TEB-80 MAR-80 o VOL II NO III
AUSTRALIAN UNIX USERS GROUP NEWSLETTER

Rkkk ******************7\'****_‘**********.ﬁ‘c****************7’:*****

This document may contain information covered by ome or
more licenses, copyrights and non-disclosure agreements.
Circulation of this document is restricted to holders of
a license. for the UNIX software system from Western
Electric. Such license holders may reproduce this
document for uses in conformity with the UNIX license.

All other circulation or reproduction is prohibited.
R T T P T

L I R
% N % b ¥ ¥ ¥

- To Print or Not To Print

Here is yet another bumper issue of AUUGN. Yes, I know its a bit late, but I
have been having my house renovated, and that comes before this.

Due to financial limitations I have had to adopt some fairly strict control
over what has gone into this issue and reserve a lot of material for inclusion
in latter issues. The editorial committee (an ad hoc group of people
including John Lions and Kevin Hill) have been asked to comment on what should
be included, but unfortunately considerations such as postal weight have
forced a number of items into the list below. This list gives a brief summary
of the stuff I have on hand, available on request, which may be included in
future AUUGNs. '

Various advertisements from the last US meeting offering UNIY
or UNIX-like software and/or documentation.

"Programming in QED: A Tutorial" plus a‘Qed manual entry
Writeup on the Georgia Tech ‘Software Tools” Subsystem

An invitation to a US general access UNIX network

Quite a large manual entry for the Tilbrook(Iﬁformation System

A list of names and affiliations of the 450 or so attendees at -
the US meeting

"Macros for Analyzing C Program Arguments" by John Lions

A transcription from a tape that Tan Johnstone sent us about
the US software tools and UNIX meetings (suitably edited).

A study of the way UNIX boots itself into operatiomn.

Most of the normal correspondence..

AUUGN ’ . 1

You may also notice a slight change in the page length of this issue. People, _
particularly in the USA, have pointed out that it is wvery difficult to copy o
Australian ‘A4’ pages on to smaller pages used as standard in other countries.

All contributors please note the need for more white spaces

US User Meeting Summary

Included in this issue is a rather detailed review of the last US meeting.

Overseas Arrangements

This issue contains material from the last UKUUGN which I received recently as
part of the exchange agreement with the UK users group. I have written,
formally requesting similar agreements to the two US users groups plus the
smaller (no newsletter etc.) Canadian groupe. I hope to have exchange
arrangements agreed upon by late May and obtain material for the next
newsletter. :

Still More About Vaxes

A VAX11/780 will be delivered to the School of Electrical Engineering at the
University of New South Wales late in June 1980. It will be used for teaching
in the Department of Computer Science, to relieve the wmassive overloading
experienced by the Department over the last year or more.

For those of you interested in the Berkeley VAX software, this newsletter has
four papers on design, implementation, experience and evaluation of this
software. Should these papers stir you to purchase WMUNIX, I have also
enclosed a license agreement. '

International Meeting

The International UNIX meeting has been planned for 18th / 19th of October.
Robert Elz has written detailing progress and imploring users, both local and
overseas to reply to the announcement even if they are not comming or do not
know for certain. His letter appears latter in this issue. Considering that
eight of the fifteen replies so far received have been from the UK and the
USA, local group members are showing disproportionate apathy.

2 AUUGN

7%

Dial-in Facilities

There are a few dial-in lines availdble to our readers at the Uni of New South
Wales, and Sydney Uni. The Australian Graduate School of Management, where
the local software data-base +s maintained allows visitors to login on
(02)662~1666 for read-only access to software. Mail ‘kev’ on that machine if
you cant find something.

The Elec Eng machine allows access on (02)662-1733. Mail to the AUUGN editor
may be sent to “auugn’ and some other moteable persons have accounts on this
machine including John Lions (“johnl”).

The Basser Dept of Computer Science at Sydney Uni, on (02)660-5772, is the
entry to a small subsection of the local network. Mailing on this machine it
is possible to contact:
- pilers Piers Dick-Lauder
chris Chris Maltby
chrisr Chris Rowles (large mini UNIX person)

The login name for all the above numbers is “visitor’.

The Software Catalogue

To date I have received a grand total of four (4) replies, pledging between
six and seven hundred dollars towards the project. At the last meeting I
counted at least a dozen people who said their site would be prepared to
contribute a substantial amount of money.

-1 am amazed by the apathy of you readers oﬁt there. A site in ISRAEL who had

not even subscribed until this issue took the trouble to obtain a software
catalogue form and offer to make a donation. Yet all you locals could only
manage three replies!!!!!

- I know that students work for peanuts, but at least chip in to by the paper

bag to put the food in!!!

Site Surveys

Well considering there are only four sites in our whole readership I wonder
how the rest of you do any computing. Only four replies, not the same four as
above, from a total readership of sixty-five. Honestly, I feel that if I
enclosed a postage payed envelope to return forms in, you still would not fill
them in and post them.

I have included a site survey form from the UK group in the hope that a second
(non-manufacturer-biased) attempt may get a better response. Unless some more
enthusiasm is shown I shall not even bother to send forms out (be they anti
Perkin-Elmer or not - thanks for your reply Juris).

AUUGN ' ' 3

6-handed Bridge?

Peter Ivanov

Q
(3]
§
[oi¥}
-
Q
R2ER S
(]
- o
U o
FE ! ™
J O
(e o i
[=i s3] o~ o«
o r~
(S| =})
«] M I
U4 O ot o~
o a0] o
H ¢ s el
LR T S e
S oA n —~
W g wm N
OO U [en]
AR MM ~
L7
(;.-lw
ARRR
oy
A

v . 7
\Mh,. Gt » 4 1L
L LG
i@ 7
) >

=S :
MRS

AUUGN

[
SOSUE P ~% -

TELEPHONE
345 1844

TELEGRAMS
UNIMELB PARKVILLE

ﬁnihmitgf of Melbourne

DEPARTMENT OF COMPUTER SCIENCE

Parkuille, Victoria 30352

12th April, 1980

Peter Ivanhov,

Dept. of Computer Science,
Electrical Engineering,
University of New South Wales,
Kensington.

Dear Peter,

"As I mentioned on the 'phone the other day, the
International Unix User's Group meeting planned for Mel-
bourne later this year will be held on the weekend of the
18th / 19th of October. These dates were the most preferred
of those that were proposed, in fact there has been no
request for any of the other dates at all. '

Times, venue, and program will be announced
later, when I have a better idea of the number of attendees.
As yet there have been very few replies to the request for
people to let me'know whether they intend coming or not. I
would appreciate it if you could request the readers of
AUUGN, (both local and overseas) who have not yet so indi-
cated, to do so as soon as possible. Please emphasise that I
would prefer a note indicating that the sender is not com-
ing, or is uncertain to no reply at all, as I will then be
able to form a more accurate estimate of the size of the
meeting,

In order that you may be able to induce some
replies, I am enclosing a list of those who have replied,
others may be shamed into doing likewise.

The availability of accomodation at reasonable
prices for interstate and overseas guests is currently being
investigated. The prospects in this area have brightened
slightly since our earlier conversation, 1 will send more
details when available. Anyone who would be interested in

AUUGY >

such accomodation (either just for the UUG meeting, or
stretching backwards into the previous week for IFIP) should
NOT wait for such further information to come via the
newsletter, but should contact me as soon as possible.

» On an entirely unrelated matter, prehaps either

! , you or one (or more) of the readers of AUUGN could provide a

3 solution to the following problem, which' is probably a UNIX
bug, or if not, I would like to know where I have missed
something. ’

If an 'open' or 'close' routine of a device
driver sleeps at low priority (> PZERO), and gets inter-
rupted by a signal to the calling process, strange things
happen. If an open routine is interrupted, UNIX regards the
device as open, but returns error (EINTR) status to the pro-
cess, which must assume that the open failed. (A C program
will find it difficult to obtain the file descriptor in any
case). If a close routine is interrupted, UNIX regards the
device as closed, depriving the driver of the chance to
\ clean up correctly (the process will almost certainly ignore
i the error indication here, and will regard the file as
i closed) . In general no insurmountable problems occur, but
the combination of a single use device (like a line printer)
and a process that tries to be intelligent about its use of
that device (ie: doesn't just give up and exit when an open
fails) and which uses signals to receive messages from other
processes can cause difficulties.

If anyone has a solution to this, or can suggest
a suitable way to avoid the problem (especially allowing the
close routine to tidy up and release resources) I would be
grateful if they would let me know.

Thanks for your help in publicising the Interna-
tional Unix Users Group meeting,

e i e e D e e ot LU S

Yours

" R e F NN L Rt 40 e it el e e b

Robert Elz.

6 ' AUUGN
- - o R o L oy

Replies to the request for information as to who will be attending the
International Unix Users Group meeting in Melbourne in October have been

received from:

Piers Lauder,
I. R. Perry,
Roger Miller,
J. Reinfelds,
Geoff Cole,
Ken Yap,

A. L. Arms,
David C Hunt
G. W. Gerrity -
T. A. Dolotta
E. Foxley

R. J. Wolff

P. A. Lee
Colin Taylor
R. P. A. Collinson

I eageriy await more

AUUGN

Comp Sci, Sydney Uni
L.E.R.S.-Synthelabo, Paris, France

‘Architecture, UNSW

Comp Sci, Wollongong Uni
Computing Centre, Sydney Uni
Sydney Uni

Western Electric Co Inc
Mathematics, UNSW

Military Studies, UNSW

Bell Labs ’

Mathematics, Uni Nottingham
Inst Astronomy, Uni Hawaili
Computing Lab, Uni Newcastle upon Tyne
Westfield College, Uni London

. Uni Kent o

replies,

Robert Elz.

coming
coming
coming
coming
coming
coming
coming
coming
coming
possible
not coming
not coming
not coming
not coming
not coming

e s et e e i WJ':»;.»;?&

The notes you have received are a summary of the Software Tools and UNIX
meetings in Boulder, Jan 80. Please use them as appropriate in your
newsletters. Copies have been sent to those persons below, which means
that individual subscribers will receive multiple copies. So be it. Better
that than none at all.

Martin Tuori, Greg Hill, Jan Johnstone, David Tilbrook

Bruce Anderson

UK UNIX SIG Newsletter Editor
Electrical Engineering Science
University of Essex

COLCHESTER CO04 3SQ

England

/2 conies (including one for the Australian newsletter) tos.
Jan Jehnstone

Bell Labs

600 Mountain Ave. Ag%éf QZT ' %,
Murray Hill :

New Jersey 07974

bUSA

Newsletter Editor

Usenix Associatien

Box 8.

The Rockefeller University
1230 York Ave,.

New York, NY 4002%

USA

Neil Groundwater

Software Tools Newsletter Editor
Analytic Disciplines Inc.,

8320 0ld Courthouse Road

Vienna, VA 22480

Usa :

Newsletter Editor
Login West

PO Box 584

Menlo Park
California 94025
pSA

Mike Tilson

Canadian UNIX Sig Newsletter Editor
Human Computing Resources Corp.

40 St. Mary Street

Toronto, Ontario

M4Y AP9

8 . AUUGN

Ty

THE BOULDER SOFTWARE TOOLS AND USENIX MEETINGS IN SUMMARY

SOFTWARE TOOLS and USENIX Meetings
Boulder, Colorado
January 28 -- February 2, 1980

This report is a summary of two winter meetings held in Boulder.
It is based on notes and memories of the attendees listed below, and as such reflects our personal biases
and knowledge. Extensive detail has been deliberately avoided, in the hope of keeping these notes
down to a reasonable size.

In general, there is a rapid growth in the size of both these users groups;, there were 450 attendees at
the USENIX meeting, which is the largest attendance yet. For the Software tools group this Is apparent
in sheer numbers, as well as In the formation of SIG's to deal with issues in specific subject matter
areas and geographic regions. There is a strong cooperative attitude within this community, which will
soon result in two new software distributions, and an informal UNIX network for mail and news. We
have also noted a trend towards more formal reporting of technical information. The next USENIX
meeting will publish a proceedings, and individuals are encouraged to send in short articles for
publication in the newsletters. It is important that reviews of bug fixes, performance considerations,
and available software be produced periodically, to help fill the growing gap between experienced hacks
and new users.

We cannot guarantee that what is reported here was actually said. If you want to be SURE, or need
more information, check with the speaker in question. Our apologies to anyone who has been
misquoted. :

Our thanks to the many persons who made informative presentations at the meetings. Further thanks
to David Sherman, whose notes and macros from last June's conference made easy the production of
these notes. ’

February 5, 1980

Martin Tuori

Defence and Civil Institute of Environmental Medicine
(DCIEM)

Downsview, Canada M3M 3B9

(416) 633-4240 Ext 204

Gregory Hill

University of Toronto Computer Services, SF105
University of Toronto

Toronto, Canada MSS 1A1

(416) 978-8853

Ian Johnstone

Bell Laboratories
600 Mountain Ave ’ .

Rm 7E-306 ’
Murray Hill NJ 07974

(201) 582-5767

formerly University of New South Wales

LR RNN RN NN — —
CRE R LR\ Rap - Frdfaf~vdrdhvi et L R R N

Software Tools & USENIX Meetings in Boulder

Table of Contents
Number Topic
Software Tools Meeting
1 Opening Remarks
2 Enhanced Tools
3 Heterogeneous Networking
4 Standardized Primitives
5 Naval Ocean Systems Center
[Portable Crystallography Software
7 Maintaining TELCO Sofiware
8. S -- Stats Sysiem
9 ALDS -- Suatistics Package
10 Publication of Algorithms .
1 NEW Basic Software Tools Tape
12 Special Interest Groups
USENIX Meeting

“w

Opening Comments

Converting to UNIX

New Products from Yourdon

News from Intermetrics

UNIX at Fujitsu

News from BBN

News from DEC

Distributed Ring Network

News From Western Electric

UNIX on the Harris /6 mini

UNIX on an IBM Series/1

News from ISC

UNIX Performance Consideretions
IDRIS -- UNIX V6 lookalike
Contiguous Files in UNIX
Peformance improvement: Large Buffers
Better Signal Management for IPC
C and Pascal from Whitesmiths
UNIX on an Amdahl 470

Optimized Disc Freelist Layouts
Interactive Process Control

USENIX Announcements

Port’ing C to a Word Addessable Machine
Software Testing

ANSI BASIC for UNIX

New CULC FORTRAN IV PLUS
Running V7 on small PDP-11"s
SEED Database System

Simplified DB Access: YACC and INGRES
Geolab Interactive Environment
Berkeley Virtual Memory UNIX V32

.2-

Jan 28--Feb 1, 1980

Speaker

Debbie Scherrer
Allen Akin

Joe Sventek
Skip Egdorf
Bob Calland
Jim Stewart
Dick McLaughlin
Rick Becker

Jan Lewis
Webb Miller
Debbie Scherrer

John Donnelly
Brad Cox

Mark Pearson
Morris Krane
Yoshitaka Hiratsuka
Ben Woznick
Bill Munson
Bruce Walker
Al Arms

Bill Shannon
Paul Jalics
Heinz Lycklama
David Mosher
Mark Krieger

Milchell Gart-

Jeff Schriebman
Paul Rubin
Mirk Krieger
Gordon Kass
Walt Lazear

Jim Kulp

Lou Katz

Sam Leffler

Bob Varney
Chris Sturgess
Robert Bradbury
Bill Jolitz

Herb Edelstein
Neil Groundwater
James Herriot
Bill Joy

AUUGN

"XANHL pue
XINM “XSYH "SIWA 19pun paiuswajdiul ud3q Sey iyl 8] OS “1USISISUOD 3JB (S[{RD WLAS pur SNy
SOIASIS LUIISAS UOIYMm Ul “NIJOMISU 7 UL 1S0Y AUR UO PIRISA0 3G UBD LIIym W3IsAs Funeiado |RnuA
B S21E2ID SIY] "NJOMIdU 31 1NoyEnOIyl-3[QR{IPAR 3q PINOYS JOJIEY ULilm SaAluld pUR s[RI WNSAS
Jo 195 3j8u1s ® "[9a3(SunuweiBoad Y1 3B 1NI0MIBU Y1 INoYAn0IYl SGR(IRAR 3G PINOYS SINIIN PIRpURIS
[9A3] PUBIUILUOD Y1 1B IS|9A3| OM1 1B pasinbas s1 woddns 3asn Buleys 30IN0SII [Ny tng ‘Sidjsurli
2|y PUER ‘SSIIIE [RUNUIAL [PNLIA ‘[IRW 1SR{ 10U APN[IUI PIROYS SIYL "¥IOMIBU I SSOLIE YIOM PINOD
$13sN JRYl ABM B YONIS Ui SSUIYIBW JUDIIYIP 102ULOD O S PIIR) UI3Q SBY TET YIym Ylim twdjqosd ayf

£101RIOQRT A3[oNIag doudime]
Y21UdAS d0f

BupylomiaN snoauadolaay wee ggig ¢ Jsadg

-adeyord sy unnquistp v eipensny JINIHL
pur NN FIWIY 2wn sS4l 1y dnoid S1asn oyl 01 PINIUQGNS UIDG JABY puR ‘dd1j dIR S[001 HIYi Ju
SLUOS “JIIAINOL "(WOE S$I| S[O0YIS) 13RIyl JmaL © QOIS “IRIL 18I YL J0) QQOCS 10§ SIOST TN IHd
0} 3|qe|ieAR SI a3eyded JIBY] °S|OOI {NJIST PUR MIU AUBLL PIIRIID DARY puv dandw £10A UDIQ dary
A3y "s31npadold [BUIIIUL UI UOISIND3L SUIPN|OUL SUOISUIXD MOU|[R O “JOJIBY USHLIM3I JARY 1 Ylim Pue
*(gapdwo)-apidwo) 1pylouy [11S) JDVLISUdUM darYy A3y ‘suonedjdde yicmiau Joj ‘sindino puw
sindut 3idnniu suoddns ydym [[dys B Fuipnidul ‘S[001 3yl jo AUrLU PILIPOW dARY-A3Y] SIaYdirdsal 01
S31IBIA1I3S WOJJ *(§ | INOQE JO ANUNIULUOD J3SN E SRy pue ‘siedd ¢ noge 10j dn uasq sey uoneindyuo)
SIyl S'O Al sowud ayr Suwuunl ‘siaindwod JWIHd ¢ JO OmIdu Bul J19yl PaquIsIp uljjy

. ABojouyaa] jo minsu| vidioany
unjy uagy

$j00] padusyuy WU g6 7 3RS

. ‘dnoin) s13sn
S[00] 2JEMIJOS 3yl JO FuladW PUOIIS YL ST SIY] "PlOS UIIQ IABY s3dei)O3 INOGE IRy 05 'GZ$ JO Wns
Laounid ay1 Joj “Y00q SYI Ul PAQLISIP S[00) DY JOJ I3IN0S Y} JuruiBIU0d JdR) B J|QR{IRAR IPRIU AI[Som
pue uosIppy swn swes 3y 1w dnos8 syt payinds sa8neid pue uryBiuidy Aq * S]00] JJEMiJOS, Noogq
Ay -uawido[aAap sjo0] asemijos Ayl Jo AJoisiy Jouq A1aa e 3uiaid £q Sunaaw sii pasnpodiut 3iqqag

f{o1rioqQe] £3[ax4ag aruaime]
: 13119428 21qQa(]

syssway JuiuadQ ‘wE (96 | 1ysAdg

£101910QRT AS[aXiag DUIMET ‘I21IAYIS 19qa Itey)
ONINYOW AVAsINL
NILITW dNOUY SHIASN STOO0L JUVMLIOS

0861 "1 43:f--4C urf 1apinog ul SUNda XINISN % SI001 d1emijog

81595104 sapiey)
sseg uyof

Siq sowep

oeg aof
URLWMAN AleD
SMIYIRJA 113q0Y
SHO%SIN uyor
SILO 'V 11990y
uipjuRlg uRQg
12119425 319Q2J
PIOJION 'V plEUOY
Ul woj
Aori] xoy

sseg uyof
oy suag
yosy poN
Ar1n) qog

souwef piaeqg
siuwn qog
jooJqiiL plaeqg

0861 *1 93--8¢ uef

00089 34t uo 5

0008Z P U0 LA NV Bulnpayds osiq

FIOMION XIN([PUONEUIIIU] [BUIIOJU] UB UIO[O) UONRIIAU]
SwsASIfL XINQN ul S?OH Youig

J3UURdg JUNSIY AUl-PUBLLLIO) V :SOYVYNVDIS

{00] 1N0AE] [ST oML

a8myord Sumojd 1uapuadapul-9d1Ad(] v 1 1JALS
yonw mouy 1,uop nok uays XINN dn Suling

uypuey 5 LL

Bunasy ${00 1 sJemijog Aepsan], jo Asew:dng
sJowweldold puilg Joj [euiuiaf Sunjeadg
Agojooeweyd ul soydern aadeIdIu]

Buissa0044 oFeLu] 3ANORISIU]

dnoin) SIas[} 1580)) 159

LA XINN Jo smeig

A3oj01g 10} Suissasolg sfew] gg¢

Buisssd014 dewiy

39day) 3uijjeds pasueyuy uy
XIN(10j Wsiueyas |y O/ pa, A3y
wWNSAG Wwawalsuey g 99W0 1BISPON V

I1apinog uj s3uneay XINISN % SI00] diemijos

AUUGN

10

—.

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

A complete set of primitives might include:
File I/0: open, close, create, getline, putline, getchar, putchar,
prompt, remove, amove, rawmode.
Directory control: chdir, print—working—dir, opendir, closedir,
get—dir—parms, mkdir, rmdir, mvdir.
Processes: spawn, kill, suspend, resume, pstat, pwait.

Speaker 4 10:00 2.m. Standardized Primitives
Skip Egdorf

Consultant to

U.S. Geological Survey

National Earthquake Information Service

Skip has been using Ratfor 1o produce applications packages for the study and monitoring of
earthquakes. Since the projects have moved to a new machine about once every two years, a strong
portable base was needed. Ratfor was chosen for just that reasom; but it needs stronged-
portablility/standardization in its system primitives. He suggested the following set:

1/0: getchar, putchar, getline, putline, readf, writef,
readb(binary), writeb, reads(string), writes.
File System: open, close, create, remove, seek, mark,
mkdir, rmdir.
Processes: gelarg, spawn, suspend.
String Manipulation: pack, unpack. .

Skip asked for comment and discussion within the users group, so that a single set of extended
primitives might be developed.

-~ BREAK -

Speaker 5 10:45 a.m. Naval Ocean Systems Center

Bob Calland
Naval Ocean Systems Center

Bob described their primary use of the tools, the development of large single stand-alone programs for

on-board mini’s. To do this, they have developed the necessary cross-compiler, assembler, loader, etc.
Their targets include a military micro, the AN/UYK-20, and the CMS2.

Speaker 6 11:15 a.m. Portabie Crystallography Software

Jim Stewart
University of Maryland . .

This was one of the more entertaining talks. Jim is a chemist, whose interest in software is
summarized by 'Kernighan’s 3rd Principle’: "Let someone else do the hard part.” He and Robert Munn

.5-

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1. 1980

have developed applications in crystallography. based on an improved Ratfor with a macro preprocessor
-- RATMAC. Jim outlined his own evolution from hand calculation, through unit record equipment,
Fortran 2, Fortran 4, to Ratfor. He sces Fortran 77 as another opportunity to rewrite all isting
software -- an opportunity which he would like to decline.

Their efforts have enabled them 1o port their software to a large number of different systems; il is
available for $100 from:
- Computer Science Center
University of Maryland
College Park, Maryland 20742
attn: Dr. R: Munn .
or send a letier to receive a copy of the RATMAC primer.

Speaker 7 11:45 a.m. Maintaining TELCO Software
Dick McLaughlin
Bell Labs

Dick described EPLANS (Engineering, Planning and Analysis Software) - a collection of programs
which are used to handle the implementation and support of telephone switching networks. This
represents some 30 programs, or 50.000 lines of Fortran code, which is being converted to Ratfor. This
software is in use by Western Electric, Bell Canada, and independent Telephone Companies. Their
experience has shown thal an applications programmer faced with understanding and supporting a 9000
line Fortran program could spend 18 months, and not be able to modify the program without assistance
from the authors; on the other hand, the same programmer could be up to speed within a month,
working on the same program in Ratfor. Their target systems include MVS/TSO, VM/CMS, DEC
System10, GCOS, UNIVAC, XEROX, and UNIX-VAX. In the future, they are looking toward EFL
(Extended Fortran Language), which will allow exlended data and control structures, a full compiler
(not just the preprocessor), and in general a superset of Ratfor.

=== LUNCH ----

Speaker 8 1:30 p.m. 7 -- Stats System
Rick Becker
Bell Labs

Rick described the 'S statistical analysis system, which he says is easy to use. powerful, extensible, and
portable. He emphasized that it allows a statistician 10 ‘come in contact’ with his data, through an
interpretive expression lunguage, like APL, but using functions rather than operato
e.g. : z <-- regress(x,y)

S was developed using Ratfor, M4, YACC, STRUCT, and an interface language. (STRUCT lakes
Fortran and tries to turn it into Ratfor).

