
The tikz timing Package

A LATEX Package for Timing Diagrams

Version v0.7f – 2017/12/20

Martin Scharrer
martin@scharrer-online.de

WWW: http://latex.scharrer-online.de/tikz-timing

CTAN: http://www.ctan.org/pkg/tikz-timing

mailto:martin@scharrer-online.de
http://latex.scharrer-online.de/tikz-timing
http://www.ctan.org/pkg/tikz-timing

Contents
1 Introduction 5

1.1 Changelog . 6
1.2 Dependencies . 9

2 Usage 10
2.1 Timing Characters . 10
2.2 Macro for use in Text Mode . 13
2.3 Macro for use inside TikZ-Pictures . 14
2.4 Table for Timing Diagrams . 16
2.5 Macros for use inside the Character String . 22
2.6 Meta-Characters . 24
2.7 Floating timing diagrams with captions . 27

3 TikZ Keys for Styles, Settings and Actions 28

4 Libraries for Further Characters 34
4.1 Arrows . 35
4.2 Either High or Low . 36
4.3 Overlays . 37
4.4 Clock Arrows . 38
4.5 Column Type . 39
4.6 Nice Timing Tables . 40
4.7 Counter Character . 41
4.8 Advanced Nodes . 45
4.9 Compatibility Macros for ifsym package . 48
4.10 Intervals (experimental) . 49

2

4.11 Beamer Overlay Support (experimental) . 50

5 Examples 52

3

List of Examples

1 Initial Characters, Modifiers, TikZ Keys . 53
2 tikztimingtable without extracode . 54
3 tikztimingtable with extracode . 54
4 timing inside general tikzpicture . 55
5 Using In-Line Nodes to draw Relationships. 55
6 Using In-Line Nodes to draw Marker Lines. 56
7 Adjusting Diagram Parameters and using Advanced In-Line Nodes to draw Marker Lines. 57
8 SR flip-flop timing diagram . 58
9 SPI Interface Timing . 59

4

1 Introduction

This package uses the [pgf]tikz package to produce timing diagrams inside text or tikzpicture environments. Also a
tabular-like environment is provided to produce a larger timing diagram with multiple labeled signals and the possibility to
add own drawing material. Additional optional functionality is provided by libraries.

The signal levels of the timing diagram can be given by corresponding characters/letters like ‘H’ for Logical High or ‘L’ for
Logical Low. So e.g. ‘{HLZXD}’ gives ‘ ’. In order to fit (in)to normal text the diagram size (i.e. its height, width and
line width) is defined relatively to the currently active font size. The diagram height is about the height of an uppercase ‘X’
(+2× 1

2
line width). This way the diagrams can also be scaled using font size commands like \small. (Example: X X

X X X X X X X X X X) A single timing character produces a diagram with a width identical to its height (‘H’ → ‘ ’).
Longer diagrams can be produces by either using the same character multiple times (‘HHH’ → ‘ ’) or writing the width as
number in front of the character (‘3.2H’ → ‘ ’). For (partial) compatibility with similar packages lowercase characters
only produce a signal with half the width (‘h’ → ‘ ’, ‘3.2h’ → ‘ ’).

Recurring character combinations can be repeated using character groups (‘3{hlz}’ → ‘ ’) or be defined as so called
meta-characters (‘Y’=‘hlz’, ‘3Y’ → ‘ ’), which are similar to a TEX macro. Since v0.7 meta-characters can also include
macro arguments.

Additional features are the inclusion of in-line TikZ styles (‘H ;[orange] L’→ ‘ ’), in-line nodes (‘2H N[rectangle](Name){Text}

2L’ → ‘ Text ’), automatic width calculations (‘H $ 1+\mymacro-\slope $ L ’ → ‘ ’) and much more.

5

1.1 Changelog

v0.3 from 2009/04/24

• First released version

v0.4 from 2009/05/03

• Added output routine which combines successive occurrences of the same character. This improves screen display
quality and reduces rendering time and file size.

• Removed own macros for lowercase characters. They are now handled by the uppercase macros which receive half of
the width. Exceptions are possible like for the ‘m’ character.

• Added parser for rows in tikztimingtable. This makes the syntax much more stable. Also replaced row counter with
TikZ coordinates which is more user-friendly.

• User macros to draw grids and lines inside table.

• In-line Nodes, e.g. to mark positions inside the diagram.

v0.4a from 2009/05/05

• Added \tablerules macro. Changed default style of inline nodes to coordinate.

v0.5 from 2009/05/15

• Added PGF shape for timing diagrams. Added meta-characters. Changed ‘M’ character to use PGF decorations.
Added special ‘B’ character to reduce width of next character. Changed \timing syntax to include an ‘at’ before the
coordinate. Bug fix for use with the ‘calc’ package.

v0.6 from 2009/07/27

• Added “forward” modifier ‘F’ as reverse version of the “backward” modifier ‘B’.

• Added support for lower-case modifiers “b’, ‘f’ and n’.

• Added libaries for characters ‘A’/‘W’ for arrows and ’E’ for uncertain low-to-high and high-to-low transitions.

6

v0.6a from 2009/07/28

• Added library for overlay modifier ‘O’.

v0.7 from 2009/12/05

• New libraries:

clockarrows Library for clock arrows.

columntype Library providing a timing column type for tabular.

nicetabs Library to format \tikztimingtable like a booktab tabular.

counters Library to defined counter characters which display an incrementing counter value every time there are used.

advnodes Library for advanced nodes with multiple anchor points.

ifsym Library providing the same timing symbols and characters as the ifsym package when loaded with the electronic
option.

• Additional experimental libraries:

interval Library to change color of ‘ZL’, ‘ZH’ etc. transitions to indicate borders of an interval.

beamer Library providing some marginal beamer overlay support.

• overlays library:

– Overlays can now be cascaded, i.e. an overlay can be inside another one.

– The second braces around the second part are now optional.

– Fixed issues with ‘T’ and ‘C’ characters inside overlays.

• Meta-characters can now have arguments.

• Added more variety for in-line options: ‘[[]]’, ‘[+ +]’ and ‘[| |]’.

• Handling of in-line options and nodes got modified. Options are now placed directly where placed and are valid until
the next ‘;’. Please note that [/utils/exec={..}] now needs to be written as [|/utils/exec={..}|]. Otherwise it
is re-executed every time the drawing path is renewed.

7

• Added star version of \tablegrid.

• Added background to ‘E’ character (either library).

• Some fixes for placing of ‘D{}’ texts.

• Fixed wrong slopes (e.g. lslope instead of zslope) for some transitions.

• Major changes on internal character definition macros, parser and output routine.

• Fixed problems with expanding code content in user input.

• The \texttiming macro now uses a \timing macro internally.

• The \timing macro is now only defined inside tikzpictures. This includes tikztimingtable.

• Added TikZ style timing/draw grid for grids behind \timing macros.

• Replaced macros \texttimingbefore, \texttimingafter and \texttiminggrid with TikZ settings ‘timing/before text’,
‘timing/after text’ and ‘timing/draw grid’.

• Added separators ‘timing/outer sep’ around \texttiming.

• Graphical improvements for ‘double line’ characters like ‘D’, ‘U’ and ‘E’. The whole character including both edges is
drawn in a single process.

• Character width can now be scaled using wscale.

• Character width can now be calculated by placing code inside ‘$ $’.

• Fixed issue with \horlines macro.

• The tikztimingtable environment and associated macros got enhanced:

– The content is no longer read as macro argument and can now include paragraphs.

– Multiple extracode sections can be now included between rows, not only a single section at the very end.

8

– A extracode environment has been added. Both macro and environment have now an optional argument for TikZ
settings.

– Added \tableheader macro to label both columns. The \tablerules macro got adjusted to detect the header
line and draw also a middle line.

– Added background environment to draw things in the background.

– Fixed broken optional argument of \tablegrid.

– Added macro \marknodes and associated debug/nodes style to mark in-line nodes for debug purposes/orientation
during the diagram creation.

v0.7d from 2011/01/09

• Fix for end macro of extracode environment to support etoolbox’s environment hooks.

v0.7e from 2017/12/10

• Fixed advnodes library to support current PGF version.

v0.7e from 2017/12/10

• Documentation update: added usage as float with caption due to user request.

v0.7f from 2017/12/20

• Documentation update: added description of several existing styles.

1.2 Dependencies

. . .

9

2 Usage

2.1 Timing Characters

The logic levels are described by so called timing characters. Actually all of them are letters, but the general term character
is used here. Table 2.1 shows all by default defined logic characters and Table 2.2 all possible two-character transitions.
Additional functionality is provided by the modifiers shown in Table 2.3.

Table 2.1: Timing Characters

Character Description Diagram Transition
Example

H High
L Low
Z High Impedance
X Undefined / Don’t Care
D Data / Double A

U Unknown Data
T Toggle or
C Clock (no slope) or
M Metastable Condition

G Glitch (zero width)
S Space (nothing)

Table 2.2: Overview over all transitions.

to
from H

H

L

L

Z

Z

X

X

M

M

D

D

U

U

T

T

C

C

10

Table 2.3: Modifiers for Timing Characters.

