k ~ Australian Unix systems

| User Group Newsletter

Volume 8

Number 6

The Australian UNIX* systems User Group Newsletter

VYolume 8 Number 6

December 1987

CONTENTS

AUUG General Information
Editorial L L 0L ..
President’s Report S e e e e
Adelaide UNIX Users Group Information
Observations of the December 1987 Management Committee Meéting .
From the ,login: Newsletter - Volume 12 Number 6

Dallas USENIX Conference .

Scheduled Dallas Tutodals
Call for Papers: Summer 1988 USENIX Conference
Fifth Workshop on Real-Time Software and Operating Systems .

Cpio e e,
BookReviews.........‘........

New System VBooks

Portable C and UNIX System Programming .

UNIX System Administration
Computing Systems - New USENIX Quarterly
2.10BSD Software Release Available
Future Meetings
Publications Available
French UNIX User’s Group Conference

EUUG Spring 1988 Conference
From the EUUG Newsletter - Volume 7 Number 3
MINIX: A UNIX clone with source code
A User Programmable Telephone Switch
A Day in the Life of Owles Hall
Apologia
The X/OPEN Native Language System - Inside The Message Presentation
UNIX Standardisation: A Bystander’s View .

AUUGN ‘ 1

O 3 N v AW

10

NN 10
.o 11
12

. . 13
16

16

17

20

.o 21
. 22
23

23

24

24

25

26

35

49

52

53

59

Vol 8 No 6

From the EUUG Newsletter - Volume 7 Number 3 continued 63
Demand Controlled Debug Logging« . « + « + + « « .« . 63
Book Review - UNIX System Programming « .+ « « « « . 66
UNIXThrows Up . . « « « « v « v v o v o o« o o v v o v o o 67
The EUUGDItty . . « « v « « v o v o o o o o v w v 74
Call for Papers - 4th International Software Process Workshop 76

Report from ICEUUG « + « « « « « o o o o o e 77
The Belgian UNIX systems Users Group e e e e e e e e e e e e e 79
Colloguium on Interational Computer Networks in Belguim 81
News from the Netherlands « « « « + « « « « « + o . 83
Planning Dates for the AFUU « .« + + « « « « « « . 85
News from UKUUG « « « « « « v v v v v v o v o 86
EUUG Executive Committee Report +« « « + + « « « = 90
CH++ GOSSIP + v v v e e e e e e e e e e e e e e e 92
Status Report on the Draft Proposed ANSI/ISO C Standard 94
Book Review - The UNIX System V Environment e e e e e e e e e e 97
POSIX Progress at ISO Level and BSI Level 98
EUUG National Groups . . . « .+« « « « « « « « o « « « « « « . . 101
UNIX CHRC . o v v v v v v e e e e e e e e e e e e e e e 102
What's New With System V.+ +« « « « « « o o« . . . 104
EUREL + v v v v v e e e e e e e e e e e e e e e e e .. 106
The X/OPEN Mid-Term Report « . « +« « « « « « . . . 110
Book Review - troff typesetting for UNIX systems T § V2
Book Review - Document Formatting and Typesetting on the UNIX system 114
Letters to the Bditor « « « « 4+ e 0 e e e e e e e e 116
AUUG Membership Catorgories+« « « « « o « o o o 0 e .o« 117
AUUGFOMS . . « v v v v v e e e e e e e e e e e e e e e e e 19

Copyright © 1987. AUUGN is the joumnal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 8 o 6 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.
All correspondence conceming membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033,
AUSTRALIA

General Correspondence

All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,

Parkville, Victoria 3052.
AUSTRALIA

ACSpet: auug@munnari.oz

AUUG Executive
Ken McDonell, President

kenj@moncsbruce.oz
Department of Computer Science, Monash University, Victoria

Robert Elz, Secretary

kre@munnari.oz
Department of Computer Science, University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
Softway Pty. Ltd., N.S.W.

Chris Campbell, Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

Piers Lauder, Committee Member

piers@basser.cs.su.oz
Basser Department of Computer Science, Sydney University, N.S.W.

John Lions, Committee Member

johnl@elecvax.oz
School of Electrical Engineering and Computer Science, University of New South Wales, N.S.W.

Tim Reper, Committee Member

timr@labtam.oz
Labtam Limited, Victoria

Next AUUG Meeting

The next meeting will be held in Melbourne during September 1988.
Futher details are provided in this issue.

AUUGN 3 Vol 8 No 6

AUUG Newsletter

Editorial

I hope you enjoy this issue and please contribute to the next issue.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence

All correspondence reguarding the AUUGN should be addressed to:-

John Carey

AUUGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: anugn@monul.oz
Phone: +61 3 565 4754

Contributions

The Newsletter is published approximately evex;y two months. The deadline for contributions for the
next issue is Friday the 12th of February 1988.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff -mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.
Advertising

Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists

For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer

Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

Vol 8 No 6 4 AUUGN

President’s Report

Whilst it may appear that the ramours of my death were exaggerated in the last AUUGN, a more rational and plausi-

ble explanation is that John Carey’s production schedule has resulted in another issue going to press before my resig-

nation takes effect on December 31.

Following the recent AUUG Management Committee Meeting, the arrangements for technical meetings are now set-

tled. As of 1988, AUUG will move to a format featuring,

® One 3-day meeting and exhibition each year (probably in September) to be held in a major capital city (this is
deliberately vague!). The initial schedule is,

Date City Place
1988, September 13-15 | Melbourne | Southem Cross Hotel
1989 Sydney
1990 Melbourne

® Local AUUG Chapters are to be encouraged to hold smaller, more informal meetings each year in the February
time-frame. To this end, AUUG is offering financial support to the Chapters to underwrite the costs associated
with bringing invited speakers from interstate.

It is hoped that these arrangements will offer the undoubted benefits of a professionally run annual national meeting
and exhibition, combined with the informality of small meetings, reminiscent of Unix user meetings from an earlier
decade.

Details of other decisions taken at the Management Committee Meeting appear elsewhere in this issue.

Thanks to John Lions for resuming the Presidency from January 1 — I know he’ll be well supported by all AUUG
members. :

Best wishes to all members in the coming months.

Finally, I’d like to thank all those whose efforts have made my term as AUUG President such an enjoyable one.
May the true wisdom of line 2338 be revealed to each and every one of you; failing that, I hope you enjoy good
health and avoid the dreaded ‘‘Cerebellum fault (code dumped)”’.

Ken J. McDonell

ps. my new e-mail address is kenj@pyramid.com

AUUGN ' 5 Vol § No 6

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis "The UNIX Literature"

K. Maciunas "Security"

R. Lamacraft "UNIX on Micros"

W. Hosking "Office Automation”

P. Cheney "Commercial Applications of UNIX"
J. Jarvis "troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.
UUCP: (decvax,pesnta,vax135}!mulgalaegir.dmt.oz!dhj

PHONE: +61 8 268 0156 ARPA: dhj%aegir.dmt.oz!dhj@seismo.arpa
CSNET: dhj@aegir.dmt.oz

Vol 8 No 6 6 , AUUGN

Observations of the December 1987 Committee Meeting

Introduction

I have been asked by the AUUG Management Committee to attend their meetings and
pass on to the members my observations in a timely manner.

A more formal record of the proceedings has been prepared by the Secretary and will
appear in a following issue after ratification by the Committee.

So here are the major items discussed at the meeting held at University of Melbourne
on Wednesday the 10th of December 1987.

New President for 1988

Ken McDonell has resigned as President as he will be working in the United States
next year. This is effective as of December 31st 1987. The Committee elected John
Lions to fill the vacancy until the AUUG elections are' held next year.

Financial Position

The AUUG is in a healthy financial position with over 30K in the bank.

Secretarial Assistance

To improve service to members and to relieve some of the workload on the AUUG
Executive it has been decided to investigate hiring secretarial assistance. The
assistance would include answering enquiries about AUUG and doing the day to day
administrative work.

Summmer 87/88 Meeting Abandoned
The AUUG Meeting normally held early in the year has been abandoned for 1988.

This is due to the difficulties in finding the combination of a suitable venue and a
willing host in time.

New Meeting Format for Winter 88 Conference

The next Conference of the AUUG will be held over three days in Melboumne during
early September 1988. The meeting will follow the trend started by the successful
Sydney Meeting which was to use a professional approach which included the use of
sponsors and a professionally organized equipment exhibition. The Melbourne
Conference will be organized by a professional conference organiser which will handle
pre-conference publicity, exquipment exhibit, registrations, and printing of
programmes.

The suggested theme of conference is ““Networking’” and the Committee is
approaching suitable overseas speakers for the occasion.

The format of future meetings will be a large professional technical meeting in Sydney
or Melbome in Winter each year and smaller informal meetings in the Summer.

AUUGN 7 Vol 8 No 6

Regional Meetings for Summer 88/89

Instead of the usual single meeting in early 1989, people will be encouraged by
AUUG to hold one day technical meetings in their area. To help, AUUG may sponsor
interstate speakers of note.

Incorporation

The application for incorporation of AUUG was resubmitted to Corporate Affairs in
Victoria.

They are willing to incorporate after the Constitution was ammended by a members
vote earier this year except for the use of the trademark UNIX in the name Australian
UNIX systems Users Group Incorperated without written pemmission. In Victoria the
trademark is held by AT&T Technologies.

It was decided to change the name to AUUG Incorported or ask AT&T for permission
to use the name.

AUUG and AUUGN will be registered as trademarks of the Group.

Constitutional Changes

Committee member, Tim Roper is organising proposed changes to the Constitution.
These include a new position of Vice President, removal of Committee members, and
possible changing the name of the Group to enable incorporation. These changes will
be put to the members vote in the new year.

Members Benefits

It was decided the USENIX ‘‘Computer Systems Joumal’’ will be provided to
Institutional members as part of their subscription and available to members at cost of
$30 per annum.

At some time in the future a 4.3BSD manual distribtion will be available through the
AUUG. |
ACSnet SIG .

ACSnet Special Interest Group is looking at several ideas at improving the service
offered by ACSnet. This includes establishing a 2400 bps leased line backbone
between every major capital city; and forming a non-profit company, perhaps
sponsored by AUUG, to run ACSnet. This would be similar to the USENIX UUNET
company. . '

A proposal will be presented at February Committee Meeting.

AUUG Logo

A competition will be held for the design of a AUUG logo. The prize will be a year’s
free membership.

Vol 8 No 6 8 AUUGN

:login:

The USENIX Association Newsletter

Volume 12, Number 6 November/December 1987
CONTENTS
Dallas USENIX CONLEICICEccciuvieiiiiiiiieiiiieeeieieeiieeeieeeee e eeeeeeeseesresseeesseeessesensesseees oo 3
Scheduled Dallas TULOTIALScccvicviiiiiiiieieiiiiecee et e e e et e eeseeeeseeseeesseeseeesseeaes 3
Call for Papers: Summer 1988 USENIX CONEIENCE ..vcvveviveeeeeeereeeeeeeeeeeeeesees e 4
Fifth Workshop on Real-Time Software and Operating SYStemScooveveverevverressrieninn. 5
CPIO ittt ettt ettt ettt ettt e et e et et et et et et e et ee e e ee e s e e e et e e, 6
BOOK REVIEWS ..c.oiiiiiiiiiiieiiiiitt ettt ettt ettt e et e e e e e eesees s et eessereeaeensesee s 9
INEW SYStEmM V BOOKS ...veiiiiiiiiiiiiiicicete ettt et e s e e e eaeateeeaeeeaseerseeaes e 9
Kevin W. Baranski-Walker
Portable C and UNIX System Programmingcccccveveveeeeeereeeeeerenseereeseeserseesessess e, 10
John S. Quarterman
UNIX System AdmINISTIAtIONc....coviiiiiiiiiiiie e eeeeeeeeeeeeeees e eees e e eeeee e e e 13
Rob Kolstad
Summary of the Board of Directors’ MEEINEccveveverreeeereeeerrereesseeesees oo - 14
New Membership RAtes Stc..ociiiiiiiiiieiee oo e eeee e e 15
Computing Systems — New USENIX QUATLETLYccooveeeeveeveereererereeeeeeeeoe e oo eoeeoeeeeeeeos 16
1988 Elections for Board Of DIFECIOTScoeeviveeieeeeeeeeeereeseerseees oo oo oo 16
2.10BSD Software Release Availablec.ccooviiviiioeeeieeeeeeee e eee oo oo 17
Have YOU M-0-V-8-A7 .ooiiiiiiicccec ettt oo e 17
4.3BSD Manuals Available to All MEMDETSoouiiiieieeeeeeeeeeee oo e oo 18
4.3BSD Manual Reproduction Authorization and Order FOrmooovvvvvvveeeveoeeoienin, 19
FULUTE MEETINES ...ovvivieiiiiiiieiiie ettt et e e s e e s et 20
Publications AvVAIlabIeccccoiiiiiiiiiiceiiceee e e 20
French UNIX User’s Group CONEIENCEvecveveeereeieseeeeeee oo 21
EUUG Spring 1988 CONTEIENCEvivveeieeeeee e oo eeee e 21
LOCAl USET GIOUPS ...c.eoviriiuieiiiieniete ettt ettt eeee et e s e e s et e e e e et 22

UNIX® ASSOCIATION

AUUGN 9 Vol 8 No 6

;login:

Dallas USENIX Conference
Rob Kolstad, Chair

Tuesday through Friday, February 9-12, 1988, mark the Winter 1988 USENIX Techni-
cal Conference in Dallas, Texas. The Grand Kempinski Hotel (formerly The Registry Hotel)
will host the conference’s two days of tutorials and two days of technical sessions.

There will be 21 tutorials, including several new ones. The two days of technical
presentations will include two. special half-day sessions on large-scale networks of worksta-
tions (as implemented in the Andrew project at Carnegie-Mellon University and MIT’s
Project Athena) and sessions devoted to new systems management techniques, the popular
work-in-progress sessions late in the day, and other talks on state-of-the-art technical

advances in UNIX and its applications.

The program committee is currently reviewing over 80 abstracts that were submitted
for the conference. 1 am confident that the program will be an exceptionally strong and
interesting one.

Conference information will be sent to all current members or may be obtained from:

Judy DesHarnais

USENIX Conference Office
P.O. Box 385

Sunset Beach, CA 90742

(213) 592-1381 or 592-3243
{uunet,ucbvax}!usenix!judy

See you in Dallas!

Scheduled Dallas Tutorials

TUESDAY WEDNESDAY
Introduction to 4.3BSD Internals Advanced Topics on 4,3BSD Internals
Introduction to UNIX System V Internals Advanced UNIX System V Internals
UNIX System V Streams Device Driver UNIX Device Driver Design (4.2BSD)
Managing A Local Area Network 4.xBSD System Administration
Managing a Network of NFS Systems Language Construction Tools on the UNIX
Software Development Using C and UNIX System
UNIX System V Remote File Sharing Special Topics in C
X Window System Programming Open Network Computing and NFS
An Introduction to C++ NeWS :
Sendmail, news, and uucp An Introduction to 3D Computer Graphics

POSIX Implementation
The MACH Operating System

Vol 8 No 6 10 AUUGN

;login:

Call for Papers
Summer 1988 USENIX Conference

San Francisco
June 20-24, 1988

Papers in all areas of UNIX-related research and development are solicited for formal
review for the technical program of the 1988 Summer USENIX Conference. Accepted
papers will be presented during the three days of technical sessions at the conference and
published in the conference proceedings. The technical program is considered the leading
forum for the presentation of new developments in work related to or based on the UNIX
operating system.

Appropriate topics for technical presentations include, but are not limited to:

e Kecrnel enhancements e Performance analysis and tuning

e UNIX on new hardware e Standardization efforts

e User interfaces e UNIX in new application environments
® UNIX system management e Security

e The internationalization of UNIX e Software management

All submissions should contain new and interesting work. Unlike previous technical
programs for USENIX conferences, the San Francisco conference is requiring the submission
of full papers rather than extended abstracts. Further, a tight review and production cycle
will not allow time for rewrite and re-review. (Time is, however, scheduled for authors of
accepted papers to perform minor revisions.) Acceptance or rejection of a paper will be
based solely on the work as submitted.

To be considered for the conference, a paper should include an abstract of 100 to 300
words, a discussion of how the reported results relate to other work, illustrative figures, and
citations to relevant literature. The paper should present sufficient detail of the work plus
appropriatc background or references to enable the reviewers to perform a fair comparison
with other work submitted for the conference. Full papers should be 8-12 single spaced
typeset pages, which corresponds to roughly 20 double spaced, unformatted, typed pages.
Format requirements will be described separately from this call. All final papers must be
submitted in a format suitable for camera-ready copy. For authors who do not have access
to a suitable output device, facilities will be provided.

Four copies of each submitted paper should be received by February 19, 1988; this is an
absolute deadline. Papers not received by this date will not be reviewed. Papers which
clearly do not meet USENIX’s standards for applicability, originality, completeness, or page
length may be rejected without review. Acceptance notification will be by April 4, 1988, and
final camera-ready papers will be due by April 25, 1988.

Send technical program submissions to:

Sam Leffler (415) 499-3600
SF-USENIX Technical Program ucbvax!sfusenix
PIXAR

P.O. Box 13719
San Rafael, CA 94913-3719

FULL PAPERS ARE DUE FEBRUARY 19, 1988

AUUGN v 11 Vol 8 No 6

;login:

Fifth Workshop
On
Real-Time Software and Operating Systems

May 12-13, 1988
Omni-Shoreham Hotel
Washington, DC

Sponsored by
The IEEE Computer Society
The USENIX Association

This year’s workshop broadens the scope to include general real-time systems. This
workshop will bring together researchers, designers, and implementers of real-time operating
systems and software. There will be a substantial emphasis on practical experience, sO
workers from industrial organizations are encouraged to attend. Topics of specific interest
include:

e Primary requirements of real-time o Language, programming support, and
systems : reusability

e Distributed real-time operating e Types of real-time constraints
systems e Scheduling and resource management

o Application-specific operating systems o Predictability, adaptability, and

e Practical experiences and implications maintainability

¢ Exotic applications: medicine, music, e Reliability and fault tolerance
etc. e Instrumentation and performance

e Architectural support for real-time measurement

e Case studies

The format of the workshop will be geared to encourage intense technical interactions
and focussed discussions. '

Attendance will be limited to between 75 and 100 active workers in the field. To
participate in the workshop, please submit four copies of an extended abstract or position
paper of up to 5 pages describing your current efforts to Lui Sha by February 15, 1988. The
abstract should focus on insights and lessons gained from recent research and practical
experience. Complete details regarding the workshop will be sent to all participants along
with the acceptance letters by March 15, 1988. A digest of accepted abstracts will be made
available to participants at the workshop.

General Chair Program Co-chair Program Co-chair

Professor John Stankovic Dr. Marc Donner Dr. Lui Sha

Department of Computer IBM Research Computer Science Department
and Information Science P.O. Box 218 Carnegie-Mellon University

Graduate Research Center Yorktown Heights, NY 10598 Schenley Park

University of Massachusetts (914) 945-2032 Pittsburgh, PA 15213

Ambherst, MA 01003 donner@ibm.com (412) 268-7668

(413) 545-0720 sha@k.gp.cs.cmu.edu

stankovic@cs.umass.edu

Vol 8 No 6 12 AUUGN

;login:

In the the July/August 1987 issue of ;login:
(vol. 12, No. 4), there was a lengthy discussion
of tar vs. cpio.

This is the latest cpio proposal, as it
appears in 1003.1 Draft 11 (except I’ve prob-
ably got the section numbers wrong). The
“previous section” is, of course, USTAR,
unchanged for some time.

John S. Quarterman

FOR COMPUTER ENVIRONMENTS
Std 1003.1-Draft 11

Editor’s Note: The following section has been
proposed as a replacement for, or an addition
to, the previous section. The small group that
considered the issue at the June 1987 meeting
, determined that indications were needed on
how to extend this subsection to account for at
least the following items:

e symbolic links

e contiguous files

e file name length

e i-node number size

Therc is a possibility that these concerns
may be addressed by text in the Rationale,
rather than in the body of the standard.

10.3.1 cpio Archive Format

The byte-oriented cpio archive format is
a series of entries, each comprised of a header
that describes the file, the name of the file, and
then the contents of the file.

An archive may be recorded as a series of
fixed size blocks of bytes. This blocking shall
be used only to make physical I/O more
efficient. The last group of blocks is always at
the full size.

For the byte-oriented <cpio archive
format, the individual entry information must
be in the order indicated and is described by:

Byte-Oriented cpio Archive Entry

Header
Field Name Length Interpreted as
c_magic 6 bytes octal number
c_dev 6 bytes octal number
c_ino 6 bytes octal number
AUUGN . , 13

c_mode 6 bytes octal number
c_uid 6 bytes octal number
c_gid 6 bytes octal number
c_nlink 6 bytes octal number
c_rdev 6 bytes octal number
c_mtime 11 bytes octal number
c_namesize 6 bytes octal number
c_filesize 11 bytes octal number
File Name
Field Name Length Interpreted as
c_name c_namesize pathname string
File Data
Field Name Length Interpreted as
c_filedata c_filesize data

10.3.1.1 Header

For each file in the archive, a header as
defined above shall be written. The informa-
tion in the header fields shall be written as
streams of bytes interpreted as octal numbers
and shall be right-justified and zero filled. The
fields shall be interpreted as follows:

e c_magic shall identify the archive as being
a transportable archive by containing the
magic bytes as defined by MAGIC (““070707”).

e c_dev and c_ino shall contain values
which uniquely identify the file within the
archive (i.e., no files shall contain the same
pair of c_dev and c_ino values unless they are
links to the same file). The values shall be
determined in an implementation defined
manner.

e c_mode shall contain the file type and
access permissions as defined in the tables
below.

o c_uid shall contain the user id of the
owner.

e c_gid shall contain the group id of the
group.

e c_nlink shall contain the number of links
referencing the file at the time the archive was
created.

e c_rdev shall contain implementation
defined information for character or block spe-
cial files.

Vol 8 No 6

e c_mtime shall contain the latest time of
modification of the file.

e c_namesize shall contain the length of the
path name, including the terminating null
byte.

e c_filesize shall contain the length of the
file. This is the length of the data section
following the header structure.

10.3.1.2 File Name

c_name shall contain the path name of the
file. The length of the name is determined by
c_namesize; the maximum length of this string
is 256 bytes.

10.3.1.3 File Data

Following c_name, there shall be c_filesize
bytes of data. Interpretation of such data shall
occur in a manner dependent on the file. If
c_filesize is zero, no data shall be contained in
c_filedata.

10.3.1.4 Special Entries

Special files, directories, and the trailer are
recorded with c_filesize equal to zero. The
header for the next file entry in the archive
shall be written dircctly after the last byte of
the file entry preceding it. A header denoting
the file name “TRAILER!!!'” shall indicate the
end of the archive; the contents of bytes in the
last block of the archive following such a
header are undefined.

10.3.1.5

Values needed by the cpio archive format
are described as follows:

cpio Values

Values for ¢c_mode ficid
File permissions

Name Value Indicates
C_IRUSR 000400 read by owner
C_IWUSR 000200 write by owner
C_IXUSR 000100 execute by owner
C_IRGRP 000040 read by group
C_IWGRP 000020 write by group
C_IXGRP 000010 execute by group
C_IROTH 000004 read by others
C_IWOTH 000002 write by others
C_IXOTH . 000001 execute by others
C_ISUID 004000 set uid

C_ISGID 002000 set gid

C_ISVTX 001000 reserved

Vol 8 No 6

:login:

14

Values for c_mode field

File type

Name Value Indicates
C_ISDIR 040000 directory
C_ISFIFO 010000 FIFO
C_ISREG 100000 regular file
C_ISBLK 060000 block special
C_ISCHR 020000 character special

110000 reserved

120000 reserved

140000 reserved

C_ISDIR, C_ISFIFO, and C_ISREG shall be
supported on a POSIX conforming system;
additional values defined above are reserved
for compatibility with existing systems. Addi-
tional file types may be supported; however,
such files should not be written on archives
intended for transport to portable systems.

10.3.1.6 References

<grp.h> §9.2.1, <pwd.h> §9.2.2,
<sys/stat.h> §5.6.1, chmod() §5.6.4, link()
§5.3.4, mkdir() §5.4.1, rcad() §6.4.1, stat()
§5.6.2.

The following represents the position of X/Open
on cpio. — PHS

From: Jim R Oldroyd
<mecvax!inset!jr@seismo.css.gov>

Date: Wed Jul 15 18:26:19 BST 1987

Organization: The Instruction Set Ltd.

To: jsq@longway.tic.com

Subject: Benefits of cpio over tar

I would like to present a number of points
regarding cpio which I feel are relevant to the
ongoing discussion concerning a Data
Interchange Format for the POSIX 1003.1
standard.

[shall correct a number of important
points regarding the cpio format; points
which have been incorreetly stated in recent
articles.

1. At no time has a proposal been made to
standardise the binary cpio format. Only the
cpio -c format is under consideration.

2. The cpio -c format is widely in use in
Europe for both Data Interchange and
Archival purposes. Its widespread use can be
attributed, in part, to its endorsement by the
X/OPEN Group.

AUUGN

;login:

3. Only one version of the cpio -c format
is currently in use. It is this format being
proposed for standardisation.

4. The cpio -c header is written entirely in
character form. No numerical information is
stored in machine-dependent binary form.

5. The cpio -c format is capable of archiv-
ing and restoring all POSIX file types: direc-
tories, block special files, character special files,
regular files and fifos.

6. The cpio =-c format can handle
pathnames up to 256 bytes. This is the length
guaranteed on all POSIX systems.

7. The cpio -c format is in the public
domain. (See X/OPEN Portability Guide,
Volume 2, cpio(4)).

8. Inode numbers arc not recorded.
Symbolic values (derived from a file’s inode
and device numbers) are stored in the header
block. These values are used solely for hard
link resolution,

9. File types are stored in symbolic form.
Symbols are derived from historical UNIX file
type values. Therc is room for 64 file typcs;
currcntly only 5 are supported.

A number of points have recently been
raised as drawbacks of cpio. These points
seem to be problems with a particular imple-
mentation of a cpio utility., As the
characteristics of the utility are not relevant
for 1003.1, I present only a short summary of
points:
file names are terminated by *\O:

This is normal UNIX practice for string

termination and applies to tar (and

USTAR) equally. On cpio, the \O’ is

redundant information and need not be

interpreted as the file name length is also
provided.

the user interface is less convenient:
This is subjcctive; many people feel that
the opposite is true. The user interface is
casily alterable (discuss with 1003.2).

file name size is 128 bytes:
Wrong! It is 256; see above.

cpio header is full of OS dependent informa-
tion:
Wrong! All information describes file
characteristics. There is no OS dependent
information. See point 9, above.

AUUGN 15

header must start on a word boundary:
Wrong! The header is character oriented
and can be read as individual bytes from
the archive.

format cannot be extended to mect future
requirements: '
Wrong! Implementations already exist
which can archive symbolic links and
contiguous files. There is far more scope
for future extension than available in the
proposed USTAR format.

Independent of the archive format used,
some guidelincs must be followed to ensurc
that an archive can be extracted on ANY
POSIX system. Notc that the following are
NOT rules for using cpio; they apply cqually
well to other interchange formats if portability
across ALL systems is to be achieved:

o only POSIX defined file types should be
archived

e hcaders should be written in US ASCII
character set

o minumum values in section 2.9 for h_uid,
h_gid, h_nlinks, etc. should not be
excecded

e no portion of any filename should exceed
14 characters

e one cpio archive should fit on a single
medium

¢ only one archive should exist per medium

¢ relative pathnames (ie, no leading /) should
be used

e tapes should be written in “raw’ mode

o tapes should be written with 5120 byte
blocks

Any archive intended for use only between
systems supporting more capabilities than the
minimum required by POSIX need not be so
restrictive.

I believe that the cpio -c tape format
has a number of strong advantages over both
the existing tar and the POSIX extended tar
formats. The cpio -c format handles all
POSIX file types correctly, it has been extended
to handle other known file types and there is
adequatc opportunity for further extension.

Thank you,
Jim R Oldroyd

Vol 8 No 6

;login:

Book Reviews

New System V Books

Reviewed by Kevin D. Baranski-Walker

University of California - Berkeley
kevin@violet.Berkeley. EDU

This review will take a look at two recent
serics of works on the AT&T System V
Release 3 of UNIX. More precisely this is a
review of a re-packaging of the familiar AT&T
reference manuals and a look into the latest
System V related readings from The Waite
Group. The books reviewed are:

American Telephone and Telegraph; Prentice-
Hall publishers:

e UNIX System V Utilities Release Notes,
AT&T

UNIX System V Programmer’s Reference
Manual, AT&T

UNIX System V Network Programmer’s
Reference Guide, AT&T

UNIX System V Streams Programmer’s
Guide, AT&T

e UNIX System V Streams Primer, AT&T
UNIX System V User’s Reference, AT&T
UNIX System V User’s Guide, 2nd Ed.,
AT&T

UNIX System V Programmer’s Guide,
AT&T

The Waite Group; Howard W. Sams &
Company publishers:

e UNIX System V Primer (Revised Edition),
Waite, Prata and Martin

e UNIX System V Bible (Commands and
Utilities), Prata and Martin

Prentice-Hall has acquired the publication
rights for the AT&T System V Release 3.0
series of guides and reference manuals. This
marks a departure from what has become a
tradition in the publication of computer
system related documents. Typically the
tmanufacturer of the software produces their
documentation within their own facilities.
Beginning with this series AT&T has granted
exclusive publication rights to Prentice-Hall.
Prentice-Hall is scarcely novice in the publica-
tion of computer science or computer industry
related texts. Their most notable (at least in

Vol 8 No 6

16

sheer volume of sales) is the C Programming
Language, by Kernighan and Ritchie. Clearly
the advantage for a software developer to
enlist the services of a conventional book pub-
lisher to package and market their documenta-
tion, is to broaden the distribution channels
and to provide ready access to potential
readers that may otherwise be difficult. If
indeed this is the rationale for AT&T and
Prentice-Hall to enter into such an arrange-
ment, then the goal may well have been
reached.

Aside from the production changes of this
series, which are readily evident, very little in
terms of content has changed from the previ-
ous printing. The contents of the User’s Refer-
ence Manual, Programmer’s Reference Manual
and Utilities Release Notes in particular
remain entirely unchanged from the original
AT&T printing. A notable omission in these
three manuals is the inclusion of useful indices
and glossary. Inasmuch as these handbooks
are directed at novice users, as well as referral
materials for experts, such an oversight
exacerbates many of the long held grievances
of the UNIX documentation.

The Streams Primer and Streams
Programmer’s Guide reflect a refreshing change
from the previous printings. Diagrams and
ecxamples are abundant and well suited. Once
again, though, the indexing is lackluster in the
case of the programmer’s guide and again
non-existent in the primer.