Rick went on to indicate the prablems involved. in moving S 10 another system: the supporting tools
would need to be port'ed, there would be OS dependencies to consider, there might be conflicts with
other tools, and programmers would be required to adapt. S as currently implemented requires that all
its database be in main memory -- this is a problem on the 11/70, but not on the VAX. Some
consideration is being given to allowing analyses to operale sequentially, where appropriate. [t works

-6 -

AUUGN

[

-8~

Jo [eod sy ‘swaiqoid pue sa1dojodol U ojul J0j BupiSE ‘SISQWISW O1 PANQUISIP 3G (M SsieUoNSanD v
IS SuINI0MION

TLYVJ U1 1S3 Y1 T[LYVd Ul 153G 3y “adei 3yl us papnduL aq {itw $]003 1N IV

IAY u.::.::_EA\ Ny

:5m0j0j S *sdNoJS 3SIY] WOIj PIUINOS 21aM §150d3s Jaiig "SHRIDP [PUONEZIURRIO pUR suR|d SSNISID

01 sEasE 3eIedas 01Ul JO 1jds 01 PALIAUL 2Jom PAISIIANUL SU0SIAd 1PALLIOY UdAq 2aRY SIS [BtUIOJUL Inoq

sdnois) jsasuj [spadg suted gg:g 71 Jayadg

*§31po0d 13110 pur *aNewW ‘§DS “saydelny 10 Bujoof
2Q [1.9M “11YVd 01 ZL¥vd woy dn vo>oE pue *ade) 3yi 01 pappe 3q [jim S[00Y pood *aiminy ayr uf

'SISI] JOQUIBIN '€ LYVd

‘Op 40 Of 3q4ewW *3qissod ST suonRULIqLIOD WIISAS Funesdd(+ 19indluo furwi se

10} 13oddns apraoid 01 papnpoul 3q jlis saannuud’ jo saueIGE] [BOLIA J3alyDIR adr) *sionpa uddlds "pRw
*19123d391Ut PUBLLIWOD []3Ys B °{ 14Rd Ul S{O01 JO SUOISIIA areuiatie Fuipn|dul 'S|0o1 [BUCHIPPR (ZLYYd
‘SI3|puRY 1X31 ‘SIONPS *$10S$3001dad 0IdvN Due Jojiey

Buipnjdus *sjoos |njasn Sjjeaauad *aiqerisod Jaylo pue “ader £3|SIm-UOSIPPY 31 JO SIUANUOI Y ([LYVd

(3WOI[3am 2I¥ SIS JIIIUN[OA J3Y10)
-sa8uByd OU/M3) Yl VJOr} Pue “igT ‘LID 1B JqrUUnI Aq -
a8eyoed Jojiey mu_mu\s.coﬂngx 3yl J3pun 3jGeuunt 3q -
saAnIuwIId [B2O] PAIUIWIRIOP
-{jam 3sn 1O *saAnIwid Jiseq 3yl Buisn uditim 3q pinoys -
paiuawnop Ajsienbape -
dnosd 93u213ju033]21 31 Jo/pue dnosd §19sn Y1 01 dqeIdadde -
:Buimo](oj ayl
Lysnes isaww 31 papojoul B 01 31eM1JOs JO 239id ¥ 10 SYIUOW g IX3U Y Ui AWIRUOS "V Jo'N Yl Aq
painquisip 2q 01 *adey 1Rd 22141 B 3G PINOYS 1{NS31 Y] "SIAYI0 pue ‘BUOZLY JO Alis1aatuf ‘A3ojouydag
jo asujp mdioan ‘g woy uonedinsed Buons usaq Sey 2I3YL °S[001 JO UOUID||OD PIRPURIS
MIU B yYsI|QEISd 01 Buikil “dnoJ8 23UIBJUO[S] B UI PIA[OAUL UIDG dARY AAY) 1RY) PAIRIIPUL 21QG3(]

Asoysoqe] £3(axag Iaudime]
J3113Y3g 31qq3Q
adu] s[oo] rxmijog JNseg MIN wird gg:g [19xBadg

e NVING

$91L-TL6 (TIE)
6£+09 sioulf|] *auuodiy
sQe [euoneN suuodly
122 '3pig
UOISIAL(] SonRWAYIRIY Parddy
[19m0) dudrpy -
121 C snadsold

0861 "1 994--8C urf 1ap[nog uj SBUBA XINTSN ¥ SI00L diemyjos

-L-

MOVATOOL. ® 304 “(lje JO Au®) [/ uenioq ‘fuelldS ‘T4 “Jopey 0wl D Wolj 1I3AUOD 0} JIInINLS
B SP32U [[I1S 1nG ‘JONP3 1uABI[IUI-UBII0S B SAPA[dUL 1] "9IBMIJOS [BINBWIYIBW JO UOHEBIYUIA puB
‘sishjrue *Bunsa) “1uawdolaAsp Y1 10j JuswLoNiAUR 3df10103d B YOV JTOO.L 9QHISAP 01 U0 1udm 3H

'SV TdOL PUB ‘3IEmijoS [EIIRWAYIRY UO SUONDBSURI] ‘WDV dY3 JO SUONEIIUNLLWOY pNjoul
S[BUINOf 3|EIING "UOIIEIPAIIIE UMO J13Y) JOJ PUR ‘AJ[UNLWILUOD BY) JO IES dYI J0] (10q ‘SWILOF|e J1auy)
ysugad GINOHS SI°SN SI00] 21Em1jOS 1BY) PUB ‘3IBM1jOS diawnu-uou 0y ajqeatjdde ae saydosojiyd
wuaudojaaap weidoid awes asay) 1eyr paisaddns uayl qgam “(QIT SIBIS PUR iy [BUOHRUIIIUY)
S pu® ‘{dnoid swyios[e [pouawNy) DVN ‘(31BM1JOS 10133AUIBI8) NIV ISIHR Juipnpouy ‘soBeyoed
24BM1JOS [Njasn JO JudWdO[9AIP PUR UONEBZIPIRPUTIS 31 01 P3| SBY PloY SurwfeaZoad ay) ul ylom Jagteq

*92.N0S JO Saul| 000} JO SSAIXD Ul AjUOWWOd
MmOU I8 A3U) tey) 0s ‘paseasaul sey peysyqnd swiiuode Jo Yi3ua| YL - 'SuU0 O} Udl/AAY JO JAPI0 BY)
UG SUIBWIA) INQ ‘PILIBA SRy SWYILOF[E [RLIOIBUIGUIOD O [EJUJAWRY JO onel By ‘iud[eaaid alow yoaw
MOU S1 uBJLIO *Sulysiqnd wiiLod(e o) AOIYSA PILIRJAID BY) 9q O} Pasn [TV 2UBYM "SPUBII [BIIADS
paieaipul pue *(0861-0961) Suniodal pue 1uawdo[eAap wyiHOZ[e JO AI0ISIY Y1 JO WIS PaMIIAAL QQIM

vleqleg BlUBG ‘BIUIOJIED JO AUSIBAiuN
loupg swyiiosiy WOV
1ol a9om

swijijaody jo uonywdf|qng ui-d gz7:7 0f 1Y Badg

‘uonajduod
10§ u3asoyd> usaq sey jep 1288l dYyidads ysnoy(e ‘urewop alqnd ayy uf aq e K[[IIM AIeMIJOS SIY]

‘saajasway) sadeyded uopeotjdde aremijos
ay; 01 28ueyd Jofew InOYIA ‘paduByd 9q UBD F0BJIAIUL JASN JO S[AIS AYI 18Y) OS ‘PadojaadP 2q J[im §[00)
208jI2Ul J3S[] SIIBJISIUI IOSTL UDALIP-NUAL SNSISA PUBLLIWIOD JO SIISUI DANE[AI Y1 1BNIRAD O N0
PaLiLed 3q {{1m HI0Mm ‘pUD SIY) OF "9SEQEIBp PUR ‘soIydesd ‘SONSHEIS SIUQUOdILOD UlRW 33IYL YiM “4au
umo sit Ul WwasAs Junesado, ue WIoj M STV 1BYY PIpuaul st "9y gas o ‘Areurq aAnduosap
-}|95 ® Paj[ed ITWI0) 3|y PIEPURIS B BUISN ‘YoJeas31 ISEQEIE(9PN[OUl O} PIPUIIXI B [|IM WANSAS Y]

*payIpous pue poapuaIxd
2q ued yorym Suiyiawos dojaaap o) 13;31d pinom AIy | ‘I31e| PAPILdSIP 9 AvW YoSIYm wINsAs [euosierado
ue dojeAap 01 103dxa A9yl os ‘uoos Fujuunl pue dn 198 03 pasu A3y, -aajsuui-sdydesd pue
*aAf1aeIUI *(SISAfeur Jo saseyd Jold Jo s1jnsal dY) uo spuadap dols UAAIS B B UONIR) ANRIDY ‘PP
‘Biep aq wWASAS STV Yl 1Byl I8 sjudwalnbal [e1ousd 3ys ‘sAe(dsip nojod HILWVY Yim ‘XVA
B UO INO PaIiED 3q [|IM XJom Y 's13s miep 3dse| jo Buypuey Sy uo seapr Bunuswaldwl puk Funsa
0] JUSWUOIAUS qe| JoIndwiod B 9ABY A9y ‘3([dneg 18 uo Jujod SUOYD YdIBasAs dYl paquIsIp uef

(SQBT 1SAMYLION dY1dvd) 3j1aneq
SImMa] urp
aseyarg SSPBIS - SATV urd ¢0:7 6 134BadS

‘9L AUIOS JB § ASE3[II 0 UCRUIUI 1B “I3AIMOY
‘st 3] woISES (198 2Y) SPISING JQEBJIBAR 194 10U §1 oIm ‘afeard Soydei ZYD Y1 uO poseq s §

‘519§ BIUP LUNIPSW O) [[RIUS UG DN SIYI 1T {1d%

0861 ‘1 q24--8C uef Jopinog ui SBUNPRN XINASI ¥ SI00L drmijog

AUUGN

12

i
i

¥

mc:tma Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

the SIG is a common command language, consistent across heterogeneous networks.

Primirives SIG
This SIG will attempt to layer the present superset of primitives which have been suggested. It is
acknowledged that selecting a clean, yet complete set is as yet a black art, about which we need to learn

much more.

RATFOR SIG

A committee was formed to select a chairperson, and evaluate the 3 Ratfor Preprocessors which have
been offered. Ore will be selected for PART1 of the new tools tape: the others will presumably be
included in PART2.

SOFTWARE TOOLS USERS GROUP NEWSLETTER
Neil Groundwater volunteered to handle the newsletter for the time being.
Neil Groundwater -
Analytic Disciplines Inc.
8320 Old Courthouse Road
Vienna, VA 22180
(703) 893-6140)

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1. 1980

’ USENIX MEETING .
WEDNESDAY JANUARY 30 MORNING SESSION
Chairperson -- Mike O'Dell

Speaker 1 Opening Comments

John Donnelly
NCAR

John introduced a new device, */dev/snow’, and welcomed us to the Boulder USENIX meeting. The
conference was held in a theatre near the Harvest Hilton. This was necessary since 450 attended.
There was a question as to whether it was merely coincidence that 'Black Hole' was showing at the
time. . -

Speaker 2 ; Converting to UNIX

Brad Cox
Hendrix Elecironics

Hendrix produces text-handling equipment: the Chicago Tribune is one of their large customers -- their
shop contains 6 PDP-10's, 30 PDP-11/34's, and hundreds of Tl 9900's based intelligent terminals.
Brad outlined some of the problems and internal conflicts which arose in converting their central
software development facility from RSTS to UNIX, assembler to C and Pascal. This conflict sounded
typical of so many other conversions. In answer to a question concerning the possibility of general
guidelines for such a conversion, Brad suggested that system support people work to sel clear and
powerful exapmles of UNIX's power and productivity.

Speaker 3 : Zns.. wqou_.n_a from Yourdon
Mark Pearson
Yourdon Inc.

Mark mentioned four product areas from Yourdon:

Yourdon has a C compiler for RSX-11M, VAX native mode, and IBM systems. The price is $2500 1st
cpu. $500 next -- for source: future versions may be released for the DEC 10, and the Western Digital
Pascal machine.

OMNIX is a ZBO-based sysicm which supports v,:.nm, 1/0 redirection, a shell, but no C compiler yet. It
is NOT a UNIX, but is similar. It is multi-user. and supports a UNIX filesystem. It can run CP/M
binaries, as it supports the CP/M system calls. It handles a range of peripherals, and sells for $350.

4330: now offers a supported binary UNIX/V6 licence. single user on an 11723 with RLOIs, for
52500. They have one of the new WE licenses which relates the royaltics they pay to the size of the
ystems they licence.

-10-

13

-7 -

Aue puw ‘isi] 2poul ay1 Jo s91dod {830} Bullols AQ ‘SAUIYIBW TUSISYIP UO PIIEDIdaL 3q [[im SWIISASAfI]
“W9IsAs XINM AuUB WOLJ PIM3IA LUIUM JWRU [|n] SWBS Y} SBY d[y © sny], " dweuyied/sweuwsisisa)y,
Buidssy 3q m Aoy ‘Ssweuyiedisweuwaisisg, Jo ‘ swsuyind/sweuwuaisds/, xeuds syl uo Syl
aseq uey) Jayiey "9oeds aweu [8q0(8 w 1uSWadull O) PUAU LAYl WSISASIY PIM NIOMISU 3Y] 3GRUB O

1ioddns aseqeiep pAInguIsIp-

safjiuej ssad0id panguISIp-

UOIBIIUNLILIOD §S300Jd-121Ul 5I0m]du-

2JBM}JOS AISAQDAI-

wIAsAsa|y . apim YI0miau-
338 199foid 9y jo sjpod =Eu>c YL "U0nBUU0Y dl YJYV UR 0} SSII0EB SBY HI0MIBU IY) pue *dsip 1od
-[eNp B 3JBYS SW.154S IY) JO OM] 1589] 1Y "U0IB0T pur ‘L]JAl ‘SUIAI] 18 PIST IBY) 01 IB{IWIS SI 9/BMPIRY
Suy oyl (99S/qNE) NIOmIdU Bul (XVA PUB pE/[1 ‘SH/11) WRISAS 9 B U0 Bupfiom Mou 218 puw
*XINN J0j wasBosd JON LANVIYY v aary 49yl 'V JUV Aq papunj ‘yd1easal jdoa1au 3uiop st v7IIN

VIon
1NRA\ 200G

RloaaN Bapy PHOGINSIQ ‘ g 107sadg

. 'SDIS XINN 9ABY 4psa3(e %N SNOIA PU® VAVNYD SNOAA "1oyd
s1y1 SunRUIPIOOI SI JjoLIeg NJBW D[S XINS © I0J uoissiuiad jusis ol ureuad Jsowe S| '§'n SNOAA

* Buizewe s; 9anonpoid pawiwep os
am jey) ajdoad Suiynem, pue " XINM Japun mw:_E Op 0) S! 11 £S89 MOY PURISIOPUR 1,UCP [AHUNWILOD
XINN 2y apisinoj 9]doag, ‘uied suo 18 pres 9 Hoddns JLINdEJNUBW JO YOB] SI SUONIOBRINE UMBW
$11 Jo 2u0 20uls ‘premloj nd sem DI Aq parioddns ji Keindod sit 900] pinom XN 8yl uonisodosd
YL D ut uanum siq 138 Al AeWw SIWA 'SAIniEl] gmd dwos ui Fuind S8 9 SB 'SWA 10)
sedwod) e uo Bupiom st OFA W-TIXSY UBY XN uo 2Jsouw Bulpuads st Jeak sy 0IQ "11dAd
si1 1o sSO yBnoud svy ApeasE DH SIUIS XVA SYl 10] XINA Ul SI 1ss1siul uiewW oyj syonposd
UBMpPIBY 3InINJ Yim SUOIIORIAIUY PUB ‘XN APNIS O} 3|qe 3J8 £3y1 0§ ‘s90ud| XN/ (839408 SEY DA

*151X209 UB> sadAl IBMIJOS XIN[] PUB 2dUBUAIUTBW 3IBMPIBY 18Y) OS XIN{] INOQER Ojul
yus papiaoid Butaq st JIQ 18 Woddns pjaL] 'sqe Liog A198qoid -- S3US XINM 18 PAISII PIaY g {lIM
K3y ‘pasnpoliul 948 S1oNPOId MIU SB JBY) 3IUAPNE Y1 PIINsse 9 "SuIyoRw Jey) azynn A|nj o1 aige
99 01 pIoU A3y} Ojul XempIBY 3y} 199 O} 2|qE 99 [{IM SIISN JBY) PUB ‘XY A Y1 01 [241 woyj A[yioows
sIAW X[NM 18Y) 205U 01 SWUBA SH 'S,L/90MY S.10TH ‘bp/11dAd '09/11-dAd 4s SE yons
*$311S YIN[1 1B [[94 3I0M 10U OP YIyM S1anpoid PIoAT ued DI (] 18yl Sadoy B °SISWOISN3 OF pue DI\
ulliie UOHIBWIOHUT UO ssBd UEBD 3Y 8t} OS *XIN[) PUBISISpUN O Sul1l SB ‘Wed Ul ‘UONIUN] SIY SIQLIISP
SH ‘(194 XINM SINQUISIP 1,us30p DFQ) XINN 10} ieSeuew jonposd-opnasd B S8 A|{BwiIojul Jlaswiy
paquasop 9 ‘DI 18 dnoin seninn) pue suoydayd) ayl Joj loSeuep SuussuiBuy Jolwadg s [iIG

+di03y wswdinby eusiq
Uosuniy litg

23d Woyj suaN ’ L sanuadg

S, [1-IST 30} D 01 .SNVI. O
Swig-a2 Y1 BulILAUOD U0 PUB ‘00089 BIOJOIOW Y1 Joj Jopidwos) B uo pauels Buned ate Aoyl

*SWAsAs XN U0 $321a18s uoddns pue uone|BISUl

0861 °1 994--8Z uef Jopinog ut s3UN3dW XINTSN @ SI00) 358M1jOS

-1

FULISLO MOU 218 pUB ‘SNIOmIBU NI|-VYJV JOJ IOBBUBLL SIDIAISS JIOMIOU PUB I2jUsd [0JIU0D YIOmIaU
paseq-)INM ® 9ABY A3U] ‘}JOM]oU SnosuaBoisiay ISEIPROIG B UIYIIM D1RIOAO |IM YOIYM wWDISAS
XINN paingunsip e BuidojaAsp PUB ‘dIEM)JOS JO 3dUBUIIUIBLY JJOWSI SY) U SANSSY 18 Buijoo] st Ngg

P02 JON IANVJIYY dn Suiduuq Ajjuains sie
ASYL "XINM N B 124 10U 1nq ‘swieidold D) SURT MOU 1 S3ANDSMQO UFISIP UIYHIM S| dUN[1SB| POqLISIP
LUIYORW D), YL 'SWIISAS J1I9y) 1sSuowr Ai1oB] oJessow B 9ABY OS[B A9yl JOJPD UIIIS MIU
8 podojaAap aaBY A3Y) OS ‘W2jQOId JGIBLU ¥ 9G UEBD JOJIPS 1X3} 9} ‘JUSLILOIAUD PAXIW B JO puy iyl uj
*swvlsAs Zufiesodo Jo Jaquinu 8 Juiuuns SSUIYORLW JO JAQUUNU B)M “JUDLIUOIIAUD YDiBasal B sund Ngg

OUJ ‘UBWIMAN pue yauriag “ljog
Ya1luzop uag

NEH Wwolj sMaN 9 sayuadg

“(1uIw) 00S14d i pue
(2818 salas W Ayl BuIpn[auy ‘saulyoel MU 0} XIN Hod 01 a1e X[N[Suisn 10 suvjd a:ninj mPYL

‘SWI0IB [BI (07 01 dn pue ‘§][dd 93] g0 L swsoddns 1f ‘§9.ZE-+ 2B
s1989}u pue ‘Loddns jutod Sunesoy ou sBY If "XINN 41941 U0 Bujuuns uonEILLAdl JGIT ¥ 2ALY Aoy

*SIGPUILAD Prg 10j SotBULAR
JO uonmnsqns 93] aBmpiey swoyed I 'TE094d GNOF oW ‘walsAs osip S|qeijes B padojaasp
sy asufnd GAd/XINA Buuunl Gp/11 39yl 0) PIYIBNE SYSIP SONY YiM SurRjqoid Jo I[asal B sy

$01101810q87] NS
©ANSIEIH BYRIYSOX

ns)ifng 38 XINN . § 1xuads

‘p# adey uonnquusip asemyyos unosdn syl
Ul papn[ou; 9q [1iM) L{BYS Y1 ut £]21nua suop ‘e3exoed Bununosdse KINM pasocidwy ue aaey os[e 3y,

*J9[idwoD) |BISR WEPIAISWY Y] JOJ JNNQISIP SN 2]0S 2yl S8 Junow s soinawIau]

‘uonnguIsIp ade) XU Y3 Ul PSPRIdUL 8q fim Swidqold ay} Buiqridsap Juswndop

V 0Ly (YepwyY um O F{Y Yim Swo[qoid passiunodud Ay ASUL 'FrY + (SdBw ‘5308 ‘po) gmd
Suisn Aq peosjdal udsq A[ARI3PR Sey OSL XINN/GMd 350 A3y} ‘9snoy SIBMYOS B 5} SIINIAWIARUL

SoLIPWLIA U]
sumry SHOW

SO[LIOWIUY 1I0S) SAIN : p 3)sadg

= NVIUE
"0001§ ‘S.XINN 10§ wajs4s Butjoods pananb & daey os[Aoy L

0861 ‘1 Go4--8T ue(f Japjnog ul sSunsd XINISN ¥ 5|00] 2iemijos

AUUGN

14

i

Soltware Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

files in use. Updates will then be propagated around the net. Files will be brought into a system on a
demand paging basis; some of the machines on the net may have no disc of their own, so pages will be
brought in at ring speed, much like a disc driver would, using the system’s buffer cache. Other issues
to be considered are atomicity of file actions, synchronization, exclusive access, and recovery
procedures. .

-~ LUNCH ----

WEDNESDAY JANUARY 30 AFTERNOON SESSION
Chairperson -- Don Ladermann

Speaker 9 News From Western Electric

Al Arms
Western Electric Co.

Al began by expressing surprise at the rate of growth of Users Group, and indicating that his purpose at
these meetings is to answer questions, squelch rumours, and announce new products from Bell Labs
and Western Electric. He indicated that the question of WECo continuing to licence software has besn
answered, for the lime being. A recent decision was reached that software licensing is compatible with
the Bell system’s consent decree; so they will continue in the same fashion that they have in the past.
The key appears to be that no support is offered and that the software represents merely a snapshot of a
systemn in use at BTL.

Al expressed the hope that by 1985 the group will reach critical mass, collapse into a black hole, and
finally suck in all existing card readers and punches.

There have been no new products since June 79, although some licensing changes have occurred. It is

now possible to obtain a small business system CPU binary licence, which is based on the number of .

terminals supported, sliding from $750 to $9600. Bulk agreements can be arranged as well. A
collection of popular PWB tools can be licenced in object form, including SCCS, for $3000 -($2500
subsequent).

Al then fielded a number of specific questions. UNIX tools can be port’ed to systems like RSTS only
by licensing the target CPU for UNIX. Lint may be port’ed to PWB by adding a V7 licence to the PWB
licence. PWB + V7 costs $42,000 for first licences. Mert will not be released. Contractors who work
on UNIX systems must sign an non-disclosure agreement, or be licenced for the software products in
use. UNIX-TS and UNIX-RT (Bell Labs’ own internal versions) will probably not be released. LSX
will not be released. WECo will try to release the Equipment Test Package that Bell Labs has for
hardware testing. The kerne! and utilities will not be licenced separately, since WECo is constrained in
the way it operates, to sell "as is’.)

-13-

Software Tools & USENIX Meetings in Boulder Jan uw.;..nc 1, 1980

Speaker 10 UNIX on the Harris /6 mini

Bill Shannon
Case Western Reserve University

Bill described a project in which they port’ed UNIX V7 1o the Harris /6 mini. He described details of
the architecture of this machine, including the register sets, memory management, interrupt functions,
and 1/0. They encountered problems: the fundamental unit of addressability of memory is not a byte
nor a word, types do not align to memory the same as they do on the 11, there is no stack facility in
hardware, and the discs have an odd sector size. Nonetheless, they have V7 running on their 6 /6's, in
swapping mode, and plan to convert that to a paging system.)

Speaker 11 UNIX on an IBM Series/1

Paul Jalics
Cleveland State University

Paul described the Series/l as a 16-bit mini, byte-addressable, with a reasonable instruction set,
segmentation facility, and 8 stacks of segmentation registers. 1/0 is done through virtual addressing,
there are some stack instructions, and the system has reasonable 1/O gear. He indicated that IBM
software was unusable. They did the port'ing without a PDP11. John Lion’s UNIX commentary was
most useful. ;

He went on to discuss some of the implementation decisions which were made along the way, and
outlined the stages they went through in getting V7 up and running:

-obtained a cross compiler for C from U.of Delaware

-created a minimal UNIX filesystem on the system disc

-compiled and booted the UNIX kernel from the PDP 11,

via a communications link

-debugging cycles

-port basic utilities 1o the Series/1

-port the C Compiler to the new machine.

The implementation will be finished by next June.

---- BREAK ----

Speaker 12 . News from ISC

Heinz Lycklama
Interactive Systems Corp.

ISC has a UNIX which runs under VAX/VMS, with most of the utilities. Heinz outlined some of
systems and facilities 1SC offers, including their own versions of mail, text formatting, screen editor,
and a new device the "UMC', which loosely resembles the KMCI1. It can be used 10 turn char-at-a-
time devices into DMA devices; the DZ11 terminai multiplexor is the classic example. Their VAX
UNIX'is a blend of V6 and PWB, and allows a smooth upward movement from the PDP 11. It also
allows the use of DEC’s DCL command language, and the shell interchangeably. It all seemed a little
messy.

=14 -

15

1
'
¥

-91 -

"N1dD 341 JO %1 JO 1503 B 18 28uel 40p-¢ Y1 U} PAUIEIQ0 3q uBd IndySnoay) O/ Ul JuSwaA0IdwW] *ISIP
L1 woy Yden /] 10 p/| Buipeal skem[e pue ‘g300S-001 0) 24283 IOYNQ Y JO zis Sy: Surseasdul 'Ag
’ Sunusuo) uewqaLIYdS Jof

UBWQaLIYIS Jof

ssgng 3] juswioscidu) QUBWIONRY 9] Iayeadg

"SIA[ISWIAYL SIY Y1 3[puUBY 01 3P0 Y SN SAUL| §[-7 YILD *Jjasu
[3uid) ay) 0} saBuBYd £ S1oM SIOY] 210 ‘UM ‘050j3 ‘uado ‘wi “Ims “18aId ‘swiesSosd ¥o9yd ‘spiw 03
paImbal aiam seBuey) WRSASSIY XINN Y1 Buueydiaap jo siqeded 1,ust Yorym SIBMPIBY WO} puv 01
SI9jsUeI} J0J pISn S} 3SIP Ayl U0 Jod puodss B yom Uy ‘suonesijdde Suissasold sfeuwsr 9818 Jossuas e
S2M SIY] J0J UOHBANOW 3YJ, 'SI[Y JenBar JOJ PASN St JSPUIBLUAL Y PUB 'SIjY SNONSBUCD JOJ PIAIISAI Si
391A9p B JO uorod B YOIyM Ul ‘SWIISASA]Y XINM O sa[y snondnuod Buippe 10 anbluydal g saey Asyy

di10) xadwy
HBD [Py

XINQ U 53(14 suonsyiuo) ST soxuadg

219 'J10¥L *DOVA
8 Yons ‘J{IYMe JOJ Sannn Jo 3Buel [inj Y1 Y28| [[M WAISAS GPY] Y, SWOISAS O pageyoud pur
‘apIsul SwAsAs MI-XINN Yia sionpoid Aayuiny XSy 10 TLLY unJ ssimiatio 18w yoiym s,67- pue
S, [1-1ST 3pnjaul ul 913dwiod 01 adoy Aoy SIONIEW YL MOU I|QBJIBAE 9q P[NOM I 18Y] SWIB]D IB{Iuis
SPBW SY Sunf 158} BunddW Y1 1Y Qg dunf £q judweBsuew LIOWSW Yim ‘08/17 F3 AQ UOisIaA
JUSWIBEUBW AJOWSLW-UOU *[]-[ST UR UJ I[QE[IBAB Ji SABY iM ASYL XINN Qs signedwod (Areuiq)
9s1MIIQ A[IBX? 99 07 pasoddns S| puB ‘WeISASA]Y SWES Q1 ‘(aeng 1d50x3) XIN(1 SB Sj{ed WoisAs
SWBs Yl SBY YrIyM ‘SIYAI pofied wdsds Bunesado um ‘ydiards wox ‘padojaasp sey SHULISIIY AR

YT 'SYIHWSAUYM
JeBan B

SMIBHOOI 9A XINN -~ STHAI 1 Jagsadg

“A[81 §, 214Ny stuua(q ul wied dyoads

SIq} Uo Qui Joyuny sem 50yj sI9isiSal Josiazadns 3y 109103d 01 Apuotedde ‘inokdos pue uiddos
ug 31 *AJBSSa39U jou 218 £31Y1 319yM $30e[d SWOS UL 1SIX3 S, TdS "I3119q UDAS 3G PN dnyo0] paysey e
10 sananb o} Bul08 pue 'Syl W LRI ANUS Pasn 1se] dyi BuNON Pud SI1 01 ‘3[qEl dnaysm 2y jo yoseas
Jeaui] & y3noJy auop d1e 9A Ul sdnayep, -and pue 9198 Juiploae ues se “uswaacidwi 3iq v aq ued
$I3ALP (1S YINQ opnasd 05 -- Indul 901 Ajuo “Indino g,06 St O/ [euliIa], “[ed Wwais4s © spuey o}
SPU0DISOIDIW OTE WNWIUIL B Ylim “S[[ed WASAS pue sidNII2Iul SUI[PUBY Ul PIA[OAUI PBALISAO ST 3191
: PRaYIA0 WISKS

"13112Q 1BYMELL0S pU0dSS J3d SALLN G YIM “P3IOU ST JudWwIACIdWY SANOIGNS B *pucass Jod sawy

Q1 30 saum z 01 dn siy1 Bulaow £q 'puoses AI19As SInNd30 Bulnpaydsal ‘zygg 18 Ajrewioy -Fuipuad
1U3A5 ue jo ‘qoid 9yl , 9pow Josn uf Butaq Jo ‘qoid Yl = Bulnpayasal & Jo Auiqeqosd Ly sayy
“9POW JISN U A[UO PUR ‘Sw 1] SABS %20[2 31 10 *sx30[q 301d B USYM Buop AfjEuriou s1 8uinpoyossy
o 2IUDUIIOfI] 105533014