Modifier Syntax Description

D{}D Produces transition between two data values. E.g.: ‘D{}D’ →
D{〈Text〉} Adds 〈text〉 into a data signal using a node. E.g.: ‘D{A}D{B}’ → A B

D{[〈 TikZ
Settings〉]〈Text〉} Adds 〈text〉 using the given node 〈settings〉. E.g.: ‘D{[blue]A}’ → A

〈number〉〈character〉 Sets width of next signal to given number. Half of it if character is in lower case. E.g.: ‘2.6H5.2l’ →
〈integer〉{〈characters〉} Repeats the given characters 〈int〉 times. E.g.: ‘5{hl}’ →
{ 〈characters〉 } Encloses characters in a local scope. Options inside are only local to the scope. This also applies to the effect of

‘;’ and similar modifiers. E.g.: ‘H {[blue] LH} L’ →

〈number〉B Subtracts the given number from the width of the next character. “Backwards” E.g.: ‘H.5BL’ →
〈number〉F Adds the given number to the width of the next character. “Forwards” E.g.: ‘H.5FL’ →
N[〈Settings〉](〈Name〉){〈Content〉} Adds node at current position. All three arguments are optional. E.g.: ‘H N(a1) L’ →

[〈TikZ Keys〉] Executes given TikZ settings during the drawing process. This settings will be re-executed when the internal
drawing path is renewed which can cause side-effects. E.g.: ‘H[blue]LH’ →

[|〈TikZ Keys〉|] Executes given TikZ settings during the drawing process like [] but does not re-executes them.
E.g.: ‘D{.} [|/utils/exec={\def \m {...}}|] D{.} D{.}’ → . . .

[!〈TikZ Keys〉!] Executes given TikZ settings during the parsing process. Because this makes only sense for internal settings the
default path is ‘/tikz/timing’, not ‘/tikz’ like in all other settings macros.
E.g.: ‘H[!wscale=2.5!]LH’ →

[[〈TikZ Keys〉]] Executes given TikZ settings first during the parsing process and again during the drawing process. This is for
settings which are needed for width calculations and again for the drawing code, e.g. the slope values.
E.g.: ‘H[[timing/slope=.5]]L $\slope $H’ →

!{〈code〉} Places given code into the internal tikzpicture. See Example 1.
@{〈code〉} Executes the given code immediately during the parsing process. This can be used to change parsing

parameters. To execute code during the drawing process use [|/utils/exec=〈code〉|] instead.
E.g.: ‘L @{\setwscale {2}} H’ →

11

Table 2.3 – continued from previous page

Modifier Syntax Description

$〈math expression〉$ Takes a valid pgfmath expression (See pgf manual), evaluates it and places the result back in the input string
so it can be used as width for the next character. The macros \slope=\lslope, \dslope, \zslope and
\wscale can be used to access the corresponding values. E.g.: ‘D{} $ \dslope $ D{} D’ →

; Renews the internal drawing path which ends the scope of all options given by [].
E.g.: ‘H;[blue]L;H’ →

, Same as ‘;’, but timing specific options (atm.: slopes and line width) are restored for the new path.
E.g.: ‘[line width=1pt]L,H;L’ →

12

2.2 Macro for use in Text Mode

\texttiming[〈initial character/TikZ Settings〉]{〈characters〉}

This macro places a single timing diagram line into the current text. The signals have the same height as a uppercase letter
(like ‘X’) of the current font, i.e. they scale with the font size. The macro argument must contain only valid logic characters
and modifiers which define the logical levels of the diagram line.

An initial character can be given as an optional argument. No logic level will be drawn for this character. Instead it will be
used to define the initial position of the signal so that the diagram line will start with a transition from the initial to the first
character. However, if the optional argument holds more than a single character it is taken as TikZ settings for the diagram.
The initial character can then be given using the key ‘timing/initchar=〈char〉’.
Examples:
\texttiming{HLZDZLH} gives ‘ ’, with grid: ‘ ’.
\texttiming[L]{HLZDZLH} gives ‘ ’, with grid: ‘ ’.
\texttiming[green]{HLZDZLH} gives ‘ ’
\texttiming[green,timing/initchar=L]{HLZDZLH} gives ‘ ’

\texttimingbefore Deprecated! (defaults to : 〈empty〉)
\texttimingafter Deprecated! (defaults to : 〈empty〉)

This two macros are executed before and after every timing diagram line created by \texttiming macro inside the same
tikzpicture environment and can be used to add drawing macros. The argument of the \texttiming macro is already
processed before any of these macros are expanded, therefore this macros can access the width of the diagram.

These macros should not be used directly in newer code but instead the new TikZ styles ‘timing/before text’ and
‘timing/after text’. For backward compatibility these styles default to the two macros.

(Deprecated) Example: \let\texttimingbefore\texttiminggrid adds a grid into the background of the \texttiming diagram.

\texttiminggrid Deprecated!

This macro should only be used inside \texttimingbefore or \texttimingafter and draws a grid of the full size of the
\texttiming diagram. For newer code the TikZ styles ‘timing/draw grid’ and ‘timing/no grid’ should be used instead,
e.g. \tikzset{timing/intext/.append style={timing/draw grid}} or simply enable the grid globally for all in-text and
other timing diagrams with \tikzset{timing/draw grid}.

13

2.3 Macro for use inside TikZ-Pictures

\timing[〈TikZ Keys〉] at (〈TikZ Coordinate〉) {[〈initial character〉]〈characters〉};

This macro does the same as \texttiming but is designed to be used inside a tikzpicture environment and only there.
Like normal TikZ macros (\path, \drawn, \node) it allows an optional argument with TikZ settings and an optional
TikZ-coordinate. However, a own argument parser, not the one used by TikZ, is used to detect and read these optional
arguments. Therefore the order of the arguments is mandatory and must not be reversed. This small limitation might be
overcome in future versions of this package.

Please note that the optional initial character may be given inside and at the very start of the mandatory argument, not
before it. This is necessary because of several technical reasons.

Example: \tikz \timing [green] at (1,2) {HLZDZLH}; gives ‘ ’.
Example: \tikz \timing [green] at (1,2) {[L]HLZDZLH}; gives ‘ ’.

14

Timing Shape Anchors

Every timing diagram line produced by \timing, which includes the rows in tikztimingtable, is also a PGF shape (node)
with several anchors. These are shown in Figure 2.1. The shape is very similar to the standard rectangle shape but does
not provide a text anchor. In addition to the standard points of the compass anchors of TikZ the three logic levels low, mid
and high can be used in combination with start, mid and end. An extra origin anchor is located at the lower left, also
called south west corner where the diagram originates. The two anchors called start and end are provided to mark the
start and end of the timing signal. There are either located at the low, middle or high logic level dependent on the used first
(or initial) and last timing character.

In order to use the timing node it has to be named which can be done using the ‘name=〈name〉’ option inside the optional
argument. The rows of a tikztimingtable are automatically named as ‘row〈row number〉’ where the first row has the
number 1.

(s.north west) (s.north) (s.north east)

(s.west) (s.center) (s.east)(s.mid west) (s.mid) (s.mid east)

(s.base west) (s.base)
(s.base east)

(s.south west) (s.south) (s.south east)(s.low start)

(s.mid start)

(s.high start)

(s.low mid)

(s.high mid)

(s.low end)

(s.mid end)

(s.high end)

(s.start)

(s.end)(s.origin)

Figure 2.1: Timing Shape Anchors. The start and end anchors mark the start and end of the timing signal.

15

2.4 Table for Timing Diagrams

\begin{tikztimingtable}[〈TikZ settings for whole table〉]
{〈Signal Name〉} & [〈Init. Char./TikZ Keys for Row〉]〈Characters〉 \\

...

\extracode % Optional

<additional code>

\end{tikztimingtable}

This environment can be used to typeset multi-line timing diagrams. The syntax is like the one for a tabular environment
with two columns. The first column is for the signal name and the second one are the logic characters which would be
placed inside the argument of a \texttiming or \timing macro. If the second column starts with an optional argument it is
either taken as initial character if it holds only a single character or as row wide settings otherwise. The whole table will be
drawn inside a tikzpicture environment using multiple \timing and \node macros for the timing signals and their names,
respectively. Additional tikz drawing code can be insert at the end of the table using \extracode.

\extracode[TikZ Keys]

This macro is only defined inside a tikztimingtable environment. In earlier versions of this package it could only be used
after the last table line (i.e. after a \\). If used there all code between it and the \end{tikztimingtable} will be placed
inside the same tikzpicture. This allows to add some drawing lines or a grid to the picture. The macro does not start a
TikZ scope or a TEX group by itself. The optional 〈settings〉 therefore affect all following code until the end of the picture.

It is also possible to draw something behind the timing diagram by using using the background environment or the PGF
background layer:

\begin{pgfonlayer}{background}. . . \end{pgfonlayer}

\endextracode

From version 0.7 on it is possible to add further timing rows after an extracode section by using \endextracode. Everything New in v0.7

after this macro is taken as part of a new row. It is allowed to use this macro direct before \endtikztimingtable. This
makes it possible to use \extracode anywhere inside the table, including at the very start before any rows are processed.
Early insertion of extra code is necessary for e.g. limiting the bounding box or setting up a clipping path.

16

\begin{extracode}[〈TikZ settings〉]
〈extra drawing code〉

\end{extracode}

Instead of using \extracode . . . \endextracode, which is actual plainTEX syntax, this LATEX style environment can be used. New in v0.7

Like any environment it creates a TEX group around its content, but no TikZ scope is created to allow drawing code (e.g.
clipping paths) to affect the rest of the table. The optional 〈settings〉, however, only affect the environment content.

Please note that while \endextracode is optional if \extracode is used at the end of the table, a \begin{extracode}

must always be closed by \end{extracode}.

Macros for \extracode Section

The following macros are only defined inside a tikztimingtable after the macro \extracode. They are useful for drawing
additional material.

\tablegrid*[〈TikZ Keys〉]

After \extracode this macro draws a grid in the background of the table. A separate grid is drawn for each row. The
normal version draws all grids with the width of the widest row while the star version draws them with the width of the
corresponding row. Because this macro draws material into the background layer it must not be placed inside a pgfonlayer

environment itself.

