
The easing∗ Library for pgf

Loh Ka-tsun†

0

1

a b

Contents

1 Introduction 2

2 Installation 2

3 Usage 2
3.1 Naming conventions . 3
3.2 Specifying parameters . 4

4 List of easing function shapes 5
4.1 Polynomials . 5

4.1.1 The smooth and smoother shapes 5
4.1.2 The pow shape and friends (linear, quad, cubic, quart,

and quint) . 5
4.1.3 The back shape . 6

4.2 Trigonometric and exponential . 6
4.2.1 The sine shape . 6
4.2.2 The exp shape . 7

4.3 Other . 7
4.3.1 The circ shape . 7
4.3.2 The elastic shape . 8

5 Implementation 9

∗version 0.1, dated 2021/07/18. This version was tested with pgf version 3.1.9a
†loh.ka.tsun@gmail.com

1 Introduction

This library adds easing functions to the pgf mathematical engine.

2 Installation

The easing library is a pgf library; it works both with LATEX and with plain TEX.
Once the file pgflibraryeasing.code.tex is in a directory searched by TEX, the
library can be loaded as follows:

with plain TEX:

\input pgf

\usepgflibrary{easing}

with LATEX:

\usepackage{pgf}

\usepgflibrary{easing}

The easing library is compatible with, but does not depend on, the floating point
unit library provided by pgf. To use both easing and the FPU, the FPU (or any
packages/libraries which use the FPU, such as pgfplots) must be loaded before the
easing library.

3 Usage

The routines implemented by the easing library are added to pgf’s mathemat-
ical engine with \pgfmathdeclarefunction, so that they are recognised by by
\pgfmathparse and can be used in any expression which is processed by the
parser. As a first example, the following code produces plots of the function
smoothstep(a,b,x) against the argument x, with one endpoint a = 0 and the
other endpoint b ranging through the integers −1 to 3:

2

−1 0 1 2 3

0

0.5

1

\input pgfplots

\usepgflibrary{easing}

\tikzpicture

\axis[

domain=-1.2:3.2, samples=64,

xmin=-1.2, xmax=3.2,

cycle list={

[samples of colormap=6 of viridis]},

no marks, thick]

\pgfplotsinvokeforeach{-1,...,3}{

\addplot{smoothstep(0,#1,x)};}

\endaxis

\endtikzpicture

\end

(This example also demonstrates the behaviour of the easing functions in some
special cases: when the endpoints b ≤ a, and in particular the degenerate case
where a = b, in which the library chooses to consider the function that is 1 for all
x ≥ 0 and 0 otherwise.)

Like all functions declared in this way, the functions implemented by easing are
also available as “public” macros, such as \pgfmathsmoothstep:

S1(0) = 0.0
S1(0.25) = 0.15625
S1(0.5) = 0.5
S1(0.75) = 0.84375
S1(1) = 1.0

\input pgf

\usepgflibrary{easing}

\foreach\x in{0,0.25,...,1}{

\pgfmathsmoothstep{0}{1}{\x}

$S_1(\x)=\pgfmathresult$\par

}

\end

See Part VIII of the pgf manual for more details on the mathematical engine.

3.1 Naming conventions

For each shape, three functions are declared, all of which take three arguments
a, b, and x. Where a < b, all of these function take value 0 whenever x ≤ a and 1
whenever x ≥ b. The names of the functions adhere to the following pattern:

• The ease-in form 〈shape〉easein(a,b,x) has easing applied near the end-
point a.

• The ease-out form 〈shape〉easeout(a,b,x) has easing applied near the end-
point b. Its graph is that of the ease-in form reflected about both axes.

• The step function form 〈shape〉step(a,b,x) has easing applied near both
endpoints. Its graph is that of the ease-in and ease-out forms concatenated
then appropriately scaled.