0861 ‘1 Q24--87 uef Jopinog ul sBUNBSN XINIS() ¥ SI00L diemijos

-6 -

*(SPEYISA0 MU DNPONIU] UED PUB AI0WALW Jasn' dn §)ea) doeds
SS3IPPE [9UISY JO SPISING BYIE3 13YNG PaPUIIXI PUB ‘Yoed IYPNG Iyl BUISEIIIUL *(SPRIYIIAD) SIIys
pu® AI0WSLW $1502) 3105 U1 swalsksajy dw pus j001 Uy Buidasy apnouy SHFUBYD WAISASSIY palsading

"U0ISSas Suiuiow Avpsiny L ‘Ieaze [epm 4Q Y{B) AUl Ul punoj aq ued noke} Jesuy, [pwndo
JO UOISSNISIP paieIep ¥ °1015aI pue dump 939]dwod v AQ PIAdIIR aq ued SIg ‘predar sy ui sdiay
Jeaul], waysAsaqy e Buidaay 1Ryl SION “ISIP SY3 01 }23s sod peAJ U SHIO[G §' JO ‘9409-0§ SI MY aysed
U1 JBYl PawWIEld Sy "Pasnal aq uEd pue ‘uieBe PIdULIRJAI 2q Juom A[qeqosd I -- BYED AU} JO pEAY
341 uo %20[q 1By 1nd *Arepunoq 3420iq Byl yim Sudie O/] BY) JI 1ey) 310U 0} S| JUIUIA0IAWL UY ‘3YIED
aMus Y3 SaYSNY SIy ‘093 BUO[& SuLINp taYyord 13YNQ SY1 JO {fB1 AY) U0 Ind AIE S}20]q PASN Aj[RULION
“MAYOP JaU B UL 1[NS3I UBD PUE JOIJUOD SPEAYE-pEal 953Ul ‘9YdBd JANQ Yl Ul SIOYNq Jo Jaquunu
3y Jiey uvy) Jojeaud S| (suod JO 198N 10) 500id JO JOQUINU YL UBUM “JAASMOL 'S8 juanbosqns
S} Joj uonesedaid ul pral S| Y904 1X3U 3 ‘pESI §) 0[] B UAYM 1BY) SI PesyE-pRal 390]q JO Judjus Ay

‘[oUIRY 3y Ul PSYD0] 3G PINOYS YdIym §IpOUT 3jedIpUL

0} WASASI(Y Y3 Ul S} IPOW PAJUBMUN 3SK 0} padojaasp usaq 9ARY S3WAYds puy ulede pue utede
posn aq [{im A3y1 -- 2y9BI 2POUI Y} OIUI SIPOUI OM} ISOY) B0J0J) UIQ/ISN/ pue wiq; uado ues wy N
3A0idwi 03 pasn aq uwd SaNBIUYDS) OML ‘[JM KI2A HIOM J,USIOP DLIED BPOUI ALY 18y} pajou udaq sey i
FOUDWLIOSIF WSASIYL

3IX9

Aouapdys wsAsaly pue peaye-peal uo spuadap :Q/]
*Aousolye J9[npayods

3Y) pue ‘pBIYIAA0 WDISAS ‘AIoWwaw ayoed alemprey uo spuadap :uoneinduiod
‘peaye-peas pur

‘Aousroyge wasASaly ‘IYoed J3YNq 9Y1 UC Puadep YdIYM 193X puB yi0j

+JO §151SU0D §s3001d ® jo 9jif [B2IdA) YL

81y

swasdosd 98rej 1no BulAow Aq 1BYMBWIOS PauDIjos aq URd wiy)HoF[e dems YL jiem e Aleau A19A Sty
-~ adojs a3uej e sey sIndd0 Fuiddems pley souo s01d B 0§ Swn indy2noay; ur as11 uappns ayj jey; pajou
SBm)] "AIOWIIW 30U JO UONIPPE Y1 I3YE PUR 310J9q ‘PAINSEOW YIIM JdURWLIONad pajopard paredwod
a4 yoiym ui sydes3 pamoys piaeQq 'siasn gy 01 dn Jeoul s1 9duewIOIed ‘OL/11 ue uo SAAGIST
Yim ‘Zuiddems areUILIIS UJAD JO 90NPaI UBD IM ‘WIISAS Ayl 0) Alowsw 3uippe Ag °suoseas JoY)0 Ioj
‘und Ajrenide Jou Lews ur 1ydnoiq s,00id oyl inq tur s,204d 9jqeUnI 1910 Sulg O) I3p1o, uj N0 59553301d
Jjqeuns aaow Aew waisks ay; ‘Buiddems piey 1apury ‘peq 003 10U [US SI $92in0s3l 10j 1011u0d 2y}
pue ‘Ino paddems 218 9jqeUNJ-UOU 1B YOIy $3ssao01d A[uo ‘eale dems Asea oY} u[°S}Se} SNOAUBINUIS
Jo Jsquinu 3yl yum Ajreauy os sawn indy3nosy; ssosoxd ‘Buiddems ou aq o) asey) 10J y3nous 1y3y
St peoj 3yl J1 ‘Buiddems prey pue ‘Fuiddems Asea ‘Suiddems ou :s91108318d £ Ol s|[ej Joiaryaq Suiddemg
oupuLOfiag uiddomg

" UOIJRIAPISUCD ddUBWIO)Iad
01 9pIng JUSI3LOD B YONS 9413091 O PAIYBIAP S1am BWES XN 243 O) IIM3L asoy} By plo, 2q o1 syl
punoj saey Aew syoey pauosess YSnoyiy ‘souswojisd WosAs XN SulAoidwl 10§ PIIapISu0d uaaq
SABY UIIGM SBIJE S JO MOIAJIAD P03 B sem uopnejudsald s “Ailoeded wWaISAS [jn) jO UONRUNLISNGP
PUB *0uBLLI0JISd WIISAS JO UOHEN[BAD QY3 JOJ S[00} JO-JuBUIdOjOASD a1} M U22q SBY UIADUOD S plAeqg

(Ae1axsag Jo Kuawuoa)) “dio) xadwy
J3YSOW piaeq

SUO[IBIIP[SU) FdTBWIOMaJ XIND €1 J3yjzads

0851 *1 994--8¢ usf aspinog ui sBUNSN XINISN % SI00] duumyos

AUUGN

1

Softwarc Tools & USENIX Meetings in Boulder . Jan 28--Feb 1, 1580

This modification took 4 pages of code, and is transparent to utilities. It works in <m.. and should ao. SO
in V7. It affects only reads, as it is essentially an extended read-ahead. Jeff has a brief paper describing

the mod. ’

Speaker 17 Better Signal Management for IPC

Paul Rubin
Advanced Business Communications, Inc.

UNIX application systems often need cooperating processes, one to provide operator control of a
system, another to provide fast device control or run some computation. The traditional model is for
one proc o write messages into a pipe or file, then signal the other proc, indicating that message(s) are
waiting.

The problem arises that 1/0 is interruptable (non-atomic), and must be restarted following a signal
catch. Vanilla UNIX allows signals only to be accepied or ignored; no delay or queueing of them is
possible. ’

The solution Paul has developed is to add a ’pending’ state to signals in UNIX. Thus
'signal (SIGHUP,-1)* will give the signal a pending state. The call ’sigs=
await(fd,bitmask—of —signals)* will block until one of the signals indicated in the bitmask arrives, or
return immediately a bitmask of pending signals, depending on the value of *fd’.

This scheme allows for a more flexible and controlled handling of external evenis. It may be
unecessary with the advent of V7 multiplexed files.

THURSDAY JANUARY 31 MORNING SESSION
Chairpersons -- Lou Katz and Sam Lefller

Speaker 18 C and Pascal from Whitesmiths

Mark Krieger
Whitesmiths, Ltd.

Whitesmiths has been involved in the production-of C compilers and cross-compilers, for RSX, RSTS,
RT11, the 280, and 8080. They now have a VAX native mode C compiler and loader, and a Pascal to
C translator. They are working on compilers for the M68000, 8086 and 370. Each C compiler product
includes a C library. The Pascal will not run with any C compiler, due to the way it handles struct
members. :

. -17-

Software Tools & USENIX Meetings in Boulder Jan Nm..w&. 1, 1980

Speaker 19 UNIX on an Amdahl 470

Gordon Kass
Amdahl Corp.

Gordon described the efforts by which they have port'ed UNIX V6 to an Amdah! system. They did this
without the help of a PDP-11 to lean on and bootstrap from. They proceeded by obtaining Bell’s C/360
compiler, the PWB C compiler, to which they added 470 code tables and their own assembler. Then by
writing 1/0 supervisor drivers, and converting utility programs, they were able to support a UNIX
under VM, alongside CMS, MVS, SVS, etc. This is a V6 system with the PWB shell, C compiler,
SCCS, make, accounting, full screen editor, RJE, and an automatic disc fixer. Because it happens
within VM, VM commands are still available; their system is allocated 6MB of main memory and
19000MB of disc. The standard 1/0 library has been modified for efficiency improvements.

In the coming months they will be converiing to V7, improving filesystem backup, adding formatting to
support Amdahl document prepartion, adding a debugger, C optimizer and networkir 9. The software is
not for sale; but if Amdahl customers are really keen on getting it, he suggested they ask their
marketing rep's about it. . '

Speaker 20 Optimized Disc Freelist Layouts

Walt Lazear
Air Force Data Service Center

Vanilla UNIX mkfs and icheck -s build filesystem block freelists in a manner intended to optimized disc
performance. Files will usually be allocated biocks sequentially from the freelist; and those blocks will
be requested by the system in the same order. The first block is read, and following a fixed delay in the
kernel, the second will be requested. If the freelist is structured to that the next block is allocated at the
appropriate rotational distance, clean reads will result,’ with minimum rotational delay. The original
scheme was based on an 11/40 running RP03’s and is not suitable for other systems. To perform a
measure for a specific disc and cpu, one needs specs for the disc, and a time measurement {rom a
modified copy command. By way of example, an 11/70 system which had been altaining only 1
block/disc revolution was improved to 3/revolution, thus accomodating 50% more users. Other faciors
include individual processor speed, hardware cache, memory interleaving, bus configuration, superblock
freelist size. Memory size, number of system buffers, number of mounted filesystems, user load and
disc driver software are apparently not factors in this analysis (there is some disagreement on this
point). Here are the magic numbers that Wait presented. Members of the audience suggested that they
are conservative -- so try them oul, but measure the results for your particular configuration. Also,
these numbers do not apply directly to V7. The numbers are every~nth—block/sect—per—track.

DIsC 34/35/40 44/45/60 70
RKOS J+F 3/24 3/24 2/24
RKO0S 5/24 4/24 3/24
RKO06/7 9/66 7/66 5/66
RLOI 8/40 - 7/40 4/40
RM02 13/32 10/32 132
RMO03 20/32 15/32 10/32
RPO3 4/50 4/50 2/50

RP04/5/6 14/22 11/22 7/22

- 18-

17

-0

-unindwod [euosiad pue ‘ssauisnq ‘Bupyoea} Ul 9N 10} Papudul §1 1anpoid YL "JISV UM Wolj
SpUBWIWOS [[3YS JO 35N Y1 Buimo[(e J0J I3X3 pus ‘saireIql] aunnoiqns 3uipeoj Joj Buipuadde ‘(sweidod
Jo sauss Buiuuni Joj) Buureyd ‘puewwiod djoy B ‘BupndNNS 420iQ ‘sorqderd) -z1oy AL ‘Buipury
Fuuis 9pNJoU] ISILYL SUOISUAIX? Yil4 ‘SOISVE ONW PUB [SNV JO SIINIE) Ay sapnpoul Yaiym DISVE
v padojaasp sey YOH ANUSYS Ajuo 953y Yim 51998331l DISVE XINN Pue ‘slopusa o5l 4q pariddns
s.JISvVE 2yl Jo 19sqns sadoid ® Aeau JISVY ISNV ‘siqs|iear s10ssa003d o3endug| JISvd °W) JO

*pr] $901n0s9y Sunndwo) uewny
ssaginig suYD

XINN 19§ DISVE ISNV §7 seadg

'53583 1591 Buido[oA3p UI PIsn 2q ued puw ‘pawojsed si swessold
Jo uonen[EAd olEIS "Palepdn A[9A1IIeISTUL PUB ‘UI[UO P[OY 2J SIIUN 9SAYL "SISA[BUE §3|NSAI puB ‘indino
®iEp 1591 Indul BIEp 159} ‘S0IN0S ‘UONEIUAWINIOP JO SISISUCD YoIYM *Jiu[) weidold, ® U0 PISE]q S| XI0M
v -8unsei pue ‘sedjiowid pIepusls ‘[OJJUOI BIBM}JOS I8 SUIDUOD Jiseq YL ‘juawdolaAsp 2I8M1JOS
0} 9pind [[eIoA0 UB SB saInpacord dn 198 9ABY £9Yj Os ‘uop BuIsq SI JI0A Y YOIYM j8 SUONEID|
[B9A3s o5% 250y], “AABN SN oY1 Joj suoneoydds [eudis ousnode jo Sunuwesdoid uo suppiom st Qv

"ou] soundidsig dhAuY
Kaurep qog

Sayisa] arsmijog ' p7 saqeeds

jlom pIey Jo syluow g-7 ‘Buiuled] Jo syuow -1 300} 133foxd sy

"Ju21s1suodut 218 siuled pue “yioddns
¥oms ou st a1oy], ‘(2Besn 1aisiBa A|duny suonanxsul dwos ‘Juidde(saao A|[BaisAyd) £13n 21w si31s13a1
o) 9/ SUIBH Y1 uQ °UAALIP J|qel SI Il -~ PISN SIASIBAI Jo Jquinu oyl JunEwnsa Jo anbiuyddn
® Aq poping ‘auo AQ 9u0 possagord BIB $33I1 UOISSAIAXF UOHBIQUSE BPOD IBYIO [[B SI[pUBY 7 SsBJ
-poziundo si a8ensuz| juspuadapul 9YJ ‘S195y0 SSSIPPB B Burpnoul ‘paiejsusn 318 suoniod 1uapuadsp
SUIYORIN 'S321) uoissaidxa si 95enSue| AIBIPAWIAUY S1} SISA[BUB JIJUBWIIS PUB DIIIRIUAS ([B SIOP | Ssed
*(UODUIALJB PAAL ‘N[S,UOUUBYS [[IF 93S) HIOM O Y3IYM Yiim SUILIBU PIEMYME £13A ® 1 sAes 9y YIrym
‘Jup 97 SUJeR] 9yl 01 31 uaXE seq oy ‘iodwo) D 9IQBII0J JOYIOUY 19X SB HIOM SIY $IqLIISAp Wi

AMSIOAIU[] 2AIISIY UIB)ISIM 35ED
Iayya] weg

SUIYIBIN AqBSSIPPY PIOAL B 03) Suj aod £ 1yBadg

= NVIYg -

*Apeal
-v19Wed 2q Pjnoys uopeslgnd 10§ [EUAIBW [y SIAZIUBZI0 30UDISJUOD 3Y) 0) sydeIZmalA It jO §SidCH
opiaoid 1sea] 18 pinoys s1axeads {3uijei-ajou PI[IRISP 10} PIdU SY) ANBUILIIR PINOYS UdIYm ‘Bunzsw
1eys 1e paysiqnd aq [sSuIpasaoold 081 ‘IZ-81 Sunf ‘aImmE[dQ JO ANSIOAlLf) Byl 1B DSy 39
[l BunddW XINFS) 1X9U oy [‘SI0{[B] 158D LD SISQWIAW [BUONTINISUL AJuo ‘Butids sny) dn Suiwiod 3l

0861 1 924--87 usr Japjnog ui S3UNSdN XINISN % SI0L dsemyos

-6l -

suonsae XINISN 0861 Ul In0 BUILOD SIONAISMAU O] 3q |{I4 IOYL "BIBASNY PUE BPEUBD ‘N 3Y) JO
sdnoIn 5,950 YN[Y1 Yilm SISN3ISMaU pue sade) Jo 98ueydISIUL JOJ SPEW UIIQ IABY SIUWIRURLY
‘sloquaw XINTISM [Buonminsul o1 juss 3q [pue ‘0gel ‘Iudy noge no juas aq iim sadm
SYL 0861 ‘S1 gad si suoissiwuqns Joj 1ep Fulsopd ‘pasedasd Bulaq si ade] UOHNQUISIP IBMYOS iy ¥

AS1vA1UN BIQUINIOD
Zivy no7y

spuawRUNOTUY YINISN 77 1aqsadg

‘UOISIOA LA S) UI S]QEB[IBAB 3q [[IM SP0D SIYL “}NBJOp 2y usy) Jayiel ‘ploy—3is way)
puss pue sjguSis ayel Yaym ‘i3jop—3is pue ploy—3is ppe 0} paBueyd oM sjgudis |Inu/Adp/ 01 Al
woyjy indino/induy 12yl SuiBusyd 4q punoidxyosq pus PunoIBaI0] UIIMIA PIAOW I8 sqof “Auior) ayy uj

‘219
punoidyoeq ul ssnuUnU0d qof 9y q %
9y << 7-4dinp qIJdOLS + !
I'%
a3ddolLs
- < 50> os ‘1irm 01 Suo| 001 sM
Y << 7- 4| np ‘ojdwexs 1oj

$59301d punordaloj puadsns (Jeqiapun) — {01u0d

qof (jil) dususIe [qof} ¥

(vamnb) Buniodas snouoloudse ssaiddrs [qof] b

sqof st {I-} 1

qof dojs [qof} s

punosdyoeq ui qof uni [qof] q*

punoigaioy ur qof uni {qof} Jr

. 1SMO[[0]
S8 S| XPJUAS 3SOUM ‘SPUBLLLIOD [0J1U0D JO 195 8 Pado[aadp SBY Y ‘Sw2|qoid 3S3Y) JO 3WOS JA[05 O

*paida0or 10 pasoudt
Ajuo ‘paxsew 3q 1,uBd sidnidiul pue twajqold B 31w sieudis s(dinw lisay ul dems e 3sned AjfEnIdE UBDY
sjeudis posoudi ‘saweu qof 10u ‘spl §53001d JO YUIYL O} 9310 SI JASN Y '9[SSBY © AUV SIAQUIOZ 'SNIBIS
puncidydeq Joj uni 3q isaw sd AJadoId JUDLIUOIAUS J1I3YUL 10U ABUl pUB 'SS320Jd BNXY UE sannbai
‘fe1ausd jou si adesss j, Y andup A1 Joyuay ou 3uimoje ‘judsuewniad S| Uned) %P, YL °|ONHuU0d
pue uonBzyeniul S53001d JO MIIA SJISA Y O) BRI YIYM swojqosd Jo sequinu B pRuUdsdd wif

BISIY “V'S'VTT
diny wip

1onue) mmuue,& ApavIANU] 12 3asadg

‘ .
£/l €171 €1/l 0Xd

9/1 9/1 9/1 10Xd
T€/01 Te/st Te/61 $0Sd
91/§ 91/8 91/01 £0SY

0861 ‘T 994--8¢ ue[’ Jap[nog ui s3UNII XINASN % SI00L 2semyos

AUUGN

18

Software Tools & USENIX Meetings in Boulder . Jan 28--Feb 1, 1980

Speaker 26 . New CULC FORTRAN IV PLUS

Robert Bradbury

Commercial Union Leasing Corp.

CULC’s Fortran 1V Plus is DEC compatible and MACRO-11 compatible. It comes with CULC’s
linker, and libr, and a converter from .o files to .obj files. It includes a UNIX system call library, and
overlaying facilities. Recent improvements are an include statement, list directed 1/0, the ability to mix
C and Fortran, a compiler that runs 30% faster, and the code produced is 10% smaller, 15% faster than
previous F4P compilers. There are 30 sites running this system, after 3 years on the market. There is
minimal support on this product, for which binaries only are available; CULC customers must have a
DEC Fortran IV Plus licence. This new version is now out, at $7500 commercial, $3500 educational,
with a $750 charge .0 upgrade to the new compiler.

Speaker 27 Running V7 on smali PDP-11"

Bill Jolitz
US Geological Survey

A number of changes to V7 were required to get it to run on the 11/34. The bootstrap program runs in
two stages; it needs separate 1&D, doesn’t support some discs, and needs at least 64KB of memory. A
partial rewrite was required. UNIX V7 itself is too big. By reducing items in the parameter list (say to
12 buffers, 40-50 inodes), and removing accounting from the kernel, it can be made smaller. The
machine assist, m40.h, has some bugs, including incorrect stack setup, a KDSA6 reference, and failure
to enter al boot through trap properly (see m70.s). The RLO1 driver doesn’t handle raw I/0 properly,
and on the 70 it needs to allocate the UNIBUS MAP, which it doesn’t. User programs which use
floating point need to be recompiled, and some utilities have a size problem, as expected. ADB, DD,
and AWK can be made to fit non-separate I&D, but LEX and F77 will be more difficult. Overlays are
available in two flavours -- contiguous overlays in which there is a root segment and several overlay
segments which are selected by a call to an overlay subroutine, and V7 has an overlaying function itself.

V7 bugs include the following. On a heavily loaded system, an inode misaddressing causes it to miss
the start of files being read. The clist, if too small will crash the system. Increasing its size alleviates
this problem, but commeats from the audience suggested that a size change only postpones the
problem, it does rot remove it. The CU program has its arguments in a call to ioctrl reversed. In F77,
longops routines use fixed point -- these can be changed to floating point.

Several persons promised to continue discussion of problems like these in subsequent issues of the
USENIX newsletter. .

wee LUNCH =--

THURSDAY, JANUARY 31, AFTERNOON SESSION
Chairperson -- Robert L. Cannon

.91-

Software Tools & USENIX Meetings in Boulder : Jan 28--Feb 1, 1980

Speaker 28 SEED Database System

Herb Edelstein
International Database Systems Inc.

Herb gave a description of the SEED Database System, which originally ran on a DEC 10, but now
runs on ISC’s UNIX. The product is claimed to be a portable CODASYL DBMS. It is based on ISC’s
Fortran compiler. The system addresses questions of security, storage management and concurrency.
The price is $9500 for a binary licence.

Speaker 29 Simplified DB Access: YACC and INGRES

Neil Groundwatar
Analytic Disciplines Inc.

ADI is working with the US Navy on software development for a collection of Advanced Signal
Processors, built by IBM. There are 35 of these in use, each containing as many as 100 modules. The
units are carried in vehicles, reconfigured as necessary, and shipped from site o site. Keeping the
operation reliable and maintainable is largely a problem of keeping track of "he array processors and
their maintenance histories. .

The solution that ADI has implemented is referred to as 'Decision Network Processing’. The user
moves through a hierarchy of menus, and need not be aware that there is a UNIX system underneath.
Different persons’ responsibilities can be reflected in the menu choices available to their accounts. At a
primary level of hardware/software configuration info, grep is used to find and present info to the uses.
Al a secondary level, more complex requests are handled through the ‘equel’ query program of
INGRES. The menu facility is available to other sites.

Speaker 30 , Geolab Interactive Environment

James Herriot
US Geological Survey

James described their efforts to develop a collection of tools to allow users to inigract with their data,
performing transformations and producing plotter output. The data with which they are working are
sometimes as large as 100MB time series samples.

Spesker 31 Berkeley Virtual Memory UNIX V32

Bill Joy
University of California, Berkeley

Bill described the mechanisms by whick demand paging has been added to UNIX V32 (the original Bell
version was a swapping system). The changes include two system calls, and 15000 lines of code (7500
of which are comments). Measurements were performed, using a synthetic user load, to measure the
differences in performance under swapping/paging, 512byte system buffers/1KB buffers, scparate disc
controllers, size of buffer cache, and quantity of main memory.

-22-

19

-pZ -

uopdRI3IUL puB IM1dNIS ursjod ‘Suljjapow Jegmagjow -
:sgare Fuimo[o) oy ul
uonedyjdds spuy YIom SIY["SAINIONILS [B5180|01q [9pows pue Apnis 0) soiydeId 10192A (J¢ Buisn SI [SON

1dag A3ojoig ‘Kis19A1UN) BIGUINIOD
Hory |3oN

£3o101g 10] Bujssadrarg Bsw] (¢ 9¢ Jaysadg

Juawdolaasp
Buissadoid 93ewl JOj SWN I0W 53ae3] pue ‘uofiedaijdde Aue Jo uoIsIAA Bunjiom ' sAem[e SI 213}
1B} $9I0SUD SIYE -3unspdn puB SISQGLUNU ISBI]DI JO ST JAISUDIXD IYBUI YOIYM ‘SI[Y PUBLILIOI {[AYS G/
JO u01193[]00 ® Y3nosy) Siy) SS0p 3] "PIPBO| Sul|-UMOP 3q 0} 5J0SS2001d 19110 SMO|[B PUB ‘UOHBIUIWNIOP
pue snuaw auruo s3praoid JUSWIDOUBYUS JANRBIAN SaImied) 3aey AUl WSS Syl "epod
9yl 3uidoaasp mou suosiad Y1 10U 348 S13SN pUD Y] pUR ‘BP0 SPRI} PUB 3IBYS O} 1URM Suossad ssayy
taremyjos mau Sunuswajduul suosiad Austu JB 243Y) payldads Ajised 10U v Yons Sw pus ‘e Iyl Jo
2B1s 1w suonedijdde siay Aijioe) wawdoRaap axemijos e 3uidofaaap ul swoqoid 1Y) paquIsap qog

+d10) uoniuBosay pue sisd[puy uIenEg
Auigy qog

Suyssasolg %sm] SE 1oyvadg

“I3yuny

sanbiuysa) #say) aaoiduw UBd 3y 1BY) OS ‘Spiom jo sZuljjadssiul [8oidAl JO 181 B S 139[{02 01 9)I] pinom

3¢ 1BYAL " (ATBUCHIIP PIOA 000'ST S.LA YUM 4[geincae) s238dWod SIYY) 9[JE[IBAR SpBIL 3q [l YOIUM
Areuondip Amisudord-uou piom (00‘8¢ ® S8Y plaeQ "sFuljjadssiu UGUILIOD JOJ SUONILI0d JNBUIOINE
9lpuey pur ‘Zuipp’n AIBUCHIIP snonunuod spiaoid ‘308 1 se Sunepdn 3y saunos wioped (M
‘plom peq e spuy il udym Sajeusalfe s1s3Z8ns 1o%0aYd Buyjads ay1 ‘asn sAndeISIUl 40 “ArBuUOnaIp I ul
PIOM YOB3 YA SIXLYNs PIfBA 3101s 01 9|qissod si i ynq ‘Suiddiss XIyns 10§ SINI [BSISAIUN OU BJB JIFYL
'sexigns pue ‘sppudes ‘uonsuayd4y Suidduis epnpur Suppays Buyjeds ui swajqoid [BIANL3 swog

‘paunbal sy 3098
0U ‘YdeI {810f 3Y) Ul ADB3I[R SI XO0[q AY} J["I [ISOW 18 Ul PIAILNAI JI AJBUOHDIP Yl JO UONIRS
192109 Y} puB ‘Jaquunu Yd0[q ISIP B WIOJ O} Pasn St UYSBY S ‘Piom B 10J Bunjoo] usym suyj ‘adiow
SYJ pue 110S 3y} UIVMISG YSRY B IPNIUL 0 SIYI PIPUIIXD SeY PlaB(] "suofidaaxe puy o ‘Areuonsip ayy
Yua padiaw puv Wos snbiun g Y3nodys unJs ‘spiom Oluj UIN0IQq St I1XI) Y “%ooyd Buifjads gA Y1 Jepun

d10D) xedwy
sawef piae(

22y Sujjeds peounquy uy vg saeads

1Ppom AlfeAr -- uossadirey)