\fulltablegrid[〈TikZ Keys〉]

After \extracode this macro draws a big grid over all rows in the background of the table.

\nrows

Returns the number of rows in the current table. Useful for use in \horlines.

17

\rowdist

\coldist

This macros return the row and column distance. There are useful for drawing additional material relative to the rows and
columns. This values can be set (e.g. in the optional argument of the table) using the timing/rowdist and timing/coldist

settings which are explained in Section 3.

\twidth

Returns the width (as multiple of the ‘period width’) of the longest timing diagram line in the table. Example: If the longest
line would be ‘H 2.3L z’ than \twidth would be 1 + 2.3 + 0.5 = 3.8.

\horlines[〈TikZ Keys〉]{〈list〉}

Draws horizontal lines, optionally with the given 〈Settings〉, at the base line of the rows given by 〈list〉. The PGF macro
\foreach1 is internally used so the list can include not only row numbers as integer but also fractional numbers and the ‘...’
operator to auto-increment the numbers. Please note that all numbers in the list are multiplied by \rowdist. If the list is
empty the default ‘1,2,...,\nrows’ is used which draws lines for all rows.

\vertlines[〈TikZ Keys〉]{〈list〉}

Like \horlines but draws vertical lines and the listed numbers a relative to the basic width. If the list is empty the default
‘0,1,...,\twidth’ is used which draws lines after every period width.

\tableheader[〈TikZ Keys〉]{〈Description Title〉}{〈Signal Title〉}

This macro adds a table head row on top of the table. The two mandatory arguments provide the header text for the
description and signal columns.

1See the pgf manual for more details.

18

\tablerules[〈TikZ Keys〉]

This macro adds top and bottom rules to the table in the same (or at least very similar) way as the booktabs package is
doing it for normal tabulars. The current bounding box is used to calculate the needed rule length, which makes this macro
position dependent if further code changes the bounding box. If the \tableheader macro was used beforehand it also draws
a thinner horizontal line (like booktabs \midrule) between the table head and body.

\begin{background}[〈TikZ Keys〉]
〈drawing commands〉

\end{background}

This environment can be used to draw material on the background layer and is an abbreviation for:

\begin{pgfonlayer}{background}

\begin{scope}[〈TikZ Keys〉]
〈drawing commands〉

\end{scope}

\end{pgfonlayer}

Scaling the Table

The standard ‘scale’ setting of TikZ will not scale all parts of the table correctly, e.g. the line width and nodes will keep
their original size. However there are scaled relative to the font size (which needs to be set using timing/font). If the timing
diagrams should be scaled the keys timing/unit, timing/xunit and/or timing/yunit can be used.

Alternatively the table can be scaled using the \scalebox{〈factor〉}{〈content〉} macro from the graphicx package or be
placed inside a scaled \node inside another tikzpicture environment.

Positions & Nodes inside the Table

Coordinates

The first row starts at y = 0 and the next rows are each -1*\rowdist lower than the previous one. The vertical unit is 1
signal height and the default row distance is ‘2’ (=2×signal height). This means that a normal table with three rows goes from

19

y = +1 (base line at 0 + 1 signal height) to y = −4 (first row: +0, second row: -2, third row: -4). This are relative to the
middle of the drawn lines, i.e. the bounding box is 2× line width

2
= 1×line width higher.

The timing column starts at x = 0 and goes into the positive range while scaled using the period width. Example: HHHh
has a width of 3.5. The label column starts at x = −\coldist and the text is right align with the right border at this
position. See Figure 2.2 for an illustration.

Nodes

Each timing line is a timing node (see section 2.3) labeled (not fully correctly) as ‘row〈number〉’, where the first row has
the number 1 and the last one the number provided in \nrows, but can also accessed using the alias ‘last row’. The
corresponding labels are normal rectangle nodes named ‘label0’, ‘label1’, . . . , ‘label\nrows’/‘last label’.

Both groups of ‘rows’ and ‘labels’ are enclosed in a rectangle node called ‘all rows’ and ‘all labels’, respectively. These
nodes can be used to draw material relative to the rows, e.g. the macros \tableheader and \tablerules are making use of
them. The headers added by \tableheader are rectangle nodes names ‘label header’ and ‘row header’ and are placed be-
tween the x-coordinates of the inner and outer border of ‘all labels’ and ‘all rows’ respectively. By default the TikZ settings
‘pos=0’ and ‘anchor=base east’/‘anchor=base west’, respectively, are applied to place them in the inner border, but this can
be changed using the styles ‘timing/table/header’ and/or ‘timing/table/label header’/‘timing/table/row header’.
All nodes are shown in Figure 2.2.

20

row1

row2

row\nrows
last row

label header row header

0pos1 0 pos 1

all rows

label1

label2

label\nrows
last label

all labels

origin

\rowdist

\yunit
\xunit

\coldist

First Row

Second Row
... ...

Last Row

Label Timing

Figure 2.2: Distances and Nodes inside a tikztimingtable

21

2.5 Macros for use inside the Character String

The modifiers ‘@’ and ‘$’ allow the user to include macros. These macros are evaluated when the tikz-timing parser
encounters them in the input character string, i.e. before any diagram element is drawn or any single bracket ‘[]’ options are
processed. Therefore their values should be set either outside the tikz-timing diagram or with the ‘[! .. !]’ or ‘[[..]]’
option blocks.

The following macros are provided for the user.

\tikztimingsetwscale{〈math expression〉}
\setwscale{〈math expression〉}

This macro , which can be called \setwscale for short inside modifier code, sets the wscale value. This value is used during New in v0.7

the parsing process to scale the width of the characters, e.g. wscale=3.2 makes 1H as long as 3.2H normally would be. Slopes
are not affected, but the ‘width’ values of meta-characters are. It can also be set with the timing/wscale TikZ setting. The
current value can be accessed using \wscale.

\wscale

Returns the current width scaling ‘wscale’ value.

\xunit

\yunit

This dimension registers can be used to access the x- and y-unitlength of the timing diagram. Assignments to these registers
do not change the scaling!

\slope

\lslope (alias)

Returns the current logic slope, i.e. the slope between L and H levels. Set by the timing/lslope or indirectly by the
timing/slope TikZ setting. See Table ?? for more information.

22

\zslope

Returns the current Z slope. Set by the timing/zslope or indirectly by the timing/slope TikZ setting.

\dslope

Returns the current Z slope. Set by the timing/dslope or indirectly by the timing/slope TikZ setting.

Examples:

Changing the slope and using its value to calculate the width of a character:
\texttiming{ HLHLHL [[timing/slope=.5]] H \slopeL }

gives:

Changing the width scaling for a curtain group of characters:
\texttiming{ HL [!wscale=\wscale/3!] 3D{a} Z D Z [!wscale=3*\wscale!] HL }

gives: a

23

2.6 Meta-Characters

It is possible to define recurring groups of characters and modifiers as so called meta-characters. These characters are than
expanded to the group whenever they appear inside the character list. Please note that like for groups a numeric factor before
such a meta-character is taken as a repetition factor not as a width. The meta-character is case sensitive and the other case
is not affected by the definition, i.e. the lower- and uppercase versions of one character can have complete different meanings.
It is possible to redefine normal characters (only one or both cases) as meta-characters, which suppresses its normal meaning.
Using the meta-character in its own definition group causes a infinite loop which will lead to an TEX error.

\tikztimingmetachar{〈Meta-Character〉}[〈Number of arguments〉]{〈Character Group〉}

This macro defines the given 〈meta-character〉 to be identical to the given 〈character group〉. Alternatively this can also be
done using the TikZ style ‘timing/metachar={〈Meta-Character〉}[〈Number of arguments〉]{〈Character Group〉}’.

An empty group deletes the meta-character, which might be necessary in cases when normal characters are temporary
redefined as meta-characters. However, if the group only contains spaces the meta-character is practically ignored.

Because the meta-character is simply expanded to its character list, the first character of this list might be combined with
identical characters placed before the meta-character. For example, after a meta-character ‘Y’ got defined as ‘2D{A} 2D{B}’
the characters ‘DY’ will first be expanded to ‘D2D{A} 2D{B}’ and then combined to ‘3D{A} 2D{B}’. This might not be the
wanted behaviour and can be avoided by terminating the leading ‘D’ with its own braces: ‘D{}Y’.

Meta-Characters with Arguments

The replacement text of meta-character can now include macro arguments. This allows the creation of more complex and New in v0.7

flexible meta-characters. The optional argument 〈Number of arguments〉 selects the number of macro arguments in the same
way it does for \newcommand. However, the first argument #1 is always set to the given ‘width’ of the meta-character, i.e. the
number value preceding it. All further arguments are read as normal for macros from the text after the meta-character. It is
recommended to enclose them in braces.

The default behaviour of meta-character without arguments is, as mentioned above, to repeat the replacement group
by the preceding number (‘width’). This is now archived by defining them internally as ‘#1{〈Character Group〉}’, which
creates a repetition group. Users which want to include an own argument but still want to repeat the group need to define
a meta-character with at least two arguments and define it as ‘#1{ .. #2 .. }’. If the repetition is not wanted the #1

argument can be used as a real width for one or more group internal characters: ‘{Y}[1]{Z #1D Z}’, so ‘4Y’ will give ‘Z 4D Z’

24

instead of ‘4{Z D Z}’.
Also the modifier ‘@’ (see Table 2.3) together with the \setwscale macro can be used to scale the whole group dependent

on the first argument:
‘{Y}[1]{ @{\setwscale{#1*\wscale}} Z 2D Z @{\setwscale{\wscale/#1}} }’, so ‘4Y’ is equivalent to ‘4Z 8D 4Z’.
The new ‘$’ modifier can be used to calculate the width of the group characters: {Y}[1]{$#1/3$D{A} $#1/3$D{B} $#1/3$D{C}},

so ‘4Y’ results in ‘1.333D{A} 1.333D{B} 1.333D{C}’.