3

\input tikz

\usepgflibrary{easing}

\tikzpicture

\foreach\x in{0,...,12}{

\draw[gray,dashed]

(0,-1) -- (0,4) (5,-1) -- (5,4);

\draw[thick]

({5*smootheasein(0,12,\x)},3)

circle (0.25)

({5*smoothstep(0,12,\x)},1.5)

circle (0.25)

({5*smootheaseout(0,12,\x)},0)

circle (0.25);

}

\endtikzpicture

\end

3.2 Specifying parameters

Some of these shapes can be modified by adjusting one or more parameters, which
is done through pgfkeys: the parameter 〈param〉 for functions of shape 〈shape〉
is specified by setting the pgf key /easing/〈shape〉/〈param〉:

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

\input pgfplots

\usepgflibrary{easing}

\tikzpicture

\axis[

domain=-0.2:1.2, samples=64,

xmin=0, xmax=1, enlarge x limits,

cycle list={

[samples of colormap=6 of viridis]},

no marks, thick]

\pgfplotsinvokeforeach{0,...,4}{

\pgfkeys{easing,back/overshoot=#1}

\addplot{backeaseout(0,1,x)};

}

\endaxis

\endtikzpicture

\end

Setting a parameter affects the ease-in, step, and ease-out forms of the relevant
function at once.

For detailed descriptions of the parameters admitted by each shape, see the fol-
lowing section.

4

4 List of easing function shapes

An exhaustive list follows of all the easing functions implemented by the easing
library. For clarity, where mathematical expressions are given for functions, they
are written in terms of a parameter t equal to x

b−a .

4.1 Polynomials

4.1.1 The smooth and smoother shapes

The step function form of the smooth shape is a third-order Hermite polynomial
interpolation between 0 and 1, so that the first derivate at the endpoints are zero.
It is defined 3t2 − 2t3 for 0 ≤ t ≤ 1.

The step function form of the smoother shape is a fifth-order Hermite polynomial
interpolation between 0 and 1, so that the first and second derivatives at the
endpoints are zero. It is defined 10t3 − 15t4 + 6t5 for 0 ≤ t ≤ 1.

0

1

a b

smootheasein
smoothereasein

0

1

a b

smoothstep
smootherstep

0

1

a b

smootheaseout
smoothereaseout

4.1.2 The pow shape and friends (linear, quad, cubic, quart, and quint)

Polynomial easing. The ease-in form is defined as tn for 0 ≤ t ≤ 1, where the
exponent n is set with the pgf key /easing/pow/exponent, and should be greater
than 0. The parameter defaults to n = 2.4.

When n = 1, the function is linear between 0 and 1. For 0 < n ≤ 1, the ease-in
form has discontinuous derivative at 0.

The shapes linear, quad, cubic, quart, and quint are the same functions as pow
with n = 1, . . . , 5, respectively. Computations for these shapes are implemented
with TEX registers, which is a little faster and more accurate than setting the
argument then evaluating the equivalent pow function.

5

0

1

a b

poweasein
n=0.5,1,2,3,4

0

1

a b

powstep
n=0.5,1,2,3,4

0

1

a b

poweaseout
n=0.5,1,2,3,4

4.1.3 The back shape

Anticipatory easing. The ease-in form is defined as t2(1 − t)s + t3 for 0 ≤ t ≤ 1,
where the parameter s is set with the pgf key /easing/back/overshoot. The
parameter defaults to s = 1.6.

When s ≤ 0, there is no overshoot. When s = 0, the function is equivalent to pow

with n = 3.

0

1

a b

backeasein
s=-0.8,0.0,0.8,1.6,2.4

0

1

a b

backstep
s=-0.8,0.0,0.8,1.6,2.4

0

1

a b

backeaseout
s=-0.8,0.0,0.8,1.6,2.4

4.2 Trigonometric and exponential

4.2.1 The sine shape

An easing function that looks like a section of a sinusoid. The ease-out form is
defined as sin(π2 t) for 0 ≤ t ≤ 1.

This shape admits no parameters.

6

0

1

a b

sineeasein

0

1

a b

sinestep

0

1

a b

sineeaseout

4.2.2 The exp shape

An easing function that looks like an exponential function. The ease-in form is
defined as ec(t−1) for 0 ≤ t ≤ 1, where the parameter c is set with the pgf key
/easing/exp/speed, and should be greater than 0. The parameter defaults to
c = 7.2.

Because of the nature of the exponential function, this shape is only approximately
continuous at the endpoints a and b. In practice, the discontinuity only becomes
noticeable for small c, around c ≤ 4.