NOISS3S ONINYOW ‘1 A¥vNuddd Avardd

0861 *1 §o4--gC usf aspnog u sBuNSOW XINISN 7 SI00L d1emijog

-€C-

UOHNGUISIP SJBAM1JOS Y1 UO UOISN]IUI JOJ JUSS 3q [[IM 9PO3 Y], SMSAS $auag

- swiflg XOYAX Sl Jo SN0} 2y uo pasuq ‘XINM VP Aie O/ Pofo3 @ padojarap sey qog

685(j0)) upRIsUI HAQLY
sjwny qog

XIN(10} wsiueyaa 0/1 Pa.Lsy £€ Ioyuadg

'adey uonNQLISIP 2IBMIJOS Yip
Buiwosdn Y1 UO 3q [I -- 3L AIS XIN[Aue 01 Sjqe[ieAR SI 11 JBY} St ‘10AsMOY ‘YiBuans Jayun) v

‘saanjoruss jo unsau ou smofje pue ‘QIC.LS Suisn pajuswadwt 194 10U
81 ‘1011p9 @O 9y uo wapuadsp pus uo peseq si ‘ (Aflented si 11 -- youalg/ysysug) fenduiliq Ajny aiinb
10U St *(U0[19310d AJUALINDUOD OU PUB) WSISASAY XIN() PUOASq A1IN03s ou sey 3t ‘ojul Jo s3Ipoq
281e] BuIydJEas 1B MO[S SI)1 :SOSSIUNBIM ILLIOS PIIIUPE USY) S} 'SUOIIEOYIPOW [3UIdY Ou Saiinbasr pue

‘[[eisul 0} AsB2 ‘[[elus §) ‘sa|y I1x9) S[dwWis U0 paseq SI 1 18Y) 219m sYIBuans SJLL 1.yl pA1saddns piaeq

*S3110198I1p auoydaje) pus ‘UCHEIUAWNDOP ‘90uspuU0dsaiIod
‘serydesdol|qiq “Juswefeusw j0afoid *SOLIBUOLOIP BIBP JO SBAIR IY) UY ‘saseqeiep (), pue ‘sidsn Qf sey
Apusiind st 3] ‘Indino pus 231I0)S 1X9) JO POYISW PrepurRls *O[duIls B UO Paseq SI WasAs 3yl "STUONI
puv doi8 uoamioq 9[EdS B U0 SI0IAIS SING(5oplaoid ysiym ‘wIshs SJLL. SIY POGHISIp prae(g

[0IB9S3Y BIBMYOS UIBYIION (o
3003q|IL. praz

wISAG JudwiadvusAl g(SOWO MBIPON ¥ 7€ 19xwads

90Ly6 BIUIOJIRD ‘Adfariog
BIULICJI[BY) JO AlIsIoatun)
{IBH susAg
nde aausidg 12indwo)
Jomopi§ ey
1981U0D ‘Ojul JO 1 BUIUUNI SIS Z[INOGR MOU 218 I3y ‘pangInsip Suidq
st XINf Jo uoisiaa siy ‘sjdoad 7 usImiaq pareys ‘op 0} SJedA-uew ¢°[INOQe j0O) Bulyl sjoym ayL

*9SIP YY) UO IOISED 531 Ing ‘JAISE)
£1qBasniou 3q JoU ABW] ‘04G] UMOP SBA SIdJSUBI OSIP JO Joquinu [B103 9y LN ‘olidwod 153) B uni 0}
paJinbal aw 03 93UBYD 19U OU SABS 9 0} ZE WO} 2YIBD IOYNQ Y} LI SI3PNQq jo Jaqunu ay) Juiseasou]

. ‘peO] qOf Z[B 30] (06 01 UMOp [£:€]
Jo juawoaoidwy ue 0A8 s1ayng 3iq pus uifed ‘Alowow dIow 0] WIISAS dems [{ews @ woyy SurBueyd
‘Iraag swierdold ggr juerd Joj A|Eoadss ‘jjuioa0 souvmoyiad seaosdwi Asowaw upw Suisealou]

sogueyd
[ouey x31dwod Ajare) JO 1500 Y3 1& *sqof 81q Jo aduBwIoSd saaosdw)] 0F 3ZIS JoPNQ Sy Buiseaou]

‘[iom S8 90IM] SuUnS WaisAs paded oy ‘Busuuns oxe spun 91 Wi ayr 4q Inq
‘(punoq uoneindwaod) Ape[fuls pauiiojad swajsds 3uided pue Juiddems ayy sun Jesn, p JO pBO| B 1Y

0861 ‘1 92487 e[Japinog uj s3upa9 XINASI] ¥ $100], 2eAYoS

AUUGN

Sofiware Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

- design of antibodies through recombinant DNA

= crystallography

- reconstruction of neural systems
To facilitate the last area, they have a laser scanner, called the "ANT’ (automatic nerve tracer), which
allows them to look at images in a reasonable ?m:_o_._. Noel showed slides of various examplcs on their

work.

Speaker 37 Status of UNIX V7

Dennis Ritchie
Bell Labs

Dennis summarized the bugs which have been reported for V7, and emphasized that the Newsletter will
be used for reporting any further bugs, and the fixes.

1) in low.s, the parity fault interrupt is set wrong, at 7 instead of 10.
2) in converting V6 filesystems to V7 with TAR, there is a sign extension problem in the stat routine.

3) when running an 11/70 with RP discs on the UNIBUS, the bootstrap doesn’t set up the busmap. As
well, the RP03 doesn’'t allocate the busmap.

4) wakeup() calls setrun() which recursively calls wakeup(). wakeup() should go back to the beginning
of its list, rather than continuing from where it is.

5) idiv, Irem, aldiv, alrem in libc perform long divisions wrong, as when dividing by 0100000.

6) adb displays floating point registers incorrectly (in the wrong order).

7) the tm tape driver has an incorrect define for the RLE bit.

8) the C optimizer can go into loops; this is known to happen for long compares.

9) ioctrl was written so as not to flush the input queue when switching tty modes. This can cause
problems between normal and cbreak modes. The simplest fix would be to force the input queue to

flush.

10) the problem with a small clist crashing the system may be related to the presence of the DZ11
driver, which seems to be a common feature in those sites which have reported this bug.

11) TU16 and HT’s can hang, with the interrupt never occuring. A timeout could be inserted to check
for this type of condition.

12) the removal of spl5() in copying and copyout should be done with care, it may be needed on the
smaller 11’s which don’t have the supervisor registers.

13) in relation to the PDP-11/44 not running UNIX properly, V7 does not use the extra register set, so
there should be no problem.

14) text.c has a parenthesis E.oc.o:.: running lint -h on it will show it up.

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980
Speaker 38 West Coast Users Group

John Bass
Onyx Systems

The West Coast Users Group is accepting applications from individuals for membership; it is open to
those interested in the ideals of software development environments such as UNIX and Software Tools.

Its general goals are to interchange technical information, with primary focus on activities which are in

the public domain, and to foster interchanges between groups of users of proprietary packages.
Newsletters will be published, containing short papers and letters to the editor. Regular features may
be run as well, such as hardware and software reviews. This users group is looking for volunteers to
help in the work.

Software distributions will include the earlier conference tapes, should be done on a 2-3 week
lurnaround from receipt of order, will ba sent out only on new tapes, at a cost of $20-35 per tape
(tape + handling + mailing).

To become a member, send $10. US to:
Login West
PO Box 581
Menlo Park
California 94025

Speaker 39 Interactive Image Processing

Rex Tracy
TASC

TASC is working in areas of image processing, including mapping, geodesy, charting, navigation, image
data extraction, geothermal.sources, mensuration, remote sensing and oceanographic imaging. They
are in the business of evaluating architectures and algorithms for use in these areas. They have an
image processing language under UNIX PWB, which they will be moving to a VAX. Their system uses

_an FPS AP-120B array processor.

Rex showed slides of images in various stagés of enhancement, including the creation of elevation
contours, gravity anomaly fields, edge enhancement, and localized histogram eaualization within a
user-sketched area. He also showed images on which an automatic classifierr had been applied, to
separate regions of river, city, forest, and other vegetation. A primary motivation ir this work is to
prepare images in such a way as to aid human photo interpreters to do their job.

He went on to present a digital imagery database over a small region, built up of a photo, va.
railroads, transmission lines, and cultural information.

The graphics tools they are using are apparently public domain (they obtained them from another site),
but the image processing code will probably not be distributed.

-26-

21

{
i

- 87~

983
Buiyiawos Juisn a8 4,0y pus ‘prepuels I Y1 FUIMO||O) SABY 940€ ‘SUOUSAUOD [{og [BUIBLIO 3y} Sasn
2VUAPNE Y1 JO KOE AIYBnoY -asn 91d0ad SUONUIALOI JSIIBIBYD |OIIUOD [BUILLISY 1BYM O) SB PIsIBl Sem
uonsanb aY] -1S2123UI JUSYNS S 3IAYl I PAINQINSIP 3G UBI 3P0 SY] °UO OS puB ‘Uo:jeziIolBWeIed
Yi13ug) 28ed ‘apow 1iq § ‘OYdY PILIYOP ‘ANANOE PIBOQAIY YIM paAealIdlul 2B sedessow Buiwodul
YOoIym Ul 9pow I[OG B 'SISNIBIBYD [OJUOD 2]qRISS SMOJ[B 1] “ISAUD [BUILLIS) PIPULIXY UB SRy NEF

- NEg
uipjuely ueq

Sujjpusy XLL £y Ja%x8dg

204s B %000 uljdeq) ey SUIYdIEM 1] -- SUO USBQ JSAIU

n>.£ 0] Y3noud £yan] ssoyy 03 Juisnwe 0s 932« ase Jawweidoid WG] 9Y1 JO sjreassy Aep 03 Lep Y],
‘NAN Wolj ysiay “y 01 paingte ajonb

Bursnwe ue patussald ose 9ys FunSOW SO0 SImYoS Y1 jo Arewwns Jouq & pajusssid 21qqe(]

'qu] Kojoniag SouaIME
3313045 314930

FupaRpy S[00] BMOS Lupsan] Jo Lrewmmng v 1yuadg

nismojInzg py -- uosIadirey)
NOISSTS NOONYHLIV ‘I AdvNugdd Avandd

“wnsds Junyei-a10u 9[qeiIod B 10] S1 pSAU PIYsSnESUN Suo pue ‘paddedipury oY) 10J §[00}
Suidojaaap sdnoif Jay10 oI AUy SIUSWIWOS PUB SUOHSIND JO JaquInu B £Q PIMO]|0} SBAM Y[U1 §,U0Y

6L60-T9¢ (TOT)

TIETT BIWIBIA ‘BLIPURXDLY

1S peAISIUIY 719

suonsun pajewoIny
*000'$$ n0qe 10j ‘speuiuiI (o0E LYIA Bules
pue Fuidojeasp st yoym Ausdwod © st 9JAY]L) 3ulOp 3aq PNOYS P{noys ANSNpui puB jURAULIA0E
*A)ISIPAIUN pUB ‘3UO 01 SS90 USAIF 8q pINOYS WISAS B UonS asn uBd oym uosiad puyq Auz 1eyj
ABuons sj99) 9 uN0ds USYM pUBISISPUN O] PIBY UDJO SI 2p0d SIPwweIZod JaylQ "Poud spunos,
YaIym Ip0d BunLiM UO $IIBNUIDUOI Y 1BYI PAIBIIPUI PUB ‘SUONIBISILI [BIIdAL Swios jo odB) B padeld uoy

“ANn2iquie proas 03 A1oydxs aI0W SjUIWALR
Sunwrwesgord jussaud [im pus ‘suswWRIES SujuwesSosd SPUBISIOPUR I Yoiym Ul Spow B iy3ne)

0861 *1 49487 uef. Japnog ut S3UNOW XINTISN % SI00L s1emyjog

-1T-

u23q sey 3] -yderdered 10 ‘dul] ‘pIoM ‘Bwn B JB IIOBIBYD ¥ I3YNG 01 135 I UBD JIUN YL "IXAIU0D
3Y) uo Jurpuadsp ‘jjom se A1za sapow indinQ ‘1xa) Jo syunowse afie| BulrAU J0j pasn i indut uo oyda
OU 3fIYym ‘SISN [BLLIOU SBY AW B Je plopy (Sununy) inoke| pieogAsy Uj SUOHBLIEA JUILLINSP 0 pur
‘020 10§ posn 3G.ued apow Indul SR B 18 A3 UQ 'SSPOW JO A13LIRA B UL | YHA 91e1ad0 ued Jasn ay}

‘uoneINdYuod
alempley Syl yim jou Inq ‘WdM 00 St {808 siy einurw Jod spiom (01-06 Inoge 18 Furuuni
JUN Y1 SBY UOY "19ZISIYIUAS 9010A XYV U.LOA oBUS O1pey B Fuisn udyods pue ‘parsyng st uonewiIoju]
‘SIQLNG 10 WYY JO gXp snid ‘eamjxaiul Jasn pue (Sanbiuyssl s A0J[[o 19yje) uonelounuoid jo sajni
a4y 10§ WOMJ jO X9 SPIOY 1] °[BUILIS) PIRDUE)S pue 150§ U23amIaq aul] 411 2y uo paoseid st yoIym
un paseq-0808 Ue SI LYIA "(IBUlMIDL [BQYTA) LYTA PRJBd ‘[eujua) 1ndino 9010A umo siy dojeasp
01 1IN0 195 UOY "3IMIBU [BIIHRYOSW JOY) 01 onp ‘A3[iqBI[A1 MO] WIOL] JagNs S[BUILLISY Jf{1viq ‘S1dindwod
SN 0} suosIad puyq Joj sjooy aienbape apiaoid 0) 394 pey Ansnpul ‘0de jiey B pubk Jeak B Jnoqy

uoneISIUIWPY Judwasiojug Snic
PIOHOI °V pleuoy

s1awmuisidorg pullg Ioj [vujwaf Supyvadg ‘ 1y sadg

XINQ 01 9pewi Sey oY S,pOW 9Y) IN0 Puss 0} pasIse wWoJ

"fidap
[210) 1311 umop AemiJed 1S3191UL JO BIIB UB O} SH[NOIOUI AY) JO M3IA B 1ILUI] 01 JOSN B} MO[[R YoIym
*soueld Jurddyjd uok puw 1Py suioddns asemprey syJ, CA[BdUISWINU PUR ‘Sauy] paysep se A[SNONUNUOI
Av[dsip aIB 4oiym ‘SSOUB)SID PuOGq JIB[NISjOULISIUI SY1 AJg[Nd[Ed 0] AdUO pue ‘y Aedsip 01 JduO
‘901M) dlemprsy XBw 3y y3no1yy passed St BIBp 10399A (J€ 941 18Y) PIIEIIpUl WO, 'S91qeq dinjewaid
JO sunwan Syl ul pasn aq YBuu se ‘duowioy Ymosd Iojjews v A1ed o) pasn Jurpq omosjowr
yJodsury) 98ie] B 919m OwSp oY) Ul psjpusy Juieq so[noajows Jenonded oyl "asn Uy S[O0} SANIBISIUI
19yt Juimoys ‘uonels Aejdsip 119yl Jo 208) SY1 Jo I1yImas opeil A9yl yolym Wiy v Pausaios wol

*$a]y snonFnuod mey duisn ‘Q/] 1sed

*$19}19[SMIU JAP[O Y} jO SUO UI PIJUSWNIOP USSq SBY pue ‘10553201d (/11 9Y) O) POUW B SIA[OAU]

siy] ‘sweidosd doeds (Iap] 9leiedas wIyiM Sjudwndie sujnoIgns JO Jaquinu 9qRUIBA B J0] oddng
‘poInpayas 2q 03 sp3au doxd awn-[Ba1 3y ugym ajqudws-a1d aq 03 sB

05 Pa3uBYyd I8 2100AW I S3[npow [suley Buo| pue ‘(pud Yy Sy 18 L1qeiajeid) 21C Ul padydo] st 301d
Ayl ‘SiY1 Op O °95B) 1SIOM SW(T ‘9FeI2AR SWC SI 1 MON 'SWQZT JO 958D ISI0M B IIM ‘SWU Op-0f Sem dn
90Jd QU0 S[Y) 3xem O} dum SF8IAAR ‘S powW aY) 210Jag 'SS9201d Swil)-jeal suo 1oddns 03 SUOHEIYIPOA
*+000'05§ 3unsos

" wasks Bupum-ayons ‘uonensuad-weaq 8 ‘7 WIISAG aImdld ST ot Joj afexyord sunnoiqn: soiydesd v

opujoul §1J0[9 959y} oddns yoym §j003 oyioads ay [,

"HdVYODIS WOV 3yt jJo uoneonygnd e ¢ soiydern) 19indwio)), [Buinof syj Jo anssy Jojuim
Y1 Ul PUNOJ 3q UBD NIOM JIAY) JO Sma(-selejBwl Buijjopow Jo suo} anbol pinom spapow [edisAyd
Yia ysel Swes sy wioprad 0 'SWMB [BUPIAIPUL (0001 BUIUIBIUOI E[9POW JBINIIOW YilM 1DBITIUY
UBD SIBYDIRSSSI YdIym AQ Suedwl B sopiacid quj soiydess Joindwiod ayy ‘sanssy UBWINY Yiim SO[NIBOW
x9[duwod j6 uoHdRIAUL SY) JO SuIpuLRISISpPUN SWOS saXNbar WOYo SIY], ‘sSnIp mau Jo A1oAoosip oiduis
sovdas uwd adoy A3y yoma ‘udisap SnIp [BUONEBI O YdIBasal Joddns O} Papudul §i YIOM SWOL

00SI5UBI,] UG 18 BILIOJI[ED) JO ANSIOAIUN)
ULI9,] WOy,

ABojodswirey q uy sopydeis) aapIuiain] . OF Joxsadg

0861 ‘I q24--87 usf Jopinog ut s3upOO XINHSN ¥ SI00L Siemyos

AUUGN

22

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

Speaker 44 ’ Putting up UNIX when you don’t know much

Robert A. Morris
University of Massachusetts, Boston

Robert presented a brief history of the evolution of his new UNIX system. His conclusions were that
new sites should seek some help from within the UNIX community, and that having a friendly site
which will make a bootable copy of your system media is a big help. :

Specker 45 STDPLT: A Device-Independent Plotting Package

John Nickolls

Ampex Corp.)

John described an output-oriented device-independent plotting subroutine package which they have
developed. The package will be on the upcoming 4th distribution tape.

Speaker 46 Two LSI Layout Tools

Robert Mathews
Ampex Corp.

Bob described tools they have developed for LSI layout design, which relate well to courses based on
the book ’Introduction to VLSI Systems’, by Mead and Conway (Addison-Wesley 1980). The user
passes layout commands from RATCIF through CIF to a plotting routine called PEN, which draws the
layouts. Different dot patterns are used to display rectangular regions at various layers in an LSI circuit;
these stipple patterns are chosen so that even when overlayed, it is possible to identify underlying
layers. The system produces raster output, and can be used with Gould and Versatec plotters.

Speaker 47 SCANARGS: A C d-line Arg S

Gary Newman
Ampex Corp.

In the collection of tools in the UNIX system, there exist a number of different conventions for the
expression and parsing of command arguments. The motivation for the SCANARGS subroutine which
Gary has developed is to improve the human interface to these tools by encouraging uniformity of
argument syntax, while allowing clean recovery from errors in argument lists, and allowing this code to
be shared. Thus, ’usage: ..." messages will be handled automatically from the format description passed
to scanargs().

The subroutine call looks like:

scanargs (argc,argv, format[,pointer]...);
where elements in the format are similar to those in printf and scanf. The usual *%" character indicates
that an argument is optional, while using ’!’ indicates a required argument. For example, the syntax for
diff is

diff [-b] -{efh] file] file2
for which the call to scanargs would be:

-29 .

Software Tools & USENIX Meetings in Boulder Jan 28--Feb 1, 1980

scanargs (arge,argv,"diff b%- efh%- filel!s file2!s",
&blanks,&flags,&filel &file2);
Briefly, this means b is an optionsl flag to be stored in blanks, a second set of up to 3 optional flags
should be stored in flags, and the file names (required) should be stored in two string areas.

This facility is based on STDIO, and will be on the 4th distribution tape. Dennis Ritchie commented
that there is a similar package in use at Bell Labs, and agreed that this is an important area of
discussion, which will be continued in the Newsletter.

Speaker 48 Black Holes in UNIX Filesystems

Joe Yae
Science Applications Inc.

Joe described a situation he encountered on his system, in which a directory had grown in size to the
point where its size had overflowed. Thus it has reached ’critical mass’, and files placed in it simply
disappeared. His attempts to find or remove the collection of files in that directory failed, although the

filesystem space was indeed allocated. Rather than take the system down long enough to paich the

problem, he decided to try to to patch it online -- which he did successfully. His talk led to an

animated discussion of a variety of similar situations which can arise, and how they should be .

controlled.

Speaker 49 Invitation to Join an Informal International UNIX Network

James Ellis
Duke University

People at Duke, and at the University of North Carolina, Chapell Hill, are forming an informal UNIX
net, in which they are inviting participation. It will, at least initially, be based upon the uucp code from
V7, plus modified mail and news programs. The architecture of the network was not spelled out,
although it would appear that it will initially be a star, with Duke at the center. For information,
contact:

James Ellis

Dept. of Computer Science

Duke University

Durham, NC 27706

: (919) 684-3048

Speaker 50 Disc Scheduling AND V7 on & Z8000

John Bass
Onyx Systems

There are at least four general techniques which can be applied to disc scheduling in disc drivers: FIFO,
sort the requests in the IN direction, sort them in the QUT direction, and sort them in IN and OUT,
depending which way the disc heads are moving. John suggested that read-ahead will work well only
with IN ordering, and that IN ordering is preferable for that reason. The norm in UNIX drivers is IN
and OUT ordering.

-30-

AUUGN

H
i
t
i
|

- 1€~

Pa4nbal Som UOISSIS ADpINIDS OU 1DY] Ui} 1034102 3Y] 0} YSNOUS 2SO UMD SUOJSSIS Iy

‘umouy 194 jou s1 a01d sy yInoyye ‘soqidwon) siyy
BupoxIsw aq [im 4341, 00089 SY} UO SPUOIIS ['G PUB ‘SBIAQ HI] H00} ‘Sp/] UB UO SPUOIBS ¢'p PUB
‘5914 96 3001 YoIym D uj wesdoid 153y v "aoeds ssaIppe 11q z¢ B suoddns 51 asnedaq ed ur ‘00089
oYy s19g01d S3prRYD ‘0008Z AUl PUB OGSO 9YI JO SILGW SANBISI SY) 0] §8 UOHSIND 2MWOS ‘AsINOD
Jo ‘st aisy] -I0|quassE (089 PUBISUISND JO ANSIGAIU() Oyl UO Daseq Si IOJGUISSSE At ‘00089
oy 01 sojidwod 5 YAy oY) Pa,od 2ABY APyl pu ‘Paseq QOOSYIN PUB QS9N 9IB 9SAYL 919
XML UM 95N JOJ S[BUIWIS; PISEQ 10552003d0IW JO JuawdO[aASp oy Ul Ajurewid PRA[OAUL §i [BRI3DIS

*2U] [BaIAPIS
Biagsioy sapeyy

00089 33 o D . 1§ Iosadg

‘Ao Y UO SIv sjUBWAAOIdWI [eroyduiad
Put “000'0Z$ iNOQE 10j JGB[IEAR 5q PINOYS SWalsAs Iask aBulg ‘AIpulq (A Ot} Joj 0057§ ‘aulyoew ay)
40§ 00L'1T$ 18 *2SIP GINOT Y ‘wdisAs 1asn g U U0 Alowsw ulew gyz[s sleddns mou 1 "uonedidde
3y} uo Bulpuadap ‘gz snufw Jo snid ‘podY PUR [[ZA Yim Sp/11 ue 01 3jquiedwod aq Aew
psads sif jey) sise83ns O '[0Q0D puB ‘Ofseg ‘MO ‘[8oseqd ‘O 10j 510553001 23endus| snyd ‘esudd)f
AlBulq © yiim 9[qe[eAB SI 1] XINM LA SUDI YOIYM WISAS 0008Z do1 21q®; v padojaasp sey xAuQ

0861 ‘1 994--87 uef , Japnog ui s3unOd XINFSN % 51001 2Iem)jos

AUUGN

24

UNIYX Perfarmance
An Iptraspection

David A. Mosher

. Ampex Corporation
401 Broadway MS 3-59
Redwood City, CA 94063

ABSTRACT

This paper presents models and reasons for
native UNIX performance. Some figures are glven
for real systems. Some improvements are men<
tioned, The purpose of this paper is to give in-

.stallations a tool for evaluating the performance

of their systems and sufficient information to
know when their system has reached full capacity.

The results presented in this paper are LCtased on

years of analysis of the UNIX systems at the
University of California at Berkeley. These
results are generally applicable though the order
of importance may change.

25

Intraoduceicn

To begin with, I feel that {s important to observe that
there seem to be two different definitions ¢of ‘°*time shar-
ing‘?. One definition implies that time sharing 1s the
sharing of resources by users which would otherwise not be
fully utilized by a single user. The other definition ia-
plies only that resources are shared regardless of whether
the resource 1s already fully utilized,

The consequences of adopting either of these defini-
tions will become clear in the pages ahead.

Parfarmance

Performance can be measured In terms of 1I/0, swap,
comutation, and overhead, 1/0 is defined as the amount of
blocks tranferred to and from the £file system i.e. exec
blocks and blocks read or written by the user. Swap is de-
fined as the amount of movement of processes in and out of

- main memory. Computation is defined as the amount of cen-

tral processing time being used by the user communitye.
Overhead is defined as the amount of central proce551nq time
being used by the operating system.

In the following sections, the four areas of perfor=-
mance will be looked at in-=depth, -

. Sxan

Excessive swapping degrades a system more quickly than
any other area of performance presented in this paper. This
is tae reason for discussing swapping first.

There are three basic levels of swapping. The first
and easiest case to look at is no swapping. If processes
are not belng swapped in and out of main memory then
processes eXxecute at the speed of the memory and are
governed by the scheduling of the central processing unict.
Thus, a performance curve (execution time of a single pro-
cess. versus the number of simultaneously executable
processes) would be a linear increase in time as the number
of simultaneously executable processes increases,

The next level of swapping {s sometimes resferred to as
easy swaps. (An easy swap 1s when a sleeping process can be
swapped out and an executable process can be brought in.) At
this level of swaoping, the cost of a swap (e.g. the time to
reload a process into main memory) grows frem small to a
large factor in comparison to the process’s life time. As

the number of swaps per time period increases, the cost to

each process grows as the silze of the process times some
factor over the execution time allowed hetween swaps.

26 A AmmN

TR

A few typical numbers for the factor mentioned above
are given below: ’

RS04 4.0 + 0.66 = 4.66
RMO3 1.6 + 1.16 = 2.76
RPO6 2.5 + 1.16 = 3.66

All numbers are in microseconds
(.

2 The first number is the typical tranfer time ©f a word
from these disk systems to main memory. The second number
is typical arm movement latency and rotational delay calcu-
lated on a per word transferred basis. '

In general, the number of swaps in a time period will
be a function o0of the numper of simultaneously @Xxecutable
processes.

_ Thus, the performance curve . changes slowly £rom the

slow rising line of simply sharing the central pracessor to-
wards a rapidly rising line governed by the factwrs shown
~ above, ' ‘)

At some point as the number of simultaneously execut=-
able processes increases, there will be no sleepimg process
in main memory to throw out, So executable process will
have to be thrown out of maln memory to allow other execut=-
able processes a chance to be swapped into main memory.
This is sometimes referred to as hard swapoing.

