design on us where the operation is
reported after it has occurred, this makes life for the source implementor harder when supporting certain
“Link” semantics.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 11

An instance of the above class is passed to aDragSourceListener’s dragEnter(),
dragOver(),and dragGestureChanged()methods.

ThegetDragSourceContext() method returns theDragSourceContext associated with the
current Drag and Drop operation.

ThegetTargetActions()method returns the drop actions, supported by, and returned from
the currentDropTarget (if any in the case of dragGestureChanged()).

ThegetGestureModifiers() returns the current state of the input device modifiers, usually
the mouse buttons and keyboard modifiers, associated with the users gesture.

The isDropTargetLocal() method returnstrue if the currentDropTarget is contained
within the same JVM as theDragSource, andfalse otherwise. This information can be
useful to the implementor of theDragSource’s Transferable in order to implement certain
local optimizations.

2.2.6 TheDragSourceDropEvent Definition

TheDragSourceDropEvent class is defined as follows:

public public class java.awt.dnd.DragSourceDropEvent

 extends java.util.EventObject {

public DragSourceDropEvent(DragSourceContext dsc);

public DragSourceDropEvent(DragSourceContext dsc,

 int action,

 boolean success);

public boolean isDropAborted();

public boolean isDropSuccessful();

public int getDropAction();

}

An instance of the above class is passed to aDragSourceListener’s dragDropEnd()
method. This event encapsulates the termination state of the Drag and Drop operation for
theDragSource.

If the Drop occurs, then the participatingDropTarget will signal the success or failure of
the data transfer via theDropTargetContext’s dropComplete() method, this status is made
availlable to the initiator via theisDropSuccessful() method. The operation that the desti-
nation DropTarget selected to perform on the subject of the Drag (passed by theDropTar-
get’s acceptDrop() method) is returned via thegetDropAction() method.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 12

If the Drag operation was aborted for any reason prior to a Drop occurring, for example if
the users ends the gesture outwith aDropTarget, or if theDropTarget invokesrejectDrop()
, theisDropAborted() method will returnfalse , otherwisetrue.

2.3 Drop Target

2.3.1 java.awt.Component additions for DropTarget (de)registration.

TheJava.awt.Component class has two additional methods added to allow the (dis)associ-
ation with aDropTarget.In particular:

public class java.awt.Component /* ... */ {

// ...

public synchronized

void setDropTarget(DropTarget dt);

public synchronized

DropTarget getDropTarget(DropTarget df);

//

}

To associate aDropTarget with aComponent one may invoke either;DropTarget.setCom-
pononent() orComponent.setDropTarget() methods. Thus conforming implementations of
both methods are required to guard against mutual recursive invocations.

To disassociate aDropTarget with aComponent one may invoke either;DropTarget.set-
Compononent(null) or Component.setDropTarget(null) methods.

Conformant implementations of both setter methods inDropTarget andComponent
should be implemented in terms of each other to ensure proper maintenance of each
other’s state.

ThesetDropTarget() method throwsIllegalArgumentException if theDropTarget actual
parameter is not suitable for use with this class/instance ofComponent. It may also throw
UnsupportedOperationException if, for instance, theComponent does not support exter-
nal setting of aDropTarget.

A caller of thesetDropTarget() method requires theAWTPermission:“setDropTar-
get ”, if the caller does not have this permission thensetDropTarget() will throw aSecuri-
tyException.

2.3.2 TheDropTarget Definition

A DropTarget encapsulates all of the platform-specific handling of the Drag and Drop pro-
tocol with respect to the role of the recipient or destination of the operation.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 13

A singleDropTarget instance may typically be associated with any arbitrary instance of
java.awt.Component.Establishing such a relationship exports the associatedComponent’s
geometry to the client desktop as being receptive to Drag and Drop operations when the
coordinates of the logical cursor intersects that visible geometry.

TheDropTarget class is defined as follows:

public class java.awt.dnd.DropTarget

 implements DropTargetListener, Serializable {

public DropTarget();

public DropTarget(Component c);

public DropTarget(Component c, DropTargetListener dsl);

public Component getComponent();

public void setComponent(Component c);

public DropTargetContext getDropTargetContext();

public void

 addDropTargetListener(DropTargetListener dte)

 throws TooManyListenersException;

public void

 removeDropTargetListener(DropTargetListener dte);

public void setActive(boolean active);

public boolean isActive();

public FlavorMap getFlavorMap();

protected DropTargetContext createDropTargetContext();

public void addNotify(ComponentPeer cp);

public void removeNotify(ComponentPeer cp);

}

ThesetComponent() method throwsIllegalArgumentException if theComponent actual
parameter is not appropriate for use with this class/instance ofDropTarget, and may also
throwUnsupportedOperationException if the Component specified disallows the external
setting of aDropTarget.