0

1

a b

expeasein
c=4,7,10,13,16

0

1

a b

expstep
c=4,7,10,13,16

0

1

a b

expeaseout
c=4,7,10,13,16

4.3 Other

4.3.1 The circ shape

An easing function whose graph is part of an ellipse. This shape admits no pa-
rameters.

7

0

1

a b

circeasein

0

1

a b

circstep

0

1

a b

circeaseout

4.3.2 The elastic shape

Easing function that looks like a damped harmonic oscillator. The ease-out form
is defined as ec(t− 1) cos(2πf(1− t)). This shape admits two parameters:

• The frequency f is the number of oscillations between the endpoints. It is
set with the pgf key /easing/elastic/frequency, and should be greater
than 0. The frequency defaults to f = 3.

• The damping coefficient b affects the speed at which the amplitude decays.
It is set with the pgf key /easing/elastic/damping, and should be greater
than zero. The damping coefficient defaults to b = 7.2.

The function overshoots the range [0, 1] when f > 0.5. For 0 < f ≤ 1, this
function becomes a family of anticipatory easing curves that look slightly different
from the back shape but are more expensive to compute.

0

1

a b

elasticeasein
f=0.5,1.4,2.3,3.2,4.1

0

1

a b

elasticstep
f=0.5,1.4,2.3,3.2,4.1

0

1

a b

elasticeaseout
f=0.5,1.4,2.3,3.2,4.1

8

5 Implementation

\ifeasing@withfpu

\easing@divide

This library uses TEX registers and pgf’s mathematical engine for computations.

It is possible that the user is loading this library together with the floating point
unit library. We save the basic routines from pgfmath, so that when this happens,
the FPU doesn’t break everything when it does a switcharoo with the pgfmath

macros.

1 \newif\ifeasing@withfpu

2 \expandafter\ifx\csname pgflibraryfpuifactive\endcsname\relax

3 \easing@withfpufalse

4 \else

5 \easing@withfputrue

6 \fi

7 \ifeasing@withfpu

8 \let\easing@cos\pgfmath@basic@cos@

9 \let\easing@divide\pgfmath@basic@divide@

10 \let\easing@exp\pgfmath@basic@exp@

11 \let\easing@ln\pgfmath@basic@ln@

12 \let\easing@sqrt\pgfmath@basic@sqrt@

13 \else

14 \let\easing@cos\pgfmathcos@

15 \let\easing@divide\pgfmathdivide@

16 \let\easing@exp\pgfmathexp@

17 \let\easing@ln\pgfmathln@

18 \let\easing@sqrt\pgfmathsqrt@

19 \fi

\easing@linearstep@ne

\easing@linearstep@fixed

\easing@linearstep@float

\easing@linearstep

In absence of the FPU, the next section of code defines \easing@linearstep,
which expects as arguments plain numbers (i.e. things that can be assigned to
dimension registers). The net effect of \easing@linearstep{#1}{#2}{#3} is to
set \pgfmathresult to #3−#1

#2−#1
, clamped to between 0 and 1.

If the FPU is loaded, \easing@linearstep is instead named \easing@linearstep@fixed,
and we additionally define \easing@linearstep@float, which expects FPU-
format floats as arguments. We do not format the output as a float since the
FPU is smart enough to do that conversion quietly on its own.

The \easing@linearstep routine is the first step in the definition of all other
routines that compute easing functions.