Examples:

\tikztimingmetachar{Y}{2D 0.5U 2D{}} \texttiming{ZZ Y Z 3Y ZZ}

gives:

\tikztimingmetachar{Y}{2D{Text}} \tikztimingmetachar{y}{1D{\tiny Text}} \texttiming{ZZ Y Z 3y ZZ}

gives: Text Text Text Text

\newcounter{mycount}

\tikztimingmetachar{Q}{2D{\stepcounter{mycount}\arabic{mycount}}}

\tikztimingmetachar{R}{[| /utils/exec=\setcounter{mycount}{0} |]}

\texttiming{ 5Q R 3Q R 10Q }

gives: 1 2 3 4 5 1 2 3 1 2 3 4 5 6 7 8 9 10

Redefining the glitch ‘G’ character:
\tikztimingmetachar{G}{.1T.1T .2B} \tikztimingmetachar{g}{.1T.1T}

\texttiming{ 10{H G L G} H } % With correction of width ‘.2B’

\texttiming{ 10{H g L g} H } % Without correction

\texttiming{ 10{H L } H } % For comparison

gives:

\tikztimingmetachar{J}[2]{ 1.8D{#2} .2D{} }

\texttiming{ D{} J{A} J{B} J{C} D }

25

gives: A B C

\tikztimingmetachar{Y}[3]{#1{ D{\strut #2} D{#3} }}

\texttiming{ Z 2Y{a}{b} Z 4Y{1}{2} Z}

gives: a b a b 1 2 1 2 1 2 1 2

\tikztimingmetachar{Y}[3]{ .2D .2B #1d{\strut #2} .2D .2B #1d{\strut #3} }

\texttiming{ Z 2Y{a}{b} Z 4Y{1}{2} Z}

gives: a b 1 2

Mata-chars to set the width scaling. Because the scaling also affects the meta-char width (#1) argument a compensation is
needed to achieve absolute values (W) instead of relative ones (w).
\tikztimingmetachar{w}[1]{ [! wscale=#1 !] } % relative

\tikztimingmetachar{W}[1]{ [! wscale=#1/\wscale !] } % absolute

\texttiming{ HL .2w HLHLH 3w LH 1W LH }

gives:

26

2.7 Floating timing diagrams with captions

The timing diagrams can also be typeset as floats with (or without) a caption like a figure. This can be easily achieved by
using the caption package as shown in the following example document.

\documentclass{article}

\usepackage{tikz -timing}

\usepackage{caption}

\DeclareCaptionType{timingdiag }[Timing diagram][List of Timing Diagrams]

\begin{document}

\listoftimingdiags

\begin{timingdiag }[!ht]

\centering

(timing code)

\caption{Some timing diagram caption}

\label{tim:foobar}

\end{timingdiag}

\end{document}

27

3 TikZ Keys for Styles, Settings and Actions

TikZ itself uses the pgfkeys package to define and apply drawing styles and settings. The same method is also used for
tikz-timing which places all of the keys under the “subdirectory” ‘timing’ in the main “directory” ‘tikz’, which is the
default when \tikzset is used. This keys are simply called TikZ Keys throughout this manual and can be used in all places
where 〈TikZ Keys〉 is mentioned, while some only make sense at specific places. Three types of keys are used by this package:
styles, settings and actions.

Styles simply define the style in which a certain element is drawn, e.g. in which color or line width. This styles are defined
and can be redefined using \tikzset{〈style name〉/.style=〈value〉}. However, while some styles are initial empty, some
hold internal settings and therefore user styles should only be added using ‘.append style=〈value〉’.

Settings are TikZ keys which await an argument and set an internal macro or length. They are like \setlength and
\renewcommand. They should only by used as stated and not be redefined like styles as shown above.

Action are TikZ keys which perform a drawing or other action on the current element, either directly or by en-/disable an
internal setting which then in turn triggers the drawing process. Therefore some actions can be globally and/or locally but
others only make sense if used locally on a single tikz-timing macro or environment or even a scope inside a tikztimingtable.
Action can be very similar to settings but they always execute code instead of only setting/redefining it. The actions are
defined and can be redefined using \tikzset{〈action name〉/.code=〈code〉}

28

General

TikZ Key Type Description

timing Style Base settings like signal height and period width.
timing/font=〈font commands〉 Setting Sets the normal font key and sets x/y keys to 1.6ex.
timing/intext Style Used for \texttiming. Depends on timing.
timing/picture Style Usable for own tikzpictures to set timing settings.
timing/inline node Style Used for nodes created by the N character. Defaults to coordinate.
timing/every char Style Used in the \draw TikZ command for every drawn timing character.
timing/every bg Style Used for every background path of characters like D.
timing/text format=〈code〉 Setting Sets formatting code for the text of characters like D. The code is

placed directly for the text wrapped in braces, so that the code can
be a macro awaiting the text as an argument. By default the code is
empty.

timing/initchar=〈char〉 Setting Sets initial character. Only valid as first optional argument in table
rows or in \texttiming.

timing/metachar={〈C 〉}[〈#arg〉]{〈G〉} Setting Sets meta-character 〈C 〉 to character group 〈G〉.

timing/before Action Code executed direct before the timing TikZ code inside the internal
\tikzpicture.

timing/after Action Code executed direct after the timing TikZ code inside the internal
\tikzpicture.

29

Scaling

TikZ Key Type Description

timing/unit=〈length expression〉 Setting Sets both the x- and y-unitlength.
timing/xunit=〈length expression〉 Setting Sets the x-unitlength (\xunit) for the timing diagrams.
timing/yunit=〈length expression〉 Setting Sets the y-unitlength (\yunit) for the timing diagrams.
timing/font=〈code〉 Setting Can be used to set font macros. Needs to be used instead of the normal

TikZ font as it resets unit etc. if it is font sized dependent.
timing/wscale=〈math expression〉 Setting Sets the width-scale \wscale by calling \tikztimingsetwscale. See

section 2.5 for further details.

Slopes

TikZ Key Type Description

timing/slope=〈0.0 – 1.0 〉 Setting Sets slope for logic transitions.
This also sets dslope=2*slope, zslope=slope/2.

timing/lslope=〈0.0 – 1.0 〉 Setting Sets slope for logic transitions only. Default: 0.1
timing/dslope=〈0.0 – 1.0 〉 Setting Sets slope for data transitions. Default: 0.2
timing/zslope=〈0.0 – 1.0 〉 Setting Sets slope for Z transitions. Default: 0.05

30

Texttiming

TikZ Key Type Description

timing/outer sep=〈dim〉 Setting Sets outer separation around \texttiming macros.
timing/outer xsep=〈dim〉 Setting See above. Only X-Coordinate. (Default: 0pt)
timing/outer ysep=〈dim〉 Setting See above. Only Y-Coordinate. (Default: 0pt)

timing/before text Action Code executed direct before the timing TikZ code inside the internal
\tikzpicture for \texttiming. This code is executed just after the
timing/before code. Defaults to \texttimingbefore.

timing/after text Action Code executed direct after the timing TikZ code inside the internal \tikzpicture.
This code is executed just before the timing/after code. Defaults to
\texttimingafter.

Grid

TikZ Key Type Description

timing/grid Style Style used for drawing grids. Depends on help lines and timing.
timing/draw grid Action Enables background grids for \timing macros.
timing/no grid Action Disabled background grids for \timing macros.

31

Table

TikZ Key Type Description

timing/name Style Used for the signal name column in tikztimingtable.
timing/table Style Used for tikztimingtable. Depends on timing.
timing/table/grid Style Used for table grid. Depends on timing/grid.
timing/table/lines Style Used for \horlines and \vertlines.
timing/table/rules Style Used for \tablerules for top and bottom lines.
timing/table/midrules Style Used for \tablerules between table head and body.
timing/table/header Style Used for \tableheader. Defaults to timing/name.
timing/table/label header Style Used for label header in \tableheader.
timing/table/row header Style Used for timing row header in \tableheader.

timing/rowdist=〈distance〉 Setting Sets (baseline) distance between rows in a tikztimingtable. Default: 2
(=2×signal height)

timing/coldist=〈distance〉 Setting Sets distance between columns in a tikztimingtable. Default: 1 (=1×period
width)

timing/before table Action Code placed before the tables TikZ code inside the internal tikzpicture.
timing/after table Action Code placed after the tables TikZ code at the end of the internal tikzpicture.

Character Styles

TikZ Key Type Description

timing/〈lowercase char〉 Setting Style for character 〈char〉. Not used for ‘H’ and ‘L’.
timing/〈lc char〉/background Setting Background style for characters ‘D’ and ‘U’.
timing/〈lc char〉/text Setting Text style for character 〈char〉. Only defined for ‘D’.

timing/text format=〈macros〉 Setting Define macros which are placed before the text of ‘D{text}’. The text is
enclosed in braces to allow the last macro to take it as an argument. A
\strut is a good choice to ensure a common baseline.

32

Debug

Some debug settings for users (first group) and the package developer (last group).