Though the Network Programmer’s Guide
maintains a similar flavor to the Streams pri-
mer and guide, it provides a sensible balance
between the needs of the neophyte reader and
the more experienced network programmer.
Appendix C offers several beneficial examples
that detail varying network models with excep-
tional clarity. This volume is mandatory for
any System V user.

Very few assumptions are made about the
reader in the User’s Guide. It presents a fairly
focused overview of the new user’s approach
to UNIX and System V in particular, yet can
still function as a useful reference guide for the
experienced. As with many introductory texts
on computer related subjects, the User’s Guide
indulges in a liberal discussion on the

AUUGN

;login:

characterization of the user’s relation to the
system. Once the user has a grasp on these
basics, the essentials of file accessing and
manipulation (both command line and edit-
ing), shell programming, mail, and networking
overviews are presented. Each section ends
with several exercises, some merely to
reinforce your just concluded reading while
others provide useful trials in solving increas-
ingly complex tasks. The User’s Guide
concludes with a quick reference command
summary for the most used System V
commands, ed, vi and shell programming
commands. As with the Network guide a
glossary is provided.

The Programmer’s Guide is directed at
application programmers and as with the Net-
work Programmer’s Guide delivers a very
careful balance between the needs of the occa-
sional, novice user and that of the experienced
programmer. The seventcen chapters are
rather comprehensive with spccial attention
paid to the System V support tools; awk, lex,
yacc, curses, make, SCCS, sdb and Llint.
Additionally, excellent tutorials on file and
record locking, shared libraries and
interprocess communication accompany the
system tools section.

Howard W. Sams & Company are best
known for publishing hobbyist oriented hand-
books and reference materials (including
numerous ‘“‘How-To” and repair guides).
Lately Sams has broadened their repertoire to
include several MS-DOS, XENIX, C language
and UNIX titles. Additionally they have
merged the UNIX System Library books from
Hayden Book publishers. A good portion of
these combined titles have been authored or
co-authored by The Waite Group. In the UNIX
System V Primer, Waite, Martin and Prata
have produced a very comprehensive indoctri-
nation for the new System V user, similar to
their previous introductory work on UNIX,
“UNIX Primer Plus.” Unfortunately this pri-
mer is so awash with innane comic illustra-
tions and trite examples that it’s difficult to
recommend. The authors direct this book at
“... a secretary or a manager in an office, or
student in a computer science class, or a com-
puter hobbyist who is interested in UNIX ...”.
For such an all-encompassing audience a
slightly less jocular forum would have been in
order. Presentation aside, this book does serve

AUUGN 17

well as a primer on System V UNIX (indeed
the introduction is relevant to all UNIX
novices). The diagrams, charts, sidebars and
later examples are concise and well thought.
Of particular note is chapter 9, “The UNIX
Shell: Command Lines, Redirection, and Shell
Scripts.” This chapter offers a fine tutorial on
the user’s interaction with and control of the
system.

The UNIX System V Bible (Commands and
Utilities) is a quality companion to the AT&T
User’s Reference and User’s Guide. This text
has numerous useful examples and parallels
the structure of the standard reference manual.
A special section has been added entitled
“UNIX Features” which is an excellent
summary of the System V nuances.

Portable C and
UNIX System Programming

by J. E. Lapin [Rabbit Software]
(Prentice-Hall)

Review by John S. Quarterman

Texas Internet Consulting
uunet!longway!jsq

This is a useful book. It fits in the gap
between the existing literature about C and the
little there is about writing portable UNIX
programs{1,2]. The authors (of which there
are actually eight) give a good impression right
away by noting in the Preface that “no such
thing as an ‘unimportant’ change was
assumed” in their comparisons of functional
differences in the programming interface.
They have clearly put years of effort into this
book, and they even supply a uucp mail
address for comments. There are still
problems, some of them serious, but first the
best points.

Chapter 2, “Portable C Standard,” about
Rabbit Software’s internal guidelines (not to
be confused with X3Jil's C Language
Standard), is enlightened. Not only are the
guidelines sensible (such as their comments on
the comma operator in 2.12.2 and on the

Vol 8 No 6

;login:

goto statement in 2.13.1), organized (into Por-
tability Rules, Maintenance Rules, Stylistic
Guidelines, and Performance Techniques), and
mostly complete, but the principles for choos-
ing the rules are themselves admirable. Their
method for handling multiple modules (2.14,
also 2.3) seems a bit peculiar at first, but will
be obvious to readers familiar with Modula-2.

There are a couple of problems with this
material. If is good that thc authors rccognize
the uscfulness of a uniform textual style for
programs, but they don’t seem to be awarc of
the existing de facto standard, the “Indian Hill
Style Sheet,” which rather closcly matches the
basic style of most softwarc written by the Bell
Labs Research group or UC Berkeley Com-
puter Science Research Group. Personally, 1
find Lapin’s choice of positioning of braces to
be the ugliest of all possibilities.

A more serious problem (perhaps unavoid-
able due to the publishing schedule) with this
material and the book in general is that the
last revisions referenced of the X3.159 C
Language Standard by the ANSI X3JIlI
committece or the IEEE 1003.1 Standard for
Portable Opecrating System Interface for Com-
puter Environments (POSIX) were thosc of
November 1985. Many things have changed
since then. X3JI1 has supplicd a Rationale
appendix to their standard which, among other
things, clarifies historically obscure points
regarding scope and storage class; that infor-
mation could have helped in 2.3. Nonctheless,
the book is generally accurate in its informa-
tion regarding the C language.

Chapter 5, “Maintaining Portable
Systems,” has a good bit of practical advice
clearly derived from experience, and could
save programmers many mistakes. There is a
very good list in 5.2.3 of reccommended make
productions that c¢very makefile should
support. Useful but often overlooked rules are
collected and organized, for example, that only
the Bourne shell should be used for portable
shell scripts (5.4.1). Unfortunately, while the
authors explicitly recommend against the use
of the C shell for such scripts, they don’t warn
about the Korn shell. Use of the last is actu-
ally more insidious, since scripts written for it
look so much like Bourne shell scripts, but usc
extensions that won’t work with the Bourne
shell. The authors mention SCCS (5.2), but
fail to mention RCS.

Vol 8 No 6 18

The book compares a plethora of UNIX
variants, including Version 7, System III,
System V, 4.1BSD, 4.2BSD, 4.3BSD, XENIX
2.3, 3.0, and 5.0. It is admirable that this has
been attempted (espccially that the XENIX ver-
sions were included); there is much usecful
information presented, and clearly most of the
work on the book went into the UNIX
comparisons. Unfortunately, the material on
comparisons of UNIX dialects is not as good as
that on the C language.

Some historical information on the UNIX
System in 1.5 is inaccurate and misleading.
This is as much because of placement of infor-
mation as becausc of what is actually said.
The Programmer’s Work Bench (PWB) is not
mentioned in its historical period (1.5.1), even
though it is one of the principal ancestors of
System [II and System V.

Bill Joy is first mentioned as working at
Sun Microsystems (1.5.4), with no clear
cvidence given that he ever worked at Berkcley
(1.5.2), nor of the PDP-I1 Berkeley releascs
that preceded the Berkeley VAX work, nor of
the paging system that was the first major part
of that-work. There is no mention whatever of
DARPA, the government agency that funded
much of the BSD work and strongly influenced
its rescarch and nctworking orientation. The
only place networking is mentioned is when
Sun’s Network File System (NFS) is
misidentified (1.5.3) as “the Nectworked File
Standard (NFS) by a consortium of influential
4,2BSD vendors.”

One could easily get the impression from
the book that Dcnnis Ritchie and Ken Thomp-
son arc the principal devclopers of System
V[3]. Their Bell Laboratories research system,
V8 or Eighth Edition, is misdiagrammed (3.1)
as being derived directly from Version 7, when
the kernel, at least, was derived from 4.1BSD.
(Their current system is Ninth Edition.)

The authors appear to have only seen a
draft (“UniForum Draft Standard” is
mentioned in 1.5.3) of the /usr/group 1984
Standard, even though other information was
incorporated into the book at least as late as
the end of 1985, according to the bibliographic
information given.

‘The comments made (1.5.4) about the
essential equivalence of X3J11's C Language
Standard, the System V Interface Definition

AUUGN

;login:

(SVID), and the IEEE P1003 work may have
been correct in 1985, but are clearly not true
today. X3J11's Rationale states that the C
Standard is derived from the Kernighan and
Ritchic book and from the /usr/group 1984
Standard. The IEEE 1003.1 Trial Use Standard
incorporated major features from 4.2BSD, and
more recent drafts include more such features.
Details on relations among these standards,
System V, and 4.3BSD, may be found in a
recent publication by /usr/group[4].

There are also a number of facilities in
1003.1 that do not exactly match any existing
system, which is not to say that Lapin’s basic
point that progress is bcing made on rcal,
international C and UNIX programming
interface standards is wrong, but the way it is
actually happening is not quite as the book
predicted. For example, X/OPEN, the origi-
nally European-only group of computer
manufacturers (1.5.4), has expanded to includc
U.S. companies and has revised their earlier
strict adherence to the SVID in favor of
conformance to the eventual 1EEE 1003.1 Full
Use Standard.

System V Relcase 3 and Issue 2 of the
SVID include several features, such as the
rename(), wmkdir(), and rmdir() systcm
calls, that werc derived from the IEEE 1003.1
Trial Use Standard, which in turn got them
from 4.2BSD. The most noticable such
facility is the directory manipulation routines
(opendir (), readdir (), closedir()).
Although this means that those routines have
become a de facto standard and will probably
come to be found on most UNIX variants,
Lapin’s inclusion of code in Appendix D
which emulates them on old-style file systems
is still a public service.

The main problem with the material on
UNIX variants (not only the historical infor-
mation, but also the actual comparisons) is a
shortage of information about BSD
systems[5,6]. Although the authors state
(3.4.2) that 4.1BSD was their home system
while most of the book was being prepared,
they lump 4.1BSD and 4.2BSD together, with
no mention of many of the profound
differences between them, such as the network-
ing facilities, inter-process communication,
select(2), long file names, symbolic links,
scatter/gather I/O, more accurate timers, etc.
It is true that many of these facilities are not

AUUGN 19

appropriate for inclusion in a book about por- .
tability among UNIX variants, because other
variants often don’t have these features at all.
Yet, many System V-bascd systems have had
the networking (and other) facilities from
4.2BSD addcd, and many facilitics from BSD
systcms have been adopted by System V and
clsewhere. These include not only the ones
mecntioned in the previous paragraph, but also
such things as catman, which the book
misidentifics (3.5) as originating in System V
Release 2. There are also errors of omission,
as when the 4.2BSD restore program is
discussed (3.6), but the text doesn’t mention
that the original reason for thc rewrite from
the Version 7 restor program was to allow
restoring through the ordinary file system
system calls rather than by writing directly to
the raw disk device.

Nonetheless, most of the comparison
information is accuratc and amazingly
exhaustive: there arc not only tables of
comparison for most commands, system calls,
and library routines, there are even tables of
comparison for options of commands where
that is uscful. Finally let’s not forget the occa-
sional drollery: documenters who omit games
will reincarnate as “worker insects of some
sort.”

This book is uscful as it is now. I
recommend buying it, while waiting for the
authors 1o update it.

1. Chambers, John B., and Quarterman, John
S., “UNIX System V and 4.1C BSD,” Proceed-
ings of Summer 1983 Toronto USENIX
Conference, pp. 267-291, USENIX Association,
P.O. Box 2299, Berkeley, CA 94710, 14 July
1983.

2. Unicjewski, Joseph, “UNIX System V and
BSD4.2 Compatibility Study,” Apollo Com-
puter Inc., Chelmsford, MA 01824, March 28,
1985.

3. Bach, Maurice J., The Design of the UNIX
Operating System, Prentice-Hall, Englewood
Cliffs, NJ, 1986.

4. /usr/group, “POSIX Explored,” /usr/group,
4655 Old Ironsides Drive, Suite 200, Santa
Clara, CA 95050, 408-986-8840, 30 pp.,
October 1987.

Vol 8 No 6

;login:

5. Quarterman, J. S., Silberschatz, A., and
Peterson, J. L., “4.2BSD and 4.3BSD as
Examples of the UNIX System,” ACM
Computing Surveys, Volume 17, Number 4,
pp. 379-418, December 1985.

6. Leffler, S. J., McKusick, M. K., Karels, M.,
Quarterman, J. S., The Design and Implemen-
tation of the 4.3BSD UNIX Operating System,
Addison-Wesley, Reading, MA, 1988.

UNIX System Administration

by Frank Burke
(ISBN 0-15-593025-7, LC #86-70500)

Reviewed by Rob Kolstad

Convex Computer Corp.
convex'kolstad

This book’s primary objective is “to
educate UNIX system administrators.” It is
intended to be used in the fourth semester of a
computer science degree program in which
students have some degree of familiarity with
UNIX. It succeeds in this singular objective —
the book is a fine one for a college environ-
ment.

It is, however, a UNIX SYSTEM V
administrator’s guide. Owners of 4.xBSD
systems will find only minimum utility here.
It is surprising that administration techniques
can be so different between AT&T and Berke-
ley UNIX. As stated in the summary, it is also
only an introduction, not a comprehensive
reference guide.

Thirteen chapters take the student through
a “UNIX Computer Center” (complete with
“UNIX operators”), login administration,
teletype administration, file system administra-
tion, process administration, operations
administration, security comments, system
tuning, configuration, system generation, uucp
network administration, and update adminis-
tration.

Vol 8 No 6 20

The book includes many examples, but of
course, it’s impossible to have too many exam-
ples in this kind of presentation. The
procedures set forth in numbered steps can
greatly aid the novice system administrator in
accomplishing his or her various goals.

While mastering the book may allow a
student to begin duties as a system manager (a
big step up when compared to former schema
common in the just-bought-a-UNIX-box
community), the book by no means teaches the
becoming of an expert system administrator.
Why? I suspect the reason relates to the
book’s intended purpose of a single semester
course. Only seven column-inches (four inch
columns) describe fsck. While a short discus-
sion summarizes the file system structure, it is
not possible to learn really effective use of the
fsck program from the description.

Backups receive a similarly cursory treat-
ment. While the commands to create a
backup tape are listed, the “big picture” of a
backup system does not appear. Again, the
limited scope of the book may have precluded
more detailed treatment.

In general, the book presents at least one
example of just about every System V system
administration feature. The motivation for
the example may be brief - sometimes too
brief. Unfortunately, the book will give no aid
to those administrators joining the world of
local area networking (TCP/IP and ethernet or
STARLAN, for example). It must be
considered as a very general introductory text-
book.

Schools in the System V fold may wish to
use it for a textbook if augmented by a
practicum/laboratory. The Instructor’s Guide
(accompanying the text) provides two pages of
suggestions for such a laboratory, but they’re
brief, e.g.: “Students learn about a dial-up
network by studying uucp commands and
files.”

Harcourt Brace Jovanovich publishes the
book at about $16. The publisher says it is
best purchased at a local bookstore; college
bookstores are best.

AUUGN

;login:

Computing Systems — New USENIX Quarterly

There have been a number of queries
about the new USENIX journal

Computing Systems

which will be published beginning February
1988. Michael D. O’Dell, Maxim Technol-
ogies, will serve as Editor-in-Chief.

Computing Systems will be published by
the University of California Press. It will
appear under the aegis of the USENIX Associa-
tion, with the cooperation of the EUUG. The
journal will be a membership benefit for
members of USENIX and available at a
reduced rate of $20/year to those EUUG,
AUUG, (or other national UNIX-user group)
members who wish to receive it. It will be
available by subscription through the Univer-
sity of California Press at $40/year.

Computing Systems will be dedicated to
the analysis and understanding of the theory,
art, design, engineering, and implementation
of advanced computing systems, with an
emphasis on systems inspired or influenced by

AUUGN

21

the UNIX tradition. Articles concerning
operating systems, architecture, networking,
programming languages, and sophisticated

applications are of interest. Papers will reflect
a mix of theory and practical experience.

Computing Systems may, from time to
time, also publish non-research articles
concerning computing controversies and
review articles concerning important books or
papers.

Submissions, in n/troff format should
be sent to {uunet,uchvax)!usenix!journal.
Hard copy submissions should be supplied in
five (5) copies and mailed to

Computing Systems
USENIX Association
P.O. Box 2299
Berkeley, CA 94710

The Association hopes to have a rapid
turnaround, with only 6-8 months between
submission and publication.

Vol 8 No 6

;login:

2.10BSD Software Release Available

The USENIX Association and the Com-
puter Systems Research Group (CSRG) of the
University of California, Berkeley, are pleased
to announce the distribution of a new release
of the “Second Berkeley Software Distribu-
tion” (2.10BSD).

This release will be handled by the
USENIX association, and is available to all V7,
System 1II, System V, and 2.9BSD licensees.
The Association will continue to maintain the
non-profit pricc of $200, as was charged by the
CSRG. The release will consist of two 2400
foot, 1600 bpi tapes (approximately 80Mb)
and approximately 100 pages of documenta-
tion. If you require 800 bpi tapes, please
contact USENIX for more information.

The tape that USENIX will be distributing
for the first few weeks will only support
machines with split I/D and floating point
hardwarc. This is not because any work
remains to be done, but because we just
haven’'t had the time to build and test a
system.

Sites wishing to run 2.10BSD should also
be aware that the networking is only lightly
tested, and that certain hardware has yet to be
ported. Contact Keith Bostic at the address
below for current information as to the status

Vol 8 No 6 22

of the networking. As of August 6, 1987, the
complete 4.3BSD networking is in place and
running, albeit with minor problems. The
holdup is that only the Interlan Ethernet
driver has been ported, as wcll as some major
space constraints. Note, if we decide to go to
a supervisor space networking, 2.10 network-
ing will only run on: ’

11/44/53/70/73/83/84
11/45/50/55 with 18 bit addressing

If you have questions about the distribu-
tion of the release, please contact USENIX at:

2.10BSD

USENIX Association
P.O. Box 2299
Berkeley, CA 94710

+1 415 528-8649
{uunet,ucbvax}!usenix!oﬂicc

If you have technical questions about the
release, please contact Keith Bostic at:

{(ucbvax,scismo}'keith
keith@okeeffe.berkeley.edu

+1 415 642-4948

Keith Bostic
Casey Leedom

AUUGN

Future Meetings

USENIX 1988 Winter Conference and
UniForum - Dallas

The USENIX 1988 Winter Conference,
featuring tutorials and technical sessions, will
be held on February 9-12, 1988, at the Grand
Kempinski Hotel in Dallas, Texas. It will be
concurrent with UniForum 1988, which will
also be in Dallas.

AFUU UNIX Convention 88
Paris, March 7-10, 1988

EUUG Spring Conference
London, April 11-15, 1988

USENIX 1988 Summer Conference and
Exhibition — San Francisco

The USENIX 1988 Summer Conference
and Exhibition will be held on June 20-24,
1988, at the Hilton Hotel in San Francisco,
California. There will be a conference, tutori-
als, and vendor exhibits.

Long-term USENIX Conference Schedule

Fcb 8-12 88 Grand Kempinski, Dallas
Jun 20-24 °88 Hilton Hotcl, San Francisco
Jan 31-Feb 3 °89 Town & Country Inn, San Diego

Jun 12-16 ’89 Hyatt Regency, Baltimore
Jan 23-26 90 Washington, DC

Jun 11-15 ’90 Marriott Hotcl, Anahcim
Jan 22-25 91 Dallas

Jun 10-14 ’91 Opryland, Nashville

Publications Available

The following publications are available
from the Association Office. Prices and
overseas postage charges are per copy.
California residents please add applicable salcs
tax. Payments must be cnclosed with the

order and must be in US dollars payable on a

US bank.

Conference and Workshop Proceedings

The EUUG Newsletter, which is published
four times a year, is available for $4 per copy
or $16 for a full-year subscription.

The July 1983 edition of the EUUG
Micros Catalog is available for $8 per copy.

Overseas Mail
Meeting Location Date Price Air Surface
Graphics Workshop IV Cambridge October '87 $10 $15 $5
USENIX Phoenix Summer 87 $20 $25 $5
USENIX Wash. DC Winter '87 $20 - $25 $5
Graphics Workshop III Monterey December ’86 $10 $15 $5
USENIX Atlanta Summer ’86 $10 $25 $5
USENIX Dallas Winter ’85 $10 $25 $5
Graphics Workshop I Monterey December ’84 $3 $ 7 $5
AUUGN 23 Vol 8 No 6

;login:

French UNIX User’s Group Conference

Paris
March 7-10, 1988

The French Association of UNIX Users (AFUU) in cooperation with the Bureau Inter-
national de Relations Publiques is organizing a conference in Paris, 7-10 March 1988.

There will be tutorials on the first day and technical meetings and an exhibition run-
ning concurrently the next three days.

While UNIX Convention 88 is intended to be a primarily French event, it is expected
that a considerable number of overseas visitors will participate.

The chair of the Program Committee is Christophe Binot. Information is available
from:

AFUU c/o SUPELEC

Attn.: Anne Garnery, Convention UNIX 88
Plateau de Moulon

91190 Gif-sur-Yvette

FRANCE

mecvax!inrialafuulanne

EUUG Spring 1988 Conference

London
April 11-15, 1988

The UKUUG will host the Spring '88 European UNIX systems User Group Technical
Conference at the Queen Elizabeth II Conference Center in London. Technical tutorials will
be held on April 11 & 12, followed by the three day conference. A pre-conference registra-
tion pack will be issued in early December, 1987.

For further information, contact the EUUG Secretariat at:

EUUG

Owles Hall

Buntingford, Herts. SG9 9PL
United Kingdom

Phone: (+44) 763 73039
Fax: (+44) 763 73255 (G2)

Vol 8 No 6 24 AUUGN

EUROPEAN
UNIX SYSTEMS USER GROUP
NEWSLETTER

Volume 7

Number 3
Editorial oo e 1
MINIX: A UNIX Clone with SOUTCE COE wvvvvvrrvroeoeoeoooooonn 3
Conference Announcementscoocoeooevevovemoeoooooooooo 12, 59, 63, 79
A User Programmable Telephone SWitchooooooooivnn, 13
A Day in the Life of Owles Hall .oooeooerovevemeooosoooooo 27
APOLOBIA oottt 30
The X/OPEN Native Language SyStemoocooooooooooon., 31
UNIX Standardisation: A Bystander's View ..., 37
Demand Controlled Debug Logging ocoveveieineieceeen, 41
BoOK REVIEWSeiiiiciiiii oo 44, 76, 97,99
UNIX TRIOWS UP oottt 45
The EUUG DIitly ...o.oooeeinieeiieeeeeeeeeeeeeeeeeeee oo 52
Call £Or Paperscococeeieueeeeeeeeeeeeeeeeeees oo 54
Report from ICEUUGcocoooommoiueieeeeeeeeeeeeeoeoooooo 55
The Belgian UNIX Systems User Group .ooceeeveveecece e, 57
News from The Netherlandsooooooroooooooooooooo 61
News from UKUUG ..occoomumiiiieieieeeeeee oo 65
EUUG Executive Committee REPOTt .ovoveeovevevueroromoooooooooon 69
Ct GOSSIP wveeeeccecicteee e 71
Status Report on the Draft Proposed ANSI/ISO C Standard 73
POSIX Progress at ISO Level and BSI Level ..o.ooooveovoon . 77
EUUG Tape DiSLribULiONS ..couvvevvovveeoeeeneeesroeeooooooooo 81
UNIX CHRIC oot 87
What's New with System Vco.ooooveovoooooooooooo 89
BUR L oo 91
The X/OPEN Mid-term Report s 95
Product Announcementsocouovevevoreeoooo 96, 98
GLOSSATY oottt 101

AUUGN 25 Vol 8 No 6

TANENBAUM MINIX: A UNIX CLONE WITH SOURCE CODE

MINIX: A UNIX clone with source code
March 1987

Andrew: S. Tanenbaum
ast@cs.vu.nl
...Imcvax!blotterlast

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

MINIX is a complete rewrite of UNIX. Neither the kernel nor the utility
programs contains any AT&T code, so the source code is free of the AT&T
licensing restrictions and may be studied by individuals or in a course.
The system runs on the IBM PC, XT, or AT, and does not require a hard
disk, thus making it possible for individuals to acquire a UNIX-like
system for home use at a very low cost.

Internally, MINIX is structured completely differently from UNIX. It is a
message passing system on top of which are memory and file servers.
User processes can send messages to these servers to have system calls
carried out. The paper describes the motivation and intended use of the
system, what the distribution contains, and discusses the system
architecture in some detail.

1. Introduction

When AT&T first licensed UNIX outside of Bell Laboratories, it was widely studied
in operating systems courses at universities (and in industry). Prof. John Lions of
the University of New South Wales in Australia even wrote a little booklet
providing a commentary on the source code, which for the most part was comment-
free. Lions booklet plus the UNIX source code made it possible for students to get
hands-on experience working with, and modifying the code of a real operating
system.

With the advent of Version 7, AT&T decided to put an end to the teaching of UNIX
to students, and added a clause to the standard university contract prohibiting use
of the source code in the classroom. Since that time, professors and students have
largely had to be content with operating systems theory because no system that was
small enough to be understandable yet large enough to be realistic has been available
in source form.

To remedy this situation, several years ago I decided to write a new operating
system from scratch that would be system-call compatible with UNIX but
completely new inside. In addition to eliminating the licensing problems, this system
would be written using modern software concepts such as structured programming,
modularity, and file servers. UNIX itself was begun in the early 1970s when the
main design issue was squeezing it onto a PDP-11, rather than making the code easy
for others to read.

Vol 8 No 6 26 AUUGN

MINIX: A UNIX CLONE WITH SOURCE CODE TANENBAUM

That work is now complete and has resulted in a system called MINIX (mini UNIX)
because it leaves out some of the more esoteric system calls in an attempt to make
the system smaller and easier to understand. MINIX was originally written for the
IBM PC, XT, and AT, but work is currently under way to port it to the 68000 and
other computers. The system is written in C and some care has been taken in the
design to make the port to small computers without memory management hardware
as straightforward as possible. This will be discussed in detail later in the paper.

To avoid confusion, it is worthwhile stating explicitly who MINIX is aimed at.
There are two potential groups of users.

1. Professors, students, and others who are interesting in legally obtaining and
studying the source code of a UNIX-like operating system.

2. People who would like to run a UNIX-like system (especially at home), but
have not been able to afford it. Since MINIX does not require a hard disk and
the complete system, including both the binaries and the sources costs under
$80, the set of potential users is much larger than for UNIX.

Thus MINIX does not really compete with UNIX. Rather, it fills a niche that is
currently unoccupied. '

For the first category (i.e. educational) users, several options have been provided.
The system can be modified and maintained on an IBM PC with or without a hard
disk, using itself, a version of UNIX, or even MS-DOS. It can also be cross compiled
on a VAX or other time-shared computer running UNIX. Furthermore, the software
distribution contains an interpreter for the IBM PC (including I/0) so that the
resulting system can be run on a VAX or other computer, preferably a fast one, in
case no real IBM PCs are available for students. The MINIX file system can also be
modified and run on almost any computer, since it is structured as a free-standing
file server. The file server can also be used in a network of diskless workstations.

For the second category (i.e. impoverished) users, several versions of the system
have been configured. The normal ones run on 640K PCs with two floppy disks or
512K ATs with one floppy disk, but a special version has also been configured for
256K PCs with only one floppy disk. This version does not contain the C compiler,
but is otherwise complete.

MINIX is system-call compatible with Version 7 UNIX for both practical and
ideological reasons. On the practical side, I was unable to figure out how to make
either 4.3 BSD or System V run on a 256K IBM PC with only 1 floppy disk. On
the ideological front, many people (myself included) strongly believe that Version 7
was not only an improvement on all of its predecessors, but also on all of its
successors, certainly in terms of simplicity, coherence and elegance. Users who
prefer features to elegance should program in Ada’ on a large IBM mainframe
running MVS.

MINIX implements all the V7 system calls, except ACCT, LOCK, MPX, NICE, PHYS,
PKON, PKOFF, PROFIL, and PTRACE. The other system calls are all implemented in
full, and are exactly compatible with V7. In particular, FORK and EXEC are fully
implemented, so MINIX can be configured as a normal multiprogramming system,
with several background jobs running at the same time (memory permitting), and
even multiple users.

T Ada is a Registered Trademark of the U.S. Dept. of Defense

AUUGN 27 Vol 8 No 6

TANENBAUM MINIX: A UNIX CLONE WITH SOURCE CODE

The MINIX shell is compatible with the V7 (Bourne) shell, so to the user at the
terminal, running MINIX looks and feels like running UNIX. Over 70 utility
programs are part of the software distribution, including ax, basename, cat, cc,
chmem, chmod, chown, cmp, comm, cp, date, dd, df, echo, grep, head, kill, 1n,
login, 1lpr, 1s, make, mkdir, mkfs, mknod, mount, nv, od, passwd, pr, pwd, rev, rm,
rmdir, roff, sh, size, sleep, sort, split, stty, su, sum, sync, tail, tar, tee,
time, touch, tr, umount, unig, update, and wc. A full-screen editor inspired by
Emacs (think of it as nano-emacs), a full K&R compatible C compiler, and programs
to read and write MS-DOS diskettes are also included. All of the sources of the
operating system and these utilities, except the C compiler source (which is quite
large and is available separately), are included in the software package.

In addition to the above utilities, over 100 library procedures, including stdio, are
provided, again with the full source code.

To reiterate what was said above, all of this software is completely new. Not a
single line of it is taken from, or even based on, the AT&T code. I personally
wrote from scratch the entire operating system and some of the utilities. This took
about 3 years. My students and some other generous people wrote the rest. The C
compiler is derived from the Amsterdam Compiler Kit (Tanenbaum et al. 1983),
and was written at the Vrije Universiteit. It is a top-down, recursive descent
compiler written in a compiler writing language called LLGEN and is not related to
the AT&T portable C compiler, which is a bottom-up, LALR compiler written in
YACC.

2. Overview of the MINIX System Architecture

UNIX is organized as a single executable program that is loaded into memory at
system boot time and then run. MINIX is structured in a much more modular way,
as a collection of processes that communicate with each other and with user
processes by sending and receiving messages. There are separate processes for the
memory manager, the file system, for each device driver, and for certain other
system functions. This structure enforces a better interface between the pieces. The
file system cannot, for example, accidentally change the memory manager's tables
because the file system and memory manager each have their own private address
spaces.

These system processes are each full-fledged processes, with their own memory
allocation, process table entry and state. They can be run, blocked, and send
messages, just as the user processes. In fact, the memory manager and file system
each run in user space as ordinary processes. The device drivers are all linked
together with the kernel into the same binary program, but they communicate with
each other and with the other processes by message passing.

When the system is compiled, four binary programs are independently created: the
kernel (including the driver processes), the memory manager, the file system, and
init (which reads /etc/ttys and forks off the login processes). In other words,
compiling the system results in four distinct a.out files. When the system is
booted, all four of these are read into memory from the boot diskette.

