
A Robust and Extensible Tool for Data Integration Using Data Type Models

Andres Quiroz, Eric Huang, and Luca Ceriani
Palo Alto Research Center

Fn.Ln@parc.com

Abstract

Integrating heterogeneous data sets has been a signifi-
cant barrier to many analytics tasks, due to the variety in
structure and level of cleanliness of raw data sets requir-
ing one-off ETL code. We propose HiperFuse, which
significantly automates the data integration process by
providing a declarative interface, robust type inference,
extensible domain-specific data models, and a data in-
tegration planner which optimizes for plan completion
time. The proposed tool is designed for schema-less
data querying, code reuse within specific domains, and
robustness in the face of messy unstructured data. To
demonstrate the tool and its reference implementation,
we show the requirements and execution steps for a use
case in which IP addresses from a web clickstream log
are joined with census data to obtain average income for
particular site visitors (IPs), and offer preliminary per-
formance results and qualitative comparisons to existing
data integration and ETL tools.

1 Introduction
The era of Big Data is upon us, and with it, the opportunity
to use new and vast potential sources of information that un-
til recently were not easily exploitable because of limitations
in storage and processing power, and because of system iso-
lation and even lack of foresight (data being thrown away
because it was not deemed useful). Today, we are recogniz-
ing the value of collecting, storing, sharing, and integrating
data from heterogeneous sources such as web logs, social
media activity, and all sorts of open demographic data files
and databases in local systems and on the web.

Given that the tendency is to keep data because of the ex-
pectation that it will be useful, and not necessarily because
of an immediate need, the process of extracting and trans-
forming data from sources tends to be delayed and to leave
more data stored closer to its original (raw) form. Extract-
ing, transforming, and integrating multiple of these hetero-
geneous raw sources are therefore increasingly being done
in a more on-demand, and ongoing basis, for data mining,
exploring new hypotheses, or supporting new applications.

Palo Alto Research Center engages companies in vari-
ous industries with research-oriented, exploratory projects

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

aimed to solve some of their strategic big data analytics
problems. Many of our clients with problems from medi-
cal fraud detection to retail found the extract, transform, and
load (ETL) process a significant bottleneck due to the vari-
ety of messy data sets. For a Fortune 500 company we ex-
plored analytics applications on their online purchases with
hundreds of millions of rows, and a clickstream data set of
over 30TB. Though some vertical applications were built,
much of the ETL code was one-off and consumed the ma-
jority of our time. In order for PARC to repeatedly provide
data discovery and analytics services, the Xerox Innovation
Group funded this project to automate the data integration
process so that analytics services requiring data integration
may be scalable, and repeated with high agility. Our work in
progress, HiperFuse, is a tool designed to address the chal-
lenges due to the variety in structure and level of cleanliness
of raw data sets by providing automation in the data integra-
tion process and leveraging four key capabilities:

1. Providing a declarative interface for the simple specifica-
tion of the initial and goal states of data,

2. Modularly separating models of the data types and trans-
formations from the operational code,

3. Leveraging a library of domain-specific models of data
types and transformations, which are easily extended, and

4. Using a planner and scheduler to find and optimize a par-
allel data integration plan, minimizing latency.
HiperFuse has been designed for 1) the common user,

usually an analyst or data scientist, who only needs to ex-
press the desired output data set, counting on pre-existing
data type models and transformations; and 2) the engi-
neer who will extend HiperFuse’s library of domain-specific
models. Given a domain-specific library, a user may de-
clare the current and desired goal states of the data, after
which such directives are then interpreted by a data inte-
gration planning engine. The planner generates a plan by
using known or inferred data types and data transformation
actions. The resulting plan is mapped to executable scripts
which may be on the local file system, a SQL database query,
or even a MapReduce job on HDFS. These scripts are then
executed, producing the integrated data set. As shown in Fig-
ure 1, HiperFuse splits its execution between the local ma-
chine, where a user inputs a query via the declarative in-
terface and where the planner generates and orchestrates an



Figure 1: Top level architecture of HiperFuse

execution plan to carry it out, and the systems housing the
data, where the final executed scripts, including some data
statistics and type inference actions, are run.