For security reasons, callers ofsetComponent() require theAWTPermission “set-
DropTarget ” otherwise aSecurityException shall be thrown.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 14

TheaddDropTargetListener() andremoveDropTargetListener() methods allow the unicast
DropTargetListener to be changed.

ThesetActive() andisActive() methods allow theDropTarget to be made active or other-
wise and for its current state to be determined.

ThegetFlavorMap() methods is used to obtain theFlavorMap associated with this
DropTarget for the purposes of mapping any platform dependent type names to/from their
corresponding platform independentDataFlavors.

ThecreateDropTargetContext() method is typically only invoked to provide the underly-
ing platform dependent peer with an instantiation of a newDropTargetContext as a Drag
operation initially encounters theComponent associated with theDropTarget. If no
DropTargetContext is currently associated with aDropTarget, a permitted side-effect of an
invocation ofgetDropTargetContext() is to instantiate a newDropTargetContext.

TheaddNotify() andremoveNotify() methods are only called fromComponent to notify
theDropTarget of theComponent’s (dis)association with itsComponentPeer.

2.3.3 TheDropTargetContext Definition

As the logical cursor associated with an ongoing Drag and Drop operation first intersects
the visible geometry of aComponent with an associatedDropTarget, theDropTargetCon-
text associated with theDropTarget is the interface, through which, access to control over
state of the recipient protocol is achieved from theDropTargetListener.

TheDropTargetContext interface is defined as follows:

public class DropTargetContext {

public DropTarget getDropTarget();

public Component getComponent();

public DataFlavor[] getDataFlavors();

public void getTransferable()

throws InvalidDnDOperationException;

public void dropComplete(boolean success)

throws InvalidDnDOperationException;

protected void acceptDrop(int action);

protected void rejectDrop();

public void addNotify(DropTargetContextPeer dtcp);

public void removeNotify();

protected Transferable

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 15

createTransferableProxy(Transferable t,

 boolean isLocal

);

}

ThegetDataFlavors() method returns an array of theDataFlavors available from the
DragSource.

ThegetTransferable() method returns aTransferable (not necessarily the one theDrag-
Source registered, it may be a proxy, and certainly shall be in the inter-JVM case) to
enable data transfers to occur via itsgetTransferData() method. Note that it is illegal to
invokegetTransferData() without first invoking anacceptDrag().

TheaddNotify() andremoveNotify() methods are exclusively called by the underlying plat-
form’s DropTargetContextPeer in order to notify theDropTargetContext that a DnD oper-
ation is occurring/ceasing on theDropTargetContext and associatedDropTarget.

ThecreateTransferableProxy() method enables aDropTargetContext implementation to
interpose aTransferable between theDropTargetListener and theTransferable provided
by the caller, which is typically the underlying platformDropTargetContextPeer.

2.3.4 TheDropTargetListener Definition

Providing the appropriate “Drag-under” feedback semantics, and processing of any subse-
quent Drop, is enabled through theDropTargetListener asssociated with aDropTarget.

TheDropTargetListener determines the appropriate “Drag-under” feedback and its
response to theDragSource regarding drop eligibility by inspecting the sources suggested
actions and the data types available.

A particularDropTargetListener instance may be associated with aDropTarget via add-
DropTargetListener() and removed viaremoveDropTargetListener() methods.

public interface java.awt.dnd.DropTargetListener

 extends java.util.EventListener {

void dragEnter (DropTargetDragEvent dtde);

void dragOver (DropTargetDragEvent dtde);

void dragExit (DropTargetDragEvent dtde);

void drop (DropTargetDropEvent dtde);

}

ThedragEnter() method of theDropTargetListener is invoked when the hotspot of the log-
ical “Drag” Cursor intersects a visible portion of theDropTarget’s associatedCompo-
nent’s geometry. TheDropTargetListener, upon receipt of this notification, shall
interrogate the operations or actions, and the types of the data (DataFlavors) as supplied
by theDragSource to determine the appropriate actions and “Drag-under” feedback to
respond with invocation of eitheracceptDrag() or rejectDrag().

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 16

ThedragOver() method of theDropTargetListener is invoked while the hotspot of the log-
ical “Drag” Cursor, in motion, continues to intersect a visible portion of theDropTarget’s
associatedComponent’s geometry. TheDropTargetListener, upon receipt of this notifica-
tion, shall interrogate the operation “actions” and the types of the data as supplied by the
DragSource to determine the appropriate “actions” and “Drag-under” feedback to respond
with an invocation of eitheracceptDrag() or rejectDrag().