It is possible, and in fact, normal, to modify, recompile, and relink, say, the file
system, without having to relink the other three pieces. This design provides a high
degree of modularity by dividing the system up into independent pieces, each with a
well-defined function and interface to the other pieces. The pieces communicate by
sending and receiving messages.

Vol 8 No 6 28 AUUGN

MINIX: A UNIX CLONE WITH SOURCE CODE TANENBAUM

The various processes are structured in four layers:

4. The user processes (top layer).

3. The server processes (memory manager and file system).
2. The device drivers, one process per device.

1. Process and message handling (bottom layer).

Let us now briefly summarize the function of each layer.

Layer 1 is concerned with doing process management including CPU scheduling and
interprocess communication. When a process does a SEND or RECEIVE, it traps to
the kernel, which then tries to execute the command. If the command cannot be
executed (e.g., a process does a RECEIVE and there are no messages waiting for it),
the caller is blocked until the command can be executed, at which time the process
is reactivated. When an interrupt occurs, layer 1 converts it into a message to the
appropriate device driver, which will normally be blocked waiting for it. The
decision about which process to run when is also made in layer 1. A priority
algorithm is used, giving device drivers higher priority over ordinary user processes,
for example.

Layer 2 contains the device drivers, one process per major device. These processes
are part of the kernel's address space because they must run in kernel mode to
access 1/0 device registers and execute I/O instructions. Although the IBM PC does
not have user mode/kernel mode, most other machines do, so this decision has been
made with an eye toward the future. To distinguish the processes within the kernel
from those in user space, the kernel processes are called tasks.

Layer 3 contains only two processes, the memory manager and the file system.
They are both structured as servers, with the user processes as clients. When a
user process (i.e. a client) wants to execute a system call, it calls, for example, the
library procedure read with the file descriptor, buffer, and count. The library
procedure builds a message containing the system call number and the parameters
and sends it to the file system. The client then blocks waiting for a reply. When
the file system receives the message, it carries it out and sends back a reply
containing the number of bytes read or the error code. The library procedure gets
the reply and returns the result to the caller in the usual way. The user is
completely unaware of what is going on here, making it easy to replace the local
file system with a remote one.

Layer 4 contains the user programs. When the system comes up, init forks off
login processes, which then wait for input. On a successful login, the shell is
executed. Processes can fork, resulting in a tree of processes, with init at the root.
When CTRL-D is typed to a shell, it exits, and init replaces the shell with another
login process.

3. Layer 1 — Processes and Messages

The two basic concepts on which MINIX is built are processes and messages. A
process is an independently schedulable entity with its own process table entry. A
message is a structure containing the sender’'s process number, a message type field,
and a variable part (a union) containing the parameters or reply codes of the
message. Message size is fixed, depending on how big the union happens to be on
the machine in question. On the IBM PC it is 24 bytes.

Three kernel calls are provided:

AUUGN 29 Vol 8 No 6

TANENBAUM MINIX: A UNIX CLONE WITH SOURCE CODE

— RECEIVE(source,&message)
— SEND(dcstination,&message)
— SENDREC(process,&message)

These are the only true system calls (i.e. traps to the kernel). RECEIVE announces
the willingness of the caller to accept a message from a specified process, or ANY, if
the RECEIVER will accept any message. (From here on, “process” also includes the
tasks.) If no message is available, the receiving process is blocked. SEND attempts
to transmit a message to -the destination process. If the destination process is
currently blocked trying to receive from the sender, the kernel copies the message
from the sender’s buffer to the receiver's buffer, and then marks them both as
runnable. If the receiver is not waiting for a message from the sender, the sender
is blocked.

The SENDREC primitive combines the functions of the other two. It sends a message
to the indicated process, and then blocks until a reply has been received. The reply
overwrites the original message. User processes use SENDREC to execute system calls
by sending messages to the servers and then blocking until the reply arrives.

There are two ways to enter the kernel. One way is by the trap resulting from a
process’ attempt to send or receive a message. The other way is by an interrupt.
When an interrupt occurs, the registers and machine state of the currently running
process are saved in its process table entry. Then a general interrupt handler is
called with the interrupt number as parameter. This procedure builds a message of
type INTERRUPT, copies it to the buffer of the waiting task, marks that task as
runnable (unblocked), and then calls the scheduler to see who to run next.

The scheduler maintains three queues, corresponding to layers 2, 3, and 4,
respectively. The driver queue has the highest priority, the server queue has middle
priority, and the user queue has lowest priority. The scheduling algorithm is
simple: find the highest priority queue that has at least one process on it, and run
the first process on that queue. In this way, a clock interrupt will cause a process
switch if the file system was running, but not if the disk driver was running. If
the disk driver was running, the clock task will be put at the end of the highest
priority queue, and run when its turn comes.

In addition to this rule, once every 100 msec, the clock task checks to see if the
current process is a user process that has been running for at least 100 msec. If
so, that user is removed from the front of the user queue and put on the back. In
effect, compute bound user processes are run using a round robin scheduler. Once
started, a user process runs until either it blocks trying to send or receive a
message, or it has had 100 msec of CPU time. This algorithm is simple, fair, and
easy to implement.

4. Layer 2 — Device Drivers

Like all versions of UNIX for the IBM PC, MINIX does not use the ROM BIOS for
input or output because the BIOS does not support interrupts. Suppose a user forks
off a compilation in the background and then calls the editor. If the editor tried to
read from the terminal using the BIOS, the compilation (and any other background
jobs such as printing) would be stopped dead in their tracks waiting for the the
next character to be typed. Such behaviour may be acceptable in the MS-DOS
world, but it certainly is not in the UNIX world. As a result, MINIX contains a
complete set of drivers that duplicate the functions of the BIOS. Like the rest of
MINIX, these drivers are written in C, not assembly language.

Vol 8 No 6 30 AUUGN

AUUGN

MINIX: A UNIX CLONE WITH SOURCE CODE TANENBAUM

This design has important implications for running MINIX on PC clones. A clone
whose hardware is not compatible with the PC down to the chip level, but which
tries to hide the differences by making the BIOS calls functionally identical to IBM's
will not run an unmodified MINIX because MINIX does not use the BIOS.

Each device driver is a separate process in MINIX. At present, the drivers include
the clock driver, terminal driver, various disk drivers (e.g., RAM disk, floppy disk),
and printer driver. FEach driver has a main loop consisting of three actions:

1.. Wait for an incoming message.
2. Perform the request contained in the message.
3. Send a reply message.

Request messages have a standard format, containing the opcode (e.g., READ, WRITE,
or IOCTL), the minor device number, the position (e.g., disk block number), the
buffer address, the byte count, and the number of the process on whose behalf th
work is being done. '

As an example of where device drivers fit in, consider what happens when a user
wants to read from a file. The user sends a message to the file system. If the file
system has the needed data in its buffer cache, they are copied back to the user.
Otherwise, the file system sends a message to the disk task requesting that the block
be read into a buffer within the file system’s address space (in its cache). Users
may not send messages to the tasks directly. Only the servers may do this.

MINIX supports a RAM disk. In fact, the RAM disk is always used to hold the
root device. When the system is booted, after the operating system has been loaded,
the user is instructed to insert the root file system diskette. The file system then
sees how big it is, allocates the necessary memory, and copies the diskette to the
RAM disk. Other file systems can then be mounted on the root device.

This organization puts important directories such as /bin and /tmp on the fastest
device, and also makes it easy to work with either floppy disks or hard disks or a
mixture of the two by mounting them on /usr or /user or elsewhere. In any
event, the root device is always in the same place.

In the standard distribution, the RAM disk is about 240K, most of which is full of
parts of the C compiler. In the 256K system, a much smaller RAM disk has to be
used, which explains why this version has no C compiler: there is no place to put
it. (The /usr diskette is completely full with the other utility programs and one
of the design goals was to make the system run on a 256K PC with 1 floppy disk.)
Users with an unusual configuration such as 256K and three hard disks are free to
juggle things around as they see fit.

The terminal driver is compatible with the standard V7 terminal driver. It supports
cooked mode, raw mode, and cbreak mode. It also supports several escape
sequences, such as cursor positioning and reverse scrolling because the screen editor
needs them.

The printer driver copies its input to the printer character for character without
modification. It does not even convert line feed to carriage return + line feed. This
makes it possible to send escape sequences to graphics printers without the driver
messing things up. MINIX does not spool output because floppy disk systems rarely
have enough spare disk space for the spooling directory. Instead one normally
would print a file £ by saying

lpr <f &

31 Vol 8 No 6

TANENBAUM MINIX: A UNIX CLONE WITH SOURCE CODE

to do the printing in the background. The 1lpr program inserts carriage returns,
expands tabs, and so on, so it should only be used for straight ASCII files. On hard
disk systems, a spooler would not be difficult to write.

5. Layer 3 — Servers

Layer 3 contains two server processes: the memory manager and the file system.
They are both structured in the same way as the device drivers, that is a main loop
that accepts requests, performs them, and then replies. We will now look at each
of these in turn.

The memory manager's job is to handle those system calls that affect memory
allocation, as well as a few others. These include FORK, EXEC, WAIT, KILL, and
BRK. The memory model used by MINIX is exceptionally simple in order to
accommodate computers without any memory management hardware. When the
shell forks off a process, a copy of the shell is made in memory. When the child
does an EXEC, the new core image is placed in memory. Thereafter it is never
moved. MINIX does not swap or page.

The amount of memory allocated to the process is determined by a field in the
header of the executable file. A program, chmem, has been provided to manipulate
this field. When a process is started, the text segment is set at the very bottom of
the allocated memory area, followed by the data and bss. The stack starts at the
top of the allocated memory and grows downward. The space between the bottom
of the stack and the top of the data segment is available for both segments to grow
into as needed. If the two segments meet, the process is killed.

In the past, before paging was invented, all memory allocation schemes worked like
this. In the future, when even small microcomputers will use 32-bit CPUs and
1M X 1 bit memory chips, the minimum feasible memory will be 4 megabytes and
this allocation scheme will probably become popular again due to ‘its inherent
simplicity. Thus the MINIX scheme can be regarded as either hopelessly outdated or
amazingly futuristic, as you prefer.

The memory manager keeps track of memory using a list of holes. When new
memory is needed, either for FORK or for EXEC, it searches the hole list and takes
the first hole that is big enough (first fit). When a process terminates, if it is
adjacent to a hole on either side, the process’ memory and the hole are merged into
a bigger hole.

The file system is really a remote file server that happens to be running on the
user’s machine. However it is straightforward to convert it into a true network file
server. All that needs to be done is change the message interface and. provide some
way of authenticating requests. (In MINIX, the source field in the incoming message
is trustworthy because it is filled in by the kernel.) When running remote, the
MINIX file server maintains state information, like RFS and unlike NFS.

The MINIX file system is similar to that of V7 UNIX. The i-node is slightly
different, containing only 9 disk addresses instead of 13, and only 1 time instead of
3. These changes reduce the i-node from 64 bytes to 32 bytes, to store more i-
nodes per disk block and reduce the size of the in-core i-node table.

Free disk blocks and free inodes are kept track of using bit maps rather than free
lists. The bit maps for the root device and all mounted file systems are kept in
memory. When a file grows, the system makes a definite effort to allocate the new
block as close as possible to the old ones, to minimize arm motion. Disk storage is
not necessarily allocated one block at a time. A minor device can be configured to
allocate 2, 4 (or more) contiguous blocks whenever a block is allocated. Although

Vol 8 No 6 32 AUUGN

MINIX: A UNIX CLONE WITH SOURCE CODE TANENBAUM

this wastes disk space, these multiblock zones improve disk performance by keeping
file blocks close together. The standard parameters for MINIX as distributed are 1K
blocks and 1K zones (i.e. just 1 block per zone).

MINIX maintains a buffer cache of recently used blocks. A hashing algorithm is
used to look up blocks in the cache. When an i-node block, directory block, or
other critical block is modified, it is written back to disk immediately. Data blocks
are only written back at the next SYNC or when the buffer is needed for something
else.

The MINIX directory system and format is identical to that of V7 UNIX. File
names are strings of up to 14 characters, and directories can be arbitrarily long.

6. Layer 4 — User Processes

This layer contains init, the shell, the editor, the compiler, the utilities, and all the
user processes. These processes may only send messages to the memory manager and
the file system, and these servers only accept valid system call requests. Thus the
user processes do not perceive MINIX to be a general-purpose message passing system.
However, removing the one line of code that checks if the message destination is
valid would convert it into a much more general system (but less UNIX-like).

7. Documentation

For a system one of whose purposes is teaching about operating systems, ample
documentation is essential. For this reason I have written an ample textbook (more
than 700 pages) treating both the theory and the practice of operating system design
(Tanenbaum, 1987). The table of contents is as follows:

Chapters
1. Introduction
Processes
Input/Output

Memory Management

P

File Systems
6. Bibliography and Suggested Readings
Appendices
A. Introduction to C
Introduction to the IBM PC
MINIX Users Guide
M INIX Implementers Guide
MINIX Source Code Listing
F. MINIX Cross Reference Map

m Y 0w

The heart of the book is chapters 2 — 5. Each chapter deals with the indicated
topic in the following way. First comes a thorough treatment of the relevant
principles (thorough enough to be usable as a university textbocok on operating
systems). Next comes a general discussion of how the principles have been applied
in MINIX. Finally there is a procedure by procedure description of how the
relevant part of MINIX works in detail. The source code listing of Appendix E

AUUGN 33 Vol 8 No 6

TANENBAUM MINIX: A UNIX CLONE WITH SOURCE CODE

contains line numbers, and these line numbers are used throughout the book to
pinpoint the code under discussion. The source code itself contains more than 3000
comments, some more than a page long. Studying the principles and seeing how
they are applied in a real system gives the rcader a better understanding of the
subject than either the principles or the code alone would.

Appendices A and B are quickie introductions to C and the IBM PC for readers not
familiar with these subjects. Appendix C tells how to boot MINIX, how to use it,
and how to shut it down. It also contains all the manual pages for the utility
programs. Most important of all, it gives the super-user password.

Appendix D is for people who wish to modify and recompile MINIX. It contains a
wealth of nutsy-boltsy information about everything from how to use MS-DOS as a
development system, to what to do when your newly made system refuses to boot.

Appendix E is a full listing of the operating system, all 260 pages of it. The
utilities (mercifully) are not listed.

8. Distribution of the Software

The software distribution is béing done by Prentice-Hall. Four packages are
available. All four contain the full source code; they differ only in the
configuration of the binary supplied. The four packages are:

— 640K IBM PC version

— 256K 1BM PC (no C compiler)
— IBM PC-AT (512K minimum)
— Industry standard 9-track tape

The 640K version will also run on 512K systems, but it may be necessary to chmem
parts of the C compiler to make it fit. The tape version is the only one containing
the IBM PC simulator and other software needed for classroom use on a VAX or
other time sharing machine. The software packages do not include the book.

If there is sufficient interest, a newsgroup net.minix will be set up. This channel
can be used by people wishing to contribute new programs, point out and correct
bugs, discuss the problems of porting MINIX to new systems, etc.

9. Acknowledgements

I would like to thank the following people for contributing utility programs and
advice to the MINIX effort: Martin Atkins, Erik DBaalbergen, Charles Forsyth,
Richard Gregg, Michiel Huisjes, Patrick van Kleef, Adri Koppes, Paul Ogilvie, Paul
Polderman, and Robbert van Renesse. Without their help, the system would have
been far less useful than it now is.

10. References

Tanenbaum, A.S., van Staveren, H., Keizer, E.G., and Stevenson, JW.. A Practical
Toolkit for Making Portable Compilers, Communications of the ACM, Vol. 26, pp.
654-660, September 1983,

Tanenbaum, A.S.: Operating Systems: Design and Implementation, Englewood Cliffs,
N.J.: Prentice-Hall, 1987.

Vol 8 No 6 34 AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

A User Programmable Telephone Switch

Brian E. Redman

Bell Communications Research
Morristown, New Jersey 07960, USA

The basic function of a telephone switch is to allow subscribers to place
calls among one another. The basic service provided is Plain Old
Telephone Service (POTS). There were relatively few changes in POTS
since telephone switching was introduced in 1880. In 1919 dial service
became available alleviating the need for operator assistance on many
calls. Direct Distance Dialing (DDD) in 1951 expanded this to long
distance calls. In 1964 touch-tone service provided faster and easier
dialing. It wasn't until 1972 that Vertical Services were offered to
residence costumers. These were services such as Speed Calling, Call
Waiting and Call Forwarding.

When you rented a pair of telephones in 1887 there was only one option
available. For an additional $5 installation charge they were equipped
with thumpers, the predecessor of the bell. Otherwise you could simply yell
into your telephone and hope the other party was close enough to theirs to
hear you. When you subscribe to telephone service today you are offered a
number of enhancements to POTS. Unfortunately the precise behavior and
control of these options is quite limited.

Nowadays telephone switching systems are controlled by computers. There
is the capacity to do more than switch calls among subscribers. 1t is both
practical and attractive to have telephone services controlled dynamically
by the subscriber, either via direct input to the telephone switching system
or by exercising customer designed control algorithms.

The telephone switching system which will be described provides several
interfaces to the subscriber. At the highest levels, the user can activate or
deactivate preprogrammed algorithms and modify their behavior to the
extent that such modification has been allowed for in their design. This
is achieved with touch-tone input or by issuing commands from a
computer terminal. At the intermediate level the user can incorporate
program library functions and implement control algorithms with their
own computer programs. At the lowest level users can claim total control
of their assigned circuits.

This system has been in use for over a year, providing essential telephone
service to twenty subscribers. Although the basic design has remained
intact, the emphasis on utilization of the different layers is shifting
markedly.

1. Introduction

The BerBell user programmable telephone switch places into the hands of its
customers the responsibility of determining how their telephone should behave

AUUGN 35 Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

beyond a basic standard service. There are so many options available in modern
systems that it is not reasonable for their designers or installers to predict or
restrict the desires of each individual. By providing a powerful set of primitives
and a clean interface, the subscribers themselves or their agents can dictate the
functionality of their service. Thus service definition is open-ended, evolving with
the needs and imagination of the system’s users. The exploitation of BerBell's
capabilities has resulted in a continually growing library of user programs and
services. These include placing calls from an on-line directory and scheduling calls
from an on-line calendar. Users with computer access can take somewhat greater
advantage of BerBell. Whenever possible, the telephone touch-tone interface provides
similar capabilities to the computer terminal interface. However more complex
features are more easily manipulated with the use of textual input and output.
Although rotary dialing cannot be fully supported, BerBell will function well with
all types of touch-tone telephones and computer terminals. Putting the data bases
and features within the system or within reach of the system through computer
networks obviates the need for expensive special purpose accessories.

The work described involves the use of a general purpose operating system, UNIX,
and its associated program resources to support the development and application of a
telephone switch. The system as a whole is referred to as BerBell. Its software
consists of a core program, bellerophon, a number of programs varying in their
degree of independence from bellerophon, the UNIX operating system and its tools.
The hardware which realises the system is composed of a host minicomputer, 2
Redcom Modular Switching Peripheral providing the basic electrical interfaces and
switching capabilities required for telephony applications, speech synthesizers and an
assortment of ancillary audio sources and recorders. These components together
provide flexible and comprehensive telephone service.

2. User Level

How is BerBell different from other telephone offerings from the end-user’s point of
view? What new capabilities are there? There are no significant differences between
the basic service provided by BerBell and that provided by other vendors. The
default BerBell dialing plan is designed to look like CENTREX since most subscribers
use it at work. However, dialing plans are associated with the telephone line, so
home subscribers can use the standard residence dialing plan. Basic service implies
that when the subscriber lifts the receiver, they hear dialtone. They then dial a
valid number and a call is placed to their party. On the receiving side, if the
telephone is in use callers get a busy tone. Otherwise the telephone is rung. If the
receiving party answers, a talking connection is established.

BerBell and most other vendors provide more interesting services upon request.
BerBell subscribers can activate and disconnect these features using a touch-tone
telephone or by issuing shell level commands from a computer served by the BerBell
host. Although the fundamental concepts of these features are similar, BerBell
advances their applications. First, we present a discussion of those features that are
typically provided by most vendors.

2.1 Call Forwarding

Subscribers can arrange to have their calls transferred to another number. Typical
residence service only allows unconditional call forwarding. Most PBX and CENTREX
vendors provide call forwarding when the called line is busy as well as after the
line has rung some number of times (no answer). These functions are available to
BerBell subscribers with some improvements. Most importantly, the parameters of
each of the call forwarding operations are conveniently changeable by the subscriber.

Vol 8 No 6 ' 36 AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

From a touch-tone telephone, the user enters "*" (non-call dialing), then *2"
indicating a feature setting, followed by 1" (call forwarding) then various codes to
set parameters. The feature dialing syntax is designed to be consistent and
hierarchical. It is simpler to use the computer interface to describe these parameters.
In all cases the command is

setforward <extension> <option>.
The basic call forwarding options are:

rings <n>
the number of rings after which no-answer forwarding will be effected. If
<n> is zero unconditional forwarding is activated.

busy/nobusy
activate/deactivate forwarding when the line is busy.

noanswernumber <number>
the number to transfer the call to if no-answer forwarding is active and the
call is not answered after the specified number of rings. The name of a
program can be substituted for <number>.

unconditionalnumber <number>
the number or program to transfer the call to if rings is set to zero.

busynumber <numbers>
the number or program to transfer the call to if the line is busy and busy
forwarding is activated.

Some new call forwarding operations are implemented to allow callers and recipients
of forwarded calls to be made aware that call forwarding has been invoked. The
terms “inform” and “announce” are used to indicate messages to the caller and
ultimate recipient respectively. The following options involve speaking a text message
synthetically or playing a recorded message.

inform/noinform
enable/disable calling party notification that the call is being forwarded.

announce/noannounce
enable/disable recipient party notification that the call has been forwarded to
them. '

For each of the forwarding conditions described a different méssage can be specified
with <file> which contains text to be recited or binary audio data.

busyannounce <file>
noanswerannounce <file»>
unconditionalannounce <file»>
busyinform <file>
noanswerinform <file>
unconditionalinform <file>

A “continueringing” option allows the originally called line to continue ringing even
after it has been forwarded. It can then be answered at any time. This is disabled
with “stopringing”.

Finally, the “on/off” option will activate/deactivate all forwarding without
modifying the parameter settings described above.

AUUGN 37 Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

2.2 Call Waiting

A call to a party whose line is busy causes audible ringing to be heard by the
caller and a short tone by the recipient. The recipient may then talk to the calling
party by hookflashing, placing the current conversation on hold. In the BerBell
implementation call waiting can be enabled or disabled from the telephone by
pressing “*20"" then 1" or 0" respectively. From a terminal the command

setcw [on| off] <program name>

is used to specify a program which is executed when the caller encounters a busy
line with call waiting enabled. As in call forwarding and most other services the
program can be supplied by the user. A popular program in use for this purpose
informs the caller that their party will be responding shortly, then connects them to
silence, music or an answering program, at their option. The recipient, having heard
a high-pitched tone when the new call arrived will hear a low-pitched tone if the
new caller should hang up. In fact the new call is simply a held call and the
subscriber will hear a low-pitched tone any time a held caller hangs up. Many
calls can be on hold simultaneously.

2.3 Call Transfer

A call in progress can be forwarded to another number. This is a fairly common
feature but BerBell provides a slight twist. In the normal case a call is transferred
using the telephone by first placing it on hold, then dialing “*12"", then the slot
number or “#" for the oldest held call, then the destination number. From the
terminal the user issues

xfer <extension> <destination number>.

In this case the call in progress. not a held call, is transferred. The twist
mentioned is that calls can be temporarily transferred. That is to say that the call
is transferred but still remains on hold. This means that the user can still pick up
the call, etc. This feature conveniently implements services on hold such as music,
advertising, games, or information. Each of these services is implemented as a
program which can be designed by the subscriber. Programs exist which give the
caller the option to select a preference (including silence). In any event the options
are dictated by the subscriber and the choice is made by the user, not the system.
To invoke the temporary transfer from a telephone, place the call on hold then dial
“¥16#", then the number to call. The command to issue from a terminal is

txfer <extension> <numbexr>.
Like xfer the current call is transferred, not a held call.

The more common features found in most telephone systems have been covered.
The discussion now turns to some less common services.

2.4 Editing

BerBell incorporates some editing facilities similar to those - used for computer
terminal interfaces. These are “*##", erase the last keypress; “**#' erase all dialed
digits; and """ recite the digits dialed so far.

2.5 Call Announcement
A program can be executed when a subscriber receives a call. The command
setcallfor [on| off] <program>

is used to control the option. From the telephone, “*221" and "*220" are used to
activate or deactivate the feature. The default program utilises a switched public

Vol 8 No 6 38 AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

address system to announce to subscribers that their telephones are ringing. The user
can provide a text or data file to be spoken by a speech synthesizer or played by a
digital sound device. Another file specifies at which locations the announcement is to
made. Users can answer their calls from any BerBell extension.

2.6 Additional Manipulations of Calls

It is possible to pick up a call that is ringing on another telephone, or to redirect it
to another number. Other functions can be performed on held calls. By dialing
“*14#" the user invokes "hold-on-hold”. This program, dubbed ‘“revenge on hold"
and designed on a whim, causes the held call to repetitively receive a message
advising the party to dial “*" when they return to the telephone. The user's line is
freed for incoming or outgoing calls. When the held party does dial “*" the user's
telephone is rung just as if they were receiving a call, and upon answering they are
connected to their party.

Two additional features which apply to held calls are held retrieval and held
transfer. Held transfer allows a user to transfer a held call to another extension
while in the held state. Thus the call appears, still on hold, on another extension.
The code is "*15#", then the destination extension. Held retrieval permits a user to
pick up a call which is on hold on another extension. The code for this is “*18#",
then the extension from which the held call will be retrieved.

2.7 Programs

User programs provide a large portion of BerBell's functionality. The system is
designed specifically to give the programmer flexibility and control over the telephone
switch. Users issue commands from the BerBell host or remotely from any machine
the communicates with the host over the Internet. In the 4.3 BSD implementation,
which uses Internet Datagrams to communicate among processes within BerBell, the
programs that are used locally function identically over the network. What follows
is a brief description of some of the programs in common use now. The list is not
exhaustive and continues to grow. One should also note that many of the functions
described above will be recoded as stand alone programs.

2.7.1 Accessed from the Telephone

The following list of programs are services invoked by bellerophon as a subscriber
option or a general service.

bebap The default answering program. It allows callers to leave a number or a
message, or connect to a message taking persons. Callers can also receive
messages that are left for them.

ttda Touch-tone directory assistance[ll permits users to look up telephone numbers
in various telephone books. The user can be transferred to the matched
number. Current directories include Bellcore, Seattle, and many New Jersey
books.

ttweather

Using touch-tone input, the user gets the National Weather Service forecast
for any desired city in the continental U.S.

ttsh Using a touch-tone mapping scheme where two Keypresses represent one
ASCII character, a user can log in to the BerBell host and execute commands.

demo2332
The audio research laboratory real-time music generation demonstration.

wakeup
The wakeup service calls the user at a desired time, and delivers a message.

AUUGN 39 Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

ccstatus
Computer Center Status provides information to the caller and permits them
to enter their number to receive updates. When staff personnel change the
status file, users are called back.

wrong The wrong-number server randomly executes one of many BERPS scripts to
entertain and confuse callers who dial invalid BerBell extensions. BERPS is
described in a subsequent section. These scripts include simulations of
telephone interfaces "to various institutions such as banks, the Federal
Government, the Phone Company, the Defense Department and the
Underworld.

robop The robot operator recites the list of dial-up services.
help An interactive program for feature dialing assistance.
htime Recites the local time, date, and weather.

musak Connects the caller to an arbitrary audio source.

ph/silence

These services are primarily for testing, connecting the caller to a permanent
high-pitched tone or to silence.

hanna Simulates the utterances of a three year old child.

newsgen

Assembles an inane scandal sheet news story from a table of phrases and
personalities.

rosary Recites same.

winner Announces to the caller that they have won something and asks them to
hold on (indefinitely).

marge Simulates the gratuitous utterances of a cashier.

suicide
An irreverent suicide hot-line.

The following programs are issued from the user’s terminal.

call <from> <to>

The <from> number is called. When it is answered, a call is placed from it
to <to> number.

nway <number> <number> <number> [number]
Conference calls are established with this command.

gm [options] <from> <to> [message file]
Getme dials the <to> number and may deliver the optional message
contained in message file. options may be used to elicit a response from the
answerer at <to> number. If a satisfactory response is received or if no
response is required, the call is connected to <from> number.

pa <number> <message file>
<number> is dialed and the contents of <messagefile> is delivered.
3. The Programmers View

There are several programming interfaces to BerBell. For implementing user level
functions such as the programs described above, there are C language library
routines, the BERPS interpretive language and the UNIX shell. Programs may be

Vol 8 No 6 40 AUUGN

REDMAN . A USER PROGRAMMABLE TELEPHONE SWITCH

invoked implicitly by a user or by the system or explicitly by typing at a
computer terminal. The system will invoke a program when an inbound call to a
number associated with that program is received (e.g., directory assistance), when a
feature implicates a program (e.g., recite speed codes) or when a user's feature
settings dictate (e.g.. call waiting). In each of these cases the arguments to the
program will include the name of the circuit holding the call and the number
dialed. Programs can then connect auxiliary devices such as tones, recorded audio,
speech synthesizers, answering machines and audio components to the call, reroute
the call, hold or release it.

3.1 C Programming

There are C libraries for manipulating BerBell objects, speech synthesizers, touch-tone
receivers and digital audio input and output channels. The BerBell library contains
six “system calls” that allow the programmer to easily connect objects such as
trunks and lines* among one another and to place telephone calls using these objects.
It is straightforward to write C programs using this library. No significant
knowledge of telephony is required to take substantial control over your
communications channels.

3.2 BERPS interpreter

BERPS stands for BER Phone Script. It is a simple language that interprets scripts
which manipulate telephones. It is designed to alleviate the need for users to
program in C in order to write application programs. The wrong-number servers
are written in BERPS as well as an answering, call waiting, and call announcement
program.

The interpreter itself was written using the library functions. The language
provides for flow control, arithmetic calculations, BerBell operations and operating
~system services. The following example implements one of the wrong-number
services.

Trans Galactic Phone Network

[a comment.]
%h z .

[jump to label z (:z) when the caller hangs up.]
You have connected to the intergalactic communications network.
Please enter galaxy code, use sharp or pound to terminate.
%r g

[read a number input by the user into the variable “g".]
Now enter planet destination.
%r p
%¥h 1 ‘
%= p 10 }

[execute commands until the ““%)" if the variable “'p"’ has the value "10".]
Planet Ten is in the Eighth Dimension. : ‘
Please dial the interdimension operator for assistance
#!' p 10 - ‘

- [the “not equal” case.] o \

* Trunks connect telephone switches together, lines connect telephone instruments to switches. Within
BerBell, audio equipment is connected to the switch by trunk interfaces. :

AUUGN . 41 : Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

We are sorry, planet $Np in galaxy $Ng has been obliterated.
Please check the code and call again.
%}
:1
%F /logs/wrong $T: galaxy $ng planet $np ($P)
[append to file.]
%e 0
[exit.]
'z
%F /logs/wrong $T: caller hung up ($P)

Text is simply spoken through a speech synthesizer. $Np expands the value of p to
text as digits separated by spaces. $n expands a variable as a single number. - $T is
the current time, $P is the process identifier.