20 \def\easing@linearstep@ne#1{%

21 \begingroup

22 \pgf@x#1pt

23 \ifdim1pt<\pgf@x\pgf@x 1pt\fi

24 \ifdim0pt>\pgf@x\pgf@x 0pt\fi

25 \pgfmathreturn\pgf@x

26 \endgroup

27 }%

9

28 \expandafter\def

29 \csname easing@linearstep\ifeasing@withfpu @fixed\fi\endcsname#1#2#3{%

30 \begingroup

31 \pgf@xa#3pt

32 \pgf@xb#2pt

33 \pgf@xc#1pt

34 \ifdim\pgf@xb=\pgf@xc

35 \edef\pgfmathresult{\ifdim\pgf@xa>\pgf@xb 1\else 0\fi}%

36 \else

37 \advance\pgf@xa-\pgf@xc

38 \advance\pgf@xb-\pgf@xc

39 \easing@divide{\pgfmath@tonumber\pgf@xa}{\pgfmath@tonumber\pgf@xb}%

40 \easing@linearstep@ne\pgfmathresult

41 \fi

42 \pgfmathsmuggle\pgfmathresult

43 \endgroup

44 }%

45 \ifeasing@withfpu

46 \def\easing@linearstep@float#1#2#3{%

47 \begingroup

48 \pgfmathfloatsubtract{#3}{#1}%

49 \edef\pgf@tempa{\pgfmathresult}%

50 \pgfmathfloatsubtract{#2}{#1}%

51 \edef\pgf@tempb{\pgfmathresult}%

52 \pgfmathfloatifflags{\pgf@tempb}{0}{%

53 \pgfmathfloatifflags{\pgf@tempa}{-}{%

54 \edef\pgfmathresult{0}%

55 }{%

56 \edef\pgfmathresult{1}%

57 }%

58 }{%

59 \pgfmathfloatdivide\pgf@tempa\pgf@tempb

60 \pgfmathfloattofixed{\pgfmathresult}%

61 \easing@linearstep@ne\pgfmathresult

62 }%

63 \pgfmathsmuggle\pgfmathresult

64 \endgroup

65 }%

66 \def\easing@linearstep#1#2#3{%

67 \pgflibraryfpuifactive{%

68 \easing@linearstep@float{#1}{#2}{#3}}{%

69 \easing@linearstep@fixed{#1}{#2}{#3}}%

70 }%

71 \fi

\easing@linearstep@easein@ne

\easing@linearstep@easeout@ne

The linear ease-in and ease-out functions are identical to the linear step function.
We define the respective macros so as not to surprise the user with their absence.

72 \let\easing@lineareasein\easing@linearstep

73 \pgfmathdeclarefunction{lineareasein}{3}{%

10

74 \easing@lineareasein{#1}{#2}{#3}}%

75 \let\easing@lineareaseout\easing@linearstep

76 \pgfmathdeclarefunction{lineareaseout}{3}{%

77 \easing@lineareasein{#1}{#2}{#3}}%

\easing@derive@easein@nefromstep@ne

\easing@derive@easeout@nefromstep@ne

\easing@derive@step@nefromeasein@ne

\easing@derive@easeout@nefromeasein@ne

The pattern in general is that, for each shape, we define the one-parameter version
of the step, ease-in, and ease-out routines interpolating between values 0 at 1 at
the ends of the unit interval. Then by composing with \easing@linearstep, we
obtain the three-parameter versions that allow the user to specify the begin and
end points of the interpolation.

Most of the time it suffices to define just one of the three one-parameter ver-
sions of a shape to be able to infer the form of all three. This is done with the
\easing@derive–from– macros.