, Since processes are guaranteed to te in maln memory for

a certaln amount of time, once in, there will be a limit to
the numper of swaps per time interval. Thus, performance at
this level again depends linearly on the numper of simule-
taneously executable processes but at a much accelerated
rate, ‘ :

Mathematically, these levels can be viewed as the fol-
lowing equation: '

Time = (factor * size) ¥ swaps(N) + (execuition time)*N
where N is the number of simultaneously executable processes

swaps(N) = ((n>MAX ? (1-MAX/n) : 0)
+ (N>MAX ? (1=N/MAX) ¢ 0)) * U

where MAX is the maximum number of precesses in main memoiy.
where U Is the characteristic usage of the system
and where n 13 the number of processes

AUUGN ’ ’ 27

-

of this equation. The two lines in this figure represent
the assumtotoes to the expected performance curve,

——— e mm e B an—oe ssVo cw e . e — C et me mmecmaemnm e

EXECUTION TIME FOR PROCESSES
iN AND OUT OF MAIN MEMORY :

IN AND QUT
OF MAIN MEMORY

TIME

OUT OF MAIN
" MEMORY

A MALIMUM 2
IN MAIN MEMORY

OF PROCESSES SIMULTANEOUSLY ACTIVE

AMPEX

Figure 1

A few ekamples at this point will hel> Lo' clarify the
issue of swap performance and show validity to the models

and reasons given above. Below is a performance curve for a

UNIX system running on a PDP 11/70 with a RS04 fixed head

disk for swappling and another RS04 faor the root file system..

Both of these drives are on the Massbus. The user file sys=
tens are on several. Cal. Comp Model 615 drives. These drives

are on the Unibus. This system has 72 ports of which 38 are
publicly available and 8 are dial up ports. The rest ot the
ports are used privately.

e . - ——— L ————— e ————— . —n @ i e el tmem . 4w G - eta Mams wmm 2 eme mew -

1 - EXECUTION TIME BEFQRE
100 _ -ADDITION OF MEMORY. . ..
o ' 20 ' 4 ' e
USERS L
Figure 2

As can be seen above, the model described for swap per-
formance fits this performance curve fairly well., After
these measurements were taken, the system nad a major addi-

tion to 1ts capability. The system had previously been

equipped with only 512k bytes of main memory. An additional
megacyte of main memory was added to this system, The acdi-

_ AuUGy

2

e e
. B

tion tripled the amount of memory available for user
processes, Below s the performance curve for this system
after the addition.

N e Sy
. 1~ EXECUTION TIME AFTER
 ADDITION OF MEMORY _ .

= ERE ‘.
secs | . T Co
e feoms 7T

) b | ! | -
0 20 ' 40 60
| _ USRS T
Q Figure 3

There are two important differences between these -pers
formance curves “hat should be noted., The swap degradation
has vanished. Measurements of this system showed that GCte-
fore the additon of memory, the swap scheduler was running
100% of the time at maximum user load. (Note that load was
a function Of what users were willing to put up with as far

as response time was concerned,) After the addition of
memory, measurements showed that the swap scheduler was run-
ning less than 10% ¢f the time, This activity <an be ex-
plained by the movement of shared text from the swap disk to

- main memory.

The other difference to note is that the performance
curve has moved down along the time axis in £figure 3 even
though the slope remained the same. This change is due to

-the fact that the new memory was almost twice as f£ast as the

0ld memory.

Even though the PDP 11/70 has a cache, the increase in

the speed of the main memory had a number of effects., Cache
misses take less time. Direct memory accesses take 1less
time to complete, The central processor could get more
memory cycles between direct memory accesses,

The left side of the performance curves of figures 2
and 3 start out tecgether. The reason for this similarity is
due to file system performance, (File system performance

. #ill be discussed shortly.)

. From these twc examples, we can see that the amount of
main memory and the speed ¢f the main memory are very impor=-
tant to system performance,

Even though these figures are based on the characteris-
tics of the users of this system, the meodel still applies to
any system. Also remember that the performance curve will
be pushed up the time axis by a factor of two approximately
for systems without a cache.

: In general, the amount of main memory for best perfor-
mance 1s- the number of simultaneous users (the number of
ports 1is adequate) times the average size of a process plus
the size of the operating system (2 number to start with s
32K bytes per process).

In closing, I would like to share two other pieces of
information. ‘

If you are not fortunate enougqh to have ernough memory

for your user load, you may wisn teo look closely at the al-
gorithm for the swap scheduler. This algorithm has the ugly
teature of allowing small processes to stay in main memory
alnost indefinitely. These small processes will have the
tendency to fragment main memory and cause & less of avail-
able memory for user processes. This ugly feature c¢an be
partially corrected by adding in the time a process has teen
in main memory times a factor (8 is fine) to the size of a

process during the determination of the largest prccesses

that can be easily swapped out.

AUUGN) ‘ 31

Measurements of memory fragmentation show that 10 per=
cent of the memory is lost to fragmentation anyway.

The question of a fixed head disk versus a moving head
disk for swapping is commonly asked. Let me answer this
question with the following measured facts. I have yet to
see a moving head disk drive transfer continuously at a rate
above 100 blocks per second when used as a swap device,

I have seen a f£ixed head disk (of a similar transfer
speed) transfer contlinuously at 500 blocks per second when
used as a swap device. The only conclusion I can draw from
these measurements is that any seekling destroys system per-
formance, - S

In conclusion, I would say from my. measurements that
‘swapping should be avolded for good performance, :

c e Te . R @ n e

. LIFE OF A PROCESS

-COMPUTE

e CACHE
® OVERHEAD

‘ © SCHEDULING
FORK EXEC _ EXIT

® BUFFER CACHE
@ FILE SYSTEM
® READ AHEAD

1/0

© READ AHEAD
® FILE SYSTEM

Figure 4

32 - 4 . AUUGN

lUser Defined Berfarmancs

A proper perspective on computation and file systesm ac-
tivity 1s needed before considering performance effects in
thes2 areas., The following discussion and figure should
provide an adequate perspective. '

Let us for a moment consider the 11ife of a process.
Birth usually begins by a fork system, Since forks depend
upon memory: space or swapping, the speed of a fork is deter-
mined by swapping activity. A fork 1is usually followed by an
*exec’ system call. An exec loads the image far a, process
elther totally from the file system or partially from the
swap disk '‘and partially from the file system. Beyond this
point, the life of a process is determined by the user, The
user may or may not read and/or write data in the file sys-
tem, The user may or may not do a considerable amount of
processing. Hopefully at some point, the process will exit
via one method or anotner.

As tan be seen from figure 4 above, we must look at -

exec’s as well as user file system activity to see the whole
picture on file system activity.

Ells Systenm

The first file system activity from & process will be a
path searche. The basic file system activity during this
search s seeking between the storage location of the inodes
and the storage location c¢f the blocks that make up the en-
tries of a directory., This search takes more time as the
file system grows in depth and bulk.

Path searching may be dcone rarely but it 1is expensive
in its use of the disk system, Searching is sped up by have
ing the directory inodes already in the 1inode <cache, The
directory may already be in tne inode cache 1f more than one
process is using it.

The probability that a directory inode is in the 1inode
cache 1s small due to the rarity of searches except if the
directory 1is the current directory.

‘ To improve on patn searching performance, a numbesr of
approaches have been tried with varying success. 0Cne ap=
proach 1is to open directorles used frequently by & program

like ‘init’, Another approach is to have the ‘set user id’
bit mean that the inode is to be locked in the 1inode cache

on f£irst use until the device is unmounted.

Measurements of directory inode activity show that 50

percent or more of all activity is through /, /bin, /lit,-

/dev, and /tmp and only S0 percent or less 1is through the
rest of the file systems,

_...AUUGN _ : , e - I L33

B ?W?;«E
¥ i

w 10 -

These solutions are not elegant but do providec some im=-
provement in file system performance. The inode caching al-
gorithm itself may need to be improved 1f a more elegant
solution is desired.

Once the exec has the file from which the image s to
pe loaded, there are two possibllities, Either all or part
of the image is read from the file system. If part of the
image is loaded from the swap disk, the speed at which it is
loaded is determined by swap activity.

How quickly the 1image 1loads from the file system
depends on its linearity and the effectiveness of the read-
ahead. The linearity of the Image s dependent upon the
linearity of the free list of that file system and the speed
at wnich the free 5locKs are used,

Only in version 7 has anything been done in this area
to ensure linearity on a dynamic basis. Jccasionally for
version 6 systems, static but very active £file systems
" should be dumped and restored on a freshly made f£ile system
to improve the linearity of files commanly used.

The effectiveness of the read-wahead 1Iin UNIX systems
depends on the buffer cache performance. Specifically. the
number of buffers versus the number - of users Joverns the
read=ahead effectiveness, In order for read-ahead to be ef~-
fective, there must pe two buffers avallable: one for the
currently needed block and one for the read-ahead block. In
fact, if insufficient buffers are avallable, an attempt to
do read-ahead may delay the currently needed block from be=-
ing read in. This relationship between the number of
buffers and the number of users doing file system activity
is 1llustrated belowe.

34 :) AUUGN

£

- 1] =

. e vmam. & s e e

READ AHEAD PERFORMANCS

TIME

o :
| NO. OF BUFFER
112 NO. OF BUFFER
NO. GF 1/0 ACTIVE PROCESSES

Fldure 5

, As a rule of thumb, the number of buffers a systenm
needs is twice the number of simultaneous users to guarantee
effe=tive use of the read-ahead and good file system pasrfor-

Note that all of the abcve also applies to user f£file
systenm activitye. -

Buffer Cache EBraohlem

The loading of an image during an exec system call un-
fortunately has a negative effect on user file system per-
formance.

In original version 6 systems, the image being 1loaded
would cause every buffer to be uUsed because the buffers were
put on the end of the buffer free list, Thus, any partial
file system activity by other processes will be flushed from
the buyffer cache., Read ahead blocks for other processes are
also flushed out as well.

This problem may have been fixed in version 7 though
the solution chosen needs further investigation. The main
{dea of a solution is to put buffers unlikelv o be used
again at the beginning of the buffer free list. Detinition
0of unlikely is usually based on the same assumptions that
read &ahead i3, Thus, a buffer whose contents has been read

or written to a block boundary is assumed not to be used in -

the near future, V
. AUUGN - o ‘ . , o 35

1% £

i

® 12 =

.To get a feeling for file system performance, let me
throw out a few figures. ‘ :

~ Measurements show that only 1.5 to (.6 blocks are
transferred per seek. This measurement coincides with the
hit rate on the buffer cache of 50 to 66 percent. These
measurements might mean that the only other block read
petween seeks is its read-ahead block, if that.

Obviously since blocks per seek {s small, the time per
seek becomes Iimportant. A typlical time appears to be 20
milliseconds., These measurements are supported by the fact
that £ile system activity only amounts to 10 to 20 blocks
per second maximum. This rate is in contrast to 100 blocks
per second for moving head s«#ap devices == a factor of 10.

There are a few other ideas for Iimprovements in this
area I would like to comment on below,

The question has been asked {f the root or tmp might be
gpetter o0ff placed in main memory as a special f£ile. This
idea is only reasonable {if there is more memory available
above and beyond what is needed for processes to run without
excessive swapping and if there is lots of central process=
ing time to waste. ~ There Is so little processing time
available on most systems that this improvement is only
feasible for special purpose systems.

Another improvement o accommodate more buffers 1is to

overlay osuffer space or move the buffers totally ocut of kKer=
nel main memory. Here again, it is important that there be
no loss of main memory available for user processes. QOver=
laving buffer space is not expensive as far as central pro-
cessing time but this scheme is yet unimplemented. " Moving
the buffer space totally out of main merory will <cost con-
siderable amount of central processing time or delay in pro-
cessing interrupts.

In conclusion, I would like to suggest that systems
should £it on suitable hardware rather than playing games to
make it fit on a smaller machine, Good vperformance will
only come from a system with proper hardware,

1 =9

A user may use as little or as much central processing
time as may be needed. Obviously, central processing tinme
can be used 100 percent of the time by .-a process whicn Jjust
loops forever, The main objective in this area of perfor=
mance is to share the central processing unit fairly. The
guestion 1is what is fair and what will fairness cost in the
arsa of operating systam overhead,

Even to consider scheduling the central processing unit
36 | . . o Auue

- 13 =

tairly, some mechanism is needed to interrupt the process
which has been using the central processor. Rescheduling is
currently requested during clock interrupts =-- once a second
== and during interrupts for completion of transfers by dev-
ices. Rescheduling is not done unless this interruption oc-
curs while the user process is running., Thus, the percentage
of time the system is in user mode is Iimportant to how often
the central processor is rescheduled.

Mathematically, the probability of reachedmling is the
product o©of the probablility that the system is in user mode
and the probability that a request for rescheduling is pend=-
ing. .

P(reschedule) = P(user) ¥ P(reguest)

For now, let us harshly consider rescheduling prooabil=-
ity as a measure of fairness, Then fairness should increase
1f the amount of ‘user time’ availakle is increased or |if
the number of requests Is increased, In the first case,
user time is gained by reduction of operating system over=
‘head.,- Thus, any solution which increases ocwverhead is of
marginal, if any, benefit. In the second case, there are
two ways to increase the number of requests for reschedul-

ing. One way to increase requests 1is to increase the aumber:

of completion of devices somehow. This approach increases
operating system overhead so it is rejected as a solution.
The second way is to increase the number of rescheduling re-
quests generated by the clock interrupt. Since the clock
interrupts sixty times a second, rescheduling requests can
be done more often than once a sSecond. The overhead here is
nominal since the state of the process has already been
saved and context switching is relatively inexpensive.

In general, measurements show that most systems spend
about 50 percent of its time running user processes and 50
percent of its time doing operating system work. This means
that rescheduling can only happen S0 percent of the time at
most. Measurements show that rescheduling £s reguested
‘about 10 to 20 percent of the time at most.

In fact, clock Interrupts can only make rTescheduling
reJuests 1 percent of the time; disk request completions can
only make rescheduling requests 33 percent of the time, and
terminal 1/0 completion can only make rescheduling rejguests
66 percent of the time,

In ctonclusion, I see the best way to imorove ‘‘fair-
ness’’ in sharing the central processor is by increasing the
number of requests for rescheduling via the clock interrupt.
I have experimented in this area., I have tried twice a
sezond and ten times a second, Subjectively, thers sea2ms to
be better response time when competing witn compute bound

Auuen | | : | . .

E——

Querhead

- 14 -

jobs. I might suggest that the number of context switches
per second depend on the percentage of user time available.

If a reason is necessary for such improvements then
consider the following. Rescheduling of the central proces=
sor because of device completion is based on the priority of
the previous operating system interactions. The clock in-
terrupt provides a convient place to sample priorities of
the users and rotate the gueue 0f equal priority processes.

Operating system overhead can be usually 1improved b©y
optinization of code frequently used. Profiling a system {is
an excellent way to determine which code is freguently exe-
cuted., Interrupts and system calls are invariably heavily
used because they are the start of most transactions that
take place in the operating system,

~ Measurements at Unlversity of California at San Fran-
cisco showed that system calls take at minimum of 320 mi-
croseconds. Thus, the more system calls done; the more

-overnead incurred. To reduce overhead, system calls should

be done as infrequently as possible. Terminal i/0 is usual-
ly a sore point for the number of system calls,

Interrupts affect system overhead in several ways. In-
terrupts bklock out other interruots at this level and lower,
Interrupts steal central processing cycles. To reduce sys-
tem overhead in this area, the number of interrupts as well
as the duration of the interrupts must bte reduced. The
number of interrupts depends on the mode 0f transfer and the
reason for the interrupts. Terminal i/0 is the most fre-
quent Interruct In most systems, The number of interrupts
can be reduced by FIFO‘’ing the data in bursts or using
direct memory access devices, A common reason £or high sys-
tem overhead {s unterminated 1l1ines and nolise, Login
processes: can create a feedbacKk lcop with open lines and
cause continuous interrupts.

Measurements of terminal i/0 shows that S0 percent of
all transfers are output and only 10 percent are input,
Thus optimization in the area of terminal output may reduce
system overhead. One approach to improving character by
character output is called ‘*‘*pseudoc dma’‘’. The idea here is
to simulate tne direct memory access device. 1In other
words, each terminal has a pointer to some storage space and
the number of characters at this location. This metnod pro-
vides a guick way to get the character to be outputted and
return from interrupt.

Most interrupts can be handled simecly and usually do a

wake up of some process, The wake up 1tself becomes the
chief expense of the interrust. Wake ups 3are expensive be=
38 ' , i AUUGN

olS-

cause they do a linear search through the entire oprocess
table looking for appropriate processes to be put on the run
qu2u2, There are two aporoaches to reduciny the search
through tables. These optimization methods can be used
through the operating system. One approach is to keep track
of the 1last entry 1iIn the table and only search this far.
This approach will have a large effect {f only a small opor=
tion of the table is used.

The second approach is to drop table searches and use
queues, Measurements show that most of the time only a sin-
gle process is wailting on an event, These results support
the idea of using gqueues., [have not heard of or implement=-
ed myself this scheme but it might be wortn tryinge.

Another area of system overheacd is copying data from
user space to KkKernel space or kernel space to user space.

These coples are expensive operations. During these copies

interrupts are not allowed. Interrupts can ke allowed in
this section of code it the supervisor req1<ters are not al=
tered durinq any interrunt.

Tnere are a number of improvements that can be made to
the operating system to reduce overhead. Eacnh improvament,
ot course, will have a varying amount of recuction of over-
head dependlnq on how the system is used.

In closing this section, let me say that a more sub-
stantial improvement <can be noted in all areas with in-
creasea memory speeds even though the relative percentage
may not cnange,

Canclusian

In closing, let me say that the tasic crinciples of
good performance have been around for a while, The reason
it may seem new is that we have been exploring in new areas
"and nave let past experience in this matter slip away. The
only surprizes in this paper may be the models and the £fig-
ures.,

I hope that UNIX installations will now upgrade there
perfornance to matzh the prilliance of the system under-=
neath,

Acknpouwledgenegnts

I would like to thank the following reople for sharing
tne results of their measurements or helring me collect in-
formation: Professor Fabry, University of Califcrnia at
Berkeley: Bob Kridle, University of California at Berkeley;
Tom Ferrin, University of California at San Francisco.

AUUGN ‘ s : 39

n‘é—

Irademarks

UNIX is a trademark of Bell Laboratories. pDP 11779,
RS04, RPO&, RM03, Unibus, and Massbus are trademarks of Di-
gital Equipment Clorporation.

Copying Privileges

This paper may be copied for intermal use by installa-
tion who received their original copy from the author. This
paper may not be published without authorization of the au-=
thor and Ampex.

40 A) AUUGN

ke

Design and Implementation of the
Berkeley Virtual Memory Extensions to the
UNIXT Operating System#

, E)zalp Babaoglu
. ; William Joy
Juan Porcar

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley '
. Berkeley, California 94720

ABSTRACT

This paper describes a modified version of the UNIX operating system that
supports virtual memory through demand paging. The particular implementa-
tion being described here is specific to the vAX*-11/780 computer system
although most of the design decisions have wider applicability.

The modified system creates a large virtual address space for user pro-

- grams while supporting the same user level interface as UNIX. The few new

system calls that have been introduced are primarily aimed for performance
enhancement. The paging system implements a variant of the global CLOCK
replacement policy (an approximation of the global least recently used algorithm)
with a working set like mechanism for the control of multiprogramming level.

Measurement results indicate that the lack of reference bits in the VAX
memory management hardware can be overcome at relatively little expense
through software detection. Also included are measurement results comparing
the virtual system performance to the swap based system performance under a
script driven load. :

" Keywords and phrases: UNIX, virtual memory, paging, operating systems, VAX.

- December 2, 1979

1 UNIX and UNIX/32V are Trademarks of Bell Laboratories

+ Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618 MCS
7407644-A03 and by an IBM Graduate Fellowship to the second author.

* VAX and PDP are trademarks of Digital Equipmem Corporation.

41

e —— T T W - U GG U N S et . P ' - . [—

Design and Implementation of the
Berkeley Virtual Memory Extensions to the
UNIXT Operating System#

‘ bza&a Babaogiu
. ‘ William Joy
Juan Porcar

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720

1. Introductien

The most significant architectural enhancement that the VAX-11/780 provides over its
predecessor, the PDP*-11, is the very large address space made available to user programs. The

 fundamental task of transporting UNIX to this new hardware was accomplished by Bell Labora-
- . tories at Holmdel. In addition to the portability directed changes, the memory management

mechanism of the base system was modified to make partial use of the new hardware. In par-
ticular, through these changes, processes could be scatter loaded into memory thus avoiding
main memory fragmentation, and swapped in and out of memory partially. A process, however,
still had to be fully loaded in order to execute. While no longer limited by the 16 bit address
space of the PDP-11, the per process address space could grow only as large as the physical
memory available to user processes. This system, which constituted a prerelease of UNIX/32vt,
was adopted as the basis for virtual memory extensions.

The virtual memory effort was motivated by several factors in our research environment:

To provide a very large virtual address space for user processes, in particular, Lisp sys-:
tems such as MACSYMA, and other systems employed in Image Prccessing and VLSI
design research.

To provide an easily accessible virtual memory environment suitable for research in the
fields of storage hierarchy performance evaluation and automatic program restructuring.

To try to improve overall system performance by making better use of our very limited
memory resource. ' . .

The reader should be familiar with the standard UNIX system as described in [RITC 74]
and the virtual memory concept in general [DENN 70]. In the next section, we briefly describe
the memory management hardware as it exists in the VAX-11/780 to support virtual memory
[DEC 78]. The following sections detail the new kernel operations including new system calls
followed by various measurement results. o

1 UNIX and UNIX/32V are Trademarks of Bell Laboratories
t Work supported by the National Science Foundation under grants MCS 7807291, MCS 7824618 MCS

7407644-A03 and hn an IBM Graduate Fpllnwch-n to the second aunthor.
* VAX and PDP are trademarks of Digital Equnpmem Corporation.

-2-

2. VAX-11/780 Memory Management Hardware

The VAX-11/780 memory management hardware s:'pports a two- leve! mapping mechanism
‘to perform the address translation task. The first le 2] page tables reside in system virtual
address space and map user page tables. These tables in turn, map the user virtual address
space which consists of 512 byte pages. The 32 bit virtual address space of the VAX-11/780 is
divided into four equal sized blocks.

0
. PO Region -
i
2%
1
P1 Region
' 23,1
Systemn Region
1 \
Reserved Region
2324 ; .

Fig. 2.1. Virtual address space

Two of these blocks, known as the PO and P1 regions, constitute the two per process segments.
The third block, known as the system region, contains the shared kernel virtual address space
while the fourth region is not supported by the current hardware. The PO segment starts at vir-
tual address 0 and can grow toward higher addresses. The P1 segment on the other hand, starts
at the top of user virtual address space and grows toward lower addresses. Both segments are
described by two per process (base, length) register pairs.

A page table entry consists of four bytes -of mapping and protection information.
Attempting a translation through a page table entry that has the valid bit off results in a Transla-
tion Not Valid Fault (i.e., a page fault). Whereas most architectures thai support virtual
memory provide a per page Reference Bit that is automatically set by the hardware when the
corresponding page is referenced to be examined and/or reset by the page replacement algo-
rithm, the VAX-11/780 has no such mechanism. In order to overcome this deficiency, we distin-
guish the three states that a page of virtual address space can be in:

[1] Valid — the page is in memory and valid. This corresponds to the valid, referenced state in
the presence of a reference bit. ‘

[2] Not valid but in memory — the page is in memory but the page table entry is marked not
valid so as to cause a page fault upon reference. This is the so called reclaimable state of
the page. Equivalent to the valid, not referenced state.

4
[31 "Not valid and not in memory — the page is in secondary storage. Equivalent to the not
valid state. '

This scheme in effect allows us to detect and record references to pages using software.
We discuss the cost and effectiveness of the method in §7.2.

43

4
|

3. Process Structure

In UNIX, the notion of a process and a computer execution environment are intimately
“related [THOM 78]. In fact, a process is the execution of this environment which consists of
the process virtual address space state, general register contents, open files, curr.at directory,
etc. The state of this pseudo computer is comprised of the contents of four seg nents. The
first three contain the process virtual address space, while the fourih segment describes the sys-
tem maintained state information.

The process virtual address space consists of a read only program text segment that is
shared amongst all processes that are currently executing the same program, as well as private
writable data and stack segments. Within the limited segmentation capability of the VAX-11/780,
these three segments are mapped such that the program text is in the PO region beginning at
virtual address 0 with the data immediately after it starting at the next page boundary. The
stack segment is mapped into the P1 region starting at the highest virtual address. While the
text segment has a static size, the data segment can be grown or shrunk through system calis

~ and the stack segment is grown automatically by the kernel upon the detection of segmentation
faults. :

The physica] structure of these segments in secondary storage (called an image) can be
organized in various ways. At one extreme is the physically contiguous organization described
simply by a (base, length) pair. While appropriate for static segments, such as text, this organi-
zation is too rigid for dynamically growing segments, like the data and stack segments. In addi-
tion to fragmentation, segment growth beyond the current allocation could imply physical
movement of the image. At the other extreme is a fully scattered organization of the image.

¢ ‘While minimizing fragmentation, this can result in expensive allocation and mapping functions
due to the large number of pages which are present in large images.

The image organization chosen for the dynamic segments represents a compromise
between the two extremes. Each image consists of several scattered chunks. An exponentially
increasing chunk allocation scheme allows the mapping of very large segments through a small
table. Limiting the maximum size of any chunk helps to prevent extreme fragmentation. Thus

in the current system, the smallest chunk allocated to a segment is 8K bytes, and chunk sizes |

increase by powers of two up toa maximum size of 2M bytes.

4. Kernuel Functions

We now describe the major new functions performed by the kernel as well as the existing
functions whose implementation have been significantly modified. For the purposes of future
discussion, we define the following terms:

Free List The doubly linked circular queue of page frames available for allocation. Alio-
cation is always from the head, while insertion occurs both at the head (for
pages which can no longer be needed) or the tail (for pages which might still
be reclaimed).

Loop Envision the set of physical page frames that are not in the free list as if they
: were arranged statically around the circumference of a circle. We refer to
these set of page frames, ordered by physical address, as the loop. Page frames

allocated to kernel code and data appear in neither the loop nor the free list.

Hand A pointer to a page frame that is in the loop. The hand is incremented circu-
larly around the loop by the pageout daemon as described below.

.. 4.1. Page Fau!t Handling

The most visible of the kernel changes is the existence of a Translation Not Valid fault
handler. Given the virtual address that caused the fault, the system checks to see if the page
in containing the virtual address is in the reclaimable state. This happens when the pageout

ciad

B

-4.-

daemon has swept past a page and made it reclaimable to simulate a reference bit (as described
below). If the page is in this state, it can once again be made valid, and the process returns to -
user mode. Note that if the reclaimed page was in the free list, it is removed and reenters the
loop. Since none of the operations involved in reclaiming a page can cause the process to block,

~ reclaiming a page does not involve a processor context switch and reschedule.

If the page cannot be reclaimed (i.e., is not no longer in core), then a page frame is allo-
cated and the disk transfer is initiated from the segment 1mage as dictated by the image map-
ping.

In reality, more cases must be considered. If the faulting page belongs to a shared text
segment, the disk transfer is initiated only if the page is not reclaimable and not intransit, i.e.,
the pagein operation has not already been initiated by another process that is sharing the text
segment. If intransit, the faulting process sleeps to be awoken by the process that started the
page transfer when it completes. Here we note that the first level page tables for shared text
segments are not shared, but rather, each process has its own copy.t Thus, all operations that
modify page table entries of shared text segments must insure that all existing copies are
updated.

Other types of page faults that require special handhng are those where the faulting page
is marked as fill on demand. There are three types of demand fili pages:

- Zero Fill These pages are created due to segment growth and result in a page of zeroes

when referenced.

. Text Fill These pages result from execution of demand-loaded programs, and cause the

corresponding page to be loaded at the point of first reference, from the
currently executing object file. Such object files are created by a spec1a1 direc-
tive to the loader and are described further in §5.3.,

.File Fill These pages are similar to text fill pages, but the pages come from a open file

rather than the current text image file. These pages are set up by the vread
system call. See section §5.2 for more details.

4 2 Page Write Back

During system initialization, just before the init process is created, the bootstrapping code
creates process 2 which is known as the pageout daemon. It is this process that actually imple-
ments the page replacement policy as well as writing back modified pages. The process leaves
its normal dormant state upon being woken up due to the memory free list size droppmg below
an upper threshold.