The getCursorLocation() method return the current co-ordinates, relative to the associated
Component’s origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActions() method return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY, orACTION_REFERENCE) theDragSource asso-
ciates with the current Drag and Drop gesture.

ThedragExit() method of theDropTargetListener is invoked when the hotspot of the logi-
cal “Drag” Cursor ceases to intersect a visible portion of theDropTarget’s associated
Component’s geometry. TheDropTargetListener, upon receipt of this notification, shall
undo any “Drag-under” feedback effects it has previously applied.

Thedrop() method of theDropTargetListener is invoked as a result of theDragSource
invoking itscommitDrop() method. TheDropTargetListener, upon receipt of this notifica-
tion, shall perform the operation specified by the return value of thegetSourceActions()
method on theDropTargetDropEvent object, upon theTransferable object returned from
thegetTransferable()method, and subsequently invoke thedropComplete() method of the
associatedDropTargetContext to signal the success, or otherwise, of the operation.

2.3.5 TheDropTargetDragEvent and DropTargetDropEvent Definitions

TheDropTargetEvent andDropTargetDragEvent are defined as follows:

public abstract class java.awt.dnd.DropTargetEvent

 extends java.util.EventObject 1 {

public DropTargetContext getDropTargetContext();

}

A DropTargetEvent is passed to theDropTargetListener’s dragExit() method.

public class java.awt.dnd.DropTargetDragEvent

 extends java.awt.dnd.DropTargetEvent {

public DataFlavor[] getDataFlavors();

Point getCursorLocation();

public int getSourceActions();

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 17

public void acceptDrag(int operations);

public void rejectDrag();

public boolean isTransferableLocal();

}

A DropTargetDragEvent is passed to theDropTargetListener’s dragEnter() and
dragOver()methods.

The getCursorLocation() method return the current co-ordinates, relative to the associated
Component’s origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActions() method return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY, orACTION_REFERENCE) theDragSource asso-
ciates with the current Drag and Drop gesture.

ThegetDataFlavors() method returns the available type(s), in descending order of prefer-
ence of the data that is the subject of the Drag and Drop operation.

TheDropTargetDropEvent is defined as follows:

public class java.awt.dnd.DropTargetDropEvent

 extends java.awt.dnd.DropTargetEvent {

Point getCursorLocation();

public int getSourceActions();

public void acceptDrop(int dropAction);

public void rejectDrop();

public boolean isTransferableLocal();

public Transferable getTransferable();

}

A DropTargetDropEvent is passed to theDropTargetListener’s drop() method, as the Drop
occurs (initiated by theDragSource via an invocation ofcommitDrop()). TheDropTarget-
DropEvent provides theDropTargetListener with access to the Data associated with the
operation, via theTransferablereturned from thegetTransferable() method.

The return value of thegetSourceActions()method is defined to be the action(s) defined by
the source at the time at which the Drop occurred.

The return value of thegetCursorLocation() method is defined to be the location at which
the Drop occurred.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 18

TheDropTargetListener.drop() method shall invokeacceptDrop() with the selected opera-
tion as an actual parameter, prior to any invocation ofgetTransferData() on the Transfer-
able associated with the Drop.

TherejectDrop() may be called to reject the Drop operation.

2.3.6 Autoscrolling support

Many GUIComponents present a scrollable “viewport” over a (potentially) large dataset.
During a Drag and Drop operation it is desirable to be able to “autoscroll” such “view-
ports” to allow a user to navigate over such a dataset, scrolling to locate a particular mem-
ber (initially not visible through the “viewport”) that they wish to drop the subject of the
operation upon.

Components that are scrollable provide Drag “autoscrolling” support to theirDropTarget
by implementing the following interface:

public interface DragAutoScrollingSupport {

Insets getAutoscrollInsets();

void autoScrollContent(Point cursorLocn);

}

An implementingDropTarget shall repeatedly call, at least everyToolkit.getAutoscrollRe-
peatDelay() milliseconds, theautoScrollContent() method of its associatedComponent (if
present), passing the current logical cursor location inComponent co-ordinates, when the
following conditions are met:

• If the logical cursor’s hotspot intersects with the associatedComponent’s visible geom-
etry and the boundary region described by theInsets returned by thegetAutoscrollIn-
sets() method.

• If the logical cursor’s hotspot has not moved (subject to the next condition below) for at
leastToolkit.getAutoscrollInitialDelay() millseconds

• If any cursor movement subsequent to the initial triggering occurrence continues to
intersect theRectangle returned byToolkit.getAutoscrollCursorHysteresis().

