module Bigarray:sig..end
Large, multi-dimensional, numerical arrays.
This module implements multi-dimensional arrays of integers and
   floating-point numbers, thereafter referred to as 'Bigarrays',
   to distinguish them from the standard OCaml arrays described in
   Array.
The implementation allows efficient sharing of large numerical arrays between OCaml code and C or Fortran numerical libraries.
The main differences between 'Bigarrays' and standard OCaml arrays are as follows:
Users of this module are encouraged to do open Bigarray in their
   source, then refer to array types and operations via short dot
   notation, e.g. Array1.t or Array2.sub.
Bigarrays support all the OCaml ad-hoc polymorphic operations:
=, <>, <=, etc, as well as compare);Hash);Marshal module, as well as output_value
     and input_value).Bigarrays can contain elements of the following kinds:
Bigarray.float32_elt),Bigarray.float64_elt),Bigarray.complex32_elt),Bigarray.complex64_elt),Bigarray.int8_signed_elt or Bigarray.int8_unsigned_elt),Bigarray.int16_signed_elt or Bigarray.int16_unsigned_elt),Bigarray.int_elt),Bigarray.int32_elt),Bigarray.int64_elt),Bigarray.nativeint_elt).Each element kind is represented at the type level by one of the
   *_elt types defined below (defined with a single constructor instead
   of abstract types for technical injectivity reasons).
type | | | Float32_elt | 
type | | | Float64_elt | 
type | | | Int8_signed_elt | 
type | | | Int8_unsigned_elt | 
type | | | Int16_signed_elt | 
type | | | Int16_unsigned_elt | 
type | | | Int32_elt | 
type | | | Int64_elt | 
type | | | Int_elt | 
type | | | Nativeint_elt | 
type | | | Complex32_elt | 
type | | | Complex64_elt | 
type ('a, 'b) kind = | | | Float32 :  | 
| | | Float64 :  | 
| | | Int8_signed :  | 
| | | Int8_unsigned :  | 
| | | Int16_signed :  | 
| | | Int16_unsigned :  | 
| | | Int32 :  | 
| | | Int64 :  | 
| | | Int :  | 
| | | Nativeint :  | 
| | | Complex32 :  | 
| | | Complex64 :  | 
| | | Char :  | 
To each element kind is associated an OCaml type, which is
   the type of OCaml values that can be stored in the Bigarray
   or read back from it.  This type is not necessarily the same
   as the type of the array elements proper: for instance,
   a Bigarray whose elements are of kind float32_elt contains
   32-bit single precision floats, but reading or writing one of
   its elements from OCaml uses the OCaml type float, which is
   64-bit double precision floats.
The GADT type ('a, 'b) kind captures this association
   of an OCaml type 'a for values read or written in the Bigarray,
   and of an element kind 'b which represents the actual contents
   of the Bigarray. Its constructors list all possible associations
   of OCaml types with element kinds, and are re-exported below for
   backward-compatibility reasons.
Using a generalized algebraic datatype (GADT) here allows writing well-typed polymorphic functions whose return type depend on the argument type, such as:
  let zero : type a b. (a, b) kind -> a = function
    | Float32 -> 0.0 | Complex32 -> Complex.zero
    | Float64 -> 0.0 | Complex64 -> Complex.zero
    | Int8_signed -> 0 | Int8_unsigned -> 0
    | Int16_signed -> 0 | Int16_unsigned -> 0
    | Int32 -> 0l | Int64 -> 0L
    | Int -> 0 | Nativeint -> 0n
    | Char -> '\000'
val float32 : (float, float32_elt) kindSee Bigarray.char.
val float64 : (float, float64_elt) kindSee Bigarray.char.
val complex32 : (Complex.t, complex32_elt) kindSee Bigarray.char.
val complex64 : (Complex.t, complex64_elt) kindSee Bigarray.char.
val int8_signed : (int, int8_signed_elt) kindSee Bigarray.char.
val int8_unsigned : (int, int8_unsigned_elt) kindSee Bigarray.char.
val int16_signed : (int, int16_signed_elt) kindSee Bigarray.char.
val int16_unsigned : (int, int16_unsigned_elt) kindSee Bigarray.char.
val int : (int, int_elt) kindSee Bigarray.char.
val int32 : (int32, int32_elt) kindSee Bigarray.char.
val int64 : (int64, int64_elt) kindSee Bigarray.char.
val nativeint : (nativeint, nativeint_elt) kindSee Bigarray.char.