TikZ Key Type Description

timing/debug/nodes Action Enables marking of named inline nodes.
timing/debug/node Style Format style for inline node marker label, which itself is a TikZ node.
timing/debug/markcmd=〈code〉 Setting TikZ drawing code to draw marker (except label). The code can access the

node name as \N.
timing/debug/scope Style Format for scope of node markers.

timing/debug/level=〈integer〉 Setting Sets debug output level. This is only important for developers.

Other

TikZ Key Type Description

timing/expand count=〈integer〉 Setting Sets the maximum expand count for the underlying tikzpicture. TikZ only
expands the content this number of times. The TikZ default value of 100 is
to small for timing diagrams and is changed to 1000 by default. This should
be raised (only) if TikZ throws an to-many-expands error.

33

4 Libraries for Further Characters

All default timing characters described in Table 2.1 are always made available by this package. Further, less-common
characters are provided by libraries which are loaded with the macro \usetikztiminglibrary{〈library〉}. This is done to
hold the memory usage of this package small and reduce the risk of collisions with user-defined (meta-)characters. The full
syntax for the above macro is \usetikztiminglibrary[〈options〉]{〈library,. . . 〉}[〈date〉], like the one for \usepackage.
The date is used as a version number like for packages and is identical to the date of the tikztiming package.

34

4.1 Arrows

The library ‘arrows’ enables two characters ‘A’ and ‘W’ which draw vertical up and down ArroW s. Such arrows are used in
timing diagrams to mark special polarized events, like clock edges of another signal.

The width provided with these character is added as whitespace after the “zero-width” arrow: ‘A2AA’ results in ‘ ’.
This space can be avoided by specifying the width to zero: ‘0A’. Like the ‘C’ and ‘T’ characters the subsequent arrow characters
are not combined into one.

The arrow tips can be changed using the TikZ styles for this characters. See section 3 for more information. The ‘A’ and ‘W’
character should only be used which each each other, but not together with any other characters except with ‘S’ (space).

Table 4.1: Examples for Arrow Characters.

0A

AAA

3A

3{A}

3A 3A

3a 3a

AW AW

3{AW}

3{aw}

2S 2A 3W A W

Characters Resulting Diagram

35

4.2 Either High or Low

The library ‘either’ enables the ‘E’ character which stands for ‘either high or low ’. This character is designed to be used
with the ‘H’ and ‘L’ characters to display a uncertainty of a transition. Sometimes a, e.g. low signal can go either to high or
stay at low for a certain time before it definitely goes to high. In this case both (or more) possible transitions can be drawn
using this character. Like the ‘C’ and ‘T’ characters subsequent ‘E’ characters are not combined into one.

The drawing style can be changed using the timing/e and timing/e/background TikZ style.

Table 4.2: Examples for the ‘E’ Character.

L E H

L D H

H E L

H D L

L E E H

L 3{.25E} H

H E E L

L EEE HH EEE L

l e e h

h e e l

H 2E L

H 2{E} L

H 5{e} L

H E E H

L E E L

Characters Resulting Diagram

Settings (timing/e/.cd) Resulting Diagram (LL EE HH)

.style={dotted,gray}
background/.style={fill=gray}

36

4.3 Overlays

The library ‘overlays’ enables the ‘O’ character which allows the overlaying of timing characters, i.e. different groups of timing
characters are drawn on top of each other. This is not to be confused with ‘dynamic’ overlay provided by the presentation
class beamer. The tikz-timing library beamer provides some support for such overlays.

The ‘O’ character awaits a set of character enclosed by braces which are drawn as normal. The position before the ‘O’
character is then restored and the following characters are drawn over them. Older versions of this character awaited a second
set of characters in braces but this braces are now optional. The exact syntax is:

〈chars before〉 O{〈background chars〉} {〈foreground chars〉} 〈chars after〉
or, without second set of braces, but equal:

〈chars before〉 O{〈background chars〉} 〈foreground chars, . . . 〉
It is the responsibility of the user to make sure that the lines drawn by the first set reconnect to the main lines or do

something else useful. The modifier ‘;’ can be used to restart the drawn line, e.g. to change to a different color. This is not
done automatically to give the user the freedom if and where this should happen. It is recommended to start and end the set
with characters identical with the main line to avoid ugly connection points.

Please note that the width of the first argument is ignored and does not count to the total width of the diagram line. The
characters following the overlay should therefore be as wide or wider as the one of the overlay, otherwise the bounding box
and background grid will be incorrect.

Overlays can be cascaded , i.e. an overlay can be included in the first argument of another overlay. New in v0.7

Table 4.3: Examples for the ‘O’ Overlay Character.

LLL O{HH}{LL} HHH

LLL O{HHH}{LL} HHH

LLL O{;[gray]HH.1H;}{LLH} HH

LL O{L;[gray]HH.1H;}{LLLH} HH

DD{} O{zd}{D}d 2D

ZZ O{Z D Z}{Z 1.1M .9Z} ZZ

ZZ O{d Z}O{DZ}{dD} ZZ

Characters Resulting Diagram

ZZ O{dDZ}O{DZ}{dZ} ZZ

ZZ 3D O{dDZ}{DZ} ZZ

ZZ 3D O{dDZ}O{DZ}{dZ} ZZ

ZZ 3D O{3D} DZZ

Z O{DD} ZDDD O{DDZZ} DZ 2S

Z O{6D Z}{Z 4D Z} Z

Z O{8D Z}O{Z 6D Z}{2Z 4D 2Z} Z

Characters Resulting Diagram

37

4.4 Clock Arrows

The library ‘clockarrows’ is changing the ‘C’ clock character to contain arrows which mark the rising and/or falling clock New in v0.7

edge. By default the rising edges are marked. To simplify the implementation only the transition from a ‘C’ to another ‘C’
character contains the arrows but not transitions from or to different characters, like ‘HCH’ or ‘LCL’.

The arrows can be controlled using the TikZ styles shown in Table 4.4 below. This styles can also be used as library
options. The key “directory” ‘timing/c’ must be dropped for options, e.g.

\usetikztiminglibrary[rising arrows]{clockarrows}.

Table 4.4: TikZ Styles for Clock Arrows.

TikZ Style Description

timing/c/rising arrows Mark (only) rising edges with arrows.
timing/c/falling arrows Mark (only) falling edges with arrows.
timing/c/dual arrows Mark both rising and falling edges with arrows.
timing/c/no arrows Do not mark any edges with arrows. (Default)

timing/c/arrow Style for arrows. Can be modified to change arrow tip etc. (Default: {})
timing/c/arrow pos=〈0.--1.〉 Position of arrows, i.e. its tip, on the edge. May needs adjustment if different arrow tip

shapes are selected. (Default: 0.95)
timing/c/arrow tip=〈name〉 Tip shape of arrows. See the PGF manual for the list of arrow tips. (Default: ‘to’)

Table 4.5: Examples for the Clock Arrows.

Settings (timing/c/.cd) Resulting Diagram (11{C})

rising arrows

falling arrows

no arrows

dual arrows

Settings (timing/c/.cd) Resulting Diagram (11{C})

arrow pos=.7

arrow pos=.4

arrow tip=latex

arrow tip=stealth

38

4.5 Column Type

The library ‘columntype’ uses the array package to define a new tabular column type for timing characters. The tabular New in v0.7

column can then hold timing characters like the tikztimingtable. An initial option block ‘[...]’ is taken as initial character
or diagram line wide settings. The main difference between these two table types is that tikztimingtable creates a big
common tikzpicture with one coordinate system with potential extra drawing code and the column type creates single
pictures for each diagram line without common coordinate system.

By default the letter ‘T’ and left alignment are used for the timing column type. The TikZ style timing/columntype={〈letter〉}{〈alignment〉}
can be used to select different column letters and alignments. The 〈alignment〉 represents here the real column letter like ‘l’,
‘c’ or ‘r’. Additional column code can be added using the ‘>{〈code〉}’ and ‘<{〈code〉}’ argument of the array package.

More complex column types (e.g. one holding @{..} or !{..} arguments, multiple columns, etc.) must be defined manually
using array’s \newcolumntype macro. The default definition is equal to

\newcolumntype{T}{>{\celltiming}l<{\endcelltiming}}.

The default ‘T’ definition can be suppressed by using either the library option notype or a different type (equal to
timing/columntype):

\usetikzlibrary[type={U}{l}]{columntype}

Description Num Signal

Example A
Example B
Example C

1 \begin{tabular}{lcT}

2 \toprule

3 Description & Num & \multicolumn{1}{l}{Signal} \\

4 \midrule

5 Example & A & HLHZLHL \\

6 Example & B & [][green] HLHZLHL \\

7 Example & C & [green] HLHZLHL \\

8 \bottomrule

9 \end{tabular}

Figure 4.1: Example for use of Timing Column Type.

39

4.6 Nice Timing Tables

The library ‘nicetabs’ uses the settings of the array and booktabs packages to improve the layout of tikztimingtables. New in v0.7

The resulting table matches a tabular{rT} table which uses the above packages and the columntype library. The table
macros \tabcolsep, \arraystretch and \extrarowheight are obeyed.

The original table layout is designed to produce integer coordinates between the rows to simplify the drawing of extra
drawings (see \extracode). The improved layout will cause non-integer coordinates, but in-line nodes and the \rowdist and
\coldist macros can be used to draw extra material relatively to the rows.

The TikZ styles ‘timing/nice tabs’ (default) and ‘timing/no nice tabs’ can be used to activate and deactivate the
layout, e.g. for each table. Both settings can be given as a library option, but without the ‘timing/’ path.

Table 4.6: Timing tables using ‘nice’ (left) and normal (right) Layout. For comparison a {tabular}{rT} table is placed in
grey below the left table.