At this point, the daemon examines the page frame being pointed to by the hand. 1f the
page frame corresponds to a valid page, it is made reclaimable. Otherwise the page was
reclaimable, and it is freed, but remains reclaimable until it is removed from the free list and
allocated to another purpose. The hand is then incremented and the above steps are repeated
until either the free memory is above the upper threshold or the angular velocity of the hand
exceeds a bound.

The rate at which the daemon examines page frames increases linearly between the fref;

" memory upper threshold and lower threshold (these are tunable system parameters). In a

loaded system the hand will be moved around the loop two to three times a minute.

Upon encountering a reclaimable page that has been modified since it was last paged in,
the daemon must arrange for it to be written back before the page frame containing it can be
freed. To accomplish this, the daemon queues a descriptor of the /0 operation for the paging
device driver. Upon completion of the 1/0, the intc.rupt service routine inserts the descriptor

1 Sharing all user level page tables of shared segments would require a 641(byte alignment between the text
and data segments. This is not ¢ nnf‘nrnnd by the current loading scheme, so rnrrPnlIv these page tables are
not shared at all.

46

-5.

to the cleaned list for further processing by the daemon.) The daemon periodically empties the
cleaned list by freeing the page frames on it that have not been reclaimed in the meantime.

Note that as described above, this pageout process implements a variant of the global
CLOCK page replacement algorithm that is known as scheduled sweep [CORB 68, EAST 79].

4.3. Process Creation

In UNIX, every process comes into being through a fork system call whereby a copy of the
parent process is created and identified as the child. This involves the duplication of the
parent’s private segments (data and stack) and the system maintained state information (open
files, current directory, etc.).

Within a virtual memory environment including the pagein and pageout primitives
described above, the implementation of the fork system call is conceptually very simple. The
parent process copies its virtual address space to the child’s one page at a time. Note that this
may require faulting in the invalid portions of the parent’s address space. Since the VAX-11/780
meniory management mechanism can establish only one mapping at a time, the child’s address
space is actually created indirectly through the kernel virtual memory.

Although conceptually simple, the above scheme has undesirable system performance
consequences. Duplication of the pareni’s private segments generates a sharp and atypical con-
sumption of memory. Since a significant percentage of all forks serve only to create system
contexts to be passed to another process via the exec system call, the copying of the parent’s

¢ ,private segments is largely unnecessary. The vfork system call, described in §5.1, has been
- . introduced to provide an efficient way to create new system contexts within the current design.

4.4. Program Execution

The exec system call, whereby a process overlays its address space also has a simple
implementation. The process releases its current virtual memory resources and allocates new
ones as determined by the program being executed. Then, the program object file is simply

read into the process address space which has been initialized as zero fill on demand pages so as -

not to generate irrelevant paging from the process’ old image.
This implementation suffers from the same problems as the above fork implementation.

Initiation of very large programs is very slow, and results in system wide performance degrada-.

tion due to the loading of the entire program file in the virtual memory before execution com-
mences. A new loader format which allows demand paging from the program object file has

been designed to improve large program start up and to eliminate this non-demand situation
(see §5.3). :

4.5. Process Swapping .

Swapping a process out involves releasing the physical memory currently allocated to it
(called the resident sef) and writing back its modified pages to its image along with the system
maintained state information and page tables. Swapping a process in, on the other hand,
involves reading in its page tables and state information and resuming it. Note that as no pages
from the process address space are brought in, the process will have to fault them back in as
required. The alternative of swapping the resident set in and out is not implemented.

4.6. Swap Scheduling

When the amount of available free memory in the system cannot be maintained at a
minimal number of free pages by the pageout daemon, then the system invokes the swen
scheduler. In order to free memory, the swap scheduler will select a process which is resident
and swap it (completely) out. The scheduler prefers first to swap out processes which have
been blocked for a significant iength of time, and chooses the process which has been in such a
state the longest. If there are no such processes, and ‘. is therefore necessary to swap out a
process which is or has recently been active, the system chooses from among the remaining

AUUGN

5. New System. Facilities

-6-

processes the one which has been memory resident the longest.

In choosing an active process to swap out, the system checks to guarantee that the process
has had a minimal amount of time necessary to demand fault in the number of pages which it
had wh 1 it was last swapped out (based on maximum expected paging device throughput).
This ser es to guarantee a minimal amount of progress by a process €ach time it is swapped in.
When a process is forced out while it has many pages, it is given lower priority to return to the

“set of resident processes than ones which swapped with fewer pages or which are very small.

The swap-in mechanism also recognizes that processes which swapped out with many
pages, will need to fault in pages when they are brought in. The system therefore maintains a
notion of a global memory deficit, which is the expected short terma demand for memory from
processes recently brought in, based on the number of pages they were using when they
swapped out. The deficit is charged against the free memory availzble when deciding whether
to bring a process in. :

In general, this swap scheduling mechanism does not perform well under very heavy load.
The system performs much better when memory partitioning can be done by the page replace-
ment algorithm rather than the swap algorithm. If heavy swapping is to occur on moving head
devices, then better algorithms could be implemented. High speed specialized paging devices,
on the other hand, would suggest different algorithms based on migration.

4.7. Raw 1/0

In a virtual memory environment, handling input/output operations directly to/from pro-
cess address space without going through the system buffer cache requires special attention.

. The pages involved in the I/0O must be insured to be valid and locked for the duration of the

operation. This is accomplished through the virtual segment lockfunlock internal primitives.
Locking a virtual segment consists of locking pages that are already valid and

faulting/reclaiming invalid pages by simply touching them and refraining from unlocking the
. page frame (which is allocated in the locked state) after the pagein completion.

5.1. Process Creation

In order to allow efficient creation of new processes, a new system primitive vfork has
been implemented. After a vfork, the parent and its virtual memeory run in the child’s system
context, which may be manipulated as desired for the new image to be created. . When a exec is
executed in the child’s context, the virtual memory and parent thread of control are returned to
the parent’s context and a new thread of control and virtual memery are created for the child.
This mechanism allows a new context to be created without any copwing.

It should be noted that an implementation of fork using a Copy On Write mechanism
would be completely transparent and nearly as efficient as vfork. Swch a mechanism would rely
on more general sharing primitives and data structures than are present in the current version
of the system, so it has not been implemented.

5.2. Virtual Reading/Writing of Files

In order that efficient random access be permitted in a portable way to large data files, a
pair of new system calls has been added: vread and vwrite. These calls resemble the normal
UNIX read and write calls, but are potentially much more efficient for sparse and random access
to large data files. Vread does not cause all the data which is virtmally read to be immediately
transferred to the users address space. Rather, the data can be fetched as required by refer-
ences, at the systems discretion. At the point of the vread, the system merely computes the
disk block numbers of the corresponding pages and stores these in the page tables. Faulting in
a page from the file system is thus no more expensive than faulting in a page from the swap

47

-7-

device. In both cases all the mapping information is immediately available or can be easily

computed from incore information. Vwrite works with vread to allow efficient updating of

large data which is only partially accessed, by rewrmng to the file only those pages which have
T " been modified.

Downward compatibility wit non-virtual systems is achieved by the fact that read and
write calls have the same semant. s as vread and vwrite calls; only the efficiency is different.
Upward extensibility into a more general sharing scheme is also easy to provide, as vread can
be easily simulated by a mapping of the file into the address space with a copy-on-write
mechanism on the pages. Although the current mechanism does not share copies of the same
page if it is vread twice, the semantics of the system call do not prohibit such an implementa-
tion if used with a copy-on-write mechanism. Note that vwnte can also be simulated by a
map-out like mechamsm ~

5.3. New Loader Format

The same mechanism that is used to implement the vread system call is used to provide a
load format where the pages of the executable image are not pre-loaded, but rather initialized
on demand, with the page block numbers only being bound into the page tables at the point of
exec. The only change from the other UNIX load formats in this new format is the alignment of
data in the load file on a page boundary. Large processes using this format can begin execution
very quickly, with page faults causing reading from the executed file.

6. Perspective
c There are a number of facilities which have not been implemented in the first release of

the system as described here.

For example, there are plans to change the system to use 1024 byte disk blocks rather
than 512 byte blocks. It has been observed that in many cases the system is limited by the
number of disk transactions that can be made per second. Larger disk blocks will help improve
disk throughput. On machines with large real memories, using page-pairs in the paging system
will also reduce the overhead of the replacement algorithm and increase throughput to the pag
ing device. Since a page contains only 128 words, it does not provide a great deal of locality. h
is expected that using 1024 byte pages (in eﬂ"ecty) will not degrade the effective memory size
significantly.

Another problem associated with the small page size of the VAX architecture is the rate of
growth of user page tables.t For very large processes, this not only results in a significant
amount of real memory allocated to page tables, but also increases the system overhead in deal-
ing with them. Effectively supporting extremely large virtual address spaces will require han-
dling translation faults at the first level (.e., page table faults) whereby real memory for page
tables is allocated on demand.

The system changes as presented here are the result of approximately one man year of
“effort. The base system (a prerelease of UNIX/32v that was maintained as the production system
during the paging development) and the paged system consist of approximately 14800 and
16800 total source lines, respectively. The brake down of these numbers amongst the various
-types of source is presented in Table 6.1. Also presented is a comparison that excludes com-
ment lines from the source of the two systems.® We note that the actual number of lines
modified to obtain the paged system is considerably more than the simple net difference for each
category. In the meantime, for equal configurations, the resident kernel size has increased by
about 12K bytes of program and 26K bytes of data resultmg in a total size of about 164K bytes
(for a 1 megabyte main memory system).

t Since a page table entry is 4 bytes, user page tables grow one byte for each 128 bytes of user virtual
memory.
1 For the C source code, the number of occurrences of *“;”” was used as an estimate of the actual number of

e Code, LUrienu LI

source lines that were not comments.

48 _ - ~ AUUGN

.01

Frequency

.001

.0001

a1

-8- ~
‘ Total Source Lines || Non “"omment Lines
Category Base Paged Base Paged
' System | System || System System
Assembly Code 1292 1353 1062 1015
C Code 11581 13405 4891 5614
Header Files 1997 2068 L1223 1316

Table 6.1. Source Code Volume Comparison

7. Measurement Results

The system has been instrumented to collect data related to various pagmg system activi-
ties as well as workload characteristics in general.

7.1. Process Vlrtual Size Distribution

Being one of the few quantifiable characterlsncs of a workload that is also of importance
in a virtual memory environment, system-wide distribution of process virtual size was moni-
. tored.

YT

-=--= Qctober 18
e— November 10

i

4

cemmnnesd

!

f

1 f - 1

150K 300K 450K 600K 750K 900K 1.05M 1.2

Data Segment Size (bytes)
a)

Jd F

ewee- October 18
November 10

|

>
2]
& S
g‘ 1 i ‘l
Lo b Co
= ° F : P
;. at : '
' i Cy
] - L
] N o
1 ¥ I
1 H : !
_ , ' i
] ‘' 1]
.001 3 teq : : :
t ' 1 b
" 1 ' N]
r]) 1)
S 1 []
I ' '
1 1 ! Y
! : ' re
1 1)
: 1 v 8 s
1] 1 : .o
. ' '
.0001 ! i] i N
20K 40K 60K 80K 100K 120K 140K 160K 180K 200K

Stack Segment Size (bytes)
(b)

Fig. 7.1.1. Process size distribution: (a) data, (b) stack segments

The results of integrating process data and stack segment size over user CPU time are shown in
Fig. 7.1.1. The two sets of measurements taken almost one month apart indicate an increase
from 29.6K to 161.7K bytes and 6.8K to 9.8K bytes for the mean data and stack segment sizes,
respectively. The October 18 measurement corresponds to early stages of production run of the
system and is representative of the pre-virtual memory workload. The sxgmﬁcant increase in the

.-9-

average data segment size within this short period is attributed to the rapid growth of Lisp sys-
tems including MACSYMA. The insignificant contribution of the stack segment to total process
size is a characteristic of our C intensive workload.

7.2. Page Fault Service Time Distribution

As described in §2, a page can be in three atates Reference to a page in memory but
invalid causes a reclaim, whereas reference to one not in memory results in a page-in operation.
The service time distributions for these two different types of faults is shown in Fig. 7.2.1. -

i
-
1 L 1 b
L
-
1k .1
-
g g
U [
3 2
- =
2.0k &
£o.oL b |5.01
. {
e b
.00l 1 .001 |
F
o001 |y .0001 S RS A
140 160 180 200 220 240 260 280 300 320 340 i 12 .32 52 72 92 112 132 152 172 192 212
Time (psec) . ' Time (msec)
(a) : (b)

Fig. 7.2.1. Fault service time distribution: (a) reclaim, (b) page-in

For the reclaim time distribution, the first peak corresponds to reclaims from the /oop, while the
second bump and the long tail are accounted for by the load dependent component of the ser-
vice time due to reclaiming pages of shared text segments.t Note that the mean reclaim time of
208 microseconds per reclaim represents a negligible delay to user programs. Furthermore, the
overall system cost of reclaims through which we simulate the missing reference bits of the
architecture has been measured to be less than 0.05% of all CPU cycles.#

The page-in service time distribution is highly load dependent since it includes all of the
queueing as well as process rescheduling delays. The configuration with the paging activity on
the same arm (an RM-03 equivalent disk) as the temporary and the root file systems results in
a 54.9 msec total service time. The significant number services completed under 20 msec are
due to the track buffering capability of the controller being used.

ER]

1 This operation requires updahng the page tables of all processes currently executing the same code, thus
varies with load.

t This cost is actually 2 function of the paging activity. The number reported here has baen averaged over.a
28 hour period in a 1.25M byte real memory configuration

50 ' o : ' . Nijife

L

g e

-10 -

7.3. Comparison with Swap Based System

In an effort to compare the performance of the system before and after the addition of
virtual memory, a script driven workload was run in a stand-alone manner in both systems
under identical configurations consisting of a 1 megabyte main memory, an RP-06 servicing the
user file system and an RM-03 shared by the root and temporary file systems in addition to the
swapping/paging activity. The swap based system used for this comparison was quite sophisti-

cated, performing scatter loading of processes into memory and partially swapping processes to
obtain free memory.

The basic unit of work generated by the script is made up of four concurrent terminal ses-
sions: :

lisp A recornpilation, using a Lisp compiler, of a portion of the compiler, and a “‘dum-
plisp”’ using the lisp interpreter to create a new binary version of the compiler.
Under the paging system, a system load format which caused the interpreter and
compiler to be demand loaded (rather than preloaded) was used (cf. §5.3).

ccomp An editor session followed by a recompilation and loading of several C programs
which support the line printer.

typeset An editor session followed by typesetting of a paper involving mathematical process-
ing, producing output for a Versatec raster plotter.

trivial Repeated execution of a trivial command (printing the date) every few seconds.

Staggered multiple initiations of from one to four of these terminal sessions were used to
‘create increasing levels of load on the system.’ Figure 7.3.1 gives the average completion time
* for each category of session under the two systems.

3

Completion time (100 seconds)

-~
N
T

-
©
T

o
T

(=)
Y

N

lisp typeset i ccomp trivial
5wWap 12+ swap 14 4 ~— SWap T+ swap .
—~ - -page ——-page ; ~—~— page — —-—page
- i .
10} 6

AUUGN

SN R T S T T F I T 8 1276 &€ iz 16
Load (terminals) Load (terminals) : Load (terminals) Load (terminals)
(a)) (b) “(e) (d)

Fig. 7.3.1. Average completion times
(a) lisp, (b) typeset, (c) ccomp, (d) trivial

For the non-trivial sessions, completion times were very similar under the two systems, with
the paging version of the system running (in all but one case) faster, and.the swap based sys-
tem departing from linear degradation more rapidly. This trend is most noticeable in the
response time for the trivial sessions. Systemwide measures collected during the experiments
are given in Figure 7.3.2. :

51

Completion time (100 seconds)

-11 -
1
total . average ‘z
LN 3 swa 8} ——swa 280 swap / = 6ol swap
- pagg ---pagg ey ——~— page 7 () - —— page
. ° «©
12l € 2u0f / a 50
S / g
0} ; Z 200 / S ot
// ° p -
8} s (E 160 / o 30L
’ : s/ o
s’ : -
6l g B ‘E 120 // S 20}
V4 -
// ';; Vs L /’—-
u . = 80t 4 o 10} -
5 0 7
® -
. i ik 3 A : - 1 . 3. Q.- - i L
& 12 16]] 12 16 4 8 12 16 .l 8 12
Load (terminals) Load (terminals) Load (terminals) Load (terminals)
('a) (b) (c) {d)

[

Fig. 7.3.2. Systemwide measurements
(a) total (b) average completion time, (c) system time, (d) total page traffic

These measurements show the same trend for both total and average completion times as for
individual sessions, with the paging system slightly faster ' and degrading more linearly
within the measured range. System overhead was uniformly greater under the paging system,

" . constituting 26 percent of the CPU utilization as compared to 20 percent under the swap sys-

tem. User CPU utilization was, however, uniformly greater under the paging system, averaging
48 percent, while the swap based system averaged only 42 percent. ‘

Finally, the total page traffic generated by the two systems was measured. This accounts
for both paging and swapping traffic under the paging system, as well as transfer of all system
information (control blocks and page tables) under both systems. Although the paging system
resulted in far fewer total pages transferred, the actual number of transactions required to
accomplish this was much greater since most data transfers, under the paging system, are due
to paging rather than swapping activity, and thus take place in very small (512 byte) quantities.

We are currently installing modifications in the system to use larger block sizes in both the file
and paging subsystems, and expect improved performance from these changes. ‘

Acknowledgements. The cooperation of Bell Laboratories in providing us with an early version
of UNIX/32V is greatly appreciated. We would especially like to thank Dr. Charles Roberts of
Bell Laboratories for helping us obtain this release, and acknowledge T. B. London and J. F.
Reiser for their continuing advice and support.

We are grateful to Domenico Ferrari, Kichard Fateman, Jehan-Frangois Paris, William
Rowan, Keith Sklower and Robert Kridle for their participation in the early stages of the design
project, and would like to thank our user community for their patience during the system
development period.

AUUGN

rEei

References

[CORB 68]
[DEC 78]
[DENN 70]
[EAST 79]
[RITC 74]

[THOM 78]

-12-

. J. Corbato, “A Paging Experiment with the Multics System,” Project MAC
T'emo MAC-M-384, July, 1968, Mass. Inst. of Tech., published in In Honor of P.
4. Morse, ed. Ingard, MIT Press, 1969, pp. 217-228.

VAX-11/780 Hardware Handbook, Digital Equipment Corporation, 1978.

P. J. Denning, *‘Virtual Memory,”” Computer Surveys, vol. 2, no. 3 (Sept. 1970),

pp. 937-944.

M. C. Easton and ‘P. A. Franaszek, “Use Bit Scanning in Replacement Deci-
sions,”” IEEE Trans. Comp., vol. 28, no.. 2 (Feb. 1979), pp. 133-141.

D. M. Ritchie and K. Thompson, *‘The UNIX Time-Sharing System,’” Commun.
Assn. Comp. Mach., vol. 17, no. 7 (July 1974), pp. 365-375.

K. Thompson, ‘“‘UNIX Implementation,” Bell System Tech. Journal, vol. 57, no. 6
(July-Aug. 1978), pp. 1931-1946.

53

R 5

54

S S —

G'etting started with...
Berkeley Software for UNIXt on the VAX#

(The third Berkeley Software Distribution

A package of software for UNIX developed at the Computer Science Division of the
University of Califofnia at Berkeley is installed on our system. This package includes a new
version of the operating system kernel which supports a virtual memory, demand-paged
environment. While the kernel change should be transparent to most programs, there are some
things you should know if you plan to run large programs to optimize their performance in a
virtual memory environment. There are also a number of other new programs which are now
installed on our machine; the more important of these are described below.

L3

Documentation

The new software is described in two new volumes of documentation. The first is a new
version of volume 1 of the UNIX programmers manual which has integrated manual pages for
the distributed software and incorporates changes to the system made while introducing the vir-

tual memory facility. The second volume of documentation is numbered volume 2¢, of which-
this paper is a section. This volume contains papers about programs which are in the dnsmbu-

tion package.

Where are the programs?

Most new programs from Berkeley reside in the directory /usr/ucb. A major exception is
the C shell, csh, which lives in /bin. We will later describe how you can arrange for the pro-
grams in the distribution to be part of your normal working environment.

Making use of the Virtual Memory

With a virtual memory system, it is no longer necessary for running programs to be fully
resident in-memory. Programs need have only a subset of their address space resident in
memory, and pages which are not resident in memory will be faufred into memory if they are
needed. This allows programs larger than memory to run, but also places a penalty on pro-
grams which do not exhibit locality. It is important to structure large programs so that at any
one time they are referring to as small a number of pages as possible.

If you are going to create very large programs, then you should know about a new
demand load format. This format causes large programs to begin execution more rapidly,

‘without loading in all the pages of the program before execution begins. It is most suitable for

programs which are large (say > S0K bytes of program and initialized data), and especially
when a program has a large number of facilities, not all of which are used in any one run. To
create an executable file with this format, you use the —z loader directive; thus you can say *‘cc
—z ..” or *“f77 —z ...”". The file command will show such files to be ‘‘demand paged pure
executable” files. See the manual page for /din section 1 and a.our in section S of volume 1 of
the manual for more information. -

If you have or are writing a large program which creates new processes as children, then
you should know about vfork system call. The fork system call creates a new process by copy-
ing the data space of the parent process to create a chiid process. Im a virtual environment this
is very expensive. Vfork allows creation of a new process without copying the parent’s address

tunix is a trademark of Bell Laboratories.
#vax is a trademark of Digital Equipment Corporation.

AUUGN

AUUGN

-2.

space by letting the parent execute in the child’s system context. The parent can set u» the
input/output for the child and then return to its own context after a call to exec or _ex'-. If
you use the standard 170 routine system() to execute commands from within your progims,
then vfork will be used automaticaily. If you have been calling fork yourself, you should read
the manual page for vfork and use it when you can.

In order that efficient random access be permitted in a portable way to large data files, a
pair of new system calls has been added: vread and vwrite. These calls resemble the normal
UNIX read and write calls, but are potentially much more efficient for sparse and random access
to large data files. Yread does not cause all the data which is virtually read to be immediately
transferred to your address space. Rather, the data can be fetched as required by references, at
the systems discretion. At the point of the vread, the system merely computes the disk block
numbers of the corresponding pages and stores these in the page tables. Faulting in a page
from the file system is thus no more expensive than faulting in a page from the paging device.
In both cases all the mapping information is immediately available or can be easily computed
from incore information. Vwrite works with vread to allow efficient updating of large data
which is only paftially accessed, by rewriting to the file only those pages which have been
modified.

Downward compatibility to non-virtual systems is achieved by the fact that read and write

calls have the same semantics as vread and vwrite calls; only the efficiency is different. If you
have programs which access large files, and do so sparsely, read the manual pages for vread and

+ ,ywrite in section 2 of volume 1 of the manual.

New Languages for the VAX

There are now available interpreters for APL and Pascal for the vAX, and a LISP system
supporting a dialect of LISP compatible with a large subset of MACLISP. The APL interpreter is
the 11 version, moved to the VAX, and now has a large workspace capability (but has not been
extensively used.) The Pascal system has been used extensively for instruction and research
and is the same system which was available on the PDP-11. The only limitations of the Pascal
system are a maximum of 32K bytes per stack frame (due to the implementation of the inter-
preter), and 64K bytes per variable allocated with new. Essentially arbitrary sized programs can
be run with the system, which supports a very standard Pascal with no language extensions.

The Pascal system features very good error diagnostics, and includes a source level execution:

profiling facility.t

The LISP system, “‘Franz Lisp’’, was developed at Berkeley as part of a project to move
the MIT MACSYMA system from the PDP-10 to the VAX. A compiler lisz¢ for Franz Lisp, written
at Bell Laboratories, is also included with the system.

For more information about APL refer to its manual page in volume 1 of the manual. The
Pascal system consists of the programs pi, px, pix, pxp, pxref,-and pic, all of which are docu-
mented in section 1 of volume 1 of the manual. There is also a paper introducing the system
in volume 2c. The LISP system is described in The Franz Lisp Manual in volume 2c of the
manual. :

A display editor — vi s

The system includes the latest version of the display editor vi which runs on a large
number of intelligent and unintelligent display terminals. This editor runs using a terminal
description data base and a library of routines for writing terminal independent programs which
is also supplied. The editor has a mnemonic command set which is easy to learn and
remember, and deals with the hierarchical structure of documents in a natural way. Editor
users are protected against loss of work if the system crashes, and against casual mistakes by a
general undo facility as well as visual feedback. The editor is quite usable even on low speed

1 A compiler for Pascal bai_ed on this system is currently being developed, but is not part of this distribution.

55

L]) P
. in the file .profile in your home directory. If you use csh, then the commands

lines and dumb terminals. '
For users who prefer line oriented editing, the ex command enters the same editor, but in

a line oriented editing mode. For beginners who have never used a line editor before, there is
a version of the editor known as edit which has a well-written tutorial introducing it.

'For more information about edit see Edit: a Tutorial in volume 2c of the manual. The line
editor features are described in the Ex Reference Manual which is in volume 2c of the manual
Also in volume 2c are. An Introduction to Display Editing with Viand a vi reference card

Command and mail processing programs

There is also & new command processor csh which caters to mteractxve users by providing
a history list of recent commands, which can be easily repeated. The shell also has a powerful
macro-like aliasing facility which can be used to tailor a friendly command environment. Csh is
implemented so that-both it and the standard shell /bin/sh can be run on the same system.

The Introduction -to the C shell introduces the shell. If you have used the standard shell,
then you should especially read about the history and alias mechanisms of the shell.

In order that the manual distributed with the tape correspond to the commands which are
available to you, you should set the execution search path in your shell startup file to include
/usr/ucb. If you use /bin/sh you should place the lines:

PATH =:/usr/ucb:/bin:/usr/bin
export PATH

-setenv PATH /usr/ucb:/bin:/usr/bin:
set path=(/usr/ucb /bin /usr/bin .)

should be placed in vour file .cshre, also in your home directory. The C shell hashes the loca-
tions of commands so as to speed command execution. Placing the current directory ‘. at the
end of your search path speeds the location and execution of commands.

For sending and receiving mail, a new interactive mail processing command provides a
hospitable environment, supporting items such as subject and carbon copy fields, and allowing

creation of distribution lists. This command also has a mail reading mode which makes it con- -

venient to deal with large volumes of mail. See the manual page for mail in section 1, volume

1 of the manual, and the Mail reference Manual in volume 2c of the manual for more details.

Better debugger support

A version of the symbolic debugger sdb is provided which now can debug FORTRAN 77
programs. The assembler has been rewritten and the C compiler modified to reduce greatly the
overhead of using the symbolic debugger, making it much more feasible for heavy use. If you
are interested, then you should read the new document for sdb, provided in volume 2c.

Other software

The distribution includes a copy of the ciruit analysis program SPICE, which has been tran-
sported to the vAX. You can read about it in its reference manual in volume 2¢ of the manual.
Other new programs include programs to simulate the phototypesetter on 200 bpi plotters, a
common system messages facility, routines for data compression, a modified version of the
standard I/0O library permitting simultaneous reads and writes, a network for connecting hetero-
geneous UNIX systems at low cost (1 tty port per ~onnection per machine and no system
changes), and a new, flexible macro package for n/troff —me. New command whatis and apro-
pos can be used to identify programs and to locate commands based on keywords. Try

cd /usr/ucb
whatis *

AUUGN

AUUGN

and to find out about Pascal:

apropos pascal

Monitoring the new system

If you want to see what is happening in the new system, you can use the new vmstat
command, described in section 1 of the manual, which shows the current virtual load on the
system. The systam recomputes the information printed by vmstat every five seconds, so a
*““ymstat 5’ is a good command to try.

To see what processes are active virtual processes, you can do
psav '
The command
psvVv

will print only the active processes which you are running.