78 \def\easing@derive@easein@nefromstep@ne#1{%

79 \expandafter\def\csname easing@#1easein@ne\endcsname##1{%

80 \begingroup

81 \pgf@x##1 pt

82 \divide\pgf@x 2

83 \csname easing@#1step@ne\endcsname{\pgfmath@tonumber\pgf@x}%

84 \pgf@x\pgfmathresult pt

85 \multiply\pgf@x 2

86 \pgfmathreturn\pgf@x

87 \endgroup

88 }%

89 }%

90 \def\easing@derive@easeout@nefromstep@ne#1{%

91 \expandafter\def\csname easing@#1easeout@ne\endcsname##1{%

92 \begingroup

93 \pgf@x##1 pt

94 \divide\pgf@x 2

95 \advance\pgf@x 0.5pt

96 \csname easing@#1step@ne\endcsname{\pgfmath@tonumber\pgf@x}%

97 \pgf@x\pgfmathresult pt

98 \multiply\pgf@x 2

99 \advance\pgf@x -1pt

100 \pgfmathreturn\pgf@x

101 \endgroup

102 }%

103 }%

104 \def\easing@derive@step@nefromeasein@ne#1{%

105 \expandafter\def\csname easing@#1step@ne\endcsname##1{%

106 \begingroup

107 \pgf@x##1 pt

108 \multiply\pgf@x 2

109 \ifdim\pgf@x<1pt

110 \csname easing@#1easein@ne\endcsname{\pgfmath@tonumber\pgf@x}%

111 \pgf@x\pgfmathresult pt

112 \divide\pgf@x 2

11

113 \else

114 \multiply\pgf@x -1

115 \advance\pgf@x 2pt

116 \csname easing@#1easein@ne\endcsname{\pgfmath@tonumber\pgf@x}%

117 \pgf@x\pgfmathresult pt

118 \divide\pgf@x 2

119 \multiply\pgf@x -1

120 \advance\pgf@x 1pt

121 \fi

122 \pgfmathreturn\pgf@x

123 \endgroup

124 }%

125 }%

126 \def\easing@derive@easeout@nefromeasein@ne#1{%

127 \expandafter\def\csname easing@#1easeout@ne\endcsname##1{%

128 \begingroup

129 \pgf@x##1pt

130 \multiply\pgf@x -1

131 \advance\pgf@x 1pt

132 \csname easing@#1easein@ne\endcsname{\pgfmath@tonumber\pgf@x}%

133 \pgf@x\pgfmathresult pt

134 \multiply\pgf@x -1

135 \advance\pgf@x 1pt

136 \pgfmathreturn\pgf@x

137 \endgroup

138 }%

139 }%

\easing@pgfmathinstall The three-parameter versions of each routine is installed into the mathematical
engine, so that they are available in \pgfmathparse.

140 \def\easing@pgfmathinstall#1{%

141 \pgfmathdeclarefunction{#1step}{3}{%

142 \easing@linearstep{##1}{##2}{##3}%

143 \csname easing@#1step@ne\endcsname\pgfmathresult

144 }%

145 \pgfmathdeclarefunction{#1easein}{3}{%

146 \easing@linearstep{##1}{##2}{##3}%

147 \csname easing@#1easein@ne\endcsname\pgfmathresult

148 }%

149 \pgfmathdeclarefunction{#1easeout}{3}{%

150 \easing@linearstep{##1}{##2}{##3}%

151 \csname easing@#1easeout@ne\endcsname\pgfmathresult

152 }%

153 }%

\easing@smoothstep@ne

\easing@smootheasein@ne

\easing@smootheaseout@ne

The smooth shape.

154 \def\easing@smoothstep@ne#1{%

155 \begingroup

12

156 \pgf@x#1pt

157 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

158 \multiply\pgf@x-2

159 \advance\pgf@x 3pt

160 \pgf@x\pgf@temp\pgf@x

161 \pgf@x\pgf@temp\pgf@x

162 \pgfmathreturn\pgf@x

163 \endgroup

164 }%

165 \easing@derive@easein@nefromstep@ne{smooth}%

166 \easing@derive@easeout@nefromstep@ne{smooth}%

167 \easing@pgfmathinstall{smooth}%

\easing@smootherstep@ne

\easing@smoothereasein@ne

\easing@smoothereaseout@ne

The smoother shape.

168 \def\easing@smootherstep@ne#1{%

169 \begingroup

170 \pgf@x#1pt

171 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

172 \multiply\pgf@x 6

173 \advance\pgf@x -15pt

174 \pgf@x\pgf@temp\pgf@x

175 \advance\pgf@x 10pt

176 \pgf@x\pgf@temp\pgf@x

177 \pgf@x\pgf@temp\pgf@x

178 \pgf@x\pgf@temp\pgf@x

179 \pgfmathreturn\pgf@x

180 \endgroup

181 }%

182 \easing@derive@easein@nefromstep@ne{smoother}%

183 \easing@derive@easeout@nefromstep@ne{smoother}%

184 \easing@pgfmathinstall{smoother}%

\easing@powstep@ne

\easing@poweasein@ne

\easing@poweaseout@ne

The pow shape.

Because of some wonkiness in the FPU, \pgfmath@pow@basic@ actually doesn’t
work. Instead of invoking the pow function, we compute tn approximately by
computing en ln t using ln and exp instead (which is what pgfmath does anyway
when the exponent is not an integer.)