3.3 Shell Programming

The interface between user processes and the core BerBell process uses pseudo-ttys on
the Eighth Edition version and Internet Datagrams on the 4.3 BSD implementation.
Thus one may simply echo commands to a named pseudo-tty or use a special echo
which deals with Datagrams as required. As usual, examples of Shell code look
awful. '

4. Operators

At the dawn of the telephone business, boys were employed as switchboard
operators. But,

Boys did not last very long as operators. At tfnze] time they were often
impatient, rude, and foulmouthed to the subscribers™™.

Another set of C library functions exists for programming BerBell operations at a
lower level. Programs written at this “supervisory' level are termed “operators’” and
are responsible for complete control of individual circuits in cooperation with the
BerBell kernel program. While user level programs are unaware of system details,
operators require some knowledge of the switching conventions and the hardware
functionality. A program using these functions would receive hardware state
changes from and issue commands directly to the circuit or circuits under its control
over IPC channels. ' :

It is likely that all call processing will be done by autonomous operator programs
distributed over several machines. The advantages are clear in terms of processor
utilization, flexibility, customization and prototyping. The operator concept has
proven useful and rewarding, allowing a quick, permanent and elegant solution to
several unforeseen problems.

5. Software Descriptions

The BerBell software is made up of a number of permanently executing programs
and processes that communicate through pipes and pseudo-ttys or Internet sockets.
During the course of operation new short lived programs are invoked that implement
specific features and services as described previously.

5.1 MSP Protocol Program

The switch used is called a Modular Switching Peripheral (MSP). It is described in
detail in the Hardware section. The communications between the software system
and the hardware switch is done over an RS232 serial port using the ANSI X3.28

Vol 8 No 6 42 " AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

protocol. This program was written at Bellcore in Navesink and trivial changes
were made locally to convert it from UNIX System V to the Eighth Edition and 4.3
BSD. The program consist of four concurrently executed modules. The first is a
parent program which opens the serial line and sets the appropriate options such as
baud rate, parity, etc. It then sets up communication pipes and invokes thé
“control”, “host” and “msp” processes. Paraphrasing from the commented C
program:

The control process controls both the host and msp processes. It reads from its
input and changes state and takes actions depending on the present state and the
input. This process takes care of all procedural messages for granting
master/slave status.

The host process reads a string from its standard input to be sent to the
device using the ANSI protocol. This process notifies the control process for
permission to transmit. The control process notifies the host process when it
is ready, and the host process transmits the message. The host process
informs the control process regarding the success of the transfer.

The msp process reads from the MSP and forwards any characters to the
control process. It waits to receive a response from the control process before
continuing.

The MSP protocol program is invoked from the core switching process.
5.2 The Core Program

The main, once monolithic, program is named “bellerophon™. It sets up
communication pipes and invokes a filtering program that processes all the textual
output, a status program to which hardware state changes are sent, the protocol
program as described above, and a DECtalk server program. These will be described
in succeeding sections. Communication with these processes is implemented using
operating system dependent macros. In the case of Eighth Edition a pseudo-tty is
opened by bellerophon, the device name is linked to a name known to other
programs thus implementing a “named pipe”. Under 4.3 BSD a named socket is
~opened which receives Datagrams. These provide the input channel to bellerophon.

Bellerophon then initialises the hardware and data structures. There is a structure
for each port and for each telephone number. The status process mentioned
previously maintains the state of each port as represented in an internal data
structure in a file. This file is read by an 'initialization routine to determine if the
port ought to be initialised. It will not be initialised if it is not idle, thus calls in
progress during a software reboot are not affected.

Bellerophon then enters its main loop gathering data from the MSP or from its input
channel. Input from the MSP is parsed to identify the port involved. The current
state is used to determine the function to be called. This function receives the
port’s data structure and any other data provided by the MSP (e.g., digits received)
as arguments. In the case of data from the input channel, a function is called
which acts on the input, a command and its arguments. A status reply is sent by
writing to the device (or file) named in the arguments. Under Eighth Edition it is
typically a pseudo-tty. In the 4.3 BSD implementation the recipient’s address is part
of the received message.

5.3 State Information Program

The program statproc maintains a file with the current state of each circuit. Each
state change sends the circuit name and new state through a pipe to statproco.
Other reported data includes dialed digits and circuit connection. As well as

AUUGN 43 ' Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

maintaining the state file, statproc also disseminates state information to other
programs. By reading commands on its input stream in a similar manner to that in
which bellerophon accepts its commands, statproc is informed of the appearance of
clients who wish to receive status updates. Clients include programs that display
system activity on bitmapped terminals, monitor the system’s heartbeat (reported
every three seconds), and maintain usage statistics in real time.

6. Hardware

The following sections describe the current hardware compliment, not the minimal or
ideal configuration. Figure 1. is a schematic representation of the major hardware
components.

6.1 Redcom Switches

The Modular Switching Peripheral (MsP) from Redcom Labs has proved a
satisfactory piece of hardware for experimental applications. It provides the
electrical interfaces required for telephone switching and does not interfere with the
programmer’s need to control its functionality.

6.2 Host Computers

For the sake of experimental diversity, two different system configurations are
implemented.

6.2.1 VAX 11/750

The first system was implemented on the VAX 11/750 running UNIX Eighth Edition.
This system supports approximately five full-time users with a general time sharing
environment as well as the experimental telephone switch application. The VAX is
configured with 4 megabytes of memory and 1.4 gigabytes of disk storage on 3
ra81s and 1 ra60. There are four DZ11s providing 32 serial lines. Thirteen of these
lines are dedicated to BerBell, interfacing DECtalks, the Cytek switch, and the MSPs.
The VAX is also equipped with the DSC-200 connected to the UNIBUS, an Interlan
Ethernet controller, and miscellaneous other peripherals.

6.2.2 MicroVax 11

The MicroVax is a relatively new addition to the experimental telephone laboratory.
The operating system is 4.3 BSD. It is equipped with four megabytes of main
memory and 140 megabytes of disk storage. There are 8 serial lines and an
Ethernet controller. It is. connected to the single shelf experimental switch which is
dependent upon the VAX BerBell system for access the DDD network.

6.3 Audio Devices

There are 11 DECtalks in use, 8 DTCO3s and 3 DTCOls. The DTCO3 is rack mounted
and functionally superior to the DTCO1 stand-alone models. The main functional
improvement is the ability of the DTCO3 to automatically terminate speech when a
user presses a button on the telephone keypad. Providing this needed function in
the host's software on the DTCOls was a somewhat exasperating exercise. DTCOls are
still in use because they alone are equipped with terminal interfaces and audio -
output separate from ‘the telephone interface. They are also more appropriate for
touch-tone signaling of other devices such as the Watson.

Recording voice messages is an absolute necessity. Users expect at least the
capabilities of a conventional answering machine in their sophisticated telephone
environment. The system utilises such answering machines principally as backup
devices as well as the Watson, a sort of programmable multiuser answering machine
and the DSC 200, a truly programmable audio record and playback unit.

Vol 8 No 6 44 AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

6.4 Audio

There is an experimental audio lab accessible by BerBell. BerBell serves to provide
access from the D[I:.;)]D network to this lab in order to demonstrate ongoing

audio/music research'”’. It consists of a MIDI controlled studio of synthesizers and
percussion machines. The MIDI host is a SUN 3/160.

There are also a number of other audio program sources attached to BerBell to give
users a choice of entertainment on hold or otherwise.

7. Evolution

In April of 1985 an RS232-controlled telephone switch was obtained. The switch,
manufactured by Redcom Laboratories, is described in detail in the Hardware section
of this document. With the switch came two pieces of software: an ANSI X3.28
protocol handling program to support the low level communications between the
switch and the host was written by colleagues at the Navesink Research and
Engineering Center of Bellcore and remains in use today. A rudimentary call
processing program, provided by the Network Architecture Research Division at
Morristown, was useful in bootstrapping the system.

The initial application for the switch met two requirements. The first was to
provide new and interesting services such as “‘a better answering machine”*. The
second was to reimplement services found in modern switches, but with
enhancements making them more useful.

BerBell grew naturally and easily from the desire to provide better telephone service
for an individual user to its current power and generality through circumstance and
experience as well as vision. The requirement to switch telephone calls was initially
fulfilled with a homemade switch consisting of a matrix of relays and a UART.
The author originally built this device to permit several computer terminals to share
half as many computer ports. When port selectors became available the switch was
shelved, later to be resurrected as an ad hoc telephone switch, and subsequently to
switch high voltages to control coin telephone functions. Its use as a telephone
switch demonstrated the desirability of greater capacity for more interesting services.
Serendipity provided a temporarily unused Redcom switch from another laboratory
with which to experiment. Its greater capacity suggested providing services to other
people. Its wealth of functionality, the capability to act as a central office, suggested
greater service possibilities. Along with the acquisition of a true telephone switch
came the desire to design truly innovative switching features and services, not just a
better answering machine.

A crude system was put together in a matter of weeks, providing basic enhanced
services. The immediate desire was to correct the problems experienced with
currently available services, such as the lack of flexibility and feedback from call
forwarding functions. As such improvements were put in place, new offerings were
invented and the software was designed so that new features and services could be
implemented quickly. The feature challenge was popular for a period of time,
demonstrating how easily a new idea could be implemented, tried and perhaps
discarded.

Obtaining desired services and interfaces from other telephone companies was not a
speedy process measured by do-it-yourself standards. Answer supervision, an
arrangement which reports back to the originating switch when the called party
answers, took over 18 months to be installed. Mechanisms to report the originating
number to the terminating switch will not be universal for years to come. Interim
techniques were employed pending installation or propagation of such services.

"AUUGN 45 Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

Although these techniques provided less satisfactory results, they demonstrated the
objective. For instance, when people were called without human intervention, a
keypress was solicited in place of answer supervision. This allowed development of
automated services to progress even under restricted conditions.

The initial system was somewhat unreliable. Service was frequently interrupted in
order to install changes or demonstrate bugs. As more users came to depend on the
telephone service, steps were taken to reduce outages. The first of these was the
dynamic loading of structures that mapped telephone numbers to program names.
This straightforward yet subtle tactic reduced downtime considerably because it
obviated the need to recompile and reboot bellerophon each time a new service was
introduced. Next, an independent program checked for the existence of the
bellerophon process, reinvoking it if it was missing. This fell short of the desired
goals, since it was not uncommon for bellerophon to hang. A more robust solution
was implemented involving an audit primitive which caused bellerophon to issue a
benign command to the MSP and receive a reply. The independent verifier issues this
primitive and knows with relative reliability if the system is functioning. The next
enhancement was to place a call from BerBell through the DDD network back to
BerBell to verify the external interfaces. (One valuable lesson learned about the
design of automatic auditors is not to sweep away evidence that is necessary for
debugging. This mistake was made with the program described which killed the hung
bellerophon process and invoked another. It was a mystery why the system
occasionally rebooted itself, until the auditor was changed to produce a core dump
of the hung program.)

Greater system reliability attracted more wusers. At first the mechanism for
forwarding a subscriber’s phone to a service involved the assignment of an additional
number which terminated on the desired answering service program. This was
costly in terms of dedicated telephone numbers. The solution, changing the
forwarding algorithm to accept program names as well as telephone numbers, was a
simple change which supported the notion of flexibility as well as eliminating the
extra forwarding step and the dedicated numbers.

BerBell began as a monolithic system. Services were implemented within bellerophon
using a myriad of special structures. The command interface originally supported a
different command for each different service. The original idea was to generate
interesting applications. The motivation to provide a clean and general interface
came when other programmers wanted to write applications. The interface was
defined empirically. A new application (call screening) was implemented with
primitives that were defined as needed. Then one by one each application was
rewritten using these primitives and defining new ones if necessary. It was
rewarding to find that all but one of the primitives were defined by writing the call
screening program. When all the services were changed to use the general interface
and the old-style commands removed, the size of the command processing module
was cut in half. Service application development proceeded independently of the
switching program development. This started a trend of decentralization which was
enhanced by the advent of operator primitives. New call processing algorithms are
implemented by programs external to bellerophon.

8. Future Work

Decentralization will be pursued with the goal that all call processing be done by
individual processes per port. Bellerophon will simply distribute messages received
from the hardware to the appropriate processes and maintain a database to map
extensions to processes. Processing modules will be distributed among processors
communicating over networks.

Vol 8 No 6 46 AUUGN

REDMAN A USER PROGRAMMABLE TELEPHONE SWITCH

There is interest in the artificial intelligence group to design parsers to process log
files and create individual scenarios in English so that event paths can be easily
identified and understood for the purpose of debugging or illustration. It will further
be attempted to learn from these log scripts the events which lead to system errors
and to predict and circumvent such conditions.

Another concrete goal is to provide administrative documentation and to package the
system for distribution to interested parties.

9. Conclusion

The system described provides unconventional as well as conventional telephone
service to a growing community of users. There is no limit in the potential for user
programmable utilities. The next generation of consumers will require and demand to
customise their products and services and they will have the educational background
to do so. We expect that producers will abandon the current fad of featurism and
provide value in terms of generality and well documented interface specifications.
Service industries will provide end-user software as well as tools for do-it-
yourselfers. BerBell has been, is, and will continue for the foreseeable future to be
an extremely fun, captivating and rewarding project. To quote Louis Fyne, Like the
song says, it's a scientific lifestyle.

Acknowledgements

Credit goes to all the users of BerBell. Their bug reports and design input helped
mold it. I am particularly indebted to Peg Schafer who lived with it, Peter Langston
who wrote a number of fun programs that use it, Don Ford who wrote ttweather

and statproc, Adam Buchsbaum who wrote BERPS, and Stu Feldman for his moral
and technical support and the patient editing of this document.

References

[1] M. E. Lesk and C. A. McGonegal User-Operated Directory Assistance September
30, 1977

[2] AT&T Marketing Sales Administration An Introduction to the Bell System 1975

[3] Peter S. Langston (201) 644-2332 or Eedie & Eddie on the Wire: An Experiment
in. Music Generation USENIX Association Summer Conference Proceedings,
Atlanta 1986 pages 19-27

[4] Dave Hodgdon, Brian Redman, and Gordon Woods Who Answers Your Phone
When You're in the Information Age? August 8, 1984

AUUGN 47 Vol 8 No 6

A USER PROGRAMMABLE TELEPHONE SWITCH REDMAN

W\ 644-23..
@ bellcore extensions

MORRISTOWN, NJ Central Offikce

CYTEK CLX/512
Experimentall
Audio
Lab TR 1
(cedie & eddi) THHRHHHR > D
ol ol ol ol nlal o OlO{O{OJL L1 1
elelelelelelel [DDDDDDDD p
a
. y
P
VAX & b
m
11/750 - °
s| ! ¢ 1 2(2 n
3; &1 &4 ilifi WW ¢
2 m nnn aja
e elele YL
|
IBM PC
watson
AN :
DSC-200 microVAX]
DTCO1
DTCoO1
DTCO1
DECTALKS 212 it R
W W ililili 2
pipip|p|p|piD|D ala dalatd |13
TIT|T|TIT|T|T|T MR eeee2
clclcijci|cj|cyicic
ojo|lo jojJO OO 0O
3131313 13}3(|3 13

Figure 1. Schematic Diagram of Major Hardware Components.

Vol 8 No 6 48 AUUGN

GIBBONS A DAY IN OWLES HALL

A Day in the Life of Owles Hall

Helen Gibbons

Business Manager
EUUG

It begins at 9 a.m. and it isn't easy!

To start with, some of our members living in
the other European countries may forget
about the time difference and telephone at 7
a.m. or even earlier. As the phones will
probably have been switched through to my
house for emergency reasons, I may well
have had to take the call in bed! So if any
of you have had the misfortune of asking me
details of a conference while I am still asleep
— I apologise now for anything I may have
said!

The office functions officially from 9 a.m. to
5 p.m. GMT, with half an hour from 1 p.m.
— 1.30 p.m. for lunch, five days a week.
We don’t work at week-ends, except at

7] 195 o
Lo N, : conferences.
Helen Gibbons

Owles Hall is a large castellated building nestling in the heart of the Hertfordshire
countryside. It is surrounded by fields of wheat, grass, rape (yes rape!l which is
actually a wonderful bright yellow colour in the Springtime) and barley, and fields
of home bred deer, cows and horses. It ought to be very peaceful looking out on
all that silent greenery, but somehow, the EUUGs manage to make sure that it is
not. From the moment we walk through the door in the morning, phones are
ringing, typewriters clattering, the printer deafens us with its churning out of email,
people shout to each other seeking answers to obscure questions, the new franking
machine (have you seen the little EUUG logo on our envelopes?) hammers its way
through thousands of newsletter envelopes, the photocopier chunters out equally
thousands of call for papers, someone is trying to hoover and collect the rubbish
and the postman is hammering on the door with the latest batch of mail. We get
about 50 letters a day.

Running the EUUG may seem very easy from the outside looking in, but believe me
there is an awful lot to do. To start with we service five Executive meetings and
at least two Governing Board meetings a year, plus meetings with UNIX Europe
Limited, and Network Meetings which are held regularly. For all of these
(especially the Governing Board) there is a great deal of organisation, and a small
mountain of paperwork — the latest Governing Board minutes for example contained
32 pages and were circulated to 35 people — that is 1120 pages altogether. Now
we also have a special Working Party week-end to organise in September and of
course we have two major conferences a year to organise and run right from
beginning to end and in every detail — they generate not only a mountain but a
virtual Everest of paperwork. There is banking, invoicing, chasing bad debts,

AUUGN 49 Vol 8 No 6

A DAY IN OWLES HALL GIBBONS

keeping the books, making the VAT returns, visiting the groups. printing and sending
out thousands of newsletters, generating membership, answering queries, and long
long telephone conversations all over Europe. But none of it is grudged, we do
very much like to be in personal contact with the membership.

Who are we, this dedicated team, forming the little central Secretariat around which
the whole of the group made up from all the countries in Europe can function?

Well first of all there is me, IHelen Gibbons, the Business Manager, and I suppose
the day at Owles Hall begins when I walk into my upstairs office accompanied by
my two great danes, Tarzan and Titan. They are guard dogs, keeping safe the
EUUG records and eventually the new computer when we get it, and they lie under
my desk while I work. I am however trying to train them to do something really
useful for the EUUG, like answering the phone!l But don't worry if you are
thinking of visiting us — they have never yet eaten an EUUG member.

Then there is the real backbone of the office,
Jill Waite, my secretary. Her endless
patience in dealing with all the back up
typing, mailing, and organising is what keeps
the office functioning and keeps us sane (or
are we?)!

Bill Barrett most of you have already met at
conferences. Bill works part time only, so
doesn't tear his hair out quite at the same
rate as the rest of us, (funny that because I
think he has less hair than we have actually)
but he does do a great deal of the conference
booking work. He is now backed up on a
full time basis by a newcomer to the office,
Tina Wasyliw. Please be kind to her on the
phone, she is just learning the ropes, but will
be doing a great deal of the conference work
for Dublin, and is operating our email.
When asked what she thought of it all after
her first week here she sighed very deeply.
looked somewhat confused and said it was
the busiest office she had ever been in!

Bill Barrett

Vol 8 No 6 50 AUUGN

GIBBONS A DAY IN OWLES HALL

Finally, there is Jenny Warren, who is a qualified accountant and deals with all the
financial functions, including the endless financial reports required by the Executive
Committee, and also the endlessly complicated transfer of payments from one
currency to the other. Those of you who have had financial queries will probably
have talked to her already.

And that really is how not only the day goes, but the weeks, months and now that
we work six monthly from conference to conference, even the years. The day ends
after everyone has gone and I walk down stairs, put out the lights, lock up and go

home, silence reigns once again — and then just as I get to bed the phone rings —
speakers from America, could I possibly give them the final details for the next
conference, no they had not realised it was midnight — terribly sorry, but they had

forgotten about the time changel

Tarzan and Titan learning to answer the ’phone

AUUGN 51 Vol 8 No 6

APOLOGIA TERRY

Apologia

Michael J. C. Terry
mjct@inset.co.uk

The Instruction Set Ltd.
London, England

Some readers of the EUUG Newsletter have pointed out that there was an inaccuracy
in my article, “An Overview of the Native Language System”, in Volume 7, No 2
of the Newsletter, 1987. In the article I wrongly stated that all X/OPEN group
members’ UNIX systems were obliged to conform to Issue 2 of the X/OPEN
Portability Guide by the last quarter of 1987. In fact the X/OPEN members are
obliged to conform to Issue 1 of the XPG by the last quarter of this year.

The implication of my statement was that all X/OPEN members’ UNIX systems
would support NLS by the end of this year, which is incorrect. What the statement
should have said was that the X/OPEN members will eventually have to conform to
Issue 2 of the XPG (which includes the NLS interface definition), but no date has
yet been set for such conformance, and no date can currently be predicted, in that
the members’s UNIX systems are not yet even completely in line with Issue 1 of

the XPG.

My sincerest apologies for this unintentional inaccuracy — I hope this recantation
sets the record straight. So much for the enthusiasm engendered by a good idea like
NLS.

While on the subject of inaccuracies, 1 also inadvertently got one of my troff
string definitions wrong — consequently, the article refers throughout to the ANSII

“XJ311" draft standard for the C programming language. This should of course read
“X3J11". So much for dyslexia.

Otherwise, the article was spot on. So much for complacency.

Vol 8 No 6 52 AUUGN

BEYLS THE X/OPEN NATIVE LANGUAGE SYSTEM

The X/OPEN Native Language System
Inside The Message Presentation

Pascal Beyls
xopen®@echbull
mcvaxl!inrialechbulllxopen

BULL

I joined BULL in 1979, and I am currently managing a
UNIX competence centre. In addition I am Technical
Manager inside X/OPEN representing BULL. I have been
involved in Internationalisation since 1985.

Major event: On the 1st Jan 87, I got twin boys!

In the last EUUG Newsletter, Michael Terry from The Instruction Set
presented an overview of the X/OPEN* Native Language System (NLS).

This paper relates the different thoughts that we had during the definition
and the implementation of NLS. We concentrate on one of the major
components of NLS which is the Message Presentation. ’

BULL, DEC and SIEMENS have jointly achieved the internationalisation of UNIX, as
defined by the X/OPEN group.

The internationalisation of UNIX has been implemented by doing work in three
distinct areas:-

e allowing users to use new character sets. The ASCII character set is unacceptable
in a language environment other than English, due to the number of accented
characters and other symbols (the new ISO 8859 standard contains all the letters
and symbols necessary used in Western European languages).

e allowing for differences in the different cultures (date formats and money
symbols are two examples).

e allowing users to “talk” to the computer in their own language (the message
presentation).

The Implementation

The X/OPEN group is committed to define only application interfaces. That means
that a member is totally free concerning his own implementation. (In addition, as
the administrative commands are not normally used by an application programmer,

* X/OPEN is a licenced trademark of the X/OPEN Group Members.

AUUGN 53 Vol 8 No 6

THE X/OPEN NATIVE LANGUAGE SYSTEM BEYLS

they are not defined in the Portability Guide). This point gives freedom and
flexibility to design the implementation.

At the beginning of 1986, BULL and SIEMENS started an implementation of NLS
from scratch. The main reason was that non-English people understand European
problems better. Let's take one example:

French spel1(1): implementing a spell version for the English language is rather
easy. But, even if you have a French dictionary and you have 8-bit cleaned-up the
source code, your French spell would not work. Some reasons:

— All the verbs are declined: there are 5 large families of verbs with about 10
tenses and there are up to 122 exceptions.

— Large varieties of plurals for nouns and adjectives.
So, it was up to the Luropeans to define and implement a European UNIX.

A first version of NLS was achieved by the end of 1986. At this time, DEC adopted
and enhanced the DBull-Siemens implementation. A presentation of this
implementation has been made during the EUUG Spring 1987 Conference.

Conformance

The X/OPEN members have committed themselves to deliver systems conforming to
the interfaces described in the Portability Guide. The current commitment concerns
the Portability Guide Issue 1 (by the end of 1987). This issue does not include the
NLS interfaces. But it is the interest of each member to implement and deliver
such interfaces as soon as possible. '

The Message Prescntation

The Message Presentation is a way to allow programs to interact with users in
different languages. In the past, when a program was to be exported to a country
with a language different than that used in the original program, the entire source
program had to be re-read and all the messages translated into the new language.
There are several disadvantages to this method:

e One has to have the program source in order to translate the messages.

e The new messages are hard coded into the program source. There must be one
copy of the source for each language.

e Once the program is translated, the entire program has to be re-compiled.

e Fach translated program becomes a new version of the program, and has to be
maintained, which complicates the job of support personnel.

e Since the internationalisation has changed the source, you have to test the
program to make sure the program logic has not been accidentally changed.

The Actors :
Now, during the product life, we can consider three different people:

1. The writer: he writes the application in his native language. He ignores other
languages, even he does not know if his application will be translated.

2. The translator: he has in charge the translation of the messages into another
language. He doesn't know the application or its author.

3. The user: he uses the application in his native language.

The Requirements
The X/OPEN Portability Guide clearly states:

Vol 8 No 6 54 AUUGN

BEYLS THE X/OPEN NATIVE LANGUAGE SYSTEM

... the system must allow program messages (both input and output) to be handled in the
native language of each user ...

There are several conditions that must be met in a serious solution for this
requirement:

e The programmer must be able to program in his native language without having
to worry about language problems. '

e It should not change the way the programmer does his job.

e Translation of the program for different countries must be possible without using
the program source. This allows you to have only one version of the program
source, not one for every language. Errors added during translation of the source
file are thus avoided.

e The same program on the same machine should be able to talk to several users
in different languages at the same time.

The X/OPEN definition describes the way to choose the appropriate language by
setting the environment variable LANG.

LANG=french export LANG
command

This is simple, very much in UNIX style. It is up to the user to choose his variable
as he sets the TERM variable. We generally advise setting the LANG variable in a
profile file. We can imagine to use the comment field in /etc/passwd to directly
associate the user with his language.

Using the LANG variable

Does the message presentation allow a change of language during the execution of a
command?

I would say no, because the usual case is that a user selects his native language
(generally at login time) and does not change it later. We can imagine that a user
may change his language within a session for some reason but I don’t believe he
would need to change his language during a process.

However X/OPEN allows such a mechanism. But in fact, the spirit was only:
— catopen returns a file descriptor to be used by catgetmsg.

— catclose has been added, only to be coherent with catopen. Only one catopen
is used inside a program.

The example given by Michael (the user selects, within the same program, different
languages) indicates this possibility. Although this example is attractive, changing
the language at process time is not a major requirement.

Is the LANG variable enough?

Having set this LANG variable to French, the messages are presented in French
language and if I use spell(1) to find my spelling errors on a document written in
English, the spell would work according the French rules and not the English. So, a
new variable (e.g. PROCLANG) should be necessary in order to define the language to
be processed.

In fact, X/OPEN has not defined this variable. There is only an indication in Future
Directions staying that PROCLANG is reserved in order to be used for this purpose.
In addition, the ANSI C Committee has defined the function setlocale() which
corresponds to nl_init(). With this function, a program may work on a file
containing different languages (it is the case of an Arabic text which contains both

AUUGN 55 Vol 8 No 6

THE X/OPEN NATIVE LANGUAGE SYSTEM BEYLS

Latin and Arabic languages). So, there is no need to have this external variable
PROCLANG. However, the announcement mechanism for defining different languages
inside a file is not yet defined.

What is a message?

Sure, it is a stupid question and everyone will answer according the most famous
message (hello world), but typically a message is a C character string, i.e. a string
surrounded by quotes.

If a mechanism extracts automatically such strings in order to replace them by the
appropriate subroutine calls, it would extract some strange messages.

For example:

include <stdio.h>
FILE xfopen(), *fp;

main()

{
fp = fopen("/users/example", "w");
fprintf(£p,"%s0, "This is my message");
fclose(£fp);

}

An automatic extraction will give the following messages:

/users/example

w

%s

This is my message

instead of the actual message.

The selection of the wanted messages is made at compile time, which is not
excellent. The best solution would be to differentiate the real messages from the
strings inside the source code.

Mnemonics
During the implementation, we found the following problem:

Let's assume we have an existing program with an associated message catalogue
containing translated messages.

What do we do to update the program without losing the translations already done,
especially when some new messages are added between existent messages’

This problem of updating messages seems to be very important. We have to reuse
the already translated messages and basically to “recognise” them. So mnemonics are
needed. We consider it preferable to provide mnemonics and comments for the
messages. A comment applies to a corresponding message. This feature would
considerably help the translator. (See above the definition of the translator.)
Generally, he will be far (both in time and in space) from the programmer.

So, comments and mnemonics are required inside the catalogue message.

The best way would be to directly include them inside the C program. It is up to
the programmer to identify his message (by mnemonic and comment). Thus, we
won't get any problems when updating a program.

How would this be possible?

Vol 8 No 6 56 AUUGN

BEYLS THE X/OPEN NATIVE LANGUAGE SYSTEM

1. Evolution of C language.

We can identify a message by simple reverse quote rather than double.
Ordinary strings which are not to be translated (e.g. "file names”, “r+"...) will
be immediately dropped. For instance, the famous example becomes:

char *mess = Hello world [;

I believe that this would be never accepted (changing the definition of C is a
dream).

2. By comments inside the message.

— Inside the message itself using a syntax recognised by a translation tool.
Now, the example becomes:

char *mess = "MNEM-comment: Hello world !" ;
— Outside, with a define.
3. Other mechanisms?

Are subroutines appropriate?
Every message in the source program is located and is replaced by a function call:

catgetmsg(catd, setnum, msg_num, buf, biflen)
or
catgets(catd, set_num, msg_num, s)

where catd is a file descriptor indicating the file where the: messages are stored,
sel_num is the number of the associated set, and msg_num is the number of the
associated message. This solution consists of replacing a char pointer with a call to
a function that returns a pointer to the “‘translated" string. The messages associated
with the programs are contained in a separate file. Tools can be made to help with
the automatic extraction of message text and its replacement with call to the proper
function(s).

This method has its drawbacks, however:

e Initialised static variables and global variables can not be replaced by calls to a
function. These types of strings often represent 30 or 40% of the messages in a
program.

char #foo = "This is my messageQ;
main()
{

printf(foo);
}

Changing the definition of foo by a subroutine call does not work.

e Substitution of pointers by function calls engenders an overhead, namely an extra
file descriptor and the time to read the messages from the file. '

During 1986, Bull proposed and implemented another mechanism based on a new
section in the COFF:

The mechanism of message presentation is integrated with the development tools:
cc(1), as(1), and 14(1). It is made up of:

AUUGN 57 ' Vol 8 No 6

THE X/OPEN NATIVE LANGUAGE SYSTEM BEYLS

— an evolution of some of their constituent parts, and
— a set of pre/post processors inserted into the development chain.