val char : (char, int8_unsigned_elt) kindAs shown by the types of the values above,
   Bigarrays of kind float32_elt and float64_elt are
   accessed using the OCaml type float.  Bigarrays of complex kinds
   complex32_elt, complex64_elt are accessed with the OCaml type
   Complex.t. Bigarrays of
   integer kinds are accessed using the smallest OCaml integer
   type large enough to represent the array elements:
   int for 8- and 16-bit integer Bigarrays, as well as OCaml-integer
   Bigarrays; int32 for 32-bit integer Bigarrays; int64
   for 64-bit integer Bigarrays; and nativeint for
   platform-native integer Bigarrays.  Finally, Bigarrays of
   kind int8_unsigned_elt can also be accessed as arrays of
   characters instead of arrays of small integers, by using
   the kind value char instead of int8_unsigned.
val kind_size_in_bytes : ('a, 'b) kind -> intkind_size_in_bytes k is the number of bytes used to store
   an element of type k.
type | | | C_layout_typ | 
type | | | Fortran_layout_typ | 
To facilitate interoperability with existing C and Fortran code, this library supports two different memory layouts for Bigarrays, one compatible with the C conventions, the other compatible with the Fortran conventions.
In the C-style layout, array indices start at 0, and
   multi-dimensional arrays are laid out in row-major format.
   That is, for a two-dimensional array, all elements of
   row 0 are contiguous in memory, followed by all elements of
   row 1, etc.  In other terms, the array elements at (x,y)
   and (x, y+1) are adjacent in memory.
In the Fortran-style layout, array indices start at 1, and
   multi-dimensional arrays are laid out in column-major format.
   That is, for a two-dimensional array, all elements of
   column 0 are contiguous in memory, followed by all elements of
   column 1, etc.  In other terms, the array elements at (x,y)
   and (x+1, y) are adjacent in memory.
Each layout style is identified at the type level by the
   phantom types Bigarray.c_layout and Bigarray.fortran_layout
   respectively.
The GADT type 'a layout represents one of the two supported
   memory layouts: C-style or Fortran-style. Its constructors are
   re-exported as values below for backward-compatibility reasons.
type 'a layout = | | | C_layout :  | 
| | | Fortran_layout :  | 
val c_layout : c_layout layout
val fortran_layout : fortran_layout layoutmodule Genarray:sig..end
module Array0:sig..end
Zero-dimensional arrays.
module Array1:sig..end
One-dimensional arrays.
module Array2:sig..end
Two-dimensional arrays.
module Array3:sig..end
Three-dimensional arrays.
val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given zero-dimensional Bigarray.
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given one-dimensional Bigarray.
val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given two-dimensional Bigarray.
val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.tReturn the generic Bigarray corresponding to the given three-dimensional Bigarray.
val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.tReturn the zero-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument if the generic Bigarray
   does not have exactly zero dimension.val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.tReturn the one-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument if the generic Bigarray
   does not have exactly one dimension.val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.tReturn the two-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument if the generic Bigarray
   does not have exactly two dimensions.val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.tReturn the three-dimensional Bigarray corresponding to the given generic Bigarray.
Invalid_argument if the generic Bigarray
   does not have exactly three dimensions.val reshape : ('a, 'b, 'c) Genarray.t ->
       int array -> ('a, 'b, 'c) Genarray.treshape b [|d1;...;dN|] converts the Bigarray b to a
   N-dimensional array of dimensions d1...dN.  The returned
   array and the original array b share their data
   and have the same layout.  For instance, assuming that b
   is a one-dimensional array of dimension 12, reshape b [|3;4|]
   returns a two-dimensional array b' of dimensions 3 and 4.
   If b has C layout, the element (x,y) of b' corresponds
   to the element x * 3 + y of b.  If b has Fortran layout,
   the element (x,y) of b' corresponds to the element
   x + (y - 1) * 4 of b.
   The returned Bigarray must have exactly the same number of
   elements as the original Bigarray b.  That is, the product
   of the dimensions of b must be equal to i1 * ... * iN.
   Otherwise, Invalid_argument is raised.
val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.tSpecialized version of Bigarray.reshape for reshaping to
   zero-dimensional arrays.
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.tSpecialized version of Bigarray.reshape for reshaping to
   one-dimensional arrays.
val reshape_2 : ('a, 'b, 'c) Genarray.t ->
       int -> int -> ('a, 'b, 'c) Array2.tSpecialized version of Bigarray.reshape for reshaping to
   two-dimensional arrays.
val reshape_3 : ('a, 'b, 'c) Genarray.t ->
       int -> int -> int -> ('a, 'b, 'c) Array3.tSpecialized version of Bigarray.reshape for reshaping to
   three-dimensional arrays.