185 \pgfkeys{/easing/.is family}%

186 \pgfkeys{easing,

187 pow/exponent/.estore in=\easing@param@pow@exponent,

188 pow/exponent/.default=2.4,

189 pow/exponent}%

190 \def\easing@poweasein@ne#1{%

191 \begingroup

192 \pgf@x#1pt

193 \ifdim\pgf@x=0pt

194 \edef\pgfmathresult{0}%

13

195 \else

196 \easing@ln{#1}%

197 \pgf@x\pgfmathresult pt

198 \pgf@x\easing@param@pow@exponent\pgf@x

199 \easing@exp{\pgfmath@tonumber\pgf@x}%

200 \fi

201 \pgfmathsmuggle\pgfmathresult

202 \endgroup

203 }%

204 \easing@derive@easeout@nefromeasein@ne{pow}%

205 \easing@derive@step@nefromeasein@ne{pow}%

206 \easing@pgfmathinstall{pow}%

\easing@quadstep@ne

\easing@quadeasein@ne

\easing@quadeaseout@ne

\easing@cubicstep@ne

\easing@cubiceasein@ne

\easing@cubiceaseout@ne

\easing@quartstep@ne

\easing@quarteasein@ne

\easing@quarteaseout@ne

\easing@quintstep@ne

\easing@quinteasein@ne

\easing@quinteaseout@ne

The quad–, cubic–, quart–, and quint– routines have explicit definitions.

207 \def\easing@quadeasein@ne#1{%

208 \begingroup

209 \pgf@x#1pt

210 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

211 \pgf@x\pgf@temp\pgf@x

212 \pgfmathreturn\pgf@x

213 \endgroup

214 }%

215 \easing@derive@step@nefromeasein@ne{quad}%

216 \easing@derive@easeout@nefromeasein@ne{quad}%

217 \easing@pgfmathinstall{quad}%

218 %

219 \def\easing@cubiceasein@ne#1{%

220 \begingroup

221 \pgf@x#1pt

222 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

223 \pgf@x\pgf@temp\pgf@x

224 \pgf@x\pgf@temp\pgf@x

225 \pgfmathreturn\pgf@x

226 \endgroup

227 }%

228 \easing@derive@step@nefromeasein@ne{cubic}%

229 \easing@derive@easeout@nefromeasein@ne{cubic}%

230 \easing@pgfmathinstall{cubic}%

231 %

232 \def\easing@quarteasein@ne#1{%

233 \begingroup

234 \pgf@x#1pt

235 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

236 \pgf@x\pgf@temp\pgf@x

237 \pgf@x\pgf@temp\pgf@x

238 \pgf@x\pgf@temp\pgf@x

239 \pgfmathreturn\pgf@x

240 \endgroup

241 }%

14

242 \easing@derive@step@nefromeasein@ne{quart}%

243 \easing@derive@easeout@nefromeasein@ne{quart}%

244 \easing@pgfmathinstall{quart}%

245 %

246 \def\easing@quinteasein@ne#1{%

247 \begingroup

248 \pgf@x#1pt

249 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

250 \pgf@x\pgf@temp\pgf@x

251 \pgf@x\pgf@temp\pgf@x

252 \pgf@x\pgf@temp\pgf@x

253 \pgf@x\pgf@temp\pgf@x

254 \pgfmathreturn\pgf@x

255 \endgroup

256 }%

257 \easing@derive@step@nefromeasein@ne{quint}%

258 \easing@derive@easeout@nefromeasein@ne{quint}%

259 \easing@pgfmathinstall{quint}%

\easing@backstep@ne

\easing@backeasein@ne

\easing@backeaseout@ne

The back shape.

260 \pgfkeys{easing,

261 back/overshoot/.estore in=\easing@param@back@overshoot,

262 back/overshoot/.default=1.6,

263 back/overshoot}%

264 \def\easing@backeasein@ne#1{%

265 \begingroup

266 \pgf@x#1pt

267 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

268 \advance\pgf@x -1pt

269 \pgf@x\easing@param@back@overshoot\pgf@x

270 \advance\pgf@x\pgf@temp pt

271 \pgf@x\pgf@temp\pgf@x

272 \pgf@x\pgf@temp\pgf@x

273 \pgfmathreturn\pgf@x

274 \endgroup

275 }%

276 \easing@derive@step@nefromeasein@ne{back}%

277 \easing@derive@easeout@nefromeasein@ne{back}%

278 \easing@pgfmathinstall{back}%

\easing@sinestep@ne

\easing@sineeasein@ne

\easing@sineeaseout@ne

The sine shape.