The mechanism of internationalisation is invoked as an option to cc. The
programmer does not need to manipulate an intermediary work file.

The message presentation system has the following basic principles:

e A new section in the COFF is defined to hold the messages separate from program
logic. All the messages in the program in the same language are grouped in the
same section as defined in an extended COFF format. The message section(s) are
included in the executable (a.out) file. The new section has type message and
is identified by a new flag STYP_NL in the section header (see a.out(4)).

o An extension to the loader exec(2) loads into memory the message section
associated with the user's declared language (environment variable LANG).

o There is a translation tool that helps the programmer (or a professional
translator) associate the program’s messages with messages in other languages, to
facilitate the translation into multiple languages, without modifying the program
source.

From the point of view of the programmer, this mechanism does not involve any
programming interface. We could meet the requirements of the message presentation
by such a mechanism. Also, the X/OPEN definition does not specify that message
catalogues are files. In addition, it removes the different drawbacks inherent to a
message catalogue built on files:

e The sending of a program (by uucp, for example) would also mean the sending
of a message catalogue file for each language that the program should be able to
speak. Without a message catalogue, the program is worthless.

e The program will only be usable when the message catalogue file is available. If
it is located on a different mountable volume than the program, the program
depends on two file systems, not one. A “cleanup” of the file system where the
message catalogue is located effectively inhibits usage of the program, even though
the program is still available.

e The message catalogue approach is not adapted for use with .o or .a files

(libraries and archives). A separate operation is thus necessary during the link
editing phase.

e Problems arise when trying to access the message catalogue. How to distinguish
the message catalogue files for programs with the same name (a.out, for
example....).

Conclusion

Given a specification, different ways of implementation are possible. That involves a
very clear and well understood specifications.

The X/OPEN definition of NLS is, in fact, precise enough. Different implementations
exist and prove the reality of these definitions. However, we have seen that
although outlining the requirements of message presentation is rather easy, defining
them completely is tricky. Although the NLS is a new definition, the X/OPEN group
has made an excellent work by defining such interfaces in “terra incognita”.

Vol 8 No 6 58 AUUGN

MEEK UNIX STANDARDISATION

UNIX Standardisation:
A Bystander’s View

Brian Meek
mevax!VAXB.CC.KCLACUKIUFAAO00

Chairman, British Standards Institution Technical Committee IST/5 —
Application systems, environments and programming languages
King's College London (KQC)

Computer Centre (Strand campus)

Strand
London WC2R 2LS

In one of my recent musings on standardisation topics,] made some such comment
as' "OSI has been the flavour of the standards month for more months than I care
to compute”. Suddenly, however, as when we realise that winter is turning to
spring, or even summer, it seems that there may be a change of flavour on the way
— from OSI to UNIX. (To get it all out of the way, OSI stands for Open Systems
Interconnection and is not an anagrammed trademark of I1SO which stands for
International Organisation for Standards — and yes I know it looks as if it should.
be I0S — while UNIX is a trademark of AT&T Corporation.)

Operating systems have been an unstandardised mess for many years, with users
forced to live with a particular supplier’s product, or to add things of their own
(which of course solves some problems but generates others). The need for a
standard has been recognised for many years, and a few pioneers, with little
eéncouragement or support from outside, have been endeavouring to develop an
“OSCRL" (Operating System Command and Response Language).

Having behind it neither the glamour and politico-economic clout of OSI, nor the
practicality of programming languages, this has remained a low-profile project and
progress has been slow. Suppliers want to build OSI products, but they already have
OS products. Users tend to think in terms of exchanging programs, not JCL —
though micro users, wanting low-cost software to run on their low-cost hardware,
have for some time shown that “runs under MS-DOS” or “runs under CP/M" is the
sort of thing you might need to look for. However, even mainframe users should
have realised that standards aid portability of people as well as programs. If we had
an OSCRL in use for the last five years, how much would have been saved in
retraining costs and improved efliciency? A great deal, I should imagine.

Given this background, and the development of 16-bit and 32-bit micros able to
match the power of yesterday's minis, it is hardly surprising that people started
looking to UNIX as the way to fill this aching void in the standards scene. It was
reasonably portable, it was closely linked with a flexible and useful programming
language, C, and despite being a proprietary product was readily available in various
guises on a variety of middle-range machines which are widely "used by a number
of people. All the ingredients were there for a classic, bottom-up, product-driven
standardisation project, both for the C language (now well under way) and UNIX
itself. '

Not being a UNIX user myself, I shall leave it to others to explain the
interrelationships between the various UNIX-related standards projects — IEEE/POSIX,

AUUGN 59 Vol 8 No 6

UNIX STANDARDISATION MEEK

X/OPEN, ANSI/ISO C, and the rest. I am more concerned here with wider issues like
the relationship with OSCRL and the upper levels of OSL

My concern about UNIX is not its standardisation per se — UNIX users obviously
need it and should have it — but the idea of seeing it as the solution to the
general need for a standardised operating system. Both the style of UNIX, and its
intimate relationship with the C language, render it unsuitable for that role.

I have to stress that, so far as] am aware, the people involved in the POSIX project
and the rest are not aiming at anything like that; they are after much more modest
objectives, like being able to easily to transfer applications from one UNIX-based
system to another, by providing a common standard for the interface. I am thinking
rather of those not directly involved, who may pin higher hopes on UNIX
standardisation than any of those concerned would wish to claim.

Many things are needed in this area, of which UNIX provides only part. As a user

myself, and one concerned with providing services for other users, the way I see it
is this.

We need a conceptual, generic set of definitions of the basic functions which any
standard-conforming operating system must supply — not all the bells and whistles,
but a set sufficient for 99% of the users for 99% of the time, and including all the
functions needed to support OSL (Perhaps these last could be left out for small
stand-alone systems but I'm not convinced it would be worth the trouble.)

We need the standard OSCRL for use with all these functions, including a standard
command for dropping down into the native command and response language, and a
fully standard-conforming operating system would have to support this too (though

see below).
We need functions and the OSCRL to come with parameters — user-controlled, not
implementor-controlled — with standard default settings — one standard default

being that you get the standard OSCRL when you log in. Function-related
parameters would cover things like the usual file management variations such as
whether old versions are automatically purged or automatically saved unless you say
otherwise. Language-related parameters would cover things like whether you
automatically get full responses or abbreviated responses. '

Most important, we need a very clear concept of what the conformance of a product
to one or more of these standards will mean, and a clear idea of how that
conformance is going to be tested. Much of the point of having a standard is lost if
you have to take adherence to it on trust.

Of course, users can also invoke operating system functions indirectly, through
applications programs and utilities, as well as directly through a command language.
Thus, in addition, a standard generic systems interface for these functions will be
needed, and standard bindings of the interface to the relevant parts of standardised
user-level applications tools (such as programming languages) which allow invocation
of such functions.

With all that in place, you are then in a reasonable position to allow wusers to
benefit from a coherent, standardised, but flexible systems environment. Note,
however, that is it possible to provide the standard functions without providing the
standard user interface (i.e. OSCRL), and even if the OSCRL is present you can get
at the functions without it.

This is the context where I would see UNIX standards taking their proper place. So
far 1 have talked about a standard basic operating system (or the framework for
one). A standard UNIX-like operating system would provide all the standard

Vol 8 No 6 60 AUUGN

MEEK UNIX STANDARDISATION

functions, but for conformance would provide them realised in a UNIX-like way. It
would also provide any further functions which the UNIX community would expect
to find, together of course with the necessary additional generic systems interfaces to
allow users to invoke these indirectly (for example through a C program or library
function, which is where IEEE/POSIX would come in). Finally, of course, it would
have to provide a UNIX-style command and response language, such as many UNIX
users are likely to be familiar with through the “‘shell”. (A standard conforming
UNIX-like operating system could of course support standard OSCRL as well, but it
wouldn't have to.)

I can imagine some users of UNIX, who know and love only that, getting impatient
at all this and saying “look, all I want is standard UNIX, I don't want to be
bothered with anything else”. I sympathise, but it has to be faced that UNIX does
not live in an isolated world of its own, and that it entails some obligation to take
into account relationships with other things.

The history of standardisation, certainly in our field, is littered with evidence of the
problems caused by standards committees taking a narrow, introverted view. One of
the great disadvantages of the product-driven style of standardisation is that for
various reasons it makes it difficult to separate out levels of abstraction, to think of
a concept apart from its actual realisation. A UNIX-like way of looking at and
defining the systems functions to be performed by a standard OS might pre-empt
the way that equivalents might be defined in some other, or a “generic”, standard
OS. That kind of matter needs to be looked at in a wider context; or, rather, at a
higher level of abstraction.

The advantage of the approach I have outlined is that it allows development. It
allows standardisation of one or more other, alternative, portable operating systems.
(Pick one at random!) It allows additional user interfaces to OSCRL. For example,
I am a “wordy” person (in every sense, I am told) so a keyboard-oriented OSCRL
would be fine for me. A user “interface” involving peering at nasty little icons and
fumbling with unruly mice is for me more of a user barrier. However, I fully
accept that for some people it is, if you will pardon me, the cat's whiskers. I
would not wish them to be deprived of the benefits of a standardised mouse-based
diet, any more than I would take kindly to them imposing one on me. An interface
has two sides: user-friendliness depends as much on the user as the system.

Now I readily admit that all the advantages do not lie with the “"top down”
approach I am advocating; it has dangers too. Too abstract an approach can lead to
nasty collisions with reality when one gets down to the lower levels of the real
world. This can lead to horrendous delays while you rethink the whole thing — and
the top-down approach in any case holds an inherent danger of being lengthier than
basing a standard on what already exists.

Cornelia Boldyreff of Surrey University has also pointed out to me, when discussing
this sort of issue, that common underlying concepts might better be discovered by
using a “'bottom-up’ approach, than to try to deduce them from abstract concepts
which, if poorly chosen, might not even generate the needed functionality at all —
you'll find your abstract model won't have a place for a useful facility. I wouldn't
quarrel with that — and I accept that this can lead to ad hoc fixes which are likely
to introduce irregularities and be a source of endless trouble in the future. She also
agrees, however, that to proceed by induction” from existing systems might fail to

find something which happens not to be implemented — which echoes my earlier
remark about pre-emption, especially if you start from only one style of existing
system!

AUUGN 61 Vol 8 No 6

UNIX STANDARDISATION MEEK

Cornelia has the advantage of being closely concerned both with language
standardisation of C (she is convenor of the UK panel) as well as with POSIX, and
makes the perfectly valid point that it would be as if no particular programming
language could have been standardised before some generic language model had been
standardised. 1 would agree there too — except that the world has moved on since
the days of the first FORTRAN and COBOL standards. Then, concepts in languages
that we now take for granted were still being researched and developed. High level
languages were only a few years old. Operating systems, however, have been
around long enough that,. while development is still of course happening, there is a

much firmer agreed conceptual base than would have been possible in the early
1960s.

However, I do not ask that UNIX should wait for a generic standard — only that
the work should be done with an awareness of the general need, rather than in
introverted isolation. The analogy with programming languages is sufficiently valid
that the lessons of the dangers of introversion should be learned from from past
experience in that area, s well as the more positive lessons from successes. There is
no need for UNIX work to be delayed, provided it is consciously being done in the
wider context I have outlined.

As well as (from our different standpoints) agreeing on that, Cornelia and I also
agree that people should not make the mistake of trying to see UNIX as the whole
answer to the standard operating system problem, or even the main answer. It is a
part, maybe even an essential part, certainly a part which it seems can be usefully
progressed at the present time — but no more than that.

Again I think that an analogy from programming languages is not too remote to be
useful, and that the history of language standards is not wholly irrelevant. Imagine
being told — today, ten years ago, twenty years ago — that “the answer” to the
“language standard problem” was, say, APL. Or COBOL. Or Prolog. Or FORTRAN.
Or Lisp. Or BASIC. Or ...

I rest my case.

(This article contains material originally drafted for an articlt to be published in

Computer Weekly (Reed Business Publishing Ltd, Sutton, Surrey, UK) in a revised
form.)

Vol § No 6 62 AUUGN

WATSON DEMAND CONTROLLED DEBUG LOGGING

Demand Controlled Debug Logging

James A. Watson
...!mevaxicernvax!paninfol jw

Pansystem Informatics, Ltd.
Bahnhofstrasse 50
CH-8305 Dietlikon

Switzerland

Debugging and execution tracing by means of printf statements in programs is a
time honoured, and much used, tradition among UNIX programmers. Indeed, many of
the standard UNIX utilities include documented (or undocumented) command line
options to enable various types of execution monitoring and debugging output. Sadly,
the best known of these are the suite of uucp programs, which have as many as 10
different levels of debug output; unfortunately, there is no documentation of the
differences between the various levels, nor of the meaning of the debugging output
itself. That, however, is a topic that is best dealt with at another time ...

If one is to accept that using printed debug output is a permissible means of either
debugging, or simply monitoring, the execution of a program, then it would be
reasonable to try to make this activity as productive and reliable as possible. Some
of the current approaches, and their problems, are:

e Add printf (or fprintf) statements to the source code during the development
Stage as necessary, and remove them as the various sections of the program begin
to (apparently) work correctly.

— Recompiling to enable or disable debugging is tedious, to say the least. If your
program is fairly large, and your computer fairly slow, it is maddening.

— Ending up with a program with no debug/monitor output is not always
desirable. Programs that “appear” to be working often (always?) turn out not
to be so, and the debugging statements often must be replaced.

e Bracket debugging output statements with #if (or #ifdef) cpp directives, so they
can be selectively included or eliminated at compile time.

— See previous statement about pain of recompilation.
— See previous statement about “finished" programs not working.

— Even if recompiling a finished program is not unduly slow or painful, it is
quite conceivable that the target system for an application could have no C
compiler, making it much more tedious to do.

e Make debugging output conditional on command line arguments, in the way
uucico and friends are. This might be acceptable for simple monitoring of
execution, especially for programs such as uucico, uuxqt, etc. which will
generally run for a relatively short time each invocation. It has severe limitations
for the debugging case, however.

— In general it is difficult or impossible to predict that a program will fail at
the time that it is invoked.

AUUGN 63 Vol 8 No 6

DEMAND CONTROLLED DEBUG LOGGING WATSON

— When a program is running and has begun to fail, the act of stopping and
restarting it (to enable debug output) often causes the failure to disappear
(temporarily).

— Programs which run for extended periods of time may need to run for quite a
while before the failure begins, thus they may produce a significant amount of
output that is of no real interest.

The alternative to these methods is a system which allows debugging and monitoring
output to be started on demand, repeatedly if necessary, without disturbing a
running program. Such a system can be implemented using either named pipes (fifos)
or sockets. Only the named pipe implementation is shown here, because the code
required is significantly less.

Using the O_NDELAY flag, for non-blocking 1/0, on named pipes, it is possible for a
process to determine when opening a fifo for writing, or when writing on a fifo, if
another process has the fifo open for reading. Thus, the output code can be enclosed
in a test which checks to see if anyone is listening.

In fact, this turns out to be very simple, and requires very little code to
implement. The following three routines, which should be saved in a file called
log.c, contain everything necessary.

#include <signal.h>
#include <fcntl.h>
#include <string.h>

#define MAXNAMLEN 512
static int fd = -1;
static char fn[MAXNAMLEN+1];

static void (#sv)();

log_init (name)
char #*name;

{
if (strlen (name) > MAXNAMLEN)
return (-1);
(void) strcpy (fn, name);
sv = signal (SIGPIPE, SIG_IGN);
return (mknod (fn, 010644, 0));
}
void

log_write (buf)
char #buf;

{
if (£d < 0 && (fd = open (fn, O_WRONLY|O_NDELAY, 0)) < 0)
return;
if (write (£d, buf, (unsigned) strlen (buf)) < 0) {
(void) close (£d);
fd = -1;
}
}
void
Vol 8 No 6 64 AUUGN

WATSON DEMAND CONTROLLED DEBUG LOGGING

log_end () {
if (£4 >= 0) {
(void) close (f£d);
fd = ~-1;
}
(void) unlink (fn);
{void) signal (SIGPIPE, sv);

This particular example is written for System V.3 UNIX. It would need a small
amount of adjustment for other System V releases, and somewhat more for other
versions of UNIX.

A program using this output facility would then look something like this:

main () {

log_init ("dbg_out");

log_write ("Made it this far...0);

log_end ();
}

When executed, the program would create a fifo in its present working directory
called dbg_out. Subject to the limitations of the user's current umask value, this
fifo would have read all read permissions on. As long as no one opens the fifo for
reading, however, no output would actually be produced. Upon normal termination
of the program, the fifo would be removed. ‘

Opening the fifo does not require anything special; the cat program will serve
nicely. So, execution with debugging output to the terminal could be done with the
following commands (assuming the program is compiled to a.out):

$ a.out &

1537

$ 1s .1 dbg_out

PXW-rw-r--— 1 jw us 0 Jul 30 17:37 dbg_out

$ cat < a.out
Made it this far...
$

Obviously, the output of cat could be redirected or piped as desired, to save or
print the logging information.

This method has been used on several major programming projects in the past year,
with generally satisfactory results. It provides flexible logging of debugging or
monitoring information, with relatively small requirements for program modifications.
While there is some additional execution overhead, even when there is no output
being produced, the effect is generally so small as to be unnoticeable.

AUUGN 65 Vol 8 No 6

DEMAND CONTROLLED DEBUG LOGGING WATSON

Two significant deficiencies have been noted. First, there is no way to specify
different levels of debugging output. This could be added, by making a read/write
connection to the process, rather than a read only connection. The expense in
complexity is quite significant, however. Second, in some cases it might be desirable
to have several separate log outputs from a single process. Because the log file name
and output file descriptor are held in simple static variables, this is not possible.
Adding such a capability would not be extremely difficult, but again would produce
a significant increase in the complexity of the package.

Book Review

Title UNIX System Programming
Authors: Keith Haviland and Ben Salama
Published by: Addison-Wesley, 1987,

ISBN 0 201 12919 1.
Price: 15.95,

Soft Back, 354 pp

Reviewed by James Malcolm
University College,
London

This book is about programming at the UNIX system call level. It is not about
kernel hacking! I found it pleasant in style. Information is presented clearly and
practically. There are lots of wuseful exercises and sample programs. Only one
formatting error was found. :

UNIX in this case means System V, but the authors take care to point out where
the System V interface definition is different from other variants of UNIX, and also
explain how some of the changes came about, so there is much that is generally
applicable.

The reader will need a user level knowledge of UNIX, and will need to be quite
fluent in C, so that constructs such as the following do not cause too many
headaches:

#define SIG_IGN (int(#*)())1

Because of this, I was somewhat doubtful about the value of the chapter on the
standard I/O library, though I do learn some new feature of printf every time I
read about it. There are no such doubts about the rest of the book. It covers
operations on files and file systems, processes, inter process communication
mechanisms, terminal handling, and screen manipulation (using curses).

I would recommend this book to anyone seeking to get to grips with low level
programming in a UNIX environment.

Vol 8 No 6 66 AUUGN

WILLIAMS UNIX THROWS UP

UNIX Throws Up
or
How to spend two days on a boat and get nowhere

Alain D.D. Williams
addw® phcomp

Parliament Hill Computers
London

Alain Williams is an independent consultant specialising
in UNIX and C. Ie enjoys visiting new places, meeting
people, and being bought drinks; this is why he goes to
as many conferences as possible.

Friday

After leaving through tobacco brown skies of Gatwick I arrived through bright blue
skies with the sun sparkling off thousands of small lakes. The start of ten days
away, out of reach of the 'phone — bliss. Pushing a trolley sponsored by Digital I
passed an IBM stand; I haven't got out of the airport yet — give me a break!

Gratified to find that there were no customs to argue with over my excess wine, I
swept out to meet Myriam and her friend Taria.

Myriam is an old friend whose job takes her to new and interesting places every
year. I had been given a list of things to bring: olives and wine featured
prominently. Trying not to be too over the top I had also brought a wine making
kit; there are no restrictions if it isn't fermented.

The short trip past pine woods was filled with chat about mutual friends and my
questions about Finland. I learnt that, officially, there are 60,000 lakes, the number
had doubled recently as the definition of what is a lake has been changed. There
are also 3000 offshore islands, I believe that that number doesn’t change quite as
rapidly. Helsinki is called the Daughter of the Baltic, has a population of 500,000,
(Finland has 5,000,000). In 1812 it was made the capital of a Russian grand
duchy, and gained independence in the confusion of 1917.

Enough history, the air smelt clean, I was with friends and I was going to have a
good time.

Got home and celebrated with some of the wine that I brought. “It’s not going to
last long like this, better start on the home brew kit. The main thing missing is a
demijohn, we'll have to buy one tomorrow.”

Saturday
My pre-prepared excuse that Finnish time was 2 hours ahead of English time didn't
work, no chance of an extra sleep.

AUUGN 67 Vol 8 No 6

UNIX THROWS UP WILLIAMS

“I want to see Helsinki. Be a grockle.” We also needed some extra things for the
wine making. On the way in to town I was informed that all foreigners living in
Helsinki are either married to Finns or are spies.

One of the first things to get sorted out in a new country is whether the local ice-
cream is worth eating. So we ate a, not so small, sample of Mdovenpick also
cloudberries with cream and lap cheese at the Academic Bookstore. Definitely edible.
I wasn't too sure about the coffee though, it was very. Very what I wasn’t quite
sure, but quite definite. Something to beware.

On to Stockmann's, the largest department store in Helsinki. I could have been in
London, Paris, or Rome, much of the same goods and brands were on display.
After some searching we did find a very small home brew corner, it seemed to be
aimed at quantity production.

On street corners Kioski abound. They vary in size from 5 to 15 foot square, but
always the service is through a small hatch just large enough for a head and pair
of hands. They serve sweets, newspapers, magazines, and cigarettes. They only just
outnumber the ice-cream stalls. One interesting feature of the shopping area is that
a large amount of it is built underground.

We dodged the trams and strolled down the Esplanade towards the old port,
stopping off for a little something in the Kappelli, a large green summer house. The
esplanade is a popular meeting place for the young of all ages, and is also
frequented by the local lush who quaff vodka out of pop bottles. The high price
of alcohol is an unsuccessful attempt to keep them dry. The curious thing was that
most of them seemed to have a girl looking after them, the choice must be poor. I
was informed that the Finnish girls call their men Juntti or roughly: yokel.

At the port the market was tourist board poster stuff, fruit (avocados cheap,
cabbage not so), flowers, and reindeer skin rugs. I was intrigued by their idea of
selling potatoes by the litre — “can I have the small ones please”. The covered
market provided us with reindeer kebabs (guaranteed Chernobyl free), to be washed
down with strawberries (bought by weight).

More grockling: the Rock Church is a 1960's Lutherian creation on a small hill.
The church is half buried and built out of a circle of red granite boulders capped
with a copper roof. The Sibelius monument was next. This modern object is worse
than the Chopin memorial in Warsaw. It looks like some organ pipes on legs, or
perhaps a fistful of metal macaroni.

We went back home and had some Sima, this is a special May 1st drink made of
fermented raisins, somewhat reminiscent of ginger ale.

“Let’s go to the Dipoli and see who has arrived.”
Nobody.

“Let’s go to the conference hall.”

This was hosting a Hungarian trade show, the hotel staff knew of it as a fashion
show. The models walked out as I walked in.

We were presented with the usual bumph, and Ernd Rubik’'s latest game; he had
just left — I was doing well. This game consisted of several clear plastic squares
tied at the corners in such a way that it could be folded to different shapes and
arrangements. It filled our spare time over several days.

The show was of everything from IC test systems to floor coverings, and frozen
food to a PC clone running a Bible education program. There was even a System V
machine from Videoton, they had a nice graphics CAD package, aimed at the house
and factory building market.

Vol 8 No 6 68 AUUGN

WILLIAMS UNIX THROWS UP

Adjoining was a restaurant to which we returned for an advertised ‘‘Hungarian
Evening”. This largely consisted of a Brahms/Paganini style quartet (who took it
upon themselves to terrorise a couple at the table next to us), and a Hungarian
menu, the pancake and rum was good, the ice-cream flowed freely. We ate with
Neil Todd and Bob Bishop. Neil was upset, having just been declared a non-person
by the hotel staff: his booking had been lost.

We retired to the Dipoli bar and met the entire governing board. John Carolan
finally persuaded the bar staff to serve us with some of the local vodka. (The
~Finns don't like serving. Waiters, bar staff, whatever, make one feel awkward just
asking them for something.) The ladies became popular. It was noted that several
people found the refreshments very much to their taste.

Sunday

We'd planned Sunday lunch at the Intercontinental as there you can eat as much as
you want for less than £10. However that day was Mothers’ day, one of the very
important social dates in the Finnish calendar, so it was all booked up. Just to rub
it in it started to rain. “First time for weeks.”

That's what they say whenever I go anywhere.

So ‘we drove off to look at the cobbled streets where they filmed Gorky Park.
Many of the old buildings here date from 1900 and are of a large heavy Russian
style, decorated in dark pastel reds, greens, and lots of tan brown. Many of the
buildings have 3 sets of doors to protect against the cold winters; up until Easter
one can drive over the ice to the small islands.

Monday
More rain, but now supplemented by lashings of fog.

Register. Nothing interesting at the Dipoli so bus back to town where, tiring of the
drizzle and cold, we ended up in the Kappelli while listening to a live Jazz band
next door. Here discussion ranged from finer points of C syntax and the shape of
future conferences (Sunil Das had joined us), to the local beer and ladies.

Back from work Myriam and Tarya helped me to rescue Neil from the Russian
hotel where he was staying. “What should I do with my copy of the proceedings?"
We started on the week's important work: the wine making. We'd managed to find
a plastic 5 litre container, that would have to do as a fermenting bottle. All the
houses are hot: triple glazing and communal heating using cheap Russian gas, so no
problem with finding a warm spot for it. '

The house had a built in Sauna, relax, sleep well.

Tuesday : , :

Down to the docks, and get on the boat. Boat is a bad word, too small, it looked
like my local hospital afloat. It is huge, thirteen levels of deck. No time to stare -
— the conference was starting in the nightclub. »

Jean Wood said hello, and Johan Helsingius used a jet-lagged Bill Joy as a dummy
to show us how to don a life jacket, all explanations in Finnish. To prove that he
had the nautical qualifications for this modelling job we were shown a film of him
rescuing his car from the middle of a pond earlier this year. Bill recovered from
that to tell us all what he thought would happen to work stations for the rest of
this century. His basic message was that every few years you add a zero onto the
end of every metric that you can think of, and that I'll soon have a Cray II sitting
on my dining room table.

AUUGN 69 Vol 8 No 6

UNIX THROWS UP WILLIAMS

We recovered from that by having some sticky buns and tea. The Viking Line had
done its homework well, all the paper napkins bore (in large red letters) the initials
VI. Being an emacs user I disapproved. I decided that the coffee was as bad as at
Manchester, but that the tea was all right once I had distinguished between the hot
and cold water dispensers. Teus Hagen was the source of mysterious labels which
read “"Keep CALM batch”, I never did understand what he meant.

We were then allowed into the conference room. Very swish, everyone had a
“personal seat station”” complete with table, hi-fi, and a buzzing button to annoy
speakers with. To aid us in the latter task Johan's Penetron had provided us with
paper dart material, thoughtfully marked with crease lines. These proved a boon in
some of the later proceedings.

We started with a grep machine named after a Scottish mountain, and moved onto
Rob Pike who wanted to abolish the concept of a line in UNIX. He claimed that
lines were a hangover from the punched card, and that our thoughts were tied too
strongly to that notion. Arbitrary records was what was interesting and he talked
about a grep which handled that sort of thing.

Time to take the bags to the cabins. I was lucky enough to have one with a sea
view. It was compact and had a small shower-room with a toilet that when
flushed made a noise like a pistol.

After an explanation on how to read the ship’s clocks (they all had two hour hands
on them as we were to cross a time zone), Dominic Dunlop chatted about porting
software between all manner of machines, amusingly illustrated with blood curdling
slides from old films. The boat started its engines and almost shook him off stage.

Peter Langston spoke, as ever, to a packed auditorium. He rebutted the notion that
entertainment is trite and a waste of time, it is a huge business. Entertainment
provides many challenges to computing, and demands high standards: when did you
last have an arcade game crash on you? “The point is that ...” Most people were
just waiting for the demonstrations; which came. Eedie and Eddie, riffology. and
Luxo Lamps.

After the talks, a little time to explore before supper. All the decks are named
after birds: Penguin, Flamingo, .. The bar prices, while duty free, were by no
means profit free. However, as much wine as you wanted with the meal was
included in the price, more than one bottle was smuggled out to impromptu parties.
I know some people prefer red, and some white, and some don't care as long as it
is liquid, but the oddest justification ever for choice was given to me by Frank
Kuiper: "My dentist doesn’t allow red wine".

One of the nice things about the conference being on the boat was that nobody
could stray too far, I kept on bumping into people I knew, some of whom 1
persuaded to buy me a drink. Gradually people vanished 'till just the faithful few
remained in the disco. There was another conference on board, some Swedish social
workers, who provided good company. It was said of one national group chairman:
“You'll see the pass coming”. To another we decided to award a prize in the disco
trials for being so often on his knees to several pretty girls.

Exhausted, off to bed to dream of being chased by Luxo lamps dressed as football
supporters.

Wednesday

I breakfasted with the sight of Sweden sedately sliding by, definitely novel. A
contingent at the front of the ship claimed to have seen a Russian submarine
dodging out of our way. Inspection of a few of those around me led me to invent

Vol & No 6 70 AUUGN

WILLIAMS UNIX THROWS UP

a new collective noun: a complaint of hangovers. Other damage from the night
before was that the HP banner had been mysteriously inverted.

The other passengers began to clog up the lifts and strew the decks with suitcases; I
was glad to escape to the warm dark of the conference room. Tanenbaum's talk*
was very well attended. Minix was seen as something that brought a ray of hope
to old kernel hackers who could not afford a System V source licence. 1 giggled at
his justification for not implementing the nice system call: “A PC runs slowly
enough, you don't exactly need it”". The entire stock of The Book went from the
Prentice Hall stand faster than copies of Spycatcher from New York airport.

The sun was shining as Jim Oldroyd and I stepped out to explore Stockholm. “I've
spent weeks here recently, I'll show you around” said Jim. 1 boldly followed
where 1 had never been before. We bought a cheap map, then found a bank where
the displays told us that it had cost £3. After a circuit through some of the less
exciting areas of town we found where we had been heading for. Out with the
camera, play at being a tourist. After a quick rush past the Presidential Palace (or
something) we ended up on familiar territory: a large city international style
shopping centre.

Philip Dorn provided a much used target for the paper dart brigade. He succeeded
in his goal of being provocative and held that the question was not so much
whether UNIX had really grown up, but whether UNIX's acolytes had: more darts.