Berkeley Software for UNIXY on the VAX$
{The Third Berkeley Software Distribution) '

A new package of software for UNIX will be available from the Computer Science Division
of the University of California at Berkeley in early December, 1979, This is a package of
. software for UNIX/32vt licensees, and includes a paged version of the kernel for the VAX, as
“ well as a large number of other programs. The tape includes:

~ New Languagés for the VAX

Interpreters for-APL, LISP and Pascal. The APL interpreter is the PDP-11 version, moved to

the vAX. The LISP system, known as ‘‘Franz Lisp”’, is written in C and LISP, includes both an

! interpreter and a compiler, and is compatible with a large subset of MACLISP. The Pascal system

. is the instructional system which has been distributed previously for PDP~11'st. The language

. implemented is very close to standard Pascal, and featLres excellent diagnostics, and a source
level execution profiling facility.

New System Facilities

e . The system is now fully and transparently demand paged. As distributed it will support

- . individual process sizes up to 8M of data and 4M of program. These numbers can be increased
to 16M bytes of data and stack and 16M bytes of program easily given the availability of a rea-
sonable amount of disk space to which to page. Description is given of steps necessary to
further increase these limits.

o

A new load-on-demand format allows large processes to start quickly. A yfork system call
allows a large process to execute other processes without copying its data space. Virtual ver-
sions of the read and write system calls known as vread and vwrite permit fast random access to
large files, fetching data pages as needed, and rewriting only changed pages. The system sup-
ports UNIBUS disk drives, and can access and update files on the console’s floppy disk drive.

A display editor

The tape includes the display editor, vi, (vee-eye) which runs on a large number of intelli-
gent and unintelligent display terminals. This editor uses a terminal description data base and a
library of routines for writing terminal independent programs which is also supplied. The editor
has a mnemonic command set which is easy to learn and remember, and deals with the
hierarchical structure of documents in a natural way. Editor users are protected against loss of
work if the system crashes, and against casual mistakes by a general undo facility as well as
visual feedback. The editor is quite usable even on low speed lines and dumb terminals.

Command and mail processing programs

.on

The tape also includes a new command processor csh whsch caters to interactive users by
providing a history mechanism so that recently given commands can be easily repeated. The
. shell also has a powerful macro-like aliasing facility which can be used to tailor a friendly, per-
sonalized, command environment. A new interactive mail processing command supports items

such as subject and carbon copy fields, and distribution lists, and makes it convenient to deal
with large volumes of mail.

tunix and uNsv are trademarks of Bell Laboratories.

tvax and ror arc trademarks of Digital Equipment Corporalion.k

58 | | - - AUUGN

R F e i e ses e e e e e gt

- - Lo - . - - - . - e e e e e

AUUGN

Better debugger support

A version ‘of the symbolic debugger sdb is provided which now can be used to debug
FORTRAN 77 programs. The assembler has been rewritten and the C compiler modified to
reduce greatly the overhead of using the symbolic debugger.

Other software

Also included are a number of other useful packages including the circuit analysis pro-
gram SPICE, programs to simulate the phototypeseiter on 200 bpi dot-matrix plotters (these pro-
grams were moved from the PDP-11 to the VAX and a large number of fonts available on the
ARPANET have been converted to the required format), a bulletin board program, routines for
data compression, a modified version of the standard 1/0 library permitting simultaneous reads
and writes, a slow-speed network for connecting heterogeneous UNIX systems at low cost (1
tty port per connection per machine and no system changes), and a new, flexible macro package
for nroffand troff calied —me. ‘ :

Source code, binaries and machine readable versions of all documentation are included
with the tape. We supply the magnetic tape on which the software is written. .

To receive the tape make two additional copies oi the the attached agreement, sign and ‘

return 2 of the 3 copies with a check for $200 U.S. payable to ‘‘Regents, University of Califor-
nia,” and a copy of your UNIX/32V license agreement to:

o Berkeley Software Distribution for UNIX

c/o Keith Sklower

Computer Science Division, Department of EECS
Evans Hall

University of California, Berkeley

Berkeley, California 94720

We will return a fully executed copy of the agreement to you with the distribution.
Included with the tape will be two volumes of documentation. The first is a programmers

" manual (similar to UNIX/32v Volume 1) modified and updated to correspond accurately to the

distributed system. The second is a volume of documents (Volume 2C) similar to the two
standard volumes (2A and 2B) describing the major packages on the tape.

If you have questions about this tape they can be directed to Keith Sklower at the address

above or at (415) 642-4972 or leave messages for Keith at 642-1024.

59

60

Comments on the performance of UNIXt on the VAX$

William Joy

Computer Science Division
Electrical Engineering and Computer Science Department
University of California, Berkeley
Berkeley, Ca. 94720

Introduction

A recent paper written by David Kashtan of SRI discussed some measurements he made com-
paring the performance of the two available operating systems for the VAX: UNIX and vMs. The
UNIX system measured by Kashtan was UNIX/22V as extended by U.C. Berkeley to support virtual
memory. The measurements were made on version 2.1 of the Berkeley system and version 1.6 of
VMs. This note seeks to help interpret these results and more clearly point out the differences in
approach and current state of the two systems.

We will show that the differences that Kashtan measured have simple explanations, and that
the comparison of performance on such benchmarks can guide short-term tuning. Long-term deci-

sions as-to which system to run have been made on the basis of portability and flexibility considera-

tions. The results reporte here confirm the correctness of the choice of UNIX on these grounds by
confirming its flexibility. The detected slownesses in UNIX are neither fundamental to the way UNIX
does business, nor difficult to mitigate if it is felt important to work on the areas in question. We
will discuss simple changes to the UNIX system that have been made improving performance in the

- areas mentioned. The improvements described here were incorporated in the production system at

Berkeley during the first three weeks of March, 1980.

System call overhead

Let us first consider system call overhead, which underlies the measurements that were made
of “Context Switching Performance.” From the measurements Kashtan gives for context switching
overheads, we can first estimate some fundamental times for the VMS system: a simple system call
(e.g. an event flag call) on VMS appears-to take about 114psec, and a context switch about 178usec.
To get an idea of scale here, the VAX memory cycle time (for cache write-through) is about
1.2psec, the simplest procedure call jsb and matching return rsb takes about 4psec, and the high
level language call instruction calls and matching return ret takes a minimum of 16usec, more if
some registers are to be saved.

On the version of UNIX Kashtan had, a trivial system call took about 350psec. This is almost

three times as much time as VMS used. Where was this time being spent? The following is a rough
breakdown:

4]

°

+ UNIX is a Trademark of Bell T.aboratories.
§ VAX and VMS are tracemarks of Digital Equipment Corporation.

. AUUGN

A

AUUGN

-2
save registers, call trap 40pnsec
setup in zrap for syscall 30psec
fetching arguments for syscall 60psec
saving context in case interrupted 100p.sec
system call proper 30psec
checking to see if signals waiting 30psec
recomputing process priority 60p.sec
restore registers, rei 30usec

This code is all modularly and straightforwardly written, using a small set of prumuves (for
instance the “‘non-local-goto™ at the point of an mterrupted system call is effected by using part of
the primitives perfonmng context switching.) There are a many calls to small routines here. Each
system call argument is fetched by calling a primitive fuword which fetches a word from user-space
after performing access checks. The saving of the context involves a procedure call, as does check-

- ing for signals and recomputing priority. Altogether, when a system call has two arguments, seven

calls instructions are performed here to various subroutines. These alone take roughly 105usec,
assuming no registers are specified to be saved in the entry mask. Since the saving and restoring of
the registers for the call to rap takes an additional 20p.sec, this means that 125psec is accounted for
without any of the work for the system call itself. Clearly, if tlns is to be sped up, some of these
routine calls must be eliminated.

With minor changes to the code for trap handling we have sped up the system call time so that
the basic overhead is 140usec, instead of 350psec. This was done as follows:

1. The trap routine’s “entry mask” as generated by the C compiler is modified at boot time to
save all possible registers, to avoid saving some registers twice.}

2. - The routine to handle system calls was broken out from the handler for all other traps and
- called syscall. This minimizes the changes to the code for handling other traps in makmg the
- following improvements, and allows some small simplifications.

3. - Fetching of all arguments can be done by 2 single routine copyin, mstead of calling fuword for
* each argument.} Since the number of argument words to system calls is very small it is easy to
- expand the copyin primitive in line in this critical path. It can be implemented, in this special
case, by two basic VAX mstructlons a prober to determine accessibility, and a move3 to move

the arguments into system space.*

4. To restore after an interrupted system call it suffices to be able to locate the frame pointer and

stack pointer of the original syscall procedure. We can effect this context save using just three
movi instructions.

5. A subroutine call to check if signals are pending to this process can be avoided in almost all
cases by first checking the mask of pending signals. This partial inline expansion of the issig
Toutine reduces the overhead here by at least 16p.sec.

6. Recomputation of the process priority at each system call can be avoided by “‘unloading” the
p_pri per-process information field. The system used a single field to encode both the
processes user-CPU usage dependent scheduling priority, and priorities related to process
blocking during system calls. By adding a p_usrpri information field reflecting user-CPU
usage, the code in trap reduces to an assignment of this priority to the p_pri field, instead of
recomputing the user priority after each system call. The space overhead is one byte per

t Previously, the assembly language for the system saved all the registers, and made no assumptions about what
trap itself did, resulting in registers which were used for register variables within trap being saved twice.
$ The copy of arguments into system space is important to avoid severe system security problems with system calls

" that self-modify their arguments after they have been checked for consistency.

* The copyin primitive is complicated in the general case by the rather strange semantics of prober, which only
checks accessibility of the first and last pages in the address range it ic given. This forces software to loop over
each page involved in the copyin. The looping checks are not needed in the code which fetches arguments for sys-
temn calls, because there are at most 16 bytes of direct arguments to a system <all.

wh

-3-

process, the way in which the system'works is unaffected, and the code is then somewhat
easier to understand. :

- These changes reflect only local optimization of the code; the substance of system call handling
has not been changed. It is simply the case that calls sequence used by the C compiler for pro-
cedure calls is relatively expensive. Expansion of small routines and machine dependent primitives
in critical paths is an important technique that can be used to quickly and easily mitigate routine
call slowness when profiling or other measurements show this to be necessary.

It should be noted that the use of calls and passing of routine parameters on the stack in the
, current VAX C compiler is different from the way VMs is coded.t VMS makes almost exclusive use of
“ - the jsb and rsb instructions to avoid the overhead of calls, and has stylized conventions for assign-
: ment of registers across assembly language routines so that pushing and popping of data on the stack
can be avoided. This basic mechanism is a good deal faster than calls if register usage can be .
optimized carefully, but tends to make the code harder to change.

Perspective. Our departmental VAX running 20 users in the afternoon does an average of about 100
system calls a second. Under the old system the basic overhead for these 100 system calls was about
3.5% of the available processor time. The faster system call interface reduces this to about 1.4%.

The fact that the primitives for critical sections (the spl set priority level routines) were imple-
mented by calls to the two instructions implementing them accounted for nearly 1/3 of the time in a
read ot write system call. Since over half of all system calls are reads or writes, a simple inline
expansion of these primitives accounted for more improvement for reads and writes than the
changes to the basic system call routines.

Context switching

The context switching tests attempted to measure how fast the systems could pass control from
one process to another. Kashtan measured that VMs could switch between two processes at a net
rate of 2000 switches per second using the “event flag” mechanism to signal process exchange. On

- UNIX, using the kill system call as a signalling mechanism, Kashtan found that the maximum switch-
ing rate was 210 per second. He estimzted that the basic switching rate of the two systems was
5600 switches per second on VMS and 425 per second on UNIX. He concluded:

“UNIX, as currently implemented, has to do considerably more work when scheduling a

process. In addition, UNIX must do a context switch to process number 0 in order to

make the decision as to which process to be run next. Even this cannot explain the
- greater than 10 to 1 difference in the performance of the two systems.”

We will see that this difference involves no great mystery, and that, in fact, UNIX can be made to
context switch nearly as fast as VMS does simply by changing the (assembly-language) primitive sup-
port of context switching to match the hardware. Remaining differences in timings are not the
result of “inefficiencies” in UNIX, but from the close fit of the VMS strategy with the VAX architec-
ture.}

The VAX instruction set caters to a certain regime of context switching. To make its idea of
context switching amenable to UNIX, it sufficed to include the C library routines setjmp and longjmp
in the system to handle internal non-local goto’s, and to provide a new context switch primitive
resume that corresponds to a svpetx followed by a Idpetx. '

There were two further problems with the context switching primitives: as on the PDP-11, the

- per-process system stack and control information were kept in kernel address space. It is much
more efficient on the VAX to keep this information in the PO or P1 region where it will be remapped
when Idpctx is used. This change was made by moving this information to the base of the stack.

T VMS is written in assembly language.

% Specifically, blocked jobs are queued on linked lists with insque (insert in queue instruction) for removal with
remque (remove from queue instruction) while UNTX uses subroutines which hash sleeping jobs. The overhead of
calling the hashed sleep and wakeup routines and scarching the hash chains will account for ihe remaining differ-
ence in time. N

62 ' : AUUGN

4.

The final problem was the one Kashtan noted; that the system switched to process 0 each time
before switching to the eventual target for the switch. This was done only to allow the system to

idle in process 0. This is cleaner than idling on an arbitrary process because, e.g., the process that

called swrch might have just swapped itself out, and we would then be running on system control
information in memory that had been released. There is actually nc problem in not switching to
process 0, since the system cannot run anything but interrupt code until we come out of the idle
loop in swirch.

After these changes, the times for context switching improved dramatically, dropping by more
than a factor of 5 to about 400psec per switch. Examination of the remaining overhead revealed
that there were several small routines being called in critical paths in the sleep routine. This was
simply eliminated by an inline expansion of the code.

After the above changes had been made, we measured the system context switch time and
broke it down as follows:

blocking time in sleep 50 sec
rescheduling time in swich 60psec
resume primitive 110psec
unblocking time in wakeup 50p.sec

Thus the context switching time had been reduced to 270usec, a factor of seven improvement.

-In practice, there is a further efficiency issue here that is not pointed out by the benchmarks. |

The swrch routine used a search over a linked list testing to find the highest priority job on the list.
The VMS system uses the ffs (find first set bit), insque and remque instructions and an array of run-
queues ordered by priority to make this selection as rapid as possible. We coded this new swrch
routine (it is about 10 lines of assembly language), and changed the system so that only truly runn-
able jobs were on the run queue (the old system left runnable jobs on the run queue even when they

were swapped out). This allows the swrch pnmmve to run in time independent of the length of the

run queue.

. ,Perspectxve. Let us try to get some perspective for timesharing UNIX systems (such as the machine

where this paper is being prepared). The system is currently supporting about 20 users, and doing
roughly 50 context switches per second. The original code, which ran in about 2 milliseconds per

context switch would have cost 10% of the machine in context switching. A version of the system’

changed to not switch to process 0 in swrzch ran in about 800usec per context switch, resulting in a

~ average context switching overhead of about 4% of the machine. The current system, with all the

changes mentioned above, uses roughly 1.3% of the machine in context switching.

If applications need absolutely fastest possible context switching time, then UNIX would have to
be changed so that the calls to sleep and wakeup were less expensive. Roughly haif of the 100uwsec
spent in these routines could be saved by writing them in assembly language and calling them with

“jsb instead of calls. They would then not have the 16usec overhead of calls and ret and could use

registers C-5 for scratch work instead of saving and restoring registers 6-11, the registers normally
used by the C compiler for register variables. Measurements of the incidence of sleep and wakeup
in our environment do not justify such a change.

IPC Mechanisms

The measurements here were of the time for a process to send either 4 or 512 byte packets to
another process. The system call overhead and context switch overhead reductions improved perfor-
mance here, as did the inline expansion of the priority level routines. Finally, a few primitives (file
lock and unlock, and user/kernel data movement) were defined as macros or partially expanded
inline to save time.

The improvements measured in 4 byte packet transmission are reported in the following table.
The three experiments measured the rate at which a process could send 4 bytes of data to itself, to
send 4 bytes to another process, and send 4 bytes to another process and receive a 4 byte reply.
The measurements give the number of 4 byte packets transferred each second..

63

Sy

-5.

Mechanism To self One-way Two-way
VMS Mailboxes 440 297 363
UNIX Before 370 294 281
UNIX After 819 714 600

Perspective. The overhead in using pipes on UNIX was reduced greatly by simply eliminating
unnecessary calls of primitives. The ultimate speed of message passing through pipes should be
between 600 and 1000 packets per second, when no buffering is taking place. ‘

We see no reason that the mpx multiplexed file mechanism cannot be made to operate at
speeds greater than that of the pipe mechanism. Most of the overhead in the pipe mechanism is in
the block input/output system, which must be called to access and release the file system blocks of a
pipe on each read or write operation. With mpx, messages will be buffered in memory, and this
expensive indexing can be avoided. By placing the mpx buffers in paged memory, it should be sim-

ple to provide fast response when activity is heavy without tying up large amounts of core if buf-
- fered data accumulates.

Paging A

Kashtan measured performance of the paging system on two kinds of paging activity: sequen-
tial and random. He also tried varying, in the random case, the standard deviation of successive
references. Never did his paging experiments involve any “memory” in the behavior of the
processes, and they modified every referenced page. To help cope with jobs which reference or
. modify large numbers of pages rapidly, we have changed the system to read and write clusters of
pages from the paging device. This helps to minimize the incidence of pageins and pageouts. Write
clustering alone make nearly a factor of two improvement in the time taking to run most of
Kashtan’s benchmarks, since he modifies every page. Read clustering improves the performance of
jobs that sequentially access virtual memory, and has a good, but less significant impact on other
jobs, provided it is used in moderation.* '

UNIX attempts to determine the set of pages that have been recently referenced using software
simulation of the page reference bits that are not provided by the hardware. While experiments
show that this works well on jobs that are typical of our working environment, jobs such as those
run by Kashtan are not well observed by this method. A simple circular or random page replace-
ment algorithm is nearly optimal for the experiments that he made. Disabling the gathering and use
of page reference information for “memoryless” jobs, and instead relying more on simple circular or
random replacement, more akin to the algorithm used by VMS, improves system performance also.
We have added an advisory system call that informs the system that the process will not be well
observed by the normal reference information gathering algorithm. This is used by LISP during gar-
bage collection. One can easily imagine processes informing the system of strongly sequential or
random paging behavior. :

The following table gives the relative times for the sequential and random benchmarks on
Kashtan’s machine and ours. His benchmark used 8192 pages of process virtual space while ours
used only 7500. He had 2 megabytes of real memory while we had only 1.75. These numbers are
unfortunately not exactly comparable, and we hope to run the experiment on a 2 megabyte machine
in the near future. :

Experiment VMS Old UNIX New UNIX
Sequential access 4:32 20:16 - 6:45
Random access 6:00 17:24 10:37

* An excessive amount of prepaging tends to overload the page replacement algorithm by creating an artificially
high demand for memory. We can mitigate this somewhat by not validating the pre-paged pages, forcing a “re-
claim” to occur quickly if the page is not to be discarded. Observations show, however, that prepaging more than
2048 bytes (2 of the basic 1024 byte pages that UNIX uses) at a time tends to degrade general system performance.

AUUGN

- AUUGN

ey e e

-6-

Kashtan also measured a program with random paging behavior {each successive reference was
a random distance from the previous), with varying standard deviations of references. We report
bere the times Kashtan measured fzr VMs and UNIX when he made the experiment, and also meas-
urements on our system before and after the changes mentioned above were introduced. Kashtan
altered the basic paging strategy in VMs for these tests; the strategy used in UNIX here was always the
one we use during general timesharing. '

Deviation | VMS SRI UNIX | Old Berk UNIX MNew Berk UNIX

1 0:16 0:16 0:23) 0:23

10 0:18 0:16 0:24 0:24

30 0:25 0:18 0:66 0:44

40 0:47 1:08 1:34

50 1221 3:54 4:37 . 2:38

60 1:33 5:46 - 6:21 3:13

80 3:04 6:38 8:47 4:53
100 3:27 8:26 10:28 6:12

These measurements are somewhat less than satisfactory for two reasons: the machines had
different configurations making the results more difficult to interpret. Also, the experiments were

too short, and therefore the start-up time for the system to reach a stable state has not been factored
out of the results.t ‘ ‘

Perspective. The changes to the paging system to introduce clustering and for special treatment of
processes that are not well handled by the normal techniques markedly improve the performance of
UNIX on Kashtan’s benchmarks. For the jobs we normally see on our system the improvement was
not as noticeable. The effect of these changes on a standard synthetic workload that we had previ-
ously run to evaluate system performance was negligible. :

Of far more importance to system performance was a revision of the swap scheduling algo-
rithm. The previous version of the system used an oldest job first strategy for swapping out runn-

- ‘able jobs. Changing the system to instead swap out the oldest of the r Bargest jobs and *hen slowing
~down the rate of swapping had dramatic effects under the heavy loads we have been encountering.

This change is of much more importance to the typical UNIX installztion than the other changes
mentioned above. ' ’

Conclusions

In selecting between UNIX and VMS as an operating system for use in the ARPA Image Under-
standing and VLSI research communities, the UNIX system was chosen primarily out of concern for
portability. For our purposes within the Computer Science Department at Berkeley, we have chosen
UNIX because of its pliability to meet our needs.

In the short term, there are areas of the UNIX system that are still suffering growing pains
from the porting of the system to larger machines. We believe that the simplicity and modnlarity of
the system, which are the keys to its portability, are also the reasons why UNIX is easy to tune, as
this paper has demonstrated. :

We have by no means made all the changes to the system that will be needed by the ARPA
community. The throughput of the UNIX file system is more than adequate for our current time-
sharing applications, but will not be great enough for large image processing applications, nor will it
support page clustering to the file system, which will be essentia! if large files are to be shared
among processes and paged from the file system. '

Changes to support such facilities have been designed, and implementation of these facilities is

1 For example, the UNIX simulation of software reference bits is disabled when there &s a large amount of free
memory and a certain amount of time (15 to 20 seconds) is required after free memory drops below a threshold be-
fore the reference information begins to become available. This interval is of the same fength as the experiments,
ciouding the resuits. '

65

66

-7-

- pot difficult, because of the simplicity of the current system. We believe that we can, with minor

changes to the file system structure, increase the throughput sufficiently to support most of these
applications.t In the long term, a ditferent basic file system organization may be needed. We are

- examining other file system schemes, such as extent based file systems, confident that we can easily

change the system to incorporate whatever scheme we decide upon. This flexibility, essential for
long-term viability of the system, is the reason we choose to use UNIX.

¥ We plan to initially implement a file system, based on the current inode structure, but which maintains a pool of
8192 byte buffers as well as a pool of 1024 byte buffers. By judiciously allocating these 8192 byte contiguous
chunks to large files, »nd allowing programs which need access to large amounts of data to read such large blocks
directly into their address space (without copying them in and out of the system buffer cache), we should achieve
an significant improvement in file system throughput on applications which (for example) sequentially access large
amounts of data. Such a clustering scheme wﬂl also allow the paging system to cluster the write-back of pages
wmm arc Dcmg shared U}’ processes afier Demg mappeu from fiies.

AUUGN

i

AUUGN

LICENSE AGREEMENT

THIS LICENSE AGREEMENT is made and entered into this day of

, 19 , by and between THE REGENTS OF THE UNIVERSITY OF CALI- .

FORNIA, a California corporation, hereinafter called "LICENSOR", and
, a . ; having its principal office at
, hereinafter called "LICENSEE";

WITNESSETH:

WHEREAS, LICENSOR owns and is the proprietor of the copyright of a certain com-
puter program entitled, “‘Third Berkeley Software Distribution (3BSD)"’; and

WHEREAS, LICENSEE desires to obtain from LICENSOR, and LICENSOR desires to
grant to LICENSEE, a license to use the aforementioned computer program,

NOW, THEREFORE, in consideration of the mutual covenants, conditions and terms
hereinafter set forth, and for other good and valuable consideration, LICENSOR hereby leases
to LICENSEE the physical property described on annexed Schedule A ("Licensed Material®)

* ssubject to a non-transferrable, nonexclusive license ("License"), which is hereby granted to
* LICENSEE, to use such Licensed Material upon the terms and conditions hereinafter set forth,

and LICENSEE hereby accepts such lease subject to the License solely upon such terms and
conditions.

1. Term. The term of this Agreement shall commence on the date hereof, and, unless
sooner terminated as hereinafter set forth, shall extend indefinitely.

2. Charges. As a fee for the use of the Licensed Material, LICENSEE shall pay LICEN-
SOR a duplicaticn charge of two hundred dollars ($200.00). LICENSEE may obtain new
releases of the Licensed Material as LICENSOR may from time to time make available at a
duplication charge of two hundred dollars ($200.00).. Such new releases as are purchased by

LICENSEE shall by subject to the terms and conditions of this Agreement. Such fee is due and

payable when this License Agreement is returned, signed by the LICENSEE, and with a copy of
the LICENSEE’s UNIX/32VYT Agreement.

~ Such fee does not include local, state or federal taxes, and LICENSEE hereby agrees to
pay all such taxes as may be imposed upon LICENSEE or LICENSOR with respect to the own-
ership, leasing, licensing, rental, sale, purchase, possession or use of the Licensed Material.

3. Maintenance and Update Services. Neither maintenance services nor update services
are included in this Agreement. As used in the Agreement, the term "maintenance services"

» includes notice to LICENSEE of latent errors in the Licensed Material and rectification thereof.

4. Title. LICENSEE agrees that the Licensed Material is, and shall at all times remain,
the property of LICENSOR. LICENSEE shall have no right, title or interest therein or thereto
except as expressly set forth in this Agreement. However, those portions of the Licensed
Material which are modifications of UNIX/32V and are so indicated on schedule A, are also
governed by the LICENSEE's agreement with Western Electric.

5. Duplication and Disclosure. LICENSE agrees that all Licensed Material shall be held
in confidence, that such Licensed Material is provided for the exclusive use of LICENSEE, o
the following CPU, namely _ . Serial No.
located at its facility,

+ UNIX is a trademark of Bell Laboratories

67

68

e e

-2-

and any single replacement thereof, provided, that written notice of the replacement and its
Serial Number is first given to LICENSOR. The LICENSEE warrante that this machine is
licensed, by agreement with Western Electric, for using of the UNIX timesharing system, ver-
sion 7 (UNIX/32V), dated . The Licensed Material 3BSD shall not be
duplicated, except as reasonably necessary to LICENSEE’s use of the Licensed Material under
this Agreement or disclosed to others in whole or in part without the express written permis-

sion of LICENSOR. IN PARTICULAR, LICENSEE AGREES THAT THE SOURCE FORM -

OF LICENSED MATERIAL SHALL NOT BE DISCLOSED TO OTHER LICENSEES
WHETHER OR NOT SUCH OTHER LICENSEES HAVE CURRENT VERSIONS OF THE
LICENSED MATERIAL. Such prohibitions on disclosure shall not apply to disclosure by
LICENSEE to its employees and consultants if and to the extent that such disclosure is reason-
ably necessary to LICENSEE’s use of the Licensed Material and provided that LICENSEE shalil
take all reasonable steps (including, but not limited to, all steps that LICENSEE takes with
respect to information, data, and other tangible and intangible property of its own that it

- regards as confidential or proprietary) to ensure that such Licensed Material is not disclosed or

duplicated in contravention of the provisions of the Agreement by such employees or consul-
tants. .

6. Warranty and Limitation of Liability. LICCNSOR MAKES NO WARRANTIES,
EITHER EXPRESS OR IMPLIED, AS TO ANY MATTER WHATSOEVER, INCLUDING

WITHOUT LIMITATION, THE CONDITION OF THE LICENSED MATERIAL, ITS MER-

CHANTAERILITY OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

o LICENSOR shall not be liable for, and LICENSEE hereby assumes the risk of and will
- release and forever discharge LICENSOR, its agents, officers, assistants and employees thereof
-either in their-individuai capacities or by reason of their relationship to LICENSOR and its suc-

cessors in respect to any expense, claim, liability, loss or damage (including any incidental or
consequential damage) either direct or indirect, whether incurred, made or suffered by LICEN-
SEE or by third parties, in connection with or-in any way arising out of the furnishing, perfor-
mance or use of the Licensed Material, In any.event LICENSOR’s liability to LICENSEE on
any ground, including but not limited to negligence, shall not exceed a sum equal to the fee
paid to LICENSOR by.the LICENSEE hereunder except as provided in paragraph 7 hereunder
entitled "Patent and Copyright Indemnity”.