Typical code written for ETL often mixes different log-
ical layers of Figure 1, which are separate in HiperFuse’s
architecture. A side effect of this is that the actual mod-
els of the data types and transformations can be extended
and reused without having to duplicate and adapt previously
written ETL code. This type-centric approach to data inte-
gration also has other advantages. One advantage of model-
ing data operations and transformations around higher-level,
domain-specific data types, besides promoting code reuse,
is being able to automatically detect and notify when and
what operations are possible on any given data set being an-
alyzed. For example, in addition to tagging a column that
contains IPs in a file with the IP data type, the result of type
inference can include descriptions of existing operations that
have been previously written for the IP type, such as mask-
ing and group decomposition. Additionally, generic opera-
tions such as equality comparisons and set membership can
be automatically adapted at runtime while providing type-
specific functionality depending on the data type detected.
The end user thus only needs to know about the generic op-
erations, and let HiperFuse’s type inference system make the
necessary adaptations to the input, if possible, to make it ex-
ecutable (and if not possible, request missing type or oper-
ation definitions). These advantages facilitate the task of a
user and minimize the amount of one-off or boilerplate code
that needs to be manually written.

Related Work
In general, data integration seeks to make multiple data
sources queryable from a single unified schema. Global-
As-View vs. Local-As-View are two strategies for describ-
ing data source and schema integration, where one maps
the local schema to the global schema or one maps the

global schema to the local one, respectively (Ullman 2000;
Halevy 2001). HiperFuse takes a hybrid approach and thus,
faces related challenges, such as robust data type inference,
mechanics and efficiency of (and ability to express) raw data
joins, and entity resolution and disambiguation (although the
latter challenge is generally out of our scope).

The main limitations of popular tools are as follows. First,
many integration tools require imperative programming –
i.e. the user must decide what data transformations to per-
form as well as their ordering. Second, the lack of sophis-
ticated models for data types keeps the process manual and
time consuming. Lastly, there are very poor ETL-workflow
optimization algorithms available for this problem. We re-
view some popular tools in more detail here.

As the volume of data collected increases, many ETL
tasks involve data in HDFS. Tools built on top of Hadoop
provide a visual and workflow-oriented interface for ETL,
as well as metadata management for data integration. Ex-
amples of such tools and vendors popular today are Tal-
end, Informatica, Red Point, and Ataccama. They provide
multiple connectors for moving data between multiple plat-
forms, and allow users to inspect and describe their data,
define transformation workflows, and execute MapReduce
ETL jobs. Many of these tools also provide a graphical user
interface to aid in programming. The data flow is explicitly
represented, and the user drags and drops connectors to data
sources and operations. Tools such as Stanford Data Wran-
gler, Trifacta and Datameer supplement such graphical in-
terfaces with some basic statistics over the data as well, but
though the claim of many of these tools is that no program-
ming is required, in fact the user is still expressing an imper-
ative program whose code cannot be easily reused when the
data set quality, schemas, and sources change.

Systems such as Cascalog reduce the amount of code re-
quired for ETL using functional programming and Data-
log principles. However, one still specifies inference rules
to recognize data types tied to particular data sets, and its
rule-rewriting mechanism doesn’t minimize latency of the
ETL plan across a variety of data sources. IBM TSIMMIS
(Chawathe et al. ) separates data models from the opera-
tional ETL code, but also depends on rule rewriting which
also does not generate ETL plans that minimize completion
time explicitly. MiniCon (Pottinger and Halevy 2001) uses
combinatorial search instead of rule rewriting, but does not
model heterogeneous data store performance and explicitly
minimize completion time.

There are systems that mitigate the need for semantic
knowledge of the data type. The Hadoop core tools (Hive
and Pig) defer data type validation until runtime, but data
type labeling must be done explicitly and manually for
new queries. Any domain-specific operations require writ-
ing user-defined functions that have hard-coded constraints
and semantic knowledge for the specific problem, making
them hard to reuse. Take the IP address use case described
below in Section 2. In Hive, there is simply no way currently
to express the requirement as a single high-level query, with
operations at the level of the IP address field. Instead, the
IP address should be either transformed into integer form
or decomposed into its constituent groups, and then linked



via multiple queries to the remaining files. Though the task
is somewhat more straightforward in Pig, resulting in a sin-
gle compact script, the combination of steps from the script
would be very difficult to encapsulate and reuse.