After supper we returned for the panel session. This consisted of Rob Pike, Brian
Clark, Phil Dorn, Doug Michels, and Bill Joy. Nigel Martin (complete with dark
sunglasses) played the Godfather and tried to maintain some semblance of control
over his panel. The paper darts were now supplemented by wine bottle corks.
Discussion ranged from “Did international standards organisations stop development”
to “what is UNIX being used for''. The only consensus reached was that the session
should have been held in the bar...

which is where I found myself a bit later. The C++ zealots stuck it, I noticed
their BOF still in full swing at 1 am (I am not sure by which of the two times
held on board). Bill Joy found refuge with the space invaders machines. Others
escaped to the disco, games tables, or bed.

Thursday

Being an enclosed sea the Baltic was largely calm. Being in a big boat any waves
were small’ by comparison. This didn't stop Helen Gibbons complaining to me the
following morning that she had spent the night in a sequence of boats being
repeatedly shipwrecked. Over breakfast the boat slid into Helsinki.

The clocks had changed again, this time for the worse, one hour less in bed. Coffee
cups proliferated amongst those who managed to hear it announced that Belgium and
Iceland had affiliated to EUUG.

Stroustrup treated the C++ fans with some of his latest reflections: statements like
“Human expectation is the only thing that grows faster than hardware".

I was beckoned out and asked two questions: “Do you mind making a fool of
yourself, and can you sing?”" 1 replied “no” to both and was shown the EUUG
answer to the Eurovision song contest that had been broadcast a couple of days

* Reprinted page

AUUGN 71 Vol 8 No 6

UNIX THROWS UP WILLIAMS

previously. We had to clear the boat quickly at the end of the conference, this
might help.

Teus thanked the local organisers, and presented Jean with a pair of water wings.
We also said good-bye to Hendik Jahn Thomassen who was awarded the traditional
EUUG Swiss army knife. Something went wrong: we sang and were asked to do an
encore.

Johan had repeatedly been asked over the last few days what there was to see in
town, he was adamant that I don't know Helsinki — I just live here”. In
desperation he hired a bus and took us round, "The purpose of the trip is to prove
that there is nothing to see here.” It rained. He took us to Espoo to show us that
there was nothing there either.

I bussed back to town with Rob, his life wouldn't be worth living if he didn't
bring something home for the kids. How do people live there? A simple T shirt
cost him £10. I later had a meal and met some people from the Netherlands. In
an vigorous discussion we put the world to rights several times. We had the usual
“enthusiastic” service, the waiter looked as if I had ordered the last of the dish that
he was planning for his own supper.

Back home. The wine had started to ferment: bloub, bloub, bloub.

Friday

The birds outside my window were up bright and early, no doubt celebrating that
the buds on the trees had burst open since my arrival. I was up not very bright,
but what seemed early as I was booked onto the C++ tutorial.

Stroustrup was evangelical in his description of his creation. By the end of the day
he had convinced me that I wanted to have a go, though I was a little worried
about the portability of long externs that the translator seemed to generate.

A day's talking had not done his voice any good, so we sought throat soothing
lotion at the hotel bar.

It was a busy place. People were leaving. Card swapping was the current game,
all the people that one had meant to talk to but ...

Myriam and Tarya arrived, and we headed off to Katinka's in convoy. Being so
near we felt that we had to try a real Russian restaurant. Full up. The Italian
place next door let us in for an enjoyable meal. They served garlic, I fail to
remember what went with it — but we all had some.

Saturday

A lazy day. Slope into town and again fail to find a demijohnt. I hadn’t seen the
surrounding countryside so we drove out past the dachas to a lake and woods.
Once fuelled up at the inevitable ice-cream stall we ambled through the trees. They
passed the biggest ant-hill that I have ever seen, I, however, got them all up my
legs and needed to St Vitus's dance to get rid of them.

Sunday

One of the local tourist guides featured a picture of the Daedalus* perpetual motion
machine. I had wanted to see this for years so we went to the exhibition hall.

t Myriam bought the only one on a market stall a month later, but dropped it on the way home.
+ Daedalus is a pseudonym of a British academic, inventor, and columnist in a popular science journal.

Vol 8 No 6 72 AUUGN

WILLIAMS UNIX THROWS UP

The place was crowded.

There was also a separate fashion show, and a Russian trade show. The latter
featured everything from Russian dolls to satellites. I discovered that many high
tech items were made in cooperation with Finland or Japan. I asked a question
about some machine tools and was followed around for ten minutes.

Myriam and Tarya dropped me off at the airport and picked up a friend just in
from China. I wrote the last few postcards before dodging the DEC trollies, and
seeing the last of this pretty country from the air.

I would like to thank all those involved in the conference organisation in helping
me have an enjoyable week.

AUUGN a 73 Vol 8 No 6

THE SONG FROM THE BOAT

The Pirates of Helsinki

This was sung as part of the finale to the conference.

The EUUG Ditty

performance had, by then, lost all sense of dignity.

Vol 8 No 6

We arrived in Finland,
We didn't care

We went in search

Of a Polar Bear

Got in the boat,

Set off from the shore,
When the drink ran out
We called for more

CHORUS

Stick close to the source

And never go to C
And stay in tune
With the EUUG
(Repeat)

We went out fishing,

And caught a Pike

There wasn't much

It seemed to like

But LUXO lamps

They had a ball

So we brought them back

For a curtain call

CHORUS

Tried a ‘phone call
To my friend

Got a DECTALK
In the end.

The panel session
Was such a thrill
Even more

From Rob and Bill

CHORUS
So, hackers all

Whoever you may be
If you want to rise

74

Those

involved in the

AUUGN

THE SONG FROM THE BOAT

To the top of the tree
If you think that UNIX
Is a useful tool

Be careful to be guided
By our golden rule

CHORUS

For some strange reason this proved popular and an encore was demanded — for
which the chorus seemed a. little altered ...

Stick close to the source
And never go to C

And keep paying royalties
to A T and T.

With apologies to Messrs W. S. Gilbert and A. Sullivan.

AUUGN

75 Vol 8 No 6

CONFERENCE ANNOUNCEMENTS CONFERENCE ANNOUNCEMENTS

Call for Papers

4th International Software Process Workshop
Representing and Enacting the Software Process

Devon, England, 4 — 6 May 1988
(To be sponsored by ACM SigSoft and IEEE-TCSE)

ORGANIZING COMMITTEE
Gerhard Chroust Mark Dowson Watts Humphrey
Lee Osterweil Dewayne Perry Colin Tully

The 4th International Software Process Workshop will focus on executable or
interpretable (“enactable”) models of the software process, and their prescriptive
application to directly controlling software project activities. A number of issues
must be addressed if we are to develop comprehensive, robust models, together with
environment architectures that allow their effective use. They include:

Process Structures

Generating useful prescriptive models requires a better understanding of actual
software processes.

Representation Formalisms

Modelling requires model representation formalisms or languages with suitable syntax
and semantics.

Limits to Mechanization

Formalization and automation of the software process should support and enhance
human intelligence and creativity, not attempt to replace it.

Impact on Environments

Effective exploitation of prescriptive software process models will require suitable,
model driven environments.

Prospective participants should submit a maximum 3 page position paper by 16
October 1987. Some participants will be asked to prepare short keynote
presentations. Papers should be sent to:

LEON OSTERWEIL or COLIN TULLY
University of Colorado STC Technology Limited
Department of Computer Science London Road

Campus Box 430 Harlow

Boulder CO 80309, USA "~ Essex CM17 9NA, UK
tel: 303 492 8787 tel: +44 279 29531
e-mail: lee@boulder.colorado.csnet e-mail: tully@stl.stc.co.uk

Vol 8 No 6 ‘ 76 AUUGN

OLAFSSON REPORT FROM ICEUUG

Report from ICEUUG

Marius Olafsson
marius@askja.uucp

University of Iceland, Computing Center

The Icelandic UNIX Users Group (ICEUUG) was founded in November 1986. An
enthusiastic crowd of some 60 people attended the first meeting, agreed on the laws
and purposes of the group and elected a three member executive. Although many
people attended the first and subsequent meetings, the enthusiasm waned a bit when
time came to pay dues. The membership now stands at 10 (all Institutional
members) but other membership categories are planned thus hopefully increasing the
membership.

Meetings

ICEUUG has hosted three general meetings since November, on topics of interest to
the Icelandic UNIX community. As most UNIX installations in Iceland are very
recent, one meeting presented a basic tutorial on UUCP networking and the network
in Iceland now consists of eight sites (of those there are four sites receiving Usenet)
with more coming in the near future. Another issue that is of interest here, is the
problems with internationalization of UNIX systems. One tutorial was given on how
the X/OPEN group envisions the implementation of properly internationalised
software. These meeting were well attended and more of similar tutorials on -timely
topics are planned.

In May, ICEUUG cosponsored a conference on UNIX in association with The
Engineering Society of Iceland and the Icelandic Data-Processing Society. This
conference was attended by more than a 100 people (good by our standards). Talks
on topics ranging from the use of UNIX systems in integrated information processing
systems in the Fishing Industry to the relevance of UNIX to toy-computers (or
should I say personal-computers). Panel discussions were held afterwards which, as
usual, degenerated into arguments as to whether UNIX is wuser-friendly or "not
(whatever that means).

Next Year

As the number of UNIX installations in Iceland is growing at a healthy rate (from
2 to 10 sites in one year), ICEUUG intends to increase its membership. Primary
concern initially will be to promote the interconnection of the various UNIX sites for
better flow of information between users of these systems. Even here in Iceland,
there are communication problems and people have been known to spend many days
on problems just to discover that someone else solved it.across town.

ICEUUG is involved in the process of registering'.IS as a domain on Internet in
cooperation with SURIS, which is an umbrella organization of networking parties in
Iceland and the hope is that this will be completed sometime next year.

Other areas that ICEUUG plans to involve itself in are for example the continuing
problem with codesets and pheripherals (would you believe that [1{}i\@" are all
missing from the standard Icelandic terminal keyboard!) This problem has been
brought to the attention of the standard bodies in the country and it is hoped that
a new keyboard standard will be adopted that is more UNIX-friendly than the
current one.

AUUGN , 77 : Vol 8 No 6 .

REPORT FROM ICEUUG OLAFSSON

ICEUUG Executive
Gunnar Stefansson
Marine Research Institute, Reykjavik (gunnar@hafro.uucp)

Sigurdur Hjalmarsson
Hughonnun Inc, Reykjavik (shh@hugh.uucp)

Marius Olafsson
University of Iceland (marius@askja.uucp)

Title C by Dissection
Authors: Al Kelley and Ira Pohl
Published by: Benjamin Cummings, 1987
ISBN O 8053 36861 2
Price: £ 17.95
Soft Back, 250 pp

Reviewed by Andrew Lliasz
University College
London

I enjoyed reading this book, and enjoyed trying out some of the exercises. As an
introductory book on C for the beginning programmer, it is friendlier than some,
though the style is a little “academic”. It is not, however, for complete beginners,
but for those with a year or so's programming in some other language behind them.
As a book for beginners it could have benefitted from the inclusion of flowcharts
and diagrams, and possibly cartoons, for those (like me) who prefer to think
pictorially.

The idea of teaching programs by dissecting example programs is not original. Most
of the better books teaching BASIC or Pascal do just that. In anatomy, a major
purpose of dissection is to reveal structures and their relationships to one another,
and to provide experiences which help hold this knowledge in place and make it
more ‘‘real”. The dissections provided by the authors, consisting of text on a grey
background, are not especially memorable or eyecatching, and can be very tedious to
follow. The do-it-yourself aspect of dissection is provided by the exercises, but as
they are left to the end of the chapters they are not well integrated with the rest
of the text.

There is a lot of material in some of the early chapters, difficult for a novice to
absorb “at one go”. I would have preferred to have sacrificed some of the
thoroughness in favour of more clarity. Some of the more advanced topics in the
earlier chapters (scope rules, casts, storage classes, ...) could have been dealt with
later in the book.

In conclusion, although I personally enjoyed this book, I feel there is scope for
much improvement if it is to serve the needs of the truly novice programmer.

Vol § No 6 78 ' AUUGN

NYSSEN B.U.U.G.

The BELGIAN UNIX SYSTEMS USERS GROUP:

a group is born!

Marc Nyssen
marc@minf.vub.uucp

Secretary of the BUUG
Vrije Universiteit Brussel

Marc Nyssen is Associate Professor at the Medical
Informatics Dept., Vrije Universiteit Brussel, Belgium.
Since 1978, he has been an enthusiastic UNIX user and
as colleague of Erik Blockeel, the software specialist
who introduced UNIX in Brussels in 1978, he works on
biomedical applications. In 1986 he was a co-founder
of the BUUG. In collaboration with AT Computing he
teaches UNIX courses. A ‘

In Belgium, the need was felt to create an independent users group; in the course of
1986, some of us decided to give it a real try: the BUUG was founded, as a non-
profit organisation. The constitution of the group was heavily inspired by the
NLUUG-constitution (pity it had to be typed in all over).

The purpose of BUUG is to generate an independent meeting place for UNIX users, to
create opportunities to learn about UNIX, and to meet people concerned with UNIX,
in the image and in the spirit of EUUG and the other national groups.

In a few preliminary meetings, all this was settled and most important: tasks were
distributed. The “Board of Directors” looks as follows:

Menﬁbers of the board:

President: E. Milgrom, UCL
Vice President: Ph. van Bastelaer, FNDP
Secret_aryf ‘ o M. Nyssen, VUB
Treasurer: E. Blockeéi, VUB

AUUGN 79 Vol 8 No 6

B.U.U.G. NYSSEN

Persons responsible for:

Network: J.J. Quisquater, Philips
M. Lacroix, Philips
Contact with industry: S. Allemon, BIM
Publications: J. Huens, KUL
Events: ~J. Seldeslachts, CIG

A. Wambecq, Bancontact
B. Schroder, Diamant Boart
P. Verbaten, KUL

The first meeting was held Monday 3 November 1986, at the V.U.B. campus, Jette.
Prof. E. Milgrom presented the “Belgian UNIX systems Users Group” and explained
its goals. Teus Hagen came over especially to represent the EUUG.

During the first year (1987) the following activities were planned:
e First annual General Assembly 6 February 1987.

e Setup of the Belgian branch of EUNET/USENET network.

e Integration with the EUUG.

e Publication of a newsletter (at least two in the first year).

e Holding a technical meeting in the Autumn.

There are two classes of members: institutional and individual members. For 1987
membership fees were fixed at the (low) price of 10000 BF for institutional and
1000 BF for individual members.

An information brochure was composed and the first newsletter was sent out in
March.

The numbers of new members took off quite nicely, after a somewhat “slow start”.

Belgians are rather conservative and they first consider quite attentively how they
will benefit from new things (not only BUUG, also UNIX itself). " At this moment,
we have 80 individual and 35 institutional members, and this is increasing. On 6
February 1987 the first annual meeting, only accessible for members, was held.

On October 16th, a colloquium on “International Computer Networks in Belgium"
will be held in Namur (see further).

BUUG got recognition from the EUUG and the membership fee for out startup year
has been waived (we would be broke already otherwise).

To obtain more info, contact one of the board members, or the secretariat preferably
by E-mail, at buug@vub.uucp or by traditional means at the address:

Marc Nyssen
BUUG Secretary
co MINF VUB
Laarbeeklaan 103
B-1090 Jette
BELGIUM

Vol 8 No 6 80 AUUGN

NYSSEN / B.U.U.G.
COLLOQUIUM ON
INTERNATIONAL COMPUTER NETWORKS
IN BELGIUM

Namur, October 16th 1987.

B.U.U.G.: The BELGIAN UNIX systems USERS GROUP

with the cooperation of EARN and RARE
and
with the support of FNRS-NFWO and the Belgian Ministry of Education

Aims

Within the scope of its technical activities, the Belgian UNIX Systems Users Group
organises, in cooperation with the Belgian Earn Users Group and the Belgian ABUT-
BVT-Rare Club (Rare = Reseaux Associes pour la Recherche Europeenne) a one-day
colloquium is to be held on Friday, 16 October 1987, at the Facultes Universitaires
Notre-Dame de la Paix, Namur.

This colloquium will be devoted to International Computer Networks in Belgium
and, in particular, to the two main networks presently used in Belgium, namely
Eunet (European UNIX NETwork) and Earn (European Academic Research Network).

These networks are mainly devoted to the exchange of mail, of news and of files
between computers in Belgium, with Europe and with the whole world. While Earn
is exclusively oriented towards the academic world, FEunet interconnects both
scientific and industrial organisations.

The main objective of the day is to give to the members of both scientific and
industrial communities the occasion to meet, and to share information on principles
as well as on practical aspects of these networks and, by these means, to improve
knowledge and cooperation, and to promote the use of this sort of communication
infrastructure.

The morning session will be devoted to general presentations on networks, on Eunet,
on Earn and on the network evolution in the world. The afternoon session will
begin with local area networks and UNIX; it will end with non commercial
presentations of practical experiences on the development and use of networks.

AUUGN 81 Vol 8 No 6

B.U.U.G. NYSSEN
Provisional Program

Morning Session

Introduction to Research Networks
Philippe van Bastelaer, FNDP, Namur

Services provided by Research Networks
Jean-Jacques Quisquater,
Philips Research Laboratories, Brussels

Presentation of the Eunet-Usenet Network
Marc Nyssen, VUB

Presentation of the Earn-Bitnet Network
Fernand Benedet, ULg

World Situation of Networks and Evolution towards ISO-OSI
James Hutton, Rare Secretary General

Afternoon Session

UNIX and Local Area Networks
Elie Milgrom, UCL

Presentations of practical experiences on the development and use of networks

Open Discussion

Call For Papers

The second part of the afternoon will be devoted to short (20 minutes) presentations
of practical and original experiences with or about networks. They could deal with
implementation aspects (gateways, LANs, development of protocols, etc) as well as
use of networks (such as significant achievements facilitated by the use of
networks). Irrespective of the speaker, these presentations should not have a
commercial character. The language should preferably be English.

Please feel free to submit such a presentation; they are essential for insuring a
dynamic and participating aspect to the colloquium. In order to facilitate the job of
the organising committee, interested persons are invited to send a one-page summary
of their proposed talk before September 1, 1987; this summary should highlight the
original and interesting character of the related experience.

Please, address your proposal to

Professor Philippe van Bastelaer,

Facultes Universitaires Notre-Dame de la Paix
Institut d’'Informatique

21, rue Grandgagnage

B-5000 NAMUR

Registration
There is no charge for attending the talks. The price of lunch is 500 BF.

Copies of the proceedings will be sold at 500 BF (it will be free to BUUG members
as it is included in their membership fee).

Vol 8 No 6 82 AUUGN

BRAZIER & OTTER NEWS FROM THE NETHERLANDS

News from the Netherlands . . .

Frances Brazier
mevaxivud4lvupsylfrances

Patricia Otter
mcvaxl!xirionl!patricia

Affiliation Unknown

The latest NLUUG conference was held on June 11, 1987. This technical meeting was
attended by 200 people, members as well as potential members.

With the theme “UNIX as stepping stone” seven technical presentations and twenty
odd poster-sessions were held. The idea of poster-sessions was very well received. It
provided a platform for informal exchange of views and ideas. Perhaps worth noting
for the next EUUG conference !!

Abstracts of the technical presentations:
UNIX AND TEX — by Gertjan Vinkesteijn of Minihouse Holding N.V., Gouda

Knowing that the combination of UNIX and Tex has failed to succeed in the
Netherlands, an overview of the author’s personal experiences with the two,
comparing the pro’s and con's of Tex and troff will be presented. The extensiveness
of the possibilities and of the macro’s implemented within Tex are addressed, the
final conclusions being that the quality of Tex exceeds troff.

NeWs - SUN's NEW WINDOW SYSTEM — by Rob Goedman of Sun Microsystems
Nederland B.V., Soest

NeWs has unique properties:
1. it's expandable — it provides a basis for toolkits,

2. its “imaging model” (PostScript) is of a higher abstraction level than the usual
grid-based systems.

These issues, along with comments on the design of NeWs, window management, the
interaction with users and the client interface, will be addressed. The purpose of
NeWs will be described and compared to similar systems.

X-STANDARDS — by Hewlett-Packard Nederland B.V., Amstelveen.
Abstract not received in time for the conference programme.

LIGHT MUSIC THANKS TO UNIX — by Floris van Maanen of the Sweelinck
Conservatory Amsterdam.

After an explanation of the why and how, a demo will be given of software
designed to follow Alex Manassen's rules of composition for the construction of two
to twelve minute pieces of music. A pleasant (7)) side-effect is that it can be heard
on the designated equipment. The link to UNIX is both trivial and essential. UNIX
has been used for debugging C-programs designed for the ATARI ST.

CAD and UNIX — by Jan Blaauboer of Intergraph B.V., Aalsmeer.

A short overview of the history of commercial CAD systems will be followed by an
account of the advantages of using CAD on UNIX machines. A product overview was
given.

AUUGN 83 Vol 8 No 6

NEWS FROM THE NETHERLANDS BRAZIER & OTTER

REAL-TIME HOST TARGET EXTENDED DEBUGGING SYSTEM — by Piet Varkevisser of
WestMount Technology B.V., Delft.

RHTX is a debug environment which can be used to debug programs in so-called
“embedded computers”. Often these are single-board systems which are incorporated
in industrial applications. The RHTX debugger offers the possibility to debug various
processes simultaneously in a real-time environment. Integration in the total software
development environment is achieved by a uniform window oriented user interface,
and by a careful definition of each of the individual tools and of the interaction
between them. The host machine will be a SUN machine with UNIX 4.2BSD. The
target machine may be any (board level) M68xxx system, providing a suitable
support PROM can be inserted.

As could be expected, improvisation was required — a last minute cancellation by
Amdahl was compensated by Apollo with a contribution on NFS.

Poster sessions included the following topics:

— ICE: an integrated programming environment for C, presented by students of the
HIO "De Maere”, Enschede

— Network Projects, presented by students of the HIO “De Maere”, Enschede
— XLISP, presented by students of the HIO “De Maere”, Enschede

— UNIX and Realtime, presented by G.C. Homburg, N.BI. Integrated Solutions, Den
Haag

— Cenix real-time operating system, using UNIX as a stepping stone, presented by
Ben Dunselman, Nikhef-K, Amsterdam

— Controlling experiments in nuclear physics with UNIX, presented by Tom
Ploegmakers, Nikhef-K, Amsterdam

— UNIX — Info, a2 new Dutch UNIX magazine, presented by Rene Akker, Sala
Communications, Amsterdam

— The Nautus Accountings System, presented by R. ter Riet, SCB-HBO, Enschede
— MODPAS87 on the NCR Tower presented by R. Bats, SCB-HBO, Enschede
— C++ presented by A. H. Banen, SCOS Automation, Amsterdam

— Applix, an application generator presented by Ron Heusdens and Jossi Gil,
Transmediair B.V., Utrecht

— UNIMS — Universal Information Management System, presented by Ron
Vollebregt, UCOMS, Zwijdrecht

— Amsterdam Compiler Kit, an overview, presented by Michael Felt, Vrije
Universiteit, Amsterdam

— Putting together a Maclntosh Application with ACK, presented by Michael Felt,
Vrije Universiteit, Amsterdam

— MS-DOS Compatible via ACK presented by Michael Felt, Vrije Universiteit,
Amsterdam

— UNIX and optical discs, presented by Erik van QOoyen, XTEC Computer Systems
Nederland B.V., Waalre ‘

— In addition to this all, the NLUUG had invited a publisher to provide a good
selection of books of interest. This was greatly appreciated by the attendees:
something to remember!

Vol 8 No 6 84 AUUGN

BRAZIER & OTTER . NEWS FROM THE NETHERLANDS

The NLUUG itself was present with a stand on which EUUG publications, X/OPEN
guides and a number of other “important” documents were available for reference
purposes. Needless to say all inquiries concerning the NLUUG, the EUUG and
UNIX in general were answered accordingly.

Our next conference, on November 10, will include a vendor’s exposition and
parallel sessions at different levels. This conference will concentrate on UNIX,
4GL, Databases and Expert Systems. Speakers (from wherever they may come)
are invited to contact the NLUUG: mcvax!nluug or +31-20-649411 (Patricia
Otter).

Conference Announcement
Planning Dates for the AFUU

Philip Peake
philip@axis.fr
Here are the dates of the next two meetings of the AFUU.

Convention UNIX 87
20th November 1978

This is a one day meeting to be held at the hotel SOFITEL in Paris.
The morning will be organised as follows:

Extrordinary AGM — Re-definition of constitution AGM (normal)
In the afternoon, there will be a technical conference:

Networking and Industrial topics

Convention UNIX '88
8th — 10th March 1988

This will be a three day conference, with an associated exhibition. To be held at the
"ESPACE CHAMPERET" in Paris.

The conference topics have yet to be defined. Details of the exhibition can be
obtained from:

B.I.R.P.

25 Rue d'Astorg
75008

Paris

Tel: (+33) (1) 47 42 20 21

Fax: (+33) (1) 47 42 75 68
Tlx: 643982 F

AUUGN 85 Vol 8 No 6

DAS NEWS FROM UKUUG

News from UKUUG

Sunil K. Das

City University London
UKUUG Chairman

Sunil K. Das was press-ganged into the
Chairmanship of the UKUUG in 1984, and
sentenced to further hard labour when re-elected
in July 1987. His alter ego first encountered
UNIX in 1977 whilst employed as a research
fellow in the Computer Networks Research Group
at University College, London. In 1980, Sunil
joined the academic staff at City University's
Computer Science Department, where his interests
have included operating systems, local area
networking and systems programming. His most
recent involvement has been with a research
project to develop an expert system using Prolog,
which will help school teachers assess what
learning difficulties are experienced by school
children who have special educational needs,
particularly with reference to reading skills.

The UKUUG held its Summer Technical Meeting over two days, 7th-8th July. The
Programme Chair was Sunil K. Das from City University London, with Lindsay
Marshall acting as our host at Newcastle University. Michael Lesk from Bell
Communications Research was the International Speaker. Manufacturer demonstrations
were provided by Steve Wanless and Ian Blagg of Sequent, and MARI (re: Newcastle

Connection), while a brief talk by IBM was given about running BSD 4.x on the
PC-RT.

A Business Meeting was convened during the Meeting to elect officers, present the
UKUUG accounts and to report news from the EUUG. Sunil K. Das and Zdravko
Podolski (the latter is now with Insignia Solutions Ltd. of High Wycombe) were re-
elected as Chairman and Treasurer, respectively.

After a tour of the Computer Laboratory, the talks listed below were given over
the two days. Where possible the author's abstract has been included with the title.

EUUG members interested in reprints of any papers should contact their National
Group representative. UKUUG have sent a free copy of the proceedings to each
National Group.

Vol 8 No 6 86 AUUGN

NEWS FROM UKUUG DAS

Integrating the Apple Macintosh in a UNIX Environment

Nick Nei (Glasgow University)

Work is underway in the Computing Science Department of the University of
Glasgow to integrate clusters of Apple Macintoshes with clusters of UNIX machines.
The Apple Macintoshes are connected to the AppleTalk local area network, and the
UNIX machines (mostly flavours of 4.2 BSD) are connected to the Ethernet local area
network. The challenge arises in integrating the alien PC environment of the
Macintosh with a UNIX environment.

Many configurations are possible. A Macintosh can be used as a host on the Ethernet
and thus behave (when connected) as an intelligent terminal emulator via its serial
port. Files can be transferred between any hosts using ASCII file transfer or reliable
methods like Kermit. More interestingly, a gateway between an AppleTalk network
and an Ethernet network will allow any Macintosh to communicate using
TCP/IP/UDP protocols with any UNIX machine on the Ethernet. A Macintosh can
then connect to any UNIX host on the Ethernet using telnet, and transfer files using
tftp and ftp. In addition, a UNIX host can be used as a file server to a cluster of
Macintoshes, thus providing each with an enormous floppy diskette.

In the Department, an experiment is being carried out to use clusters of Macintoshes
integrated into a UNIX environment for student teaching. This paper will report on
some of the experiences and problems.

Retrieval from Books and Maps: Lessons for Database Design

Michael Lesk (Bellcore)

Every year sees more and more material in machine-readable form, much of it
information conventionally available in other forms and used in other ways. Taking
advantage of what the users know about this data offers great opportunities for
improving the efficiency with which they use the result. Unfortunately, it also
means that considerable specialization has to be put into the program. And thus
generality conflicts with efficiency; and I know no solution.

To consider, for example, the results of the work on finding good driving directions
in street maps, one could present the results at three levels:

1. Depth-first search is a better algorithm than breadth-first search for finding the
shortest path in a graph that resembles a street map.

2. Watching the way people find routes is a better way to plan your program
than reading mathematical papers that deal with a somewhat different problem.

3. You can’t write a genmeral purpose program to find shortest paths in any graph
and expect to use it everywhere.

Perhaps the first of these conclusions is the most useful result, but the last is the
most general.

In this paper, I will briefly describe three experiments done by finding large data
bases and building interfaces to them. In each case, specific knowledge from the
subject domain was needed to make a good interface, or to understand what was
needed. More detailed explanations of the particular experiments are available in the
literature.

AUUGN 87 Vol 8 No 6

DAS NEWS FROM UKUUG

Experiences with MINIX and Networking

Jim Lyons (Newcastle University)

With the arrival of MINIX — with its clean design — an opportunity arose to
implement a network manager which would, like the file system and memory
manager, be modular but retain the semantics of Version 7. As it was not the
intention to re-invent the wheel, the decision was taken to base the module on an
existing TCP/IP package — written by Phil Karn for the PC — and port it to MINIX
using the V8 streams-based methodology. The complete implementation is intended
as a vehicle for students to experiment with distributed systems within the
Computing Laboratory of Newcastle University.

I Come to Bury UNIX... and to Praise it

Dominic Dunlop (Sphinx Ltd)

The UNIX operating system is being used increasingly as a vehicle for the delivery
of application software. As such, it is usually almost completely buried: only when
a user answers the login: prompt are they responding to a UNIX utility — all
other interaction is with an application layered on top of UNIX.

But how deep and impervious should this layering be? What aspects of UNIX can
form a useful part of an application while still avoiding the need to expose the user
to such self-evident command strings as

lp -dletter -ondb -oletenv -n2 ?

This paper, using examples taken from actual applications packages, explores a range
of responses to this question.

Opening Windows on UNIX

CSSD Newcastle University students 198671987 _

This talk relates the experiences of a group of six postgraduate students who were
given the task of looking at the numerous window management systems in the
Computing Laboratory, with a view to improving the user’s lot. The preliminary
investigation took the form of a survey of all the WMS in the Computing
Laboratory, a literature search and the evaluation of the potential of several systems
upon which a WMS could be implemented.

The WMS in the Computing Laboratory were assessed against chosen criteria and
from this many desirable properties of WMS were identified. The investigation led to
the group prototyping some aspects of a visual interface to UNIX on X-Windows.