Name Timing

Example
Example
Example

Example
Example
Example

Name Timing

Example

Example

Example

Name Timing

40

4.7 Counter Character

The library ‘counters’ allows the easy definition of meta-characters which implement up-counters. These characters show New in v0.7

Extended in
v0.7a

the counter value using the ‘D{}’ character and increment it by one every time they are used. A second character can be
defined to (re-)set the counter to a specific value. The counter values can be decimal (base-10, default), hexadecimal (base-16)
or any other base from 2 to 36. By default the lower case version of the counter character is defined to produce the same
output only with half the width.

Counter characters are defined using the TikZ key ‘timing/counter/new={char=〈char〉,〈settings〉}’ which can also be
written as ‘timing/new counter’. The 〈settings〉 are TikZ keys themselves and are shown by Table 4.7. One or more ‘new’
keys (path ‘timing/counter’ removed) can be given as library options. The counter values are global like normal LATEX
counters. They should be reset in every timing diagram line before they are used.

Counter Style

The styles ‘timing/counter/〈char〉’ and ‘timing/counter/〈char〉/text’ (both initially empty) are used to format the
graphic and text style of this counter, respectively. Because the ‘D{}’ character is used internally the above styles need to
change the corresponding ‘D’ styles. This changes are only local and do not affect further ‘real’ ‘D’ characters.

The settings ‘fg style’, ‘bg style’ and ‘text style’ can be used to quickly define the foreground (i.e. line), background
and text style of the counter. While the ‘text style’ setting simple sets the ‘timing/counter/〈char〉/text’ style, the other
two are a shortcut for

\tikzset{timing/counter/〈char〉/.style={%
timing/d/.style={〈fg style〉},
timing/d/background/.style={〈bg style〉},

}}

Additional Macros

41

\tikztimingcounter{〈char〉}
\tikztimingsetcounter{〈char〉}{〈pgfmath expression〉}

The value of counter 〈char〉 can be read or set using this macros.

Examples:

Counter character ‘Q’ with base 16 (hexadecimal). ‘R’ resets the counter. The counter value should be in blue text typer font.
\tikzset{timing/new counter={char=Q,base=16,reset char=R}}

\tikzset{timing/counter/Q/text/.style={font=\ttfamily,blue}}

\texttiming{ 3Q 3{Q} R 12{Q} 2R Q qq 0R 3{Q} }

gives: 0 1 2 3 1 2 3 4 5 6 7 8 9 A B C 2 34 0 1 2

42

Table 4.7: Settings for Counter Meta-Characters

Key name Description

char=〈char〉 Defines the given 〈char〉 to be a counter meta-character. If it is a upper case
character the lower case character will produce the same output but with the half
width, as long this is not overwritten with the half with char key.

half width char=〈char〉 Defines the given 〈char〉 to be the half width version of the counter value. By
default this is the lower case version of the counter character given with char. An
empty value for 〈char〉 deactivates the definition of a half width character.

reset char=〈char〉 Defines the given 〈char〉 to (re-)set the counter value to the ‘width’ of the character,
i.e. the number preceding it. The lower case version of the reset 〈char〉 is not
defined.

reset type=〈width—arg—both—Both〉 Defines the type of the reset character, i.e. how the reset value is obtained.
width Width is reset value: ‘〈value〉〈char〉’, e.g. ‘0R’. Value can not be negative.
arg Reset value is provided as argument: ‘〈char〉{〈value〉}’, e.g. ‘R{-1}’.
both Uppercase 〈char〉 is width-type, lowercase 〈char〉 is arg-type reset char.
Both Lowercase 〈char〉 is width-type, uppercase 〈char〉 is arg-type reset char.

base=〈Num 2-36 〉 Defines the numeric base of the counter. If not used the base 10 is used.

increment=〈pgfmath expression〉 Sets the increment which is added every time the counter character is used. This
can be a formula which result is truncated to a integer. The current counter value
can be referenced as \N. The increment can be negative which causes the counter
to count down. Default: 1

max value=〈pgfmath expression〉 Sets the maximum counter value. Default: not set
min value=〈pgfmath expression〉 Sets the minimum counter value. Default: not set
wraps=〈true—false〉 If set to true the counter wraps around, i.e. it counts to the minimum value

when counting over the maximum value or the other way around if increment is
negative. Initial value: false. Default value: true

bg style=〈TikZ style(s)〉 Sets the background style of the counter.
fg style=〈TikZ style(s)〉 Sets the foreground (line etc.) style of the counter.
text style=〈TikZ style(s)〉 Sets the text style of the counter.
text format=〈TEXcode〉 Sets the format code of the counter value. This should be a macro which receives

the counter value as first argument.

43

Dec 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

Bin 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0000

Oct 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017 000

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F 0

1 \scalebox{2}{%

2 \begin{tikztimingtable}

3 Dec & [timing/counter/new={char=Q,max value=15, wraps,text style={font=\scriptsize}}] 33{Q}d\\

4 Bin & [timing/counter/new={char=Q,max value=15,base=2, digits=4,wraps,text style={font=\tiny,scale↙

=.8}}] 33{Q}d\\

5 Oct & [timing/counter/new={char=Q,max value=15,base=8, digits=3,wraps,text style={font=\tiny}}] ↙

33{Q}d\\

6 Hex & [timing/counter/new={char=Q,max value=15,base=16, wraps,text style={font=\scriptsize}}] 33{Q↙

}d\\

7 \extracode

8 \begin{background}[shift={(0.1,0)},help lines]

9 \vertlines{}

10 \end{background}

11 \end{tikztimingtable}

12 }%

44

4.8 Advanced Nodes

The library ‘advnodes’ changes the in-line nodes, i.e. the ‘N’ character, to provide multiple transition dependent and New in v0.7

independent node anchors shown in Table 4.8.
Most transitions provide the three logic level anchors ‘low’, ‘mid’ and ‘high’ which lie on the drawn timing line. Transitions

of ‘double line’ characters like ‘D’ can have two low and/or high level anchors which are called ‘low2’ and ‘high2’.
To align marker lines over multiple rows inside a tikztimingtable a set of transition independent node anchors are

provided: ‘LOW’, ‘MID’, ‘HIGH’. This anchors lie all at the begin of the transition at the appropriate logic levels. With the
normal coordinate-like in-line nodes the vertical node (center) position has to be taken into account, while this advanced
anchors do this automatically.

Often marker lines should start and end with a little vertical offset from the timing diagram to be more distinguishable.
For this the two anchors ‘TOP’ and ‘BOTTOM’ exist. They lie above and below of ‘HIGH’ and ‘LOW’, respectively. The vertical
distance can be set using ‘timing/nodes/offset=〈dim. or number〉’.
Please note that the node center of advanced nodes will be different for some transitions. The ‘center’ anchor (used by

default if no node anchor is provided) will be placed at the logical center of the transition, i.e. mostly in the middle of it. In
order not to break existing diagrams which use nodes as references to draw additional material an TikZ styles is provided
to select between the old and new node centers. This styles can be used globally or locally as required. The two explicit
anchors ‘new center’ and ‘old center’ are also provided. For existing documents with diagrams using normal nodes it is
recommended to switch to simple nodes or to the old node centers globally or select such a style for each old diagram.

The following TikZ settings can be used with the library. The node style settings affect all new nodes after them. The
center settings affect all following references (e.g. ‘(NodeName)’ or ‘(NodeName.center)’) of advanced nodes. The settings
can be used as library options with the ‘timing/nodes/’ part removed.

TikZ Setting Description

timing/nodes/advanced Selects advanced in-line nodes. (library default)
timing/nodes/simple Selects simple coordinate-style in-line nodes. (package default)

timing/nodes/new center Center of in-line nodes is in the new position. (default for advanced)
timing/nodes/old center Center of in-line nodes is in the old position. (always on for simple)

timing/nodes/offset Sets offset for TOP and BOTTOM anchors. Can be a dimension with unit or a factor to the
current y unit. (default: 0.25)

45

Examples:

‘\usetikztiminglibrary[simple]{advnodes}’ loads the library with nodes default to the old ‘simple’ style.
‘\usetikztiminglibrary[old center]{advnodes}’ loads the library with advanced nodes with have the center at the
same place as the normal simple nodes. This is a good “compatibility mode” for existing pre-v0.7 diagrams.
‘\begin{tikztimingtable}[timing/nodes/simple]’ starts a timing table which uses simple nodes.
‘\begin{tikztimingtable}[timing/nodes/.cd,advanced,old center]’
starts a timing table which uses advanced nodes with old node centers.

46

Table 4.8: Transition Dependent Anchor Points of Advanced Nodes

to
from L H X D E

L

H

X

D

D{A} A A A A A A

E

0LE

0HE

Legend: low mid high
low2 high2
LOW MID HIGH
new center old center

47

4.9 Compatibility Macros for ifsym package

The library ‘ifsym’ provides macros and timing styles to emulate the behaviour of the ifsym package when loaded with the New in v0.7

electronic option. The ifsym package was an early inspiration to this package and this library allows the usage of ifsym style
timing symbol macros and characters (‘\textifsym{〈characters〉}’ which uses ‘\texttiming[timing/ifsym]{〈characters〉}’)
which are described in Table 4.9 and Table 4.10, respectively. This is useful if old ifsym timing diagrams should be reused.
The tikz-timing replacements are a very close match and do not need a special font to be installed. The graphic quality
should be equal or better than the original. The intermixing of ifsym and tikz-timing style characters in a \textifsym
macro (the one provided by this library, not the one from the ifsym package) is supported but it is not guaranteed to work
100% properly. Please note that the ‘M’ character is defined to use ‘X’ in black.