Should any of the above conditions cease to be valid, autoscrolling shall terminate until
the next triggering condition occurs.

In order to support Autoscrolling the Toolkit class has been augmented as follows:

public class Toolkit {

// ...

public int getAutoscrollInitialDelay(); // ms

public int getAutoscrollRepeatDelay(); // ms

public Rectangle

getAutoscrollCursorHysteresis(Point cc);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 19

// ...

}

ThegetAutoscrollCursorHysteresis() method returns a hysteresis rectangle surrounding
the point specified (current cursor location) to be used for hit testing during hysteresis
detection while autoscrolling.

2.4 Data Transfer Phase

In the case where a valid drop occurs, theDropTargetListener’s drop() method is responsi-
ble for underatking the transfer of the data associated with the gesture. TheDropTarget-
DropEvent provides a means to obtain aTransferable object that represent that data
object(s) to be transferred.

From thedrop() method, theDropTargetListener shall initially eitherrejectDrop() (imme-
diately returning thereafter) oracceptDrop() specifying the selected operation from those
returned bygetSourceActions().

Subsequent to anacceptDrop(), getTransferable() may be invoked, and any data transfers
performed via the returnedTransferable’s getTransferData() method. Finally, prior to
returning thedrop() method shall signal the success of any transfers via an invocation of
dropComplete().

Upon returning from thedrop() method theTransferable andDragSourceContext
instances are no longer guaranteed to be valid and all references to them shall be discarded
by the recipient to allow them to be subsequently garbage collected.

When using theACTION_REFERENCE operation the source and destination should
take care to agree upon the object and the associated semantics of the transfer. Typically in
intra-JVM transfers a live object reference would be passed between source and destina-
tion, but in the case of inter-JVM transfers, or transfers between native and Java applica-
tions, live object references do not make sense, so some other ‘reference’ type should be
exchanged such as a URI for example. Both theDragSource andDropTarget can detect if
the transfer is intra-JVM or not.

2.4.1 FlavorMap and SystemFlavorMap

All the target DnD platforms represent their transfer data types using a similar mechanism,
however the representations do differ. The Java platform uses MIME types encapsulated
within aDataFlavor to represent its data types. Unfortunately in order to permit the tran-
fer of data between Java and platform native applications the existence of these platform
names need to be exposed, thus a mechanism is required in order to create an extensible
(platform independent) mapping between these platform dependent type names, their rep-
resentations, and the Java MIME basedDataFlavors.

The implementation will provide a mechanism to externally specify a mapping between
platform native data types (strings) and MIME types (strings) used to constructDataFla-
vors. This external mapping will be used by the underlying platform specific implementa-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 20

tion code in order to expose the appropriateDataFlavors (MIME types), exported by the
source, to the destination, via the underlying platform DnD mechanisms.

Both theDragSource andDropTarget classes provide access for the underlying system to
map platform dependent names to and fromDataFlavors.

public interface FlavorMap {

java.util.Map getNativesForFlavors(DataFlavor[] dfs);

java.util.Map getFlavorsForNatives(String[] natives);

}

ThegetNativesForFlavors() method takes an array ofDataFlavors and returns aMap
object containing zero or more keys of typeDataFlavor, from the actual parameterdfs,
with associated values of typeString, which correspond to the platform dependent type
name for that MIME type.

ThegetFlavorsForNatives() method takes an array ofString types and returns aMap object
containing zero or more keys of typeString, from the actual parameter natives, with asso-
ciated values of typeDataFlavor, which correspond to the platform independent type for
that platform dependent type name.

TheMap object returned by both methods may be mutable but is not required to be.

For example on Win32 the Clipboard Format Name for simple text is “CF_TEXT” (actu-
ally it is the integer 1) and on Motif it is the X11 Atom named “STRING”, the MIME type
one may use to represent this would be “text/plain charset=us-ascii”. Therefore a platform
portableFlavorMap would map between these names; CF_TEXT on win32 and STRING
on Motif/X11.

Typically, as implemented in theSystemFlavorMap these mappings are held in an external
persistent configuration format (a properties file or URL) and are loaded from the platform
to configure theFlavorMap appropriately for a given platform.