Recoverable Object Management in Arjuna (using C++)

Graeme Dixon (Newcastle University)

Technology Forecast: Computer Science

Michael Lesk (Bellcore)

What is happening in computer science? We see rapid progress in hardware, but less
in software. The future should be many small machines, even more effort spent
programming them, and even more frustration, unless we learn to do a better job

Vol 8 No 6 88 : AUUGN

NEWS FROM UKUUG DAS

with distributed processors.
Presentation on the PC-RT
I1BM

High Performance UNIX Multiprocessor Systems

Peter Lee (Newcastle University)

Recently, several symmetric multiprocessor UNIX systems have become available in
the marketplace. Earlier generation multiprocessors were asymmetric, very expensive
and offered very limited forms of parallelism. However, the latest generation of
machines, characterised by machines such as Encore’s Multimax and Sequent’s Balance
range, offer significant levels of true parallelism (20 — 30 separate CPUs) yet at a
price which makes them highly attractive alternatives to conventional single-CPU
UNIX systems. Thus it is believed that symmetric multiprocessors will become one
of the dominant architectures in the very near future.

This talk will examine why multiprocessors are likely to attain this importance, and
will describe the overall architecture of such systems and the means by which the
parallelism they offer can be exploited. Some examples of the parallelism that has
already been introduced into UNIX by the multiprocessor vendors will be used to
illustrate the parallelism potential.

Improved Models of Natural Language for Consultative Computing
Eric Foxley and G M Gwei (Nottingham University)

The restrictive form of language required in most computer systems is a handicap
impeding the growth of interactive computing. A more language-mediated mode of
interaction would alleviate some of the unnatural burden put on ndive users.

This paper explores models of natural language which attempt to extract more
meaning from each interaction by exploiting the relationships between the various
inflexions of a word, by extracting the separate parts of a compound (agglutinated)
word, and by resolving the ambiguity of some words.

AUUGN ‘ 89 Vol 8 No 6

GIEN EUUG EXECUTIVE COMMITTEE

“EUUG... ‘European’, You Said 7?...”

Michel Gien
mgRinria

Chorus Systemes

Michel Gien is currently vice-chairman of EUUG. He
participated in the pioneering work on computer
networks in the early 70's before getting involved in
UNIX through a project to “rewrite” UNIX in Pascal...
(what a funny French idea !!) After 15 years in the
research environment, at INRIA and then at CNET 2
national research institutions in computer science and
telecommunications) he recently became one of the
founders of Chorus Systémes, a software company,
developing a a new generation of UNIX distributed
operating systems.

The theme of the last EUUG Conference in Helsinki was: “UNIX grows up ..."

As it is often the case in good conferences — and EUUG conferences are usually
very good conferences — there was a panel session on the last day to give the
audience the “"word of wisdom” from the “gurus”. The question put to the panel
this time was — of course: ‘“'Has UNIX grown up?..." Of course, none of the gurus
agreed with one another... and the audience had to build up their own opinion. So
that was a good panel®. '

May be no one is sure whether UNIX has grown up or not, but it is obvious to
everyone — I think — that the EUUG has grown up...

The EUUG's 10th anniversmy'r is to be the main reason for the festivities during the
next conference in Dublin this September. The EUUG is 10 years old, more than is
necessary to be “‘a l'age de raison”"*,

Today there are more than 2000 members — 2300 to be precise, represented through
14 national groups. I have great pleasure in welcoming two new countries which
have just joined the EUUG, namely Iceland and Belgium. Note that neither of these
have lost any time in wusing the columns of this Newsletter to introduce

themselves”. A group is being formed in Spain, the EUUG helping it get going.

+ Participants can then report to their boss when they go back home: - “You know, BJ said that UNIX is
now a superconductor... And there was a big American guy, who also seemed to know what he was
talking about, who said that UNIX still hates users... UNIX is surely the way to go, but may be we
should still wait a little longer before we forget about MS/DOS...” And the boss goes: “Oh really?
They said that? EUUG Conferences really help us to know what's going on... * And that’s how you
get a ticket to the next Conference.

t Looks like EUUG was born from Elvis’ ashes 777...
En Frangais dans le texte...
O Could some of the other “older” groups take this as an example ...

-

Vol 8 No 6 ‘ 90 AUUGN

AUU

EUUG EXECUTIVE COMMITTEE GIEN

From a “kernel” of individuals, the EUUG has grown into a large association
comprising all European countries. Most of what are referred to as "EUUG
members” are in fact organisations representing unknown numbers of people.

Aside from the quantity, the “quality” also has changed: from the bunch of
university hackers, who created the group 10 years ago, the membership has
diversified to now embrace all kinds of interests, including purely commercial ones.
Some of the national groups which form the EUUG are becoming big and wealthy.
They have their own interests, their own activities, and their own problems, they
are mostly turned towards national needs.

The EUUG has had to adapt to reflect these changes. Clearly major evolutions
towards much more “professionalism’™ in the services have been initiated. But,
beyond the services,. it is the overall purpose of the EUUG that, in some areas, may
need to be revised.

At the last governing board meeting in Helsinki, these "feelings” crystalised into the
idea of a workshop: a gathering together several responsible people from each
national group, each representing a class of interests and/or services at the national
level, who will “brainstorm’ about the directions that the EUUG (and possibly the
National Groups as well) should go. Conclusions should of course be reflected into
EUUG (and National Groups) future services and policies.

This so-called EUUG “strategy” workshop will take place on the week-end of 5-
6 September 1987, near Paris. It will start with the results of a survey of all
national groups’ activities,- policies with respect to other groups, current objectives,
ways of operating and directions. From that, discussions about what national groups

should be expecting at a European level should provide a sound basis for an EUUG
“strategy’'.

The EUUG has grown up... But it still needs to grow. The European idea is far
from a day-to-day reality. European borders should open a bit further in 1992,
and UNIX is contributing a great deal in overcoming borders. But lots of efforts are
still required to get you, EUUG members, be totally aware that you belong to a

European group and to get your National Group to actually contribute to Europe
becoming a reality.

If you have any idea, suggestion, comment, or more generally input that you would
like to bring to the EUUG “'strategy’ workshop, please do, preferably through your
national representatives, or if you can’t, directly to the EUUG secretariat.

... BON ANNIVERSAIRE ...

N 91 Vol 8 No 6

CAROLAN C++ GOSSIP

C++ Gossip

John Carolan

Glockenspiel Ltd.
Dublin

John Carolan is the current chairperson of the Irish
UUG. He is also managing director of Glockenspiel Ltd.
of Dublin. Glockenspiel has been using C++ since 1985,
and John has presented several technical papers on C++.
His present work includes the development of C++ class
libraries common between O0S/2 and X-Windows on
UNIX.

Bjarne Stroustrup easily won the competition for having the two most frequently
bent ears at the “Boat” conference in Helsinki. Everyone who was interested in C++
took the opportunity to vent their favourite syntactic conundrums on Bjarne.
Between mouthfuls ‘of pickled herrings and weak beer, the perpetrator of C++
patiently answered every question, sometimes pausing to marshal extensive convincing
arguments in support of why C++ should be the way it is.

Bjarne also gave a talk on how multiple inheritance, which rumours from AT&T
suggest will appear during 1988, will look. However, it may be slightly different
from the implementation suggested in Bjarne’s paper. The paper, incidentally, was
very refreshing in that it was one of the few papers at the conference which
described genuine new UNIX research work which had been tested on real users (i.e.
within Bell Labs).

Most EUUG and USENIX conferences now include sessions orr C++. Bjarne’s C++
tutorial at Helsinki was very well attended, so we are running C++ tutorials at the
Dublin conference in September and the London conference next Spring.

USENIX are running a two-day workshop on C++ in November. It is being organised
by Keith Gorlen, of the National Institute of Health in Maryland, who implemented
a Smalltalk-style library in C++. This library, known as "OOPS” (short for object-
oriented programming support), is available in the public domain.

(My opinion is that C++ does object-oriented programming in a C-ish way. while
Smalltalk does it in a Smalltalk-ish way, and mixing the two results in unnecessary
complication and overhead.) :

If you want a copy of the OOPS library, you must send a 9-track tape to Keith:—

Keith Gorlen

Building 12A, Room 2017
National Institute of Health
Bethesda, MD 20892

If you would like to attend the USENIX C++ Workshop, mail Keith for details at

Vol 8 No 6 2 AUUGN

C++ GOSSIP CAROLAN

...!mcvax!usenixinih-csllkeith

Preliminary info, not yet confirmed, is that the workshop will be in Santa Fe on the
9th and 10th of November '87. Closing date for abstracts is September 15th.

I know of at least five books on C++ under preparation, so EUUG members can give
each other Christmas presents of C++ books which will, hopefully, be easier to read
than Bjarne’s. We will review each book in the newsletter as soon as it is
published.

Two questions I have for readers of the newsletter...

1. Many universities are beginning to use C++ as a teaching language. I would like
to assemble a list of people doing this in different countries so that EUUG can
organise sessions and help swap information. Please mail me if you are teaching
C++ at third level.

2. 1 don't know of any public domain C++ source other than Keith Gorlen's
library. I hope to publish a list of contacts for source code or technical papers
you would like people to know about.

C++ Tech Tip

If you have a class such as Text which is some kind of text object, you may want
a Text to be usable wherever a string argument is expected; however, you may still
not want the internals of Text to be accessible. If you provide a conversion
operator, e.g.

char* operator char«();

things work fine when the chars is used as a constant, as in
Text foo;
puts(foo };

but something terrible usually happens if you do

Text foo;

gets(foo };

In this case. the conversion function is invoked and returns a pointer to some
internal item in the Text object foo. gets() changes the string at that place,
probably causing a core dump.

C++ grammar does not currently allow you to write
const chars operator const char#();
However, if you use a typedef, much sorrow can be avoided:

typedef const chars kstr;
struct Text

{
kstr operator kstr();

b

Now, puts(foo) works fine, but gets(foo) gives you a syntax error instead of
dumping at run-time.

AUUGN
93 Vol 8 No 6

BOLDYREFF DRAFT PROPOSED ANSI/ISO STANDARD

Status Report on the
Draft Proposed ANSI/ISO C Standard

Cornelia Boldyreff
mcvaxlreadingluoseevicorn

Gould Fellow in Software Engineering
Department of Electronic and Electrical Engineering
University of Surrey
Guildford Surrey GU2 5XH

1. Recent Meetings
1.1 The ISO Working Group Meeting

The ISO/TC97/SC22/WG14 meeting was held during the same week as the X3J11
committee meeting in Paris, 8-12 June 1987, enabling international delegates to
attend the latter meeting as observers. The WG14 meeting was the second meeting of
working group; it was attended by delegates from Canada, France, the Netherlands,
the UK and the USA; as well as members of the Japanese C Users Group and
several members of X3J11 as observers. Following Steve Hersee's resignation, the new
Convenor of WG14 is Dr P. J. (Bill) Plauger of the USA. It was agreed that the
WG14 would continue with its goal of ISO/ANSI parallel progression of the standard.
The ISO meeting consisted largely of reports on liaison activities and on the current
status of the draft. Its major item of business was formulating a response to the
Japanese comments.

It was agreed that WG14 would inform the SC22 Secretariat that it believed the
appropriate forum for responding to these comments was X3J11. It was agreed that
any changes as a result of these comments would be made to the current X3J11
draft rather the ISO Working Draft (dated 1 October 1986) and that the ISO DP
circulated would be based on the current X3J11 document.

Other national comments on the draft were discussed. The NNI (Nederlands
Normalisatie Instituut) remain concerned about the definition of unary + in the
current draft. They would prefer its removal. It was noted that disquiet was
expressed at the BSI C Panel's Open Meeting in February 1987 on the definition of
the preprocessor and the feasibility of its implementation. As WG convenor, Bill
Plauger agreed to champion any papers from members of the 1SO WG at X3J11
meetings in future.

1.2 Brief Report of X3J11 Committee Meeting

There were two main goals of the X3J11 committee meeting: to address international
input to the draft; and continue responding to all public comments. A large part of
the first two days of the meeting was given over to presentation and discussion of
prepared papers including a paper by Bill Plauger addressing “Multi-byte Issues”. In
this paper, the object, letter, was proposed as a solution to the multi-byte character
problem.

Plauger proposed the following:

A letter consists of 1 to MAX_LET characters (MAX_LET defined as 1 for ASCID
such that:

Vol 8 No 6 94 AUUGN

DRAFT PROPOSED ANSI/ISO STANDARD BOLDYREFF

e A "\O' occurs only for 1 character, null;

e All C source characters are 1 character;

e A letter sequence begins with an initialised state.
TYPE letter_t is

e An integer type that doesn’t widen;

e Has O for "\O’;

e Can represent all letters uniquely;

e Can represent EOF uniquely.

Transform functions were also proposed to go from string to letter, and letter to
string.

Plauger's paper was accepted as a solution in intent to the Multi-byte problem.

2. Changes Made to the Draft in Paris

Disclaimer

Below are noted changes to the draft made at the Paris meeting. This list omits
many minor changes made which were editorial. These changes refer to the
unofficial draft dated 15 May 1987.

2.1 Type Based Aliasing
(in 3.2.2.3)

All pointer references must refer to original object type (a type that differs from
original object type only in its (un)signedness), or to a type that includes the
original object type, or use a pointer to character.

Implementations are still able to do worse case aliasing if they don't carry around
type information.

(end of 3.3)

All 1lvaues designating an object (whether or not the object is a member of an
aggregate) shall have one of the following types: :

The declared type of the object, a type that differs from the declared type of the
object only in the presence or absence of the unsigned attribute, an aggregate type
that includes one -of the afore-mentioned types among its members (including,
recursively, as a member of a sub-aggregate), or a character type.

2.2 Hex Constants

Valid hex constants now include both Ox or 0X for zero; and hex sequences of
arbitrary length are now allowed.

2.3 Name Information
(3.5.5)

Name information holds across compilation units. When comparing types, two
structures, unions or union types are the same if they have the same number of
members, the same member names, the same member types, and for a structure, the
same member order. For enumerations, they must have the same values.

AUUGN 95 Vol 8 No 6

BOLDYREFF DRAFT PROPOSED ANSI/ISO STANDARD

2.4 Pointer Comparison
(3.5.2.1 and 3.3.6)

When two pointers are compared, the result depends on the relative location in the
address space of the objects pointed to. If the objects pointed to are members of the
same aggregate object, pointers to structure members declared later compare higher
than pointers to members declared earlier in the structure; pointers to pointers to
members compare equal to pointers to other members of the same union; and
pointers to array elements with larger subscript values compare higher than pointers
to elements of the same array with lower subscript values.

2.5 setjmp
setjmp must be a macro.
2.6 Filename length

A macro will be added to stdio.h which gives the maximum length of a filename;
the POSIX name for this will be used.

27 strxfrm
(4.11.4.5)

It should return the length of string that it would have returned if it worked and
returns in the first argument, the incomplete transformation.

2.8 Enquiry on Composite Locale

The user is now allowed to make an enquiry on a composite locale.
2.9 Header Name Parsing

(3.1.7)

The result of /# in a header name preprocessing token is undefined.

(3.8.2)

If the characters \, ’, " or the character sequence /# occurs within a header name,
the behaviour is undefined.

2.10 Qutstanding Issues

Unary minus/Parentheses that group
Static/Extern Combinations

New keyword — offsetof

Macros with variable arguments
Multi-byte character/Letter additions

Currency information in locale additions

3. Future Meetings and Projected Targets

The next meeting of the X3J11 committee will be in Framingham, Massachusetts,
USA on 14-18 September 1987. The current schedule of X3J11 is to complete
responses to comments from the first public review. If this is accomplished and the
draft standard can be updated in time, then it may be possible to go for a second
public review in November 1987. This second public review will be for two months.
It seems more likely that the revised draft will not be completed until after the
December meeting of X3J11; in which case, the second public review will take place

Voi 8§ No 6 96 AUUGN

DRAFT PROPOSED ANSI/ISO STANDARD BOLDYREFF

in the first quarter of 1988.

The 1SO Working Group on C has planned a separate meeting in Europe on 16-17
November 1987; the tentative venue for this meeting is Amsterdam. A major point
of this meeting will be to ensure that international concerns are addressed in the
ANSI draft; so the two standards, ANSI and ISO, continue to progress in parallel.

Whether or not there is an ANSI standard for C in 1988 will depend on the results
of the second public review. If no substantive changes are made as a result of the
second review, then the standard will be passed to X3 for processing; and ANSI
approval could be achieved towards the end of the second quarter of 1988 or
sometime in the third quarter. The end of the road is clearly in sight.

Book Review

Title The UNIX System V Environment
Author: Stephen R. Bourne
Published by: Addison-Wesley, 1986
ISBN 0 201 18484 2
Price: £ 15.95
Soft Back, 391 pp

Reviewed by James Malcolm
University College
London

This book can be summed up very briefly: it is a revised edition of the author’s
“The UNIX System”, which 1 guess most readers will know.

As before, it covers commands, editing (ed and vi), shell scripts, C, lex and yacc,
system calls and libraries, [tn]roff, tbl, eqn, awk, ... in fact everything you might
want to know as a user of UNIX. Many examples are given, including a complete
system for maintaining the Bell Labs Murray Hill Tennis Ladder.

In fact the body of the text is very similar to the previous book: so much so that
most of the index entries have page numbers only one different from before. The
biggest change is that the page and a half on refer has gone.

Most of the text is generally applicable to UNIX variants, but the appendices
(contrary to what is stated in the preface) definitely apply specifically to System V,
and are much expanded over the original in consequence. Also, the appendix on the
ms macro package is no longer there.

A large amount of information is covered in this book. This is both its strength and
its weakness. It is ideal for a computer expert who wants to learn UNIX, and I still
use it as a reference from time to time, but most beginners may prefer a more easy
going approach.

AUUGN 97 Vol 8 No 6

BOLDYREFF POSIX PROGRESS AT ISO LEVEL AND BSI LEVEL

POSIX Progress at ISO Level and BSI Level

Cornelia Boldyreff
mcvaxlreadingluoseevicorn
mevaxlreadinglee .surrey.co.uklcorn

Gould Fellow in Software Engineering
Department of Electronic and Electrical Engineering
University of Surrey
Guildford Surrey GU2 5XH

1. ISO Past and Present Action

In December 1986, ANSI proposed to I1SO TC97, the 1SO Technical Committee that
deals with Information Processing Standards, a New Work Item (NWI) based on the
IEEE Standard 1003.1 (Trial Use Standard for Portable Operating System for

Computer Environments — POSIX). ANSI's aim was to facilitate international
participation in this work leading to its adoption as an international standard. ANSI
proposed that this NWI be assigned to SC22 — the subcommittee under TC97 on

Applications Systems, Environments and Programming Languages.

The 1SO ballot on this NWI did not close until the 20 February 1987. During this
period several related items were under consideration within TC97. As a result, an
ISO Special Working Group was formed to consider POSIX, System Software
Interfaces and Related Issues (SWG/PSR). This SWG met in May 1987 after the
POSIX ballot. The ISO Members were not unanimously in favour of the POSIX NWI
there were two main areas of concern: lack of a “language independent” specification
of the POSIX interface; and concern over the IEEE trademarking of POSIX. The
SWG/PSR passed several recommendations; two related to POSIX directly. It
recommended that the POSIX NWI be accepted and assigned to SC22: a slight
modification to the scope of the work item was made to ensure the POSIX standard
provides a functional definition of the interface (it was recognised that initially this
may be C Language flavoured and more abstract in a later version); and concerns
over the IEEE trademarking of POSIX were resolved. The SWG/PSR also
recommended there should be close liaison between the OSCRL and POSIX activities.
(For details on OSCRL, see Brian Meek's article in this issue.)

The New Work Item on POSIX has received official approval by ISO/TC97 (July
1987); and it is expected that Member Bodies at the ISO/TC97/5C22 Plenary Meeting
in September 1987 will give their support to the establishment of SC22/WG15-POSIX.

2. BSI and other National Standards Bodies

Once the ISO Working Group on POSIX is established, member ‘bodies of ISO will
establish corresponding groups at national level. In the UK, IST/5/15 — the BSI
POSIX Panel — will be required to ensure that the UK contribution to this standard
has an effective focus.

In practical terms, the POSIX Panel will provide expert input to the BSI Technical
Committee, IST/5, advising on ISO ballots regarding POSIX and related issues; and
Panel members will make a direct contribution to the work of ISO by participating
in the progression of the POSIX Work Item with other international experts through
membership of the ISO Working Group on POSIX (TC97/5C22/WG15). All members

Vol 8 No 6 98 AUUGN

POSIX PROGRESS AT ISO LEVEL AND BSI LEVEL BOLDYREFF

of BSI panels act in a voluntary capacity usually supported by their employers. BSI
panels receive no official support from the BSI

I have undertaken to act as convenor of an “ad hoc” POSIX Panel in the UK prior
to official establishment of the ISO Working Group on POSIX; and associated BSI
POSIX Panel. The first meeting of the “ad hoc” POSIX Panel was held on the 4th of
August 1987 at the BSI Conference Centre, Hampden House, London, Room G4 at
2:00 p.m.

Other national standards bodies in Europe which are participating Member Bodies of
ISO will be in the process of forming their own equivalents of the BSI POSIX Panel;
if you are interested in taking part in the work on the POSIX standard, you should
contact your national standards body. In Belgium, IBN; in Denmark, DS; in France,
AFNOR; in Germany, DIN; in Italy, UNI; in the Netherlands, NNI; in Switzerland,
SNV...

3. The Future

The question regards POSIX that I have been asked most frequently is: “"When will
there be an ISO POSIX standard?”. In their proposal to ISO, ANSI were required to
list preparatory work with target dates; these were optimistic:

1/87 Working Draft
1/88 Draft Proposal
7/88 Draft International Standard

The current draft of the IEEE POSIX standard (P1003.1/Draft 11) is most likely to
become the ISO Working Draft. The aim is progress the POSIX Trial-Use Standard to
a Full-Use Standard and an ANSI standard within two years; in parallel with
progress to an ISO standard. If all goes according to plan, then in two years time,
there will an ISO POSIX standard. Of course, work on standards progresses
iteratively; and it may take a bit longer for consensus on POSIX to be reached
internationally. Certainly though there appears to be much enthusiasm for this new
venture into the area of standardising of an operating system interface and
environment for applications and a recognised need for a standard in this area; so
there is some basis for optimism.

4. Is POSIX The Answer?

There has been much discussion within the standards community raised by the
POSIX proposal regarding the desirability of defining a standard for a ““‘generic”
operating system interface and environment. Such a standard would provide the
POSIX work with a reference model. In what follows, I have not summarised this
discussion, but simply give my own views in the matter.

I think the crux of the issue is: there is a need to standardise the interface seen
by applications running under UNIX-like operating systems; what is being
standardised is a particular operating system interface. Here the work is no different
from standardising a particular programming language. In both cases, the starting
point is an existing entity; and in both cases, there may be various implementations
realising the language or operating system interface.

The modest aim of POSIX standardisation is not to provide a conclusive answer to
the “operating system standard” problem; it is simply to address portability of
applications on a particular family of operating systems i.e. those based on UNIX.
In this particular case, the interface is provided by external C data definitions
including C library functions, and operating system calls.

AUUGN 99 Vol 8 No 6

BOLDYREFF POSIX PROGRESS AT ISO LEVEL AND BSI LEVEL

It is as if standardisation of a particular programming language was held up until a
generic standard of fundamental programming language concepts was defined at a
higher level of abstraction than that realised in any concrete syntax and semantics.

It will not be easy to identify fundamental operating systems concepts; these are
likely to be as elusive as fundamental programming language concepts. A “bottom-
up” approach of standardising particular operating system functions is more likely to
bring to light common underlying concepts; here by examining the particulars,
common concepts may be abstracted.

Of course, there is the obvious difficulty that if there are no particular instances of
a concept, it cannot be “discovered” by this inductive method. On the other hand,
the “top-down” approach is equally weak, poorly chosen abstract concepts may
preclude the deduction of a particular concept and its corresponding function.

I think the standards community would do well to gain experience from framing
standards for particular operating systems interfaces before attempting to answer the
“operating system standard” problem.

It seems more appropriate to allow both the work on defining higher level abstract
generic operating system functions and the work on standardising what is in effect a
family of UNIX-based operating systems to proceed in parallel.

POSIX Portability Workshop

October 22-23, 1987
Berkeley Marina Marriott

This USENIX workshop will bring together system and application implementors
faced with the problems, ‘“‘challenges”, and other considerations that arise from
attempting to make their products compliant with IEEE Standard 1003.

The first day of the workshop will consist of presentations of brief position papers
describing experiences, dilemmas, and solutions. On the second day it is planned to
form smaller focus groups to brainstorm additional solutions, dig deeper into specific
areas, and attempt to forge common approaches to some of the dilemmas.

Jim McGinness

Digital Equipment Corporation
Continental Boulevard MKO02-1/HIO
Merrimack, NH 03054

(603) 884-5703
decvax!jmcg
jmcg@decvax.DEC.COM

For registration or hotel information, contact:

Judith F. DesHarnais

USENIX Conference Coordinator
PO Box 385

Sunset Beach, CA 90742

(213) 592-3243
usenix!judy

Vol 8 No 6 100 AUUGN

EUUG National Groups

AUSTRIA

Dip-Ing Wolfgang Schwabl
TU Wien

Inst fur Praktische Informatik
Gusshausstr 30/180

A-1040 WIEN

Austria

(UUGA)

BELGIUM

Marc Nijssen

VUB

Medische Informatika
Laarbeeklaan 103
B-1090 BRUSSELS

Belgium

(BUUG)

DENMARK

Mogens Buhelt
Kabbelejvej 27B
DK-2700 BRONSHQ®)

Denmark

(DKUUG)

FINLAND
Johan Helsingius
Oy Penetron ab
Box 21

02171 ESPOO
Finland

(FUUG)

FRANCE

Miss Ann Garnery
c/o SUPELEC
Plateau du Moulon

9190 GIF-SUR-YVETTE

France

(AFUU)

GERMANY

Dieter Lengle
GUUG
Mozartstrasse 3
D-8000 MUNICH 2
Federal Republic of Germany

(GUUG)

ICELAND
Marius Olafsson
University Computer Centre
Hjarderhega 4

REYKJAVIK

Iceland

(INUSUG)

IRELAND

John Carolan
Glockenspiel Ltd.
19 Belvedere Place
DUBLIN 3

Ireland

(IUUG)

ITALY (i2v)
Carlo Mortarino

Viale Monza 347

20126 MILANO

ltaly

NETHERLANDS
Patricia Otter

Xirion bv

World Trade Center
Strawinskylaan 1135
1077 XX
AMSTERDAM

The Netherlands

(NLUUG).

NORWAY

Secretariat NUUG
c/o Jan Brandtt Jensen
Unisoft AS

Enebakkvn 154
N-0680 OSLO 6

Norway

(NUUG)

SWEDEN

Hans Johansson
NCR Svenska AB
Box 4204

17104 SOLNA
Sweden

(EUUG-S)

SWITZERLAND

Prof. Wolfgang Fichtner
Institut fr Integrated Systems
ETH Zentrum

CH-8092 ZURICH

Switzerland

(UNIGS)

UNITED KINGDOM
Bill Barrett

UKUUG

Owles Hall
BUNTINGFORD
Herts SG9 9PL
United Kingdom

(UKUUG)

The Secretariat: European UNIX®ystems User Group, Owles Hall, Buntingford,

Herts SG9 9PL, UK. Tel: Royston + 44 (0) 763 73039

Network address: evug@inset.uucp

Facs: Royston +44 (0) 76373255

AUUGN

101

Vol 8 No 6

HORNE ‘ UNIX CLINIC

UNIX Clinic

Nigel Horne
njh@root.co.uk

Root Technical Systems

Nigel Horne has worked solely on UNIX since graduating
in 1980 from Westfield College, London (and to a
certain amount as an undergraduate as well). He has
been involved in UNIX from the early days of “‘real”
UNIX, the days of seek(), roff, PDP11's (they didn't
even have split I+D in those days), keys for typing in
the bootstrap., through to today when there are System
V., 43 BSD, industry standards, and just as much
confusion as when it all started.

Nigel is now a Director of Root Technical Systems.

I've been asked by several people to discuss various systems administrators’ tasks.
In particular “how can I ensure the system starts my program running automatically
when it boots?”, and “how do I change a line from being a terminal into being a
printer line?”". The answers to these lie in the file /etc/inittab.

When the system starts up it reads this file and executes some commands based on
what in finds in there. The system is said to be in one of 8 states at any one
time: they are called run levels, and are numbered “0” to “6”, and “'s”. When the
system boots up, it will normally default to s (for single-user, or system) mode.
This can be changed by altering the line which looks something like:

is:s:initdefault # Default Init State

However, normally this is not touched. All characters after the “#" are i-nored,
allowing the administrator to add comments. Ensure that you do this, otherwise a
little tampering can cause a real rats’ nest of trouble! After the system has come
up (into this single user mode) you can alter the current run level to level “2"" by
typing:

/etc/telinit 2

provided you are at “‘super-user’ status. There is an unwritten convention that

level 2 is the multi-user mode. In most systems, s and “2" are the only levels
used. .

When changing a level the system reads the /etc/inittab file to find out what it
needs to do when the run level changes. For example it needs to start login
processes on each terminal. A typical entry covering this is

01:2:respawn:/etc/getty ttya tt_9600 # Login process on Port A

The “01” is a unique identifier for that line, the 2 means “run this command when
you are at level 2", the respawn says, “if that process stops running, restart it”, in
effect it runs another login process after you logout; and the /etc/getty part is the

Vol 8 No 6 102 AUUGN

UNIX CLINIC HORNE

program call, ttya and tt_9600 being its arguments. The system does not wait for
this command to terminate, otherwise only one person could login at a time! If
you want this line to be temporarily disabled, change ‘“‘respawn’ to be “off”", and
the system ignores it. You could put more than one level in the second field, e.g.
"23", to indicate that it is to be run at levels 2" and 3", but no other levels. If
no levels are given, all levels “0” to 6" are included.

There are some special lines which are executed only at boot time, in order to allow
the checking of file system consistency, mount file systems and so on,

rc::bootwait:/etc/rc 1>/dev/syscon 2>81 # System Initialization

This runs the command file /etc/re, sending output to the system’s console, and
waits for termination. If instead of bootwait, we used boot, then a similar
situation to using respawn would occur, the system wouldn't wait for the /etc/zxc
to finish. As /etc/rc contains critical processes we must wait for it to terminate.

Two final points before giving a full-blooded example of an /etc/inittab file.
When the system changes a level it kills off programs running at the old level, so
for example

/etc/telinit s

terminates all the currently running programs, in eflect logging everyone out and
going single user, as the /etc/getty lines will not be valid at the “'s” level. If the
/etc/gettys are valid at levels 2" and "3, and we move from level “2” to level
“3", users will not be logged out. Secondly, if you make a change to your
/etc/inittab file, you need to tell the system that you have made this change.
This is done by

/etc/telinit q
which orders the system to reread the /etc/inittab file.