The library can be loaded with one of the options ‘provide’ (default), ‘new’, ‘renew’ or ‘off’, respectively. These select if
the macros should be defined using \providecommand, \newcommand, \renewcommand or not at all. This can be useful if the
ifsym package is loaded beforehand.

Table 4.9: ifsym style Timing Symbol Macros

Macro Symbol Description (trivial)

\RaisingEdge Raising Edge
\FallingEdge Falling Edge
\ShortPulseHigh Short Pulse High
\ShortPulseLow Short Pulse Low
\PulseHigh Normal Pulse High
\PulseLow Normal Pulse Low
\LongPulseHigh Long Pulse High
\LongPulseLow Long Pulse Low

Table 4.10: ifsym style Timing Characters (from ifsym manual)

Character Symbol Description

l, h , Short low or high level signal.

L, H , Long low or high level signal.

| Transition/glitch between L/H or H/L levels.

m, d , Short middle or double level signal.

M, D , Long middle or double level signal.

<, << , Short or long slope between middle and double level.

>, >> , Short or long slope between double and middle level.

48

4.10 Intervals (experimental)

This library is under development and might change in the future.
The library ‘interval’ allows the drawing of intervals using the ‘H’, ‘L’, ‘Z’ and ‘X’ logic levels. It provides modified New in v0.7

definitions of X and Z transitions (e.g. ‘LX’, ‘XH’) where the transition edges can be coloured either way to indicate interval
borders.

The interval borders can be set using the ‘timing/interval={〈settings〉}’ TikZ style. The 〈settings〉 are ‘lo’ (left-open),
‘lc’ (left-closed) and ‘ro’ (right-open), ‘rc’ (right-closed), which build the following combinations: ‘{lo,ro}’, ‘{lc,ro}’,
‘{lo,rc}’ and ‘{lc,rc}’. However, every of them can also be set on its own, e.g. ‘timing/interval={lc}’ simply sets the
interval to ‘left-closed’ without changing the right border.

The key ‘timing/interval/normal’ (alternative: ‘timing/interval={normal}’) sets the transitions back to their default.

Examples:
ro rc

lo
lc

A meta-character can be defined for quick changes if necessary:

\tikztimingmetachar{Y}{[timing/interval={lo,ro}]}

\tikztimingmetachar{y}{[timing/interval/normal]}

\texttiming[timing/draw grid]{ LZH Y HZH y LZH Y LZL }

\texttiming[timing/draw grid]{ LXH Y HXH y LXH Y LXL }

gives:

A further alternative is to use a meta-character with an argument. Note that ‘#2’ must be used, because ‘#1’ holds the width,
which is irrelevant here. This definition is also provided by the ‘timing/interval/metachar=〈Character〉’ key.

\tikztimingmetachar{I}[2]{[timing/interval={#2}]}

or \tikzset{timing/interval/metachar=I}
\texttiming[timing/draw grid]{ LZH I{lo,rc} HZH I{ro} LZH I{normal} LZL }

gives:

49

4.11 Beamer Overlay Support (experimental)

This library is under development and might change in the future.
The library ‘beamer’ provides (at the moment) marginal support for overlays of the beamer class. It allows the usage of New in v0.7

beamer overlay specifications (<〈spec〉>) inside the timing string. However, the current simple implementation might not
work properly and cause strange results. The support is designed for use inside tikztimingtable. See the beamer manual
for more informations about overlays specifications.

Usage

Insert an overlay specification, e.g. <〈number〉>, inside the timing string. It will affect the rest of the timing characters of
the current diagram line. Unfortunate due to the global nature of overlays it also affects the rest of the table. Therefore all
diagram lines should end with a specification which turns overlays off, i.e. <*> or <0->. Otherwise strange results can occur
(e.g. wrong/missing background graphics).

Example Timing Table Row & H L <2> Z L H <3> D{last} Z <*> \\

Display Rows Stepwise

The rows of a tikztimingtable can be uncovered row-by-row using the way shown below. The signal names must be enclosed
into a \mbox because \uncover needs to be inside horizontal mode. Instead of \uncover another beamer overlay command
like \only or \invisible can be used. To highlight the signal name use \alert<〈. . . 〉>{〈signal name〉} inside \uncover. At
the moment there is no simple way to highlight the timing lines.

\begin{tikztimingtable}

\mbox{\uncover <+->{Signal Name 1}} & <.-> HL <*> \\

\mbox{\uncover <+->{Signal Name 2}} & <.-> HL <*> \\

% ...

\mbox{\uncover <+->{Signal Name n}} & <.-> HL <*> \\

\end{tikztimingtable}

50

Display Columns Stepwise

Different sections (‘columns’) of timing diagrams in a tikztimingtable can be uncovered stepwise using the way shown
below. In this example the second section/column will be uncovered in the second slide. The first is always visible. Further
sections/columns can be uncovered in further slides.

Please note that the total width of the table is constant and e.g. \tablerules will always cover the full width independent
of overlays.

\begin{tikztimingtable}

Signal Name 1 & 10D{Sec. 1} <2> 10D{Sec. 2} <*> \\

Signal Name 2 & 10D{Sec. 1} <2> 10D{Sec. 2} <*> \\

% ...

Signal Name n & 10D{Sec. 1} <2> 10D{Sec. 2} <*> \\

\end{tikztimingtable}

Overlay Extra Code

The beamer overlay specifications can be used inside the \extracode section like in a normal tikzpicture environment.
However, in both cases strange results will occur if the end of the environment is hidden by an overlay specification. Due to
this reason it is recommended to only use overlay commands which affect only an argument, like \only<〈. . . 〉>{〈code〉}, or to
place a plain \onlayer before the end of the environment.

\begin{tikztimingtable}

Signal Name 1 & 10D{Sec. 1} <2> 10D{Sec. 2} <*> \\

% ...

\extracode

% either

\draw <2> (0,0) -- (2,0); \only <3> { ... }

% or

\onlayer <2>

% and then at the very end:

\onlayer % or \onlayer <*>

\end{tikztimingtable}

51

5 Examples

This section shows some examples by putting either the full source code or only the needed characters beside the graphical
result. Please note that the displayed syntax is the one of \timing where the initial character is declared as optional argument
([〈char〉]) inside/together with the logic characters. The syntax of \textttiming is identical except the initial character
is given as a normal optional argument before the characters argument. All examples except Example 1 are attached in
compilable form to this PDF.

52

Example 1: Initial Characters, Modifiers, TikZ Keys

HLZXDUTC

cccc

tttt

[c]cccc

4{c}

4c4c

4{1.8c}

[d] 4{5D{Text}} 0.2D Text Text Text Text

3.4H 0.6L

DDDUUUDDD

DDD{}DUUDD

8{2D{\hexcountmacro }} 08 09 0A 0B 0C 0D 0E 0F

3{2{0.25X 2.5D .25Z}}

DDD{} 3{0.2D{}} DDD

DDD{} 3{0.2D{}} 0.4D{} 0.6D{} DDD

HHHLLH SSSS HLLHHL

HHGHHGGHHLLGLLGH

ZZ G ZZ G XX G X

LLL 2{0.1H 0.1L} 0.6H HH

LLL [timing/slope=0.05] 4{.05H .05L} 0.6H HH

LLL 0.4U 0.6H HH

[L][timing/slope=1.0] HL HL HL HL HL

LLLLL !{-- +(.5,.5) -- ++(1,0)} HHHHHH

LLLLL [| /utils/exec={\somemacro \code } |] HHHHHH

LL [green] HH [brown] XX LL ZZ [orange] HH

[][line width=1pt] HLXZDU [line width=0.1pt] HLXZDU

[][line width=1pt] HLXZDU ,[line width=0.1pt] HLXZDU

[][line width=1pt] HLXZDU ;[line width=0.1pt] HLXZDU

Characters Resulting Diagram

Note: Optional argument must be placed before macro argument if \texttiming is used.

53

Name

Clock

Signal Text

1 \begin{tikztimingtable}

2 Name & hLLLLh \\

3 Clock & 10{c} \\

4 Signal & z4D{Text}z \\

5 \end{tikztimingtable}

Example 2: tikztimingtable without \extracode.

Name

Clock

Signal Text

1 \begin{tikztimingtable}

2 Name & hLLLLh \\

3 Clock & 10{c} \\

4 Signal & z4D{Text}z \\

5 \extracode

6 \draw (0,0) circle (0.2pt); % Origin

7 \begin{pgfonlayer}{background}

8 \vertlines[help lines]{0.5,4.5}

9 \end{pgfonlayer}

10 \end{tikztimingtable}

Example 3: tikztimingtable with \extracode.

54

1 \begin{tikzpicture}[x=4cm,y=4cm]

2 \draw (0,0) rectangle (1,1);

3 \draw (0.2,0.7) circle (10pt);

4 \begin{scope}[green]

5 \draw (0.1,0.1) -- +(0.8,0.2);

6 \timing at (0.3,0.4) {hlzhhlhhl};

7 \end{scope}

8 \timing [rotate=-30]

9 at (0.4,0.7) {HLZHHLHHL};

10 \end{tikzpicture}

Example 4: \timing inside general tikzpicture.

1 \Huge

2 \begin{tikzpicture}[timing/picture,thick,

3 timing/nodes/advanced]

4 \timing at (0,2) {hH N(A) LHLHL};

5 \timing[timing/slope=.25] at (0,0)

6 {HLL N(B) HHLl};

7 \draw [orange,semithick]

8 (A.mid) ellipse (.2 and .6)

9 (B.mid) ellipse (.2 and .6);

10 \draw [orange,semithick,->]

11 ($ (A.mid) - (0,.6) $)

12 parabola [bend pos=0.5]

13 ($ (B.mid) + (0,.6) $);

14 \end{tikzpicture}

Example 5: Using In-Line Nodes to draw Relationships.