TheSystemFlavorMap class is provided to implement a simple, platform configurable
mechanism for specifying a system-wide set of common mappings, and is defined as fol-
lows:

public class SystemFlavorMap implements FlavorMap {

public static FlavorMap getSystemFlavorMap();

public synchronized Map

getNativesForFlavors(DataFlavor[] dfs);

public synchronized Map

getFlavorsForNatives(String[] natives);

public static String

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 21

encodeJavaMIMEType(DataFlavor df);

public static String

encodeJavaMimeType(java.util.mime.MimeType mime);

public static boolean

isEncodedJavaMimeType(String mimeStr);

public static DataFlavor

createFlavorFromEncodedJavaMimeType(String ejmts);

public static java.util.mime.MimeType

createMimeTypeFromEncodedJavaMimeType(

String ejmts

);

}

TheSystemFlavorMap class provides a simple implementation, using a properties file (see
java.awt.Properties), of a persistent platformFlavorMap. Using the value of the AWT
property “AWT.flavorMapFileURL ” (seeToolkit.getProperty()) or the default file
location ofSystem.getProperty(“java.home ”) + File.separator + “lib” + File.separa-
tor + “ flavormap.properties ”, this class creates the appropriateMaps from the
properties found therein.

In addition the class provides several static convenience functions used to encode and
decode JavaMimeTypes to and from a platform dependent namespace. The syntax of the
properties file is:

{ <platform_type_name> ‘=’ <IETF_MIME_RFC_conformant_specification> <nl> } *

The default implementations ofDragSouce andDropTarget return theSystemFlavorMap
from theirgetFlavorMap() method.

3.0 Issues

3.0.1 What are the implications of the various platform protocol engines?

Due to limitations of particular underlying platform Drag and Drop and Window System
implementations, the interaction of a Drag operation, and the event delivery semantics to
AWT Components is platform dependent. Therefore during a drag operation aDragSource
may process platform Window System Events pertaining to that drag to the exclusion of
normal event processing.

Due to interactions between the single-threaded design center of the platform native DnD
systems, and the native window system event dispatching implementations in AWT, “call-
backs” intoDropTargetListenerandDragSourceListener will occur either on, or synchro-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 22

nized with the AWT system event dispatch thread. This behavior is highly undesirable for
security reasons but is an implementation, not architectural, feature, and is unavoidable.

3.0.2 Inter/Intra VM transfers?

To enable intra-JVM Drag and Drop Transfers the existingDataFlavor class will be
extended to enable it to represent the type of a “live” object reference, as opposed to a
Serialized (persistent) representation of one. Such objects may be transferred between
source and destination within the same JVM andClassLoader context.

3.0.3 Lifetime of the Transferable(s)?

Transferable objects, their associatedDataFlavors, and the objects that encapsulate the
underlying data specified as the operand(s) of a drag and drop operation shall remain valid
until theDragSourceListener, associated with theDragSource controlling the operation,
receives adragDropEnd() event.

3.0.4 Implications of ACTION_MOVE semantics on source objects exposed via
Transferable?

The “source” of a successful Drag and Drop (ACTION_MOVE) operation is required to
delete/relinquish all references to the object(s) that are the subject of theTransferable
immediately after transfer has been successfully completed.

3.0.5 Semantics ofACTION_REFERENCE operation.

As a result of significant input from developers to an earlier version of the specification an
additional operation/action tag;ACTION_REFERENCE was added to include existing
platform Drag and Drop”Link” semantics.

It is believed that Reference, or Link, semantics are already sufficiently poorly specified
for the platform native Drag and Drop to render it essentially useless even between native
applications, thus between native and platform independent Java applications it is not rec-
ommended.

For Java to Java usage the required semantic; within the same JVM/ClassLoader, is
defined such that the destination shall obtain a Java object reference to the subject(s) of the
transfer. Between Java JVM’s orClassLoaders, the semantic is implementation defined,
but could be implemented through transferring a URL from the source to the destination.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 23

Appendix A : DropTargetPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DropTargetPeer {

 void addDropTarget(DropTarget dt);

 void removeDropTarget(DropTarget dt);

}

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 24

Appendix B : DragSourceContextPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DragSourceContextPeer {

 void startDrag(DragSourceContext ds,

 AWTEvent trigger,

 Cursor c,

 int actions

) throws InvalidDnDOperationException;

 Component getComponent();

 void cancelDrag() throws InvalidDnDOperationException;

 Cursor getCursor();

 void setCursor(Cursor c)

throws InvalidDnDOperationException;

 AWTEvent getTrigger();

}

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesDecember 10, 1997 25

Appendix C : DropTargetContextPeer definition

Although not a normative part of this specification this definition is included for clarity:

public interface DropTargetContextPeer {

 DropTarget getDropTarget();

 DataFlavor[] getTransferDataFlavors();

 Transferable getTransferable()

 throws InvalidDnDOperationException;

 boolean isTransferableJVMLocal();

 void acceptDrag(int dragAction);

 void rejectDrag();

 void acceptDrop(int dropAction);

 void rejectDrop();

 void dropComplete(boolean success);

}