7. Patent and Copyright Indemnity. LICENSOR will defend the LICENSEE against a
claim that a program supplied hereunder infringes a U.S. patent or copyright, LICENSOR will
pay the resulting cost and damage awards provided that:

a. The LICENSEE promptly notifies LICENSOR in writing of the claim; and

b. LICENSOR has sole control of the defense and all related settlement negotia-
tions.

If such claim has occurred, or in LICENSOR'’S opinion is likely to occur, the LICENSEE
agrees tc accept noninfringing replacement programs from LICENSOR, if available, or, if not,
to return the program on written request by LICENSOR. The LICENSEE will pay only those
charges which were payable prior to the date of such return. LICENSOR has no liability for
any claim based upon the combination, operation or use of any program supplied hereunder
with equipment or data not supplied by LICENSOR, or with any program other than or in addi-
tion to the program supplied by LICENSOR if such claim would have been avoided by use of
another program whether or not capable of achieving the same results, or based upon
modification of any program supplied hereunder.

This indemnity does not covg‘;r,any material originally suppliéd to LICENSEE by Western
Electric under LICENSEE’s UNIX/32V license.

The foregoing states the entire obligation of LICENSOR with respect to infringement of

patents and copyrights.

8. Alterations and Modifications. LICENSEE shall make any alterations, variations,
mod:ﬁca_tions, additions or improvements to the Licensed Material, at its own risk and expense

AUUGN

AUUGN

for its own use and merge it into other program material to form an updated work, provided
that, up 'n discontinuance of the License for such Licensed Material the Licensed Material sup-
plied by LICENSOR will be completely removed from the updated work and dealt with under
this Agreement as if permission to modify had never been granted. Any portion of the
Licensed Material included in an updated work shall be used only on the designated CPU and
shall remain subject to all other terms of this agreement.

9. Inspection. LICENSOR shall have the right at all Teasonable times to inspect the
premises of LICENSEE subject to all LICENSEE’S industrial security and other rules then in
effect at LICENSEE’S premises; to determine and verify LICEMSEE’'S compliance with this
Agreement,

10. Default. If with regard to any of the Licensed Materiaf, LICENSEE fails to pay any
charge provided for herein within ten (10) days after written notice that the same is overdue
and payable, or if LICENSEE with regard to any item or items of Licensed Material fails to
observe, keep or perform any other provisions of the Agreement required to be observed, kept
or performed by LICENSEE, LICENSOR shall have the right to exercise any one or more of
the following remedies:

(a) To terminate the License herein granted,

(b) To declare the entire amount of any fee payable under Paragraph 2 hereina-
bove for the entire term of this Agreement immegiately due and payable as to
any or all items of Licensed Material without notice or demand to LICENSEE;

(c) To sue for and recover all fees then accrued or thereafter accruing, with
respect to any items of Licensed Material,

(d) To take possession of any or all items of Licensed Material without demand or
notice, wherever they may be located, without coart order or other process of
law. LICENSEE hereby waives any and all damages occasioned by such taking
of possession. No taking of possession shall comstitute a termination of this
Agreement as to any item of Licensed Material unless LICENSOR expressly so
notifies LICENSEE in writing;

(e) To terminate this Agreement as to any or all items of Licensed Material;

(f) In the event of any unauthorized use of the Licemsed Material, including, but
not limited to, unauthorized disclosure to third persons or use by LICENSEE
of the material at facilities other than those identified in Paragraph 5 above,
LICENSOR shall at its option have the right in addition to its other remedies,
to recover from LICENSEE an amount equal to €i} the sum LICENSOR would
have charged the person or persons obtaining the benefit of such unauthorized
use of the Licensed Material, plus (ii) any amoumt received by LICENSEE on
‘account of such unauthorized use;

- (g) To have the obligations of LICENSEE hereunder specifically performed and to
have any threatened or actual breach by LICENSEE enjoined, it being ack-
nowledged with respect to the obligations of LECENSEE under Paragraph 5
hereof that such equitable relief is the only adequate remedy; :

(h) To pursue any other remedy at law or in equity. Notwithstanding any said
repossession, or any other action which LICEMSOR may take, LICENSEE
~ shall be and remain liable for the full performance of all obligations on his/her
part to be performed under this Agreement. Adl such remedies are cumula-
‘ " tive, and may be exercised concurrently or separaiely.

11. Legal Expenses. In case legal action is taken by either party 10 enforce this Agree-
ment, all costs and expenses, including reasonable attorney’s fees, incurred by the prevailing
party in exercising any of its rights or remedies hereunder or in enforcing any of the terms,
conditions, or piovisions hereof shall be paid by the other party.

69

70

12. Assignment. Without ‘he prior written consent of the other, neither party shall (a)
assign, transfer, pledge or hypotl -cate this Agreement, the Licensed Material or any part
thereof or any interest therein or () sublet or lend the Licensed Material or any part thereof,

“or permit the Licensed Material or any part thereof to be used by anyone except as specifically

authorized by Paragraph 5 above. Any consent to any of the foregoing prohibited acts shalli
apply only in the given instance and shall not be deemed a consent to any subsequent like act
nor a consent to any other act. In the event either party consents to any prohibited act
hereunder, the other shall, without further request, apprise any third party receiving Licensed
Material or the use thereof of the restrictions upon us¢ contained in this Agreement. Subject
always to the foregoing, this Agreement shall bind and inure to the benefit of the parties
hereto, their successors and assigns.

13. = Severability. If any part, term or provision of this Agreement shall be held illegal,
unenforceable or in conflict with any law of a federal, state or local government having jurisdic-

tion over this Agreement, the validity of the remammg portions or provisions shall not be .

affected thereby. -

14. Goveming Law. This Agreement shall be construed and enforced according to the
laws of California as applied to contracts made and to be performed in California.

15. Paragraph Headings. The headings herein are inserted for convenience only and
shall not be construed to limit or modify the scope of any provision of this Agreement.

16. Termination. Upon termination of the lease herein, all Llcensed Materials and

. 'cop:es thereof shall be returned to LICENSOR.

17. Installations. Under the terms hereof, LICENSEE is entitled to only one mstalla-
tion of Licensed Materials. Additional installations requested by LICENSEE will be made by
LICENSOR under the terms and conditions to be separately negotiated.

18. Entire Agreement. This Agreement contains all the agreements, representations,

~and understandings of the parties hereto and supersedes any prev1ous understandings, commit-

ments or agreements, oral or written.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement as of the day
and year first above written.

THE REGENTS OF THE
UNIVERSITY
OF CALIFORNIA

By

(Licensor)

By“

(Licensee)
AUUGN

AUUGN -

The UNIX Time-Sharing System
T. A. Dolotta |

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

UNIX is a trademark for é family of ¢omputer operating sys-
tems developed at Bell Laboratories. Over 1,100 of these

- systems, which run on small to large minicomputers and on

some large computers, are used within the Bell System for
program development, for support of telephone operations,
for text processing, for control of laboratory experiments, for
computer-aided design, and for general-purpose computing.
Another 1,300 UNIX systems have been licensed outside the

_ Bell System:

The main objective of the developers of the UNIX system

~was to develop a computing environment in which they

themselves could comfortably and effectively pursue their
own work. The result is an operating system of unusual sim-
plicity, generality, and, above all, intelligibility. A distinctive
software style has grown upon this base. UNIX software
works smoothly together: elaborate computing tasks are typi-
cally composed from loosely-coupled, small parts that possess
very simple, general-purpose interfaces, and that are, them-
selves, very often available as ‘‘off-the-shelf”’ software tools.

This talk is an overview of UNIX. A concise, annotated
bibliography of publications that describe UNIX is provided.

SHARE 54

A March 6, 1980

71

The Unix Time-Sharing Sys(em : o 2

a1

[2]

[31]

(4]

[5]

[6]

[71

(8]

[9]

ol

(11}

- [12]

)

BIBLIOGRAPHY

The Bell System Technical Journal, Vol. 57, No. 6, Part 2 (July-Aug. 1978).
An issue devoted to UNIX; describes UNIX itself and several applications thereof.

Dolotta T. A., et al. Programmer’s Workbench. Proc. 2nd International Conf.
on Software Engmeermg, pp. 164-199 (Oct. 1976).
Six papers that describe various aspects of a version of UNIX that is used primarily
Jor program development and text processing.

" Dolotta, T. A., and Mashey, J. R. Using a Command Language as the Primary

Programming Tool. In: Beech, D. (ed.), Proc. of the 2nd Working Conf. on Com-
mand Languages, Amsterdam: North Holland (in press).
Highlights the UNIX command language {(which is a full programming [anouage)
and some of the ways in which it has been used.

Kernighan, B. W., and Cherry, L. L. A System for Typesetting Mathematics.
Comm. ACM, Vol. 18, No. 3, pp. 151-156 (Mar. 1975).
A readable description of a very neat UNIX facility.

Kernighan, B. W., and Mashey, J. R. The UNIX Programming Environment.

" Software— Practtce& Experience, Vol. 9, No. 1, pp. 1-15 (Jan. 1979).

Explains what’s good about UNIX.

Kernighan, B. W., and Plauger, P. J. Soﬁware Tools. Reading, MA: Addison-
Wesley (1976).

A textoook about building good software tools similar to those available in UNIX.

Kernighan, B. W., and Ritchie, D. M. The C Programming Language.
Englewood Cliffs, NI: Prentice-Hall (1978).
A book that describes in detail the principal language available in UNIX. Essen-
tially all of UNIX is written in C, which has also been “‘ported’’ to a number of
different computers. :

Levine, J. R., and Morrison, J. P. Data Stream Linkage and the UNIX System.
IBM Systems Journal, Vol. 18, No. 3, pp. 470-475 (1979).
A discussion of some UNIX featares

Lions, J. Experlences with the UNIX Time- sharmg System. Sofzware—Practzce'
& Experience, Vol. 9, No. 9, pp. 701-709 (Sep. 1979).
An enjaoyable article that tells why they like UNIX in New South Wales.

Miller, R. UNIX—A Portable Operating System? Operating Systems Review,
Vol. 12, No. 3, pp. 32-37 (July 1978).
Tells how UNIX was “‘ported” to an Interdata 7/32. This issue of the Operatmg
‘Systems Review contains two other UNIX-related papers.

Ritchie, D. M. The Evolution of the UNIX Time-sharing System. Proc. of the
Symposium on Language Design and Programming Methodnlogy, Sydney, Austraha
(Sep. 1979).
Ten years later, one of the creators of UNIX looks back.
Ritchie, D. M., and Thompson, K. The U»'X Time-Sharing System Comm
ACM, Vol. 17, No 7, pp. 365-375 (July 1974). .
The ortgma! prize-winning UNIX paper, written by its two creators. A rewsed and
updated version of this paper appears in the first reference above.

-AUUGN

AUUGN

JInstruction Backup
Jim McKie

Eléctricél Engineering
Herlot-Watt University

Dave Rosenthalb
Architecture

Edinburgh University

9th Jan 1980

i. Introduction

This note describes the routine " backup" in the Unix
system assembler code (m40.s or ms5.s), and the respects in
which it is inadequate for the newer small 11s (23, 34, 60).
It assumes you have a processor handbook for both the 11/45
and one of the smaller processors, and a copy of John Lion’s
Commentary on the Unix System. If you don’t have a Commen—
tary, then the line numbering din the section describing

" backup on an 11/40 may need clarification - the entry point

to _backup in m40.s (_backup:) is line number 1012.

2. Instruction Backup

" When a user mode segmentation exception occurs. and the
user SP is below the stack segment, an attempt is made to
grow the stack automatically. The assembler rcutine "backup"
(1012) {is wused to reconstruct the situation which existed
prior to execution of the instruction which caused the trap.
Yorow" (4136) is used to perform the actual extension. The
case where the trap was not due to the SP going below the
stack segment 1is handled by 'grow", which returns 0 if the
SP is already within the stack segment, and a SIGSEG signal
is indicated. L :

3. Memory Management Status Repisters

SSRO contains abort error flags, mewmory managenmnent
enable plus ~some other information. If any of the abort
flags are set, the memory management status registers are

L2
e T R . R Y

73

~2- -

frozen until the ‘flags are cleared, to facilitate error
recovery. . : :

The SSR1 register records any autoincrement/decrement
of the general purpose registers, including explicit refer-
ences through the PC. SSR1 is cleared at the beginning of
each dinstruction fetch. Whenever a general purpose register
is either autoincremented or autodecremented, the register

.‘Inumber and the amount (in 2°s complement notation) by which

the register was modified 1is written in SSR1l. The informa-
tion contained in SSR1 is necessary to accomplish an effec-
tive recovery from an error resulting in an abort. The low
order byte is written first, and it is not possible to for a
PDP-11 instruction to autoincrement/decrement more than two
general purpose registers per instruction before an "abort
causing" reference. -

15 11 10 8 7 32 0

o ’ I ! : I .
B

Amount changed Register Amount)changed Register
(2°s complement) number (2°s complement) number

“Yormat of Status Régister SSR1

SSR2 1s loaded with the 16-bit virtual address at the
beginning of each instruction fetch, but is not updated if

the instruction fetch fails. Upon an abort, the result of
SSRO bits 15, 14 or 13 being set, SSR2 will freeze until the
SSRO abort flags are cleared.

4. Trap Handling

When a trap occurs, the assembler "trap" routine (0755)
stores the contents of the wmemory management registers
(0759) in case they are needed, and the memory management
unit 1s reinitialised. ' :

- The process of "backing up" and restarting a partially
completed instruction involves: :

1. Performing the appropriate memory manageﬁent " tasks t0'j

- alleviate the cause of the abort;

2. Restoring the general purpose registers indicated in
SSR1 to thelr original contents at the start of the
instruction by subtracting the "modify value" specified
in SSR1j; -

e = h W :»‘ Mg

AUUGN

-3 -

3. Restoring the PC to the "abort time" PC by loading it
‘with the contents of SSR2, which contains the value of
the virtual PC at the time the "abort generating"
instruction was fetched.

The routine backup relies on; the ability of the
hardware to restart a half executed Instruction, e.g. the
instruction

mov (£0)+,~(sp)

may cause ‘a trap when the attempt 1s made to push the
operand, fetched indirectly through r0, onto the stack. At
this point, register r0 has been autoincremented, and must
be restored to its original value before the instruction is
re-cxecuted after the stack is grown. The memory management
available on the larger PDP-lls (44, 45, 55, 70) automati-
cally saves the amount any general purpose register was
autoincremented/decremented (a maximum of two registers) in
SSR1. However, this register 1s missing on the smaller pro-
cessors (23, 34, 40, 60) and the routine "backup' has a lot
- more work to do, and may fail, as not enough information is
saved by the processor. The classic. example i1s on the
instruction I

. cmp 7(sp),-(5p)

In such a situation, when the source register is the same as
the destination register, 1t is impossible to tell which

half of the instruction caused the fault, and no backup 1is

possible.

It will be useful to'consider Instruction backup when
the full set of memory management registers is available (as

on the PDP-11/45), before considering the intricacies caused

by the absence of SSR1.

5. PDP-11/45 Instruction Backup

Instruction backup with the /45-type segmentation
hardware is performed by the following code:-

+globl _backup
«globl _regloc

_backup: .

0001 o mov 2(sp),x0
0002 ~ movb ssr+2,rl
0003 - jsr pc, 1f

. 0004 ' ’ movb ssr+3,rl
0005 Jsr pc, 1f

.0006 movb _regloct+7,rl
0007 . asl rl :

0008 add 10,rl

nrEA

s g et “r g

AUUGY . | -

75

0069 | © mov sst+4, (rl)

0010 clr r0

0011 2: :

0012 . rts pc

0013 1: '

0014 : ‘mov rl,~(sp)
0015 asr (sp)

0016 asr (sp)

o017 - . asr - (sp)

0018 ' bic - 817,r1
0019 movb _regloc(rl),rl
0020 asl rl

0021 add - r0,rl

0022 sub (sp)+, (x1)
0023 - rts pc

Backup is called directly from "trap" (2812) with the
address of the saved user registers as argument.

0001 ~ save the pointer to the saved registers inm r0; it
will be used more than once; ‘

0002 move the lower byte of the saved SSRl (in "trap")
into ril; :

" 0003 lines 13 to 23 are a subroutine which takes the byte

specified 1In rl and wupdates the gencral register
specified therein. The lower byte of rl is of the
. same format as one of the bytes of SSRl. First, use
the next location on the stack as a temporary to
hold the "amount changed" (lines 14 to 17); note the
implicit sign extension in line 2. Isolate the
register number (18), and create a pointer to its
stored Jlocation (21) wusing the '"regloc" array

- (2677) . Finally, update the stored register wvalue
(22) and return; : : :
0004 do the same for the upper byte of SSR1;

0006 reset the PC to that saved In SSR2 at the time 'of
the trap;

0010 indicate no error on return, -"backup" cannot failf

6. Instruction Backup wtthout SSR1

Memory management register SSR1 is mi351ng on the PDP-
11/23/34/40/60, and in order to backup the instruction caus-—
ing a segmeatation fault, it must be simulated. The backup
procedure 1s the same as that for an 11/45, but before the

registers are updated, the subroutine "backup'" is called to

simulate the function of the missing registec, and put the

: required offsets and register numbers into the storage space

76

i et LI

e

AUUGN

"ssr+2"._

1013

1047

1050

1053

1196

AUUGN

Save the pointer to the saved registers, and the old
contents of r2 - it will be used as the misc-ing
register SSR1, and call the routine ‘'backup" to
simulate the action of the missing register;

Initialise "SSR1"; "bflag" is set if we are dealing
with .a byte instruction, "jflg" 1s an error condi-
tion I1f it is set; o

move the contents of the virtual PC at the time of
the abort (SSR2) into r0, and call the routine
"fetch" (1222) to get the instruction returned in 10
which caused the abort. Fetch returns -1 on error
and also clears the lower byte of r2 if an error

. occurs ~ this will be used later.

‘the top 4 bits of the instruction are used to deter-

mine its "type" (a numerical op-code list is very
handy). There may not be enough information to

. determine the type (0 and 10), so a further check is
done at line 1066, on the next lower 3 bits. The

main categories are double operand, single operand
and illegal instruction types (illegal instructions
in this case are those such as branch instructions
which do not take an operand and could therefore not
cause a segmentation exception, as well as true
illegal instructions such as 11/45 floating point
opcodes). Those of type "illegal" (1188) simply

- cause jflg to be set and a hasty return to
- " backup". If a single operand instruction caused
- the fault, then the register of its operand 1is the

one which caused the fault, no others being
involved, so call "setreg" (1196) to put any regis-—
ter number and amount changed into the lower byte of
r2. : o

Double operand instructions are more complicated;

-setreg 1s called on both the source and destination

(1115) (note that the source information is put in
the high byte, whereas the hardware SSR1 uses the
low byte first - it doesn’t really matter), and then
the source operand is fetched, following through any
indirection necessary. This has the effect of clear—
ing the low byte of r2 if a fault occurs (in
"fetch"). In this way, if the fault was caused by
the source . operand, the destination register would
not have been altered, and so "backup" should not

- need to restore it.

s

The routine "setreg" is interesting as it brings out
one or two points about the PDP-1l instruction set.

- Displacemeuts only occur with register modes 2, 3, 4

77

78

-6 -

and 5 (autoincrement, ° autoincrement deferred,
autodecrement and autodecrement deferred respec—
tively). With modes 3 and 5, the amount changed is
“always 2 bytes, but with modes 2 and 4, the amount
changed can be 1 byte or 2 bytes, depending on
whether the instruction is a byte or word instruc-
tion. Also, 1f the register involved is the stack

_pointer (r6 or SP) or the program counter (r7 or
PC), ‘the amount changed is always 2 bytes' this is
checked on lines 1206 to 1209. S

7. Special Cases

The code in V6’s m40.s described by the commentary

works correctly on the 11/40. However, the other small .

machines have certain peculiarities which require special
treatment. These include:-

- FP11 instructions. The 11/23+KEF11A, the 11/34+4FP114,

the 11/60 and the 11/60+FP1lE all process the 11/45
style floating point instructions. The FP1ll°s operands
may be 2, 4 or 8 bytes long, and the' general registers
are adjusted by corresponding amounts.

= - The 11/40'always leaves the auto-incremented or decre-
mented registers in their final state, even if a fetch
is aborted. In some cases on the other machines, the
registers are left in their initial state. So far as
is known at present, these cases are:-

1. FP1l1 instructions with operands of 4 or 8 bytes.

length on the 11/60 without FPllE.
2. Instructions of the form "op (r)+" on the 11/34.

3. Instructions of the form "op (r)+,dd" on the
11/34, iff the source faults.

Of course, if the registers are ia their iInitilal state,
it is unnecessary (and incorrect) to adjust them. How-
ever, "grow()" (4136) examines the sp after backup has
run, and expands the stack iff the sp points outside
the valid stack. If the sp is iIn its Initial state, it
may point to a valid stack address, in which case SIG~-
SEG will be incorrectly signalled.

After comparing V m40.5, V7’s m&O.s, Stanford s
m34.s and our own m34.s”; we have written a new version of

"backup" which is presently being tested. This supports

FP1l instructions, and has facilities for instruccions which
leave the registers in their initial state._ However, it is

not a panacea; there is one problem on the 11/34 which

1) Which was distributedgﬁiﬁh v6+ at Newcastle.
T
) ‘:~~-=P.!' N

- : - e B

eI

AUUGN

-7 - S

appears insoluble. If the source of an op (r)%,dd faults,
there are four possible cases:- :

Case Before After Faults
1. 1 <«
; e . none
x> [//]]/

. ’ oS e l’
2. . . < r ',-:
o © o em—— r, not r-2
x => [/ .

3. r -> < r
e ——— r, not r-2
111117

4, res Ep 4
s e e . and r-2

v e e o

Cases 2 and 3 are indistinguishable after the fact, and so a
backup failure must be signalled 1if this situation is
detected. The behaviour of this new backup on the /34 1is
more conservative than that of Stanford’s; it fails rather
than backup incorrectly. : ‘

80

-1 -

PROGRAMMING ANNOUNCEMENT

New Operating System

Because so many users have asled for an operating system of even greater
capability then VM, IBM announces the Virtual Universe Operating System
0S/vu.

Running under 0S/VU, the individual user appears to have not merely a
machine of his own, but an entire universe of his own on which he can
set up and take down his own programs, data sets, systems networks,
personnel, and planetary systems. He need only specify the universe he
desires, and the 0S/VU system generation program (IEHGOD) does the rest.
This program will reside in SYS1.GODLIB. The minimum time for this
function is 6 days of activity and 1 day of review. In conjunction with
0S/VU, all system utilities have been replaced by one program
(IEHPROPHET) which will reside in SYS1.MESSIAH. This program has. no
parameters or control cards as it knows what you want to do when it is .
executed. '

Naturally, the user must have attained a certain degree of
sophistication in the data processing field if an efficient utilisation
of 03/VU is to be achieved. Frequent calls to non—re51dent galaxies, for
instance, can lead to unexpected delays in the execution of a job.
Although IBM, through its wholly-owned subsidiary, the United States, is
working on a program to upgrade the speed of light and thus reduce the
overhead of extraterrestrial and metadimensional paging, users must be
careful for the present to stay within the laws of physics. IBM must
charge an additional fee for violatioms.

0S/VU0 will run on any IBM x0xx equipped with Extended WARP Feature.
Rental is twenty million dollars per cpu/nanosecond.

Users should be aware that IBM plans to migrate all existing systems and
hardware to 0S/VU as soon as our engineers effect one output that is
(conceptually) error-free. This will give us a base to develop an even
more powerful operating system, target date 2001, designated "Virtual
Reality". 0S/VR is planned to enable the user to migrate to a totally
unreal universe. To aid the user in identifying the difference between
"Virtual Reality" and "Real Reality", a file containing a linear
arrangement of multisensory total records of successive moments of now
will be established. It“s name will be SYSl.est.

AUUGN

[

st

Uni: Jpstallation Eguipment Li
organisation
departnent
address
city
region :

telephone(organisation)

telephone(computer room)

telephone(dial up -line)

correspondent
system manager

licence(commer/acaden)
Unix versions licenced
Unix versions run

extension
extension

cpu type
cpu num
memory (Kb)

Other systems run

Unix group members .
Non group members

manuf model agent qty déscription

-disks | i i ! i

]] []]]

]]] 1]

{ !] 1 1

] t] 1 1
.]] [(]]

] 1] I {
tapes | i i I i

]] t 1 1

] i ' } !

] {]] 1

§ 1 L] ' '
terminall i i i !

] 1 | 1.]

]] [1]

]]]]]

t N} 1 1 1

] 1] ! 1

i i i 1 I

i |]]] i

i] 1 i 1
printers] i ! i i

]]]]]

L]]]]]

] 1] H]

] 1] ! 1
plotters| i | i i

]] []]]

. 1 i 1 i i
o ! ! I

displays| H | i H

x : ! I

]]] 1]

] i 1] 1
other | ! i | i

i | | i |

| ! ! I

] 1]] 1

1 I ' i .

1 1] ' 1

M 1] 1 !
networks|

; -

[

]

3cassette}dectape{floppy—disk}paper—tape{card-reader H

[]] 1] 1]

]] i]] i

imodem|auto-dialja/d converters!ficating pointicache |

i i M ' | i
I object to this information being made available to:

e men e e meem Mo e e Gm Gm i Gmem Smem M Ew e ee e dm GG S aE e e Seen G s e S weem .-

Unix Installation Software List

organisation
department
favoured media

utility version/description status

i 1 !
: t i 1
I t \ 1

i !]
1 | [} [
1] [} |
1 1]]
1 t | |
1 1 | 1
1 i i i
] | ' 1
1 i | !
] t ')
1 t ']
1 [} [} 1
i [| 1

1 1 [
’ ! i |
1 [{]
! 1 ! |
] 1 1 i
| | ! !
[] | !
| |] |
1]] 1
[}] | [}
g | ! i

i ! |
]]]]
|] 1 1
[} 1 1 t
! 1] I
]] 1 1
L] 1]]
] i]]
i i] '
[} |]]
]] 1 1
[| 1]
i I 1 |
t] { {
] | 1 i
1] 1 1
] | ! §
1 t 1 1
' J | i
]] 1 [}
i] 1 1
] 1]]
1 1 1 1
1 1 [} [}
i i 1 1
] ! i |
' i []
] t] [}
1] i |
]]] 1
' | | 1
t 1]]
) !])
[l] 1 |
1 [1 §
1 1 1 1
1] |)
t] 1] 1
1 i ! !
] 1 i 1
1 ! i |
] |]]
i I ! |
] 1]]
] | 1 i
1 1 ! |
] I | |
!]]]
t ' i |
} ! \]

1 i !
1 [} 1 1
] i 1 1
]] 1 1
1 1 [I
]]] t
]] I i

N.B. Only major or better software should be mentioned (not Bell ori-
ginals!). A well known utility should be described by giving its
source

1

e.g | Pascal | Vrije | SUD |

Use combinations of the following characters to give software status.
Add any others which you think appropriate.

H - Home grown I - In development
S -~ Stored here U - Used here
W - Vorks! N D - Documented
. L = Licence required M - Modified here
:y f el]

Unix Luug Installation List

Luug name

chairman

address

phone

correspondent

address

phone

organisation

department

representatives

organisation

department

representatives

organisaticn

department

representatives

organisation

department

representatives

organisation

department

representatives

organisation

department

representatives

organisation

department

representatives

organisation

department

representatives

organisation

department

representatives

organisation

department

representatives