We write down both the easein and step forms of this, since they are simple
compared to what would have been obtained by \easing@derive–.

279 \def\easing@sineeasein@ne#1{%

280 \begingroup

281 \pgf@x#1pt

282 \multiply\pgf@x 90

15

283 \easing@cos{\pgfmath@tonumber\pgf@x}%

284 \pgf@x\pgfmathresult pt

285 \multiply\pgf@x -1

286 \advance\pgf@x 1pt

287 \pgfmathreturn\pgf@x

288 \endgroup

289 }%

290 \def\easing@sinestep@ne#1{%

291 \begingroup

292 \pgf@x#1pt

293 \multiply\pgf@x 180

294 \easing@cos{\pgfmath@tonumber\pgf@x}%

295 \pgf@x\pgfmathresult pt

296 \divide\pgf@x 2

297 \multiply\pgf@x -1

298 \advance\pgf@x 0.5pt

299 \pgfmathreturn\pgf@x

300 \endgroup

301 }%

302 \easing@derive@easeout@nefromeasein@ne{sine}%

303 \easing@pgfmathinstall{sine}%

\easing@expstep@ne

\easing@expeasein@ne

\easing@expeaseout@ne

The exp shape.

304 \pgfkeys{easing,

305 exp/speed/.estore in=\easing@param@exponent@speed,

306 exp/speed/.default=7.2,

307 exp/speed}%

308 \def\easing@expeasein@ne#1{%

309 \begingroup

310 \pgf@x#1pt

311 \advance\pgf@x -1pt

312 \pgf@x\easing@param@exponent@speed\pgf@x

313 \easing@exp{\pgfmath@tonumber\pgf@x}%

314 \pgfmathsmuggle\pgfmathresult

315 \endgroup

316 }%

317 \easing@derive@step@nefromeasein@ne{exp}%

318 \easing@derive@easeout@nefromeasein@ne{exp}%

319 \easing@pgfmathinstall{exp}%

\easing@circstep@ne

\easing@circeasein@ne

\easing@circeaseout@ne

The circ shape.

320 \def\easing@circeasein@ne#1{%

321 \begingroup

322 \pgf@x#1pt

323 \advance\pgf@x -1pt

324 \edef\pgf@temp{\pgfmath@tonumber\pgf@x}%

325 \pgf@x\pgf@temp\pgf@x

326 \multiply\pgf@x -1

16

327 \advance\pgf@x 1pt

328 \easing@sqrt{\pgfmath@tonumber\pgf@x}%

329 \pgfmathsmuggle\pgfmathresult

330 \endgroup

331 }%

332 \easing@derive@step@nefromeasein@ne{circ}%

333 \easing@derive@easeout@nefromeasein@ne{circ}%

334 \easing@pgfmathinstall{circ}%

\easing@elasticstep@ne

\easing@elasticeasein@ne

\easing@elasticeaseout@ne

The elastic shape.

335 \pgfkeys{easing,

336 elastic/frequency/.estore in=\easing@param@elastic@frequency,

337 elastic/damping/.estore in=\easing@param@elastic@damping,

338 elastic/frequency/.default=3,

339 elastic/damping/.default=7.2,

340 elastic/frequency, elastic/damping}%

341 \def\easing@elasticeasein@ne#1{%

342 \begingroup

343 \pgf@xa#1pt

344 \advance\pgf@xa -1pt

345 \pgf@xb-\pgf@xa

346 \pgf@xa\easing@param@elastic@damping\pgf@xa

347 \easing@exp{\pgfmath@tonumber\pgf@xa}%

348 \pgf@xa\pgfmathresult pt

349 \pgf@xb 360\pgf@xb

350 \pgf@xb\easing@param@elastic@frequency\pgf@xb

351 \easing@cos{\pgfmath@tonumber\pgf@xb}%

352 \pgf@xa\pgfmathresult\pgf@xa

353 \pgfmathreturn\pgf@xa

354 \endgroup

355 }%

356 \easing@derive@step@nefromeasein@ne{elastic}%

357 \easing@derive@easeout@nefromeasein@ne{elastic}%

358 \easing@pgfmathinstall{elastic}%

Change History

0.1
General: Initial version 1

17