MySQL and similar systems compute basic statistics that
infer the column types but the inference is limited to low-
level data types and is highly sensitive to minor errors in the
data. Even a small percentage of malformed rows in a large
data set could cause millions of exceptions, crippling perfor-
mance and resulting in the labeling of all fields as strings. Fi-
nally, the data types inferred by these tools lack the domain-
specific meaning to enable higher-order functionality.

Finally, note that little work exists for benchmarking data
integration, due to the difficulty of quantifying data set het-
erogeneity. Various efforts have attempted to create a set
of metrics for benchmarking, including the Workshop on
Big Data Benchmarking, which began only recently in 2012
(Baru et al. 2013a) due to the combined efforts of the Cen-
ter for Large-Scale Data Systems at UCSD, the Transactions
Processing Performance Council, and the Big Data Top100
benchmarking community (Baru et al. 2013b). The Transac-
tions Processing Performance Council has set forth the spec-
ifications for benchmarks for the Transform and Loading
phases of ETL, but do not attempt to address the extraction
phase (Poess et al. 2002). Thus, the problem of automating
data integration is not fully addressed by this benchmark, as
the TPC-DS benchmark makes assumptions about the initial
and destination forms (i.e. tables conforming to a normal-
ized star schema) that are too narrow. A more comprehensive
survey of various industrial tools, including many of these
observations, has been published by Gartner (R. L. Sallam ).

2 HiperFuse: High Performance Data
Integration

In the following subsections we will describe each of the
various components in HiperFuse’s architecture (Figure 1)
in detail and describe how they interact. We first introduce
a pedagogical use case in which IP addresses from a web
clickstream log are joined with census data to obtain aver-
age income for particular site visitors; this use case will help
illustrate various of the key functionalities of HiperFuse.

Example: Linking IP Address to Median Income
Consider, for example, the need to integrate three data sets
based on mapping IP addresses to IP address blocks, IP ad-
dress blocks to zip codes, and zip codes to median household
income. A web clickstream log with originating IP address
on each row resides in HDFS, while a data set that maps
IP address blocks to zip codes resides on the local file sys-
tem. A data set from the U.S. census that maps zip codes to
median household income also resides in the local file sys-
tem. Samples of these data sets are shown in Figure 2. Using
standard tools, an experienced analyst might:

• Cleanse, restructure and validate the two data sets on the
local file system using UNIX utilities,

• Create SQL schemas in an RDBMS and import the data,

Figure 2: Illustrative example

Figure 3: Example HiperFuse query for obtaining the aver-
age income for a set of IP addresses

• Write SQL queries to join and create a new data set map-
ping just IP address blocks to median income,

• Move the result from the SQL database into HDFS,

• Create HIVE metadata schemas in which all fields are in-
terpreted as strings or integers for all data sets,

• Cleanse and validate the data in HDFS, creating user de-
fined functions and intermediate tables with specialized
fields to handle the necessary joins,

• Perform the final join, and output the mapping of IP ad-
dress to median income.

There are various tools previously mentioned that one can
substitute for some steps, but the main disadvantages of this
process are that the code that is written is not very reusable
because the programs tie together many aspects specific to
this ETL instance: structure and cleanliness of all three data
sets, performance characteristics of the storage platforms,
schema and fields of the data sets, desired destination, and
semantic knowledge of a domain-specific record linkage.

Declarative Interface
Leveraging a planning engine, HiperFuse only requires a set
of declarative directives provided in a file telling it the start-
ing state of the data in terms of structure, and the goal state
of the data. Figure 3 shows the code required to integrate the
three data sets in our example.



Figure 4: Executable HiperFuse query after type inference

Figure 5: Cleansing output for the client host field

Here, lines 1-5 name five data types called client host, ip-
block, zip1, zip2, and income. These predicates also point to
the corresponding files and columns where the data resides.
Note that ip-block logically groups two separate columns
from one file into a single entity reference. Lines 6 and 7
state the relations among these data fields (e.g. that values in
column client host fall in the ranges of values in ip-block),
which will be used by HiperFuse as join conditions during
the execution of the query. Finally, line 9 says the output is
a local TSV file with columns client host and income.