55

Clock 128 MHz 0◦

Clock 128 MHz 90◦

Clock 128 MHz 180◦

Clock 128 MHz 270◦

Coarse Pulse

Coarse Pulse - Delayed 1

Coarse Pulse - Delayed 2

Coarse Pulse - Delayed 3

Final Pulse Set

Final Pulse Reset

Final Pulse

1 \def\degr{${}^\circ$}

2 \begin{tikztimingtable}

3 Clock 128\,MHz 0\degr & H 2C N(A1) 8{2C} N(A5) 3{2C} G \\

4 Clock 128\,MHz 90\degr & [C] 2{2C} N(A2) 8{2C} N(A6) 2{2C} C \\

5 Clock 128\,MHz 180\degr & C 2{2C} N(A3) 8{2C} N(A7) 2{2C} G \\

6 Clock 128\,MHz 270\degr & 3{2C} N(A4) 8{2C} N(A8) 2C C \\

7 Coarse Pulse & 3L 16H 6L \\

8 Coarse Pulse - Delayed 1 & 4L N(B2) 16H N(B6) 5L \\

9 Coarse Pulse - Delayed 2 & 5L N(B3) 16H N(B7) 4L \\

10 Coarse Pulse - Delayed 3 & 6L 16H 3L \\

11 \\

12 Final Pulse Set & 3L 16H N(B5) 6L \\

13 Final Pulse $\overline{\mbox{Reset}}$ & 6L N(B4) 16H 3L \\

14 Final Pulse & 3L N(B1) 19H N(B8) 3L \\

15 \extracode

16 \tablerules

17 \begin{pgfonlayer}{background}

18 \foreach \n in {1,...,8}

19 \draw [help lines] (A\n) -- (B\n);

20 \end{pgfonlayer}

21 \end{tikztimingtable}

Example 6: Using In-Line Nodes to draw Marker Lines.

56

Clock 90◦

Clock 180◦

Clock 270◦

Clock 0◦

Start of Tsw

Input Pulse

Set 3

Set 2

Set 1

Set 0

Reset

Final Pulse

Counter Full 0 1 2 DM DM+1

DM = MSBs of Duty Cycle

1 \def\degr#1{\makebox[2em][r]{#1}\ensuremath{{}^{\circ}}}%

2

3 \begin{tikztimingtable}[%

4 timing/dslope=0.1, timing/.style={x=2ex,y=2ex}, x=2ex,

5 timing/rowdist=3ex,

6 timing/name/.style={font=\sffamily\scriptsize},

7 timing/nodes/advanced,

8]

9 Clock \degr{90} & l 2{C} N(A1) 5{C} \\

10 Clock \degr{180}& C 2{C} N(A2) 4{C} c\\

11 Clock \degr{270}& h 3{C} N(A3) 4{C} \\

12 Clock \degr{0} & [C] 2{C} N(A0) 2{C} N(A4) 3{C}c ;[dotted]

13 2L; 2{C} N(A5) 3{C} \\

14 Start of T$_{\text{sw}}$ & 4S G N(start) \\

15 Input Pulse & 2.0L 2H 3.5L ;[dotted] 2L; 5L \\

16 Set 3 & 2.5L 2H 3.0L ;[dotted] 2L; 5L \\

17 Set 2 & 3.0L 2H 2.5L ;[dotted] 2L; 5L \\

18 Set 1 & 3.5L 2H 2.0L ;[dotted] 2L; 5L \\

19 Set 0 & 4.0L 2H 1.5L ;[dotted] 2L; 5L \\

20 Reset & 7.5L ;[dotted] 2L; 2L N(reset) 2H 1L \\

21 Final Pulse & 2.5L N(B1) e N(B2) e N(B3) e 3.5H; [dotted]

22 2H; 2H 3L \\

23 Counter & N(x) 2D{Full} N(B0) 2D{0} N(B4) 2D{1} 1.5D;[dotted]

24 .25D{2} 1.75D{};

25 2D{~D$_\text{M}$} N(B5) 2D{D$_\text{M}$+1} D N(y)\\

26 \extracode

27 %\tablegrid

28 \node[anchor=north] at ($ (x) ! .5 ! (y) - (0,.75) $)

29 {\scriptsize D$_\text{M}$ = MSBs of Duty Cycle};

30 \begin{background}[timing/picture,line width=.06ex,color=black!60]

31 \foreach \n in {0,...,5}

32 \draw (A\n.TOP) -- (B\n.BOTTOM);

33 \end{background}

34 \end{tikztimingtable}%

Example 7: Adjusting Diagram Parameters and using Advanced In-Line Nodes to draw Marker Lines.

57

clocked

positive edge triggered

clock

S

R

Q

Q

Q

Q

1 \definecolor{bgblue}{rgb}{0.41961,0.80784,0.80784}%

2 \definecolor{bgred}{rgb}{1,0.61569,0.61569}%

3 \definecolor{fgblue}{rgb}{0,0,0.6}%

4 \definecolor{fgred}{rgb}{0.6,0,0}%

5 \begin{tikztimingtable}[timing/slope=0,

6 timing/coldist=2pt,xscale=2.05,yscale=1.1,semithick]

7 \scriptsize clock & 7{C}\\

8 S & .75L h 2.25L H LLl [fgblue]\\

9 R & 1.8L .8H 2.2L 1.4H 0.8L [fgblue]\\

10 Q & L .8H 1.7L 1.5H LL\\

11 $\overline{\mbox{Q}}$ & H .8L 1.7H 1.5L HH\\

12 Q & LHHHHLL[fgred]\\

13 $\overline{\mbox{Q}}$ & HLLLLHH[fgred]\\

14 \extracode

15 \makeatletter

16 \begin{pgfonlayer}{background}

17 \shade [right color=bgblue,left color=white]

18 (7,-8.45) rectangle (-1,-4.6);

19 \shade [right color=bgred,left color=white]

20 (7,-12.8) rectangle (-1,-8.6);

21 \begin{scope}[gray,semitransparent,semithick]

22 \horlines{}

23 \foreach \x in {1,...,6}

24 \draw (\x,1) -- (\x,-12.8);

25 % similar: \vertlines{1,...,6}

26 \end{scope}

27 \node [anchor=south east,inner sep=0pt]

28 at (7,-8.45) {\tiny clocked};

29 \node [anchor=south east,inner sep=0pt,fgred]

30 at (7,-12.8) {\tiny positive edge triggered};

31 \end{pgfonlayer}

32 \end{tikztimingtable}%

Example 8: SR flip-flop timing diagram. Redrawn from image
http://commons.wikimedia.org/wiki/File:SR_FF_timing_diagram.png

58

http://commons.wikimedia.org/wiki/File:SR_FF_timing_diagram.png

CPOL=0

CPOL=1

Cycle # 1 2 3 4 5 6 7 8

MISO z 1 2 3 4 5 6 7 8 z

MOSI z 1 2 3 4 5 6 7 8 z

Cycle # 1 2 3 4 5 6 7 8

MISO z 1 2 3 4 5 6 7 8 z

MOSI z 1 2 3 4 5 6 7 8 z

SCK

SS

CPHA=0

CPHA=1

1 \begin{tikztimingtable}[

2 timing/d/background/.style={fill=white},

3 timing/lslope=0.2,

4 timing/counter/new={char=Q,reset char=R},

5]

6 CPOL=0 & LL 15{T} LL \\

7 CPOL=1 & HH 15{T} HH \\

8 & H 17L H \\

9 \\

10 Cycle \# & U R 8{2Q} 2U \\

11 MISO & D{z} R 8{2Q} 2D{z} \\

12 MOSI & D{z} R 8{2Q} 2D{z} \\

13 \\

14 Cycle \# & UU R 8{2Q} U \\

15 MISO & D{z}U R 8{2Q} D{z} \\

16 MOSI & D{z}U R 8{2Q} D{z} \\

17 \extracode

18 % Add vertical lines in two colors

19 \begin{pgfonlayer}{background}

20 \begin{scope}[semitransparent,semithick]

21 \vertlines[red]{2.1,4.1,...,17.1}

22 \vertlines[blue]{3.1,5.1,...,17.1}

23 \end{scope}

24 \end{pgfonlayer}

25 % Add big group labels

26 \begin{scope}

27 [font=\sffamily\Large,shift={(-6em,-0.5)},anchor=east]

28 \node at (0, 0) {SCK}; \node at (0,-3) {SS};

29 \node at (1ex,-9) {CPHA=0}; \node at (1ex,-17) {CPHA=1};

30 \end{scope}

31 \end{tikztimingtable}%

Example 9: SPI Interface Timing. Redrawn from image http://en.wikipedia.org/wiki/File:SPI_timing_diagram.svg

59

http://en.wikipedia.org/wiki/File:SPI_timing_diagram.svg

	Introduction
	Changelog
	Dependencies

	Usage
	Timing Characters
	Macro for use in Text Mode
	Macro for use inside TikZ-Pictures
	Table for Timing Diagrams
	Macros for use inside the Character String
	Meta-Characters
	Floating timing diagrams with captions

	TikZ Keys for Styles, Settings and Actions
	Libraries for Further Characters
	Arrows
	Either High or Low
	Overlays
	Clock Arrows
	Column Type
	Nice Timing Tables
	Counter Character
	Advanced Nodes
	Compatibility Macros for ifsym package
	Intervals (experimental)
	Beamer Overlay Support (experimental)

	Examples