Here is a cut down example inittab file from a machine running System V.2, with
some networking enhancements. The system is set up such that levels 2 and 3 are
multi-user modes, but the machine is accessible from the network only in level 3.

sy::sysinit:/etc/sysinitrc </dev/systty >/systty 2>&1
Run before entering single user mode
~is:s:initdefault: # Default run level is ’s”’
rc::bootwait:/etc/rc 1>/dev/syscon 2>&1 # Run the /etc/rc script
sl::wait:(rm -f /dev/syscon;ln /dev/systty /dev/syscon;) 1>/dev/systty 2>&1
Tidy up
co:23:respawn:/etc/getty console tt_9600
The console line at 9600 baud
ta:23:respawn:/etc/getty ttya tt_9600
Port A at 9600 baud
ni:3:once:/etc/inetd
Network daemon - start this when going to level 3

You should remember that this is a cut-down version of the real thing.
Compare this with the /etc/inittab file on your machine.

The above applies to System V and its derivatives; this does not include BSD or
Xenix.

If there’s anything in it you don’t understand, drop me a line courtesy of the EUUG
office. That goes for anything else you'd like to know more about, any questions
you may have, or any comments you want to make.

AUUGN 103 Vol 8 No 6

RIFKIN WHAT’S NEW WITH SYSTEM V

What’s New With System V

Andrew Rifkin
...Imcvaxluellapr

AT&T UNIX Europe Ltd.
International House
Ealing Broadway
London W5 5DB

Andy Rifkin was born in 1959 in a small town outside
of New York City called Brooklyn where to be a good
“hacker” one needed to carry a large axe.

After graduating Cornell University he joined the UNIX
Development Laboratory at AT&T Bell Labs in Murray
Hill, New Jersey. Andy was very involved in the
Release 3.0 development in particular the RFS product.

Currently, Andy is a Senior Software Consultant at
AT&T UNIX Europe Ltd. in London.

This column will be a regular feature of the EUUG Newletter in order to keep the
European community informed of the latest AT&T activities and UNIX® System V
advancements.

The primary goal of this first article is to create a starting point and familiarise the
European community with AT&T's office in London, called AT&T UNIX Europe Limited
(AT&T UEL), and explain AT&T UEL's relationship with the AT&T UNIX System
Development Laboratory in Summit, New Jersey. It will also present an overview
of the technology which AT&T has introduced over the past 18 months.

In 1984, in an effort to keep pace with the rapidly growing European UNIX system
market, AT&T set up a local facility in London, England. This facility, called
AT&T UNIX Europe Limited, was a strategic move in that the primary objective of
AT&T UEL was to gain the acceptance of System V, encourage standardisation, and
promote the development of UNIX System based applications. All in all, the efforts
were successful, System V has emerged as the dominant UNIX System, UNIX System
standardisation is now in vogue, and the UNIX System market has grown, now
attracting the development of sophisticated applications.

Now that System V has been so well accepted, AT&T UEL is working to facilitate
the growth of the System V community through marketing and licensing, and is one
of several sources of training and consultancy. Presently AT&T UEL employs over
thirty people, several of whom are from the AT&T UNIX System Development
Laboratory in Summit, New Jersey.

® UNIX is a registered trademark of AT&T in the USA and other countries

Vol 8 No 6 104 AUUGN

WHAT’S NEW WITH SYSTEM V RIFKIN

By maintaining a close working relationship with the UNIX System developers in
New Jersey, AT&T UEL is in the unique position of representing the latest AT&T
System V technology. However, this is a two way relationship; AT&T UEL is very
active in the European community through conference, trade show, and standard
committee participation. This provides feedback to the New Jersey development
organisations to ensure that existing and future products meet the needs of the
European community.

A current problem which is impeding the growth of the UNIX System market in the
European community is the lack of experienced UNIX System developers. AT&T UEL
is attempting to ease the problem in two different ways. The first is by providing
highly specialised training courses on topics including UNIX System Internals,
STREAMS/TLI, and device drivers. The second is consultancy, providing help with
difficult bugs, porting, and product management, in order to reduce product
development time and help speed UNIX System products to the market place.

Turning to technology, UNIX System V Release 3.0 has fulfilled many of the market
demands, especially in the networking area. Release 3.0 has introduced the STREAMS
technology, which is serving as the backbone for current and future UNIX System
networking products. In fact, several STREAMS based TCP/IP implementations are
already on the market (e.g., Spider and Lachman). The fact that users can now
purchase ready-to-use networking protocol modules will greatly ease and expedite the
development of networking based applications.

In addition to STREAMS, Release 3.0 contains the RFS distributed file system and the
file system switch (FSS) architecture which allows the UNIX System to use a wide
variety of file systems simultaneously. In all, Release 3.0 has served and is serving
as the platform for future UNIX System developments.

An example of this is System V Release 3.1. This release uses the STREAMS
technology to provide internationalisation features in addition to enhancing many of
the features introduced in Release 3.0.)

In July of this year AT&T UEL announced two additions to the Native Language
Supplement (NLS) product family. These are the French and German Application
Environments (FAE and GAE). These supplement the already available Japanese and
Korean Application Environments. These products allow existing standard UNIX
System applications to be used in non-English environments in a way that is
compatible with both X/OPEN and ANSI-C standards.

Being an integral part of the AT&T European UNIX System strategy all AT&T UEL
activities are focused on the growth and acceptance of UNIX System V.

The next issue will contain a more in-depth look at the System V technology in
addition to an overview of the current UNIX System standards activities (X/OPEN
and IEEE-POSIX) and their relationship to the System V Interface Definition (SVID).

AUUGN 105 Vol 8 No 6

HOULDER EUNET

EUnet

Peter Houlder
uknet@ukc.ac.uk

Computing Laboratory,
University of Kent

1. Introduction

I had hoped to include a lot of details about other EUnet networks in this article,
but I have so far had limited success in extracting information mainly because the
network administrators seem to be very busy people. Anyway Piet, Ruediger and
Bjorn have given me a few details about the Dutch, German and Swedish networks,
which are included below. The rest of this article covers some aspects of mail
handling and routing, which is based on what we do at ukc and what Piet does at
mcvax, but hopefully it has enough general points to make it interesting to all
EUnet readers.

2. Some Information from the National Networks

THE NETHERLANDS

Piet Beertema (piet@cwi.nl) is not only in charge of the Dutch Network, he is also
the person who is in overall charge of the European Network (EUnet). The site
mcvax has about 110 uucp links, about 50 of which get most of the news. The
resulting network traffic, excluding local, campus and EARN/BITNET gateway traffic,
now exceeds one Gigabyte each month. Besides the national ‘and European links,
mcvax now has links to the USA, Australia, Israel, Japan, Korea, New Zealand and
Malaysia.

WEST GERMANY

Ruediger Volk (rv@unido.uucp) is head of the West German network, based at the
University of Dortmund. There are around 100 active German sites and unido
maintains a similar number of uucp links to German and international sites. About
25 German sites take news, so the overall throughput of news and mail exceeds 500

megabytes. Unido is also the “central node” (backbone) for the German EARN
network.

SWEDEN
Bjorn Eriksen (ber@enea.uucp) wrote a recent EUUG article about the Swedish
network. He explained his position to me as follows.. “there is this guy, who

heard about the uucp network, gets a connection to mcvax and soon after ends up
as chairman for the national UNIX group’, which seems to be the way things work,
keenness quickly turning into responsibility. The site enea has 102 direct uucp
connections, 123 registered sites and 31 news sites with 5 pending sites. It does not
have direct links to other networks, although it is considering a direct connection to
SUNET (the Swedish University network) to avoid intermediate gateway problems.
The top domain for Sweden is .SE, which has 10+ subdomains, enea being the
national backbone of the Swedish NIC registered domain .SE. The Swedish Defence
Network also has a lot of UNIX machines, which are linked to enea via six sites of
which f109a is the most prominent.

Vol 8 Mo 6 106 AUUGN

EUNET HOULDER

3. Mail Handling and Routing
3.1 General and ukc

People often ask me why their mail has got routed in an unexpected fashion. The
simple answer is that we route on the information available in the world uucp
maps, using the Pathalias program with some extra local post-processing.

The world uucp maps are maintained decentrally by area administrators in the USA
and national backbone sites in the rest of the world. They are exchanged
automatically. '

As an example of routing, if we generate internal, or receive external, mail for a
site “harry”, then we look in a file called paths and we find an entry such as:

harxy tomldick!harryl¥%s

This says mail for “%s”, standing for any user is to be directed to site “tom’, who
will forward it to “dick™, who in turn will forward it to “harry".

Each night ukc runs the Pathalias program, which creates a interconnected graph of
all the sites in the world maps. These are then scanned to work out the “quickest”
route based on the lowest COST totals, as shown in the table below:

COST VALUE USE

HIGH -5 ' (used to alter values below)

LOW +5 (used to alter values below)

LOCAL 10 (local-area network connection)

DEDICATED | 95 (high speed dedicated link)

ARPA 100 (used mainly by backbone sites)

DIRECT 200 (local call)

DEMAND 300 (normal call)

DIALED 300 (normal call)

HOURLY 500 (hourly poll)

EVENING 1800 (time restricted call)

default 4000 (if no cost included)

DAILY 5000 (daily poll)

WEEKLY 30000 (irregular poll)

DEAD very high | (effectively non-existent poll
useful for hiding links)

The following table should give an example of how routes are mathematically

manipulated.
COST COST
uke ARPA+HIGH | 95 uke [HOURLY*3 | 1500
tom HOURLY 500 fred | DAILY 5000
dick DAILY/2 2500
harry
3100 6500

Uke will, from the above, choose the toml!dicklharry!%s route rather than the
fredlharryl%s route, because it is quicker even if, as happened recently, a site 16
miles from another site in the uk had its mail routed via mcvax, seismo and a
Canadian site. That problem was corrected by changing the polling information,
which bring me on to the subject of useful changes to your Pathalias output. If

AUUGN 107 Vol 8 No 6

HOULDER EUNET

a site polls your site, then they will usually expect to have their mail waiting for
them on your machine, even if they may technically get it quicker if you route via
another site. It is therefore desirable to remove explicit routing for sites directly
connected to yourself. The use of the word COST in the above table is also
unfortunate, as it is actually speed not cost related, so it is also a good idea,
wherever possible, to route on free or at least cheaper channels. If small changes are
made to polling information, one can often make large savings. In the above example
a change from DAILY to DAILY/4 would cause routing via site “fred”, which would
save the ARPA (probably backbone) link, with its probable international charges.
While we are discussing polling you may notice “default” in the above tables: this
is based on:

Mail: tom, dick(DAILY), harry(HOURLY)

where tom would be given 4000. Do not use the form tom(), as this is a syntax
error that will cause not only tom, but also dick and harry to be treated as DEAD.

At ukc we also route on to non-uucp sites, for example JANET, PSS and some other
national backbones, but the rest of our international mail, for example US uucp
sites, ARPA and BITNET sites goes through mcvax in The Netherlands.

3.2 Mocvax Routing

I am grateful to Piet Beertema for this information. The general method of wuucp
routing is as discussed above, but inter-network routing is somewhat different.

Routing to EARN/BITNET hosts is done using the routing tables supplied by the
“central nodes” (EARN backbones) in each country. Routing to domain based
addresses is done

— internationally on the top level domain, associated with a gateway machine.

— nationally the next-to-highest subdomain, which has a uucp or EARN name
associated with it, for example cwi.nl is the domain based name for the uucp
name “‘mcvax’.

The top level domain for the Netherlands is .NL with currently some 10
subdomains, a number which is expanding rapidly. HEARN, the DUTCH EARN/BITNET
backbone, acts for EARN/BITNET as the gateway into the .NL domain; it passes all
unknown (unregistered or non-EARN) mail to “mecvax’.

As uucp links are expensive mail from EARN/BITNET to a EUnet/UUCP site is
routed via EARN to an EARN/BITNET-EUnet/UUCP gateway close(r) to the destination.
For example mail from a French EARN node to a German UUCP node will be routed
over EARN links (the same system is used to the USA with the psuvaxl gateway).

One extra small point which may be of interest: both “unido™ (Germany) and
cernvax” (Switzerland) are both EUnet backbones and EARN central nodes.

3.3 Handling Other Network Mail

E-mail addresses are in general adapted to the network they are sent over, if
necessary, ‘forwarding sites” (especially backbones) may change addresses to suit the
needs of the network. In any case, Internet RFC822 addressing forms the basis for
such changes (and for e.g. local representations). This implies that address forms
that would result in illegal RFC822 addresses cannot be handled. Most notably this
is the case for DECNET addressing, often used for local networks; such addresses
have to be changed locally before they reach the “outside world"":
“foo:bar@host.uucp” is not a valid address, converting that to the form
“bar%foo@host.uucp” may solve this problem.

Vol 8 No 6 108 AUUGN

EUNET HOULDER
4. Plea for Help

I will shortly be contacting other national EUnet backbones for some more national
information, but I would be more than grateful for any articles, paragraphs or even
comments, which might be of EUnet interest. We would like this column to cover

general aspects of networking and specific areas related to national networks, so
please send any contributions to:

uknet@ukc.uucp

i uknet@ukc.ac.uk

ﬁ{ Aufu;\;i%n 1987
) Conference ‘\
plerente

i,

»\,, N

=

Y.

Voo LR

’t\
) <= -
AUUGN 109 Vol 8 No 6

TOTMAN THE X/OPEN MID-TERM REPORT

The X/OPEN
Mid-Term Report

John Totman

Affiliation Unknown

John Totman is an electronics development engineer who
has been involved in the engineering support,
development and marketing of operating systems since
the early 1970's.

He more recently strayed into UNIX when managing the
development of commercial applications for departmental
users.

A convert to the cause of standards and applications
portability, John is currently a Marketing Manager for
X/OPEN.

It is appropriate at this time to reflect on what X/OPEN has achieved in the first
half of 1987, as we are already looking towards our 1988 goals as well as
reviewing our plans for the remainder of the year.

How X/OPEN QOperates

Like many companies, X/OPEN runs its operational business on a calendar year basis
to achieve tactical objectives, with longer term strategic goals that set direction over
the next 3 to 5 years. The strategic goals are defined by the X/OPEN Strategy
Managers, a committee formed by a representative from each X/OPEN Group member
company.

The Strategic Committee also sets and reviews the tactical objectives for the
Marketing and Technical committees who define and manage work programmes that
achieve the objectives.

It is these programmes of activity that create the “visible” aspects of X/OPEN, and
1987 is fast becoming the year of high visibility for the group both in Europe and
the U.S.A. Our calendar of external activity closely follows that of the UNIX and
standards arena, but with a few items of our own making added to further
stimulate the marketplace.

I would view the two most significant developments for X/OPEN in the past six
months as being our demonstration of application portability at Luxembourg in
February, and our commitment to the development of POSIX as a full use industry
standard.

Behind the scenes at Luxembourg

For the one hundred and twenty journalists, and the two hundred major users,
software consultants, government officials, and system suppliers who came to the
X/OPEN demonstration at Luxembourg, there is no doubt they saw the most

professional and visually powerful presentation of applications porting that has ever
been staged.

Vol 8 No 6 110 AUUGN

THE X/OPEN MID-TERM REPORT TOTMAN

However, for those of us involved on behalf of the X/OPEN member companies,
Luxembourg was much more an emotionally charged high point, seeing the results of
two years of committee and project activity emerge with systems from all members
on “stage together’. For us, this was the most practical confirmation that X/OPEN
could unite a fragmented group of companies to achieve a common industry goal.
The resulting boost that Luxembourg has given us has enabled the group to move
forward and tackle more and more ambitious projects, but more about that in the
next newsletter!

POSIX — Why it is important to X/OPEN

Since X/OPEN publically declared its support for POSIX at UNIFORUM in January,
the X/OPEN Technical Committee has been operating a major programme of work to
ensure forward compatibility and convergence of X/OPEN systems with POSIX.
Already, major progress has been made through our work with IECE on the early
phases of POSIX.

For X/OPEN, the convergence with POSIX is vitally important, since it will bring a
further one of the fundamental building blocks of our Common Applications
Environment into the international standards arena. This can only be of immense
benefit to computer systems users, since they will soon be able to reap the practical
benefits of a complete working set of international standards by specifying X/OPEN
as a single procurement requirement. In other words, X/OPEN would become a
shorthand way for users to say ‘“please supply me with a system that supports my
application with a comprehensive and integrated set of functions and facilities that
conform to internationally accepted industry standards!”

Clearly, X/OPEN still has a lot to do to arrive at this point, but by following its
programmatic policy on standards, (which is to adopt existing standards, or adapt
emerging or de facto standards or ultimately develop new standards where
appropriate), X/OPEN can expect to make rapid progress in achieving this goal.

AUUGN 111 Vol 8 No 6

BOOK REVIEW BOOK REVIEW

Book Review

Title: troff typesetting for UNIX Systems
Authors: Sandra L. Emerson, Karen Paulsell
Published by: Prentice Hall, 1987,

ISBN 0-13-930959-4

Reviewed by Jaap Akkerhuis
...mcvax!jaap
C.W.L
Kruislaan 413
Amsterdam

Goal of the book

The book is aimed to be an introduction to the use of troff to the novice and also
to be a reference manual for experienced users. It tries to correct the lack of
adequate end-user documentation for troff. Alas, any explanation about the
concepts of troff — or any other formatting programs is missing. For instance, the
term “‘partial collected lines™ is used a lot but never explained.

For the introduction to troff the authors explain all the basic requests and how to
write macros. It is a pity that they do it in a haphazard way. Often they use a
request, like .de, with the remark that the full details will be explained further on
in the book. This is sometimes rather confusing. Apparently the authors did not
bave a clear idea on how to introduce a novice to the game of troff.

What I do like is that they give a full treatment of the .nx-, and .rd-request.
Hardly any of the existing literature explains the possibilities of creating form
letters with n/troff using these requests. Also, every possible troff request is
explained, each description accompanied with an example of its use, But for the
more experienced user there is not a lot new. Even small tricks, for example, what
you can do with the .ss-request are not explained. Fancy techniques, like how to
do balanced columns, are not handled at all. The chapters about the preprocessors

and macro packages are sketchy and don't give more information than the existing
literature.

To be a reference manual, it should at least replace the original n/troff reference
manual. Some finer points haven't been covered, like the full definition of certain
requests, for instance, the append to macro command: .am xx yy. So, don't throw
the original manual from Ossana out of the window, you will still need it.

Typesetting
The most disturbing and misleading thing about the book is the title. Apart from a
remark like “"You should think as a typesetter’, there is nothing in the book about

typesetting or the noble art of typography. All the examples deal with the
standard non-interesting cases of typesetting.

The typesetting of the book is not really done exceptionally well, it is just another
book which is typeset by the authors. I'm always wondering why authors don’t
ask advice from a typographical consultant, it will do miracles for book design. Of
course, this is partly the failure of the publisher. These firms are more and more
interested in making money by cranking out printed paper and not caring at all

Vol 8 No 6 112 AUUGN

AUUGN

BOOK REVIEW BOOK REVIEW

about how the product looks. I'm afraid that ignoring the issues involved with
typography in this book will lead to even more horrible looking books then there
are already around.

Errors in the book
In general there will always be errors in books. In this case, the advanced troff

user will spot them easily, but for the novice they must sometimes be very
disturbing.

The first one pops up in the first example in the first chapter (Page 3 & 4). This
one can be waved away if you consider that novice shouldn't be hampered too
much with details, but the next example (Page 5) is unforgivable. The quoted troff
source of .PP for the ms macro package is missing some back slashes! This
demonstrates again that it is not always easy to write about a tool by using it.
There are more places in the book were these things happen. When showing the
pitfalls of the arithmetic in troff using the .11- request the complete promised test
file isn't around. Some parts of how the file might have looked and some of the
(incorrect) output is shown. Something really went wrong there.

Who should buy the book
Although I'm not very impressed by the book, it can be of some use for a lot of
people. There are a lot of UNIX systems around which don’t provide the original

documentation. For these cases, the book fills a gap. Also, people complaining
about the terseness of the original reference manual might want to read it.

113 Vol 8 No 6

BOOK REVIEW ' BOOK REVIEW

Book Review

Title: Document Formatting and Typesetting on the UNIX System
Author: Narain Gehani
Published by: Silicon -Press. 1986

ISBN 0-9615336-0-9

Hard back, 364 pp

Reviewed by Sally Rutter
sjr@inset.co.uk
The Instruction Set Ltd.
London

Preparing documents under UNIX falls into three areas: editing, formatting and
viewing. Gehani discusses formatting, using troff, in detail. He gives a good
description of the preprocessors pic, tbl and eqn, and of the mm macro package and
the reasons for its use. Troff is discussed only to the degree necessary to remedy
the deficiencies in the mm macro package: as befits a book on typesetting, nroff is
hardly covered at all.

Although the book is aimed at the novice user, the depth of coverage would be of
use to an experienced user.

As Gehani works at AT&T, this book could almost be considered to be a user-
friendly AT&T manual. Certainly, the very latest versions of the preprocessors are
described. This can be annoying to someone with an older version. The worst
chapter for this is the one on pic. The book certainly exposes the fact that the mm
macros are AT&T's internal macro package which they decided to sell.

I feel that a novice would find Mr. Gehani's chosen order difficult to follow: a
very brief history of typesetting, with a description of typographical terms such as
point size, fonts and leading, should surely be in the introduction to a book on
typesetting? However, his examples of producing letters and memoranda are useful,
though the description of producing signature lines comes after the section on
headings. The explanation of page headers and footers is after the section on
“Interactive Text Insertion: surely this order is wrong? Similarly, in the section on
eqn, the section on “Labeling Equations” is several pages before the description of
producing equation captions.

The idea of setting quizzes at the ends of chapters is a good one, but it is a pity
that no answers were provided.

There are very few errors in this book: those which are present are more as a
result of ambiguities rather than factual mistakes. However, I found several things
to disagree with. For example, Gehani expresses a preference for using in-line escape
sequences for font and point size changes (e.g. \fI, \s+1): his reasons are sound,
but this sort of in-line change reduces the readability of the source text for the
novice user.

Another failing of Gehani's book is the skimpy explanations of some features. For
example, his description of the troff .ce command does not include the use of

Vol 8 No 6 114 AUUGN

BOOK REVIEW ‘ BOOK REVIEW

,ce 100

Lots of

text

to be centered
.ce O

to turn centering on and off. The description of user-defined macros does not
mention the limitations on the choice of names if the new macros are not to conflict
with those used by the mm package, and the fact that characters other than “..”
can be used to end a macro definition is not mentioned. Further, although Gehani
suggests using extra escape characters when referencing a number register as an
argument to a macro such as the page header or footer, he does not explain why
this is necessary or why a different number of escape characters may be necessary,
depending on how often the number register is accessed before it is used. The latter
is both simple to explain and important. In short, although this book is aimed at
novice users, very little extra effort would have made it much more comprehensive.

I found the section on troff disappointing: the descriptions of commands are
sketchy. Perhaps this is because they are laid out in tabular form: Mr. Gehani has
certainly mastered the tbl preprocessor!

As the Writers’ Workbench is not available at my site, I am not able to comment
on the accuracy of the section describing it. However, if it was used to assist in
the writing of this book, it is certainly an excellent piece of software. Mr. Gehani's
style is consistent and his spelling is correct (although, of course, American).

Novice users will no doubt find the section of template documents very useful.

One final sour note: I was impressed by the index. Looking in it, I found the
entries: “‘index, generation macros” and “index, template for a book”. Eagerly, I
turned to page 305. At last, I was going to learn how to automatically produce an
index in the approved AT&T manner! Alas, I was disappointed. Although Gehani
explains how to write a macro which prints, on standard output, its arguments and
the current page number, he glosses over the most difficult parts thus: “combine
references to the same item, and further massage the file a bit to improve its
appearance and readability’”’. Massage the file? Is this the approved technical term?

I found this book extremely useful. It taught me one thing which is not in the
DWB manual, and explained the use of many others in ways which I had not
previously considered. I now use the book as a reference in preference to the AT&T
manuals, particularly because of its index. I would recommend it as an introduction
to troff and its preprocessors for someone with a working knowledge of UNIX, at a
site with the mm macros. It is certainly more readable than the manuall

AUUGN 115 Vol 8 No 6

AUUG

*
Australian UNIX systems User Group.
P.O. Box 366, Kensington NSW 2033, Australia.
auug@munnari.oz.au {uunet,mcvax,ukc,nttlab}!munnaritauug
ikUNIX is a registered trademark of AT&T in the USA and other countries.

Wednesday 9th December, 1987
John Carey,
AUUGN Editor.

Dear John,

The management committee of AUUG have asked me, some time ago in fact, to write
to you, to express our thanks for, and pleasure with the quality and timeliness of the
newsletter.

We appreciate the amount of work involved in producing a newsletter of this type, and
ensuring a consistent high quality product, and we are grateful that you have been able
to do such an excellent job.

We have a couple of minor suggestions, however, which we believe may help to
reduce the cost of the newsletter slightly, while not unduly affecting its quality. We
would appreciate it if you would consider these suggestions for future issues of the
newsletter.

First, we believe that using a slightly smaller type size might enable more information
to be placed on each page, thus reducing the page count. Similarly, putting small
items in empty spaces occasionally left at the end of an article might also help.

Secondly, we would request that you take note of AustPost’s policy of charging pos-
tage at rates that vary in incremental steps, adding just one extra page can vastly
increase the cost of mailing an issue. If issues could be planned with these weight
steps in mind, perhaps holding some material from one issue for inclusion in the next,
we may be able to optimise our use of the post office facilities. '

Again, please accept out thanks for the work you have done so far, and our hopes that
you will be able to continue to maintain such a high standard.

Yours sincerely, -

J -
Robert Elz

Honorary Secretary
AUUG

Vol 8 No 6 116 AUUGN

AUUG

Membership Categories

Once again a reminder for all ‘‘members’’ of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member .
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the
contents, or the association.

AUUGN 117 Vol 8 No 6

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right comer you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal

use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know. :

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Robert Elz

AUUG Secretary.

Vol 8 No 6 118 AUUGN

AUUG

Application for Ordinary, or Student, Membership
Australian UNIX™ systems Users’ Group.

"UNIX Is & reglstered trademark of AT&T In the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

: ® Please don’t send purchase orders — perhaps your
AUUG MemberShlp Secretary purchasing department will consider this form to be an
PO Box 366 invoice.
Kensington NSW 2033 @ Foreign applicants please send a bank draft drawn on an
Australia : Australian bank, or credit card authorisation, and remember

to select either surface or air mail.

POt do hereby apply for
[] Renewal/New Membership of the AUUG $55.00
(] Renewal/ New" Student Membership $30.00 (note certification on other side)
(] International Surface Mail $10.00
(] International Air Mail $50.00
Total remitted AU D$

(cheque, money order, credit card)
" Delete one.

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date: _ / / Signed:

[Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

..

.. Write “'Unchanged’’ if details have not

.. altered and this is a renewal.

Please charge $ tomy [| Bankcard [| Mastercard [| Visa,
Account number: __ . Expiry date: __/ - .
Name on card: Signed:

Office use only:

Chq: bank bsb - alc #
Date: |/ $ CC type V#
Who: Member#

AUUGN 119 Vol 8§ No 6

Student Member Certification (o be completed by a member of the academic staff)

L, e e e e e e s e sh e enrees certify that
... (name)
1S a full tHMe STUAENE AL ..ooviviviiiiiiiieiiiii et eeeeseereesse e e rrrereeeeeeas (institution)

and is expected to graduate approximately [[.

Title: Signature:

Vol 8 No 6 120 : ' AUUGN

AUUG

Application for Institutional Membership
Australian UNIX™ systems Users’ Group.

"UNIX Is a reglstered trademark of AT&T In the USA and other countrles.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary ® Foreign applicants please send a bank draft drawn
PO Box 366 on an Australian bank, or credit card authorisation,
Kensington NSW 2033 and remember to select either surface or air mail.
Australia
.. eereeneenennnenn. 4088 hereby apply for

] New/Renewal Institutional Membership of AUUG $250.00

[] international Surface Mail $ 20.00

(] international Air Mail . $100.00
Total remitted AU D$

) (cheque, money order, credit card)
Delete one.

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required. ‘

Date: _ / / Signed:
Title:-

[Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

.. Write '‘Unchanged’’ if details have not

.. altered and this is a renewal.

Please charge $ to my [] Bankcard [] Mastercard [] Visa.
Account number: . Expiry date: __/ .

Name on card: Signed:

Office use only: Please complete the other side.
Chq: bank bsb - alc #

Date: |/ $ CC type ___ V#

Who: Member#

AUUGN 121 ' Vol 8 No 6

Please send newsletters to the following addresses:

Name: ..o Phone:coccciiviiiiiineennnn. [y (bh)

00 1o 102 1oy SO SPPPPS PP PP PPPP (ah)
"""""""""""""""""""""""""""" Net Address:cccoceeeevveeeinevennnini e

NamMe: oo PhONE: ..o e (bh)

X Lo [=YY= P PP P PSPPI (ah)
.. NEt AQAIBSS: ooeeeooeoeeeeeooeoo

Write "‘unchanged’’ if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate

any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

] System V.3 source [J System V.3 binary
[] System V.2 source [J System V.2 binary
[] System V source [J System V binary
] System I source [] System III binary

[4.2 or 4.3 BSD source

{3 4.1 BSD source

1 V7 source

[0 Other (INAIiCate WHICH)ovvveeeeeecieriirere sttt b e e s bbb

Vol 8 No 6 122 AUUGN

AUUG

Application for Newsletter Subscription
Australian UNIX" systems Users’ Group

"UNIX Is & reglistered trademark of AT&T In the USA and other couniries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

. ® Please don’t send purchase orders — perhaps your
AUUG McmbCIShIP Secretal'y purchasing department will consider this form to be an
PO Box 366 nvoice.
. ® Foreign applicants please send a bank draft drawn on an
Kensmgton NSW 2033 Australian bank, or credit card authorisation, and remember
Australia to select either surface or air mail.

@ Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter /| renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

..

.. Write ‘‘Unchanged’’ if address has

.. not altered and this is a renewal.

For each copy requested, | enclose:

[] Subscription to AUUGN $ 55.00
(] International Surface Mail. $ 10.00
[] International Air Mail $ 50.00

Copies requested (to above address)

Total remitted AUD$

(cheque, money order, credit card)
(O Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Please charge $ tomy [| Bankcard [] Mastercard [] Visa.
Account number: . Expiry date: __/ .

Name on card: Signed:
Office use only:

Chq: bank bsb - alc #

Date: |/ $ CCtpe V¥
Who: Subscr#

AUUGN 123 ’ Vol 8 No 6

AUUG

Notification cif Change of Address
Australian UNIX systems Users’ Group.

‘UNIXIs a reglstered trademark of AT&T in the USA and other countrles.
If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia
Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

..
..
..

..

..
..
..

..

Office use only:
Date: /]

Who: Memb#

Vol 8 No 6 124 AUUGN