Note that no type information needs to be given in the in-
put query – simply the required fields in the data and their
relation via the generic operations member of, which in-
dicates set or range membership, and equals. As will be
subsequently described, HiperFuse’s type inference can use
a set of models that contain definitions for IP address and
zip code to produce the executable query from Figure 4,
in which the inferred type declarations added by the infer-
ence component have been highlighted. With the given type
information, HiperFuse can appropriately parse the fields
in the data and apply the type specific definitions of the
member of and equals operations.

Data Cleansing
Data cleansing and structuring happens as the first step when
ingesting raw data. The output of this step are tab-delimited
data files in which there are no control characters (besides
tabs to separate fields), no rows with mismatched quote char-
acters, no field values with tab characters within them, and
where every row has the same number of fields. During this
process, various aggregate statistics also are computed and
are made available for inference steps elsewhere in Hiper-
Fuse. Figure 5 shows an example of one record in the out-
put of the cleansing stage, containing these statistics for the
client host field in the clickstream file.

Because even the delimiters and the number of fields may
not be initially clear, HiperFuse computes statistics such as
the histogram of the number of fields that result from seg-

Figure 6: Type inference framework

menting the rows using various delimiters, the alphabet used
in each column (excluding characters that only occur in a
small percentage of the column values), and other simple
statistics over the string lengths in each column. In the data
sets we used, website attacks had injected binary characters
and malformed rows into the files. Such errors are cleansed
and removed by HiperFuse, but indicators for them can still
be found in the statistics output: unexpected field lengths and
extraneous characters.

Type Inference
HiperFuse provides a robust and extensible framework for
type inference that leverages both core domain knowledge
and application-specific knowledge. The components and
workflow for this framework are illustrated in Figure 6.

As a general approach, the models from the type library
are tested against every value in a column, and a data type
matcher generates a histogram showing how many rows
match a given data type. The resulting histograms are ana-
lyzed for peaks that in many cases easily stand out, although
the actual inference logic used to analyze the histogram in-
formation and provide the actual type inference output is im-
plemented as a separate module with configurable parame-
ters. In our IP address example, one may decide that if 95%
of the row values for a given column match the IP address
model, then HiperFuse will conclude that column to be of
type IP address, and automatically add the ip type state-
ment to the original declarative program. This combination
of histogram analysis along with pluggable inference logic
makes data type inference in HiperFuse very robust to the
presence of errors in raw data and flexible in its interpreta-
tion of fields with mixed or ambiguous data.

HiperFuse maintains data type model information both
in an integrated core type library and as a registry of user-
defined types. The core library is meant to be optimized for
performance, as it may exploit relationships among known
types to more efficiently test a set of data type hypothe-
ses. The type registry, on the other hand, is designed for
easy extensibility and thus contains a set of black box type
detectors, which could implement simple models such as
regular expressions, but also complex and flexible models
such as those produced by machine learning methods. Hiper-
Fuse’s core data types models will cover strings, integers,



Figure 7: HiperFuse type registration file

and dates/times, as do most current tools that provide ba-
sic type inference, while user-defined models can be regis-
tered for recognizing IP addresses, IP address blocks, and
zip codes as required by the use case.

Because the architecture is designed for scalability across
additional domains (for example, geographic data domain,
financial/banking domain, etc.), computational complexity
is a concern as the data type library increases in size. The
development of HiperFuse will therefore continually incor-
porate domain-specific models directly into its core type li-
brary, as long as they are general enough to use across multi-
ple data sets in different applications. IP addresses and URLs
are good examples of types that HiperFuse will include di-
rectly as core types for a web data domain.

Another technique to reduce complexity despite a large
type library in HiperFuse is to prune the space of candidate
data types that must be tested. Using the output from the data
cleansing stage, HiperFuse can remove candidate data types
that are not compatible with this information. A prerequisite
for this is a type model registration file, such as the example
shown in Figure 7. Pruning is accomplished by using the al-
phabet allowed, alphabet required, and/or length constraints
that can be specified for each data type, given the output of
the cleansing stage (Figure 5). For example, since the alpha-
bet for client host contains the dot (“.”) character, the zip
code model, which does not include the dot in its alphabet
allowed constraint, is never tested for matches in that field.

Even with pruning, the volume of data records and the
number of fields in big data files pose a computational chal-
lenge. That is, supposing one could perfectly guess and
prune down to a single correct model for each field in the
data to test, testing the model against all values in the data
can still be computationally expensive. This is especially
true for user defined types that cannot be expected to ben-
efit from the hierarchical pruning that can be done using the
parse tree from the core type library.

In the data type matcher, as models are tested against each
field value, a probability distribution for the aggregate prob-
ability of success of each model is updated. Before each
new test, these probability distributions are sampled for each
model, so that the new test is done only if the sampled prob-
ability value shows uncertainty in the success of the test
(i.e. if p is the probability of success, a trial will be run for
l ≤ p < u, where l and u are a lower and upper bound re-
spectively). The intuition of the approach is that, when there
is a good fit of a model to a column, most tests of the model
will succeed, and otherwise most will fail. New values there-
fore only need to be tested when there is uncertainty because
of an unclear majority of successes or failures. However,

Method Time (sec)
Full scan 1464
Perfect fore-knowledge 206
Bandits 107
Bandits and column statistics 61

Table 1: Runtimes

the sampling of the probability distribution always allows
for the possibility of gathering new information in cases of
skewed distributions of values in particular fields, especially
for large data sets. This optimization, which we call selec-
tive model invocation, is inspired by the Bayesian bandits
problem, and differs from current approaches that sample a
subset of values to be tested a-priori.

Table 1 shows the performance impact of the complex-
ity reduction methods described above. It shows the tim-
ing of HiperFuse’s type inference run on Hadoop on a sin-
gle block of data from the ip2zip file, containing 12 data
fields. Type inference was run using only user defined types
in the type model registry, for 10 data types. The last row
shows the effect on performance of running selective model
invocation (Bandits) and pruning the model space using the
column statistics from the data cleansing stage. Notice that
it is a 70% improvement on the result that could be obtained
with perfect fore-knowledge (testing a column only against
the correct type model). Of course, as can be seen from the
time for a full scan, running all type models on all columns
is clearly not feasible.

HiperFuse can be extended with different implementa-
tions of data type matchers, i.e the modules that compute the
type match statistics, depending on where data is located. A
local file system (LFS) implementation may be able to ex-
ploit the fact that it can see all of the data for a single data set
locally, while such an assumption generally will not hold on
HDFS, requiring different approaches for aggregating statis-
tics and employing different performance optimizations.

Data Integration Planner
After the user inspects and possibly alters the augmented
declarative program, a custom data integration planner is in-
voked. Our planner explicitly represents each field of a data
table within files, as well as the properties associated with
those fields. Properties may include “sortedness”, type in-
formation, or other constraints. In contrast to modeling ac-
tions with fixed parameters over a set of predicates, we have
found it more natural to model actions in data integration as
operations with set-based semantics such as those explicitly
represented by relational algebra.

We have had very little success at encoding our domain in
the Planning Domain Definition Language, a general lan-
guage understood by many state-of-the-art planning and
scheduling software (Fox and Long 2003). The initial and
goal states, along with the data transformation models con-
stitute the facts and actions that encapsulate a canonical
planning problem. The domain closely models the under-
lying data transformation operations and the data types. The
main challenges in modeling UNIX operations such as cat,



cut, and sort in PDDL are known modeling challenges in
this domain, such as the duplication or creation of new files,
allocating new file descriptors to facilitate piping, and repre-
senting actions with variable number of parameters.

In this model, we use predicates to represent the availabil-
ity of file descriptors. We enumerate a finite set of constants
to allow the planner to pick a new file descriptor as needed.
Because the cut command represents selecting a subset of
columns, we need a way to encode a variable number of
columns chosen. Thus a helper action with zero cost be-
comes enabled for the duration of the cut command, which
adds a specific column to this set. Likewise, when a column
is selected, an action is enabled that copies to the new col-
umn metadata properties from the selected column. Finally,
we distinguish between streaming vs. blocking operations
by stating whether the output file descriptor is available at
the start of the action or at the end.

We tried both CPT-YAHSP (Dreo et al. 2014) and Tempo-
ral Fast Downward (Eyerich, Mattmüller, and Röger 2009),
two state-of-the-art temporal planners that have partici-
pated in the International Planning Competitions in different
years, but neither was able to solve a simple join problem.
In some instances, logical bugs pruned the space of all solu-
tions, and in others, grounding all of the actions caused the
planner to hang. This is easy to see in that we are modeling
join actions which have as parameters multiple input files,
multiple join columns from each file to join upon, multiple
columns to choose from as the output of the join, and also
must copy over any subset of properties that hold true for
each of these data columns. Many of these parameters are
drawn from a potentially infinite namespace. We are cur-
rently examining backward-chaining lifted planners such as
VH-POP (Simmons and Younes 2011), but lifted planners
have not received as much recent attention as ones which
assume grounding, in addition to the fact that many of the
temporal features of the planning language which we rely
on are unsupported.

3 Conclusions and Ongoing Work
Currently, the separate modules of HiperFuse have been im-
plemented and tested with the expected inputs and outputs
for each piece, but not yet integrated. The inference and data
cleansing components have been implemented on both the
local file system as well as in Hadoop, and demonstrated to
correctly identify the fields of the multiple files of the IP
address use case described herein, yielding the preliminary
performance results shown. For contrast, code was written
for running the same use case using both Hive and Pig,
which proved to be more cumbersome because of the need
to manually define schemas using low level types, the lack
of expressiveness of the query language that led to complex
one-off scripts or multiple queries, and the extra boilerplate
code needed for user defined functions.

As the project continues, we will integrate an end-to-end
system for the IP-to-income use case, and then expand to
additional use cases in different domains to show generality
(for example, performing a join on timestamps or geoloca-
tion within a certain proximity given transportation and/or
social media data). The intent is to continue to extend the

system with core model libraries for different domains and
to add the capability to perform semantic type analysis to
obtain aggregate column properties, such as key columns,
categorical vs quantity data, etc. We will also evaluate the
accuracy of these models for different applications and the
total cycle time of data integration in the different use cases
when compared to other tools that do not offer type inference
or that employ it in a more limited/different way. It will also
be imperative to design and optimize on the different data
platforms generic join operations for the core types, given
the often intractable cost of cross joins on big data.

References
Baru, C.; Bhandarkar, M.; Nambiar, R.; Poess, M.; and Rabl,
T. 2013a. Setting the direction for big data benchmark stan-
dards. In Nambiar, R., and Poess, M., eds., Selected Top-
ics in Performance Evaluation and Benchmarking, volume
7755 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg. 197–208.
Baru, C.; Bhandarkar, M.; Nambiar, R.; Poess, M.; and Rabl,
T. 2013b. Setting the direction for big data benchmark stan-
dards. In Selected Topics in Performance Evaluation and
Benchmarking. Springer. 197–208.
Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ireland, K.;
Papakonstantinou, Y.; Ullman, J.; and Widom, J. The
tsimmis project: Integration of heterogeneous information
sources.
Dreo, J.; Saveant, P.; Schoenauer, M.; and Vidal, V. 2014.
Divide-and-evolve: the marriage of descartes and darwin. In
Booklet of the 7th International Planning Competition.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using
the context-enhanced additive heuristic for temporal and nu-
meric planning. In Proceedings of the 19th International
Conference on Automated Planning and Scheduling, ICAPS
2009, Thessaloniki, Greece, September 19-23, 2009.
Fox, M., and Long, D. 2003. Pddl2.1: An extension to pddl
for expressing temporal planning domains. J. Artif. Int. Res.
20(1):61–124.
Halevy, A. Y. 2001. Answering queries using views: A
survey. The VLDB Journal 10(4):270–294.
Poess, M.; Smith, B.; Kollar, L.; and Larson, P. 2002. Tpc-
ds, taking decision support benchmarking to the next level.
In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02, 582–
587. New York, NY, USA: ACM.
Pottinger, R., and Halevy, A. 2001. Minicon: A scalable
algorithm for answering queries using views. The VLDB
Journal 10(2-3):182–198.
R. L. Sallam, e. a. Magic quadrant for busi-
ness intelligence and analytics platforms (online).
http://www.gartner.com/technology/reprints.do?id=1-
1QLGACN&ct=140210.
Simmons, R. G., and Younes, H. L. S. 2011. VHPOP: ver-
satile heuristic partial order planner. CoRR abs/1106.4868.
Ullman, J. D. 2000. Information integration using logical
views. Theor. Comput. Sci. 239(2):189–210.


