Openwall GNU/*/Linux
a security-enhanced OS

Solar Designer Rafal Wojtczuk
<solar@owl.openwall.com> <nergalfowl.openwall .com>

Why another Linux distro?

m Aren't major Linux distributions secure?

Most care to patch known security vulnerabilities which
are "bad enough", yet do little to prevent vulnerable
software from getting into the distribution in the first
place

There're usually more than just a few pieces of
software in a distribution which provide a certain bit
of functionality, thereby unnecessarily increasing the

risk

» The number of vulnerabilities affecting each major distribution that
hit Bugtraq is high, and those are only the ones which are "bad

enough”

Why another Linux distro? (cont.)

mIsn't there already a secure Linux distribution?

Most choose software based on security track record

» A good security track record is no replacement for source code
review; unless the software component is very popular, the track
record hardly says anything on its design and code quality

» It isn't just the choice of software which matters

There's often an emphasis on kernel modifications

It's not the security-related bells and whistles which
make a system secure

Openwall GNU/*/Linux (Owl)

A security-enhanced server platform based on

The Linux kernel and its corresponding utilities
GNU software

Many BSD-derived components, including those ported
to Linux specifically for use in Owl

Other free software from various authors

Free software developed by Openwall team members,
including specifically for Owl

Owl: Features

m A base for installing whatever software is
generally available for GNU/*/Linux systems
(including commercial and closed-source)

mIncludes a growing set of integrated Internet
services

m Includes a complete build environment ("make

buildworld")

m Supports multiple architectures (currently x86,
SPARC, Alpha)

Owl: Approach to security

m Software design and code quality are first
priority

®m Source code review

Pieces of code which are typically run with privileges
greater than those of a regular user and/or typically
process data obtained over a network are audited
before the corresponding software component is
included; this applies to

» relevant code paths in many of the system libraries
» all SUID/SGID programs

» all daemons and network services

Owl: Approach to security (cont.)

m Software modifications in order to
apply the least privilege principle
introduce privilege separation

m Safe default configuration

m As the project evolves, many of the software

components will be replaced with ones of our
own

Owl: Approach to security (cont.)

m Policy enforcement and integrity checking

m "Strong" cryptography within core OS
components

m "Hardening" to reduce likelihood and/or impact
of successful real-world attacks on insecure

third-party software one might install on the
system

m A wide range of security tools available for
use "out of the box"

Owl: Build environment

The Owl userland is maintained similarly to *BSD
ports/packages and may be rebuilt with one simple
command ("make buildworld™

Some build times:

Dual Pentium ITIT, 1.266 GHz, 2 GB 0:30
UltraSparc ITi, 400 MHz, 256 MB 3:50
Alpha Z21164PC, 533 MHz, 128 MB 5:30

{Yes, gce is this slow on Alpha)

The build times will increase as we add
more packages and update to new versions
of software already in Owl

-
o

Rﬂ_ buildwerld _ﬂﬁD

builder #1

builder #2

S

]

RPM pac s
(binary only)

S

Owl: Developed software

® Portable

pam_ mktemp, pam_ passwdqc, pam_userpass; popa3d;
scanlogd; libnids; John the Ripper

m Semi-portable
crypt_blowfish, tcb (libtecb, libnss tcb, pam_tcb)
m Owl-specific

owl-control
» intended for Owl only, but now also used by ALT Linux

Startup scripts, the build environment, and so on

Owl: Ported software

m Several software components have been ported
from OpenBSD (with our usual source code
review and modifications)

miree
» and we actually build the initial filesystem hierarchy with mtree

Vixie Cron (crontab, crond)
» with modifications for SGID crontab(1)

telnet, telnetd
» with modifications to introduce privilege separation

netcat (nc)

mailx

Owl: Modified software

m Essentially all of it

on average 4 patch files per package

(the most important) half of the patches originate in
Owl

the other half has been contributed or imported from

various other distributions (including *BSD's)
» with appropriate credit given in each patch ftile name

owllbuild:~/native/Owl/packages/tcp wrappers$ we -¢ *.diff
22005 tcp wrappers 7.6-openbsd-owl-cleanups.diff
4272 tcp wrappers 7.6-openbsd-owl-ip-options.diff
4088 tcp wrappers 7.6-owl-Makefile.diff
1866 tcp wrappers 7.6-owl-safe finger.diff
4938 tcp wrappers 7.6-steveg-owl-match.diff

Owl: crontab / crond

m What privileges does crontab(1) require?

Ability to insert jobs into crond(8) spool

m The least privilege principle in the flesh

owllroot:/var/spool/cron¥ ls -1d . joe
drwx-wx—-T root crontab 1024 Nov 5 14:10 .
-rw joe crontab 493 Apr 3 2001 joe

owl!root:/usr/bint 1ls -1 crontab
—rWX——8——X root crontab 21116 Nov 5 14:10 crontab

crond(8) must not blindly trust its spool directory (and
ours doesn't)

Owl: syslogd architecture

W Initialization as root

Bind a socket to /dev/log
Process /ete/syslog.conf, open appropriate log files
Drop to user/group syslogd

m Normal operation as user syslogd

Read from /dev/log, write to the log files

mIn order to be able to reopen the log files on
SIGHUP, they must be made writable to user or
group syslogd when rotated

Owl: klogd architecture

W Initialization as root

Open /proc/kmsg and /dev/log, retain the open fd's
Open /dev/kmem and System.map, read relevant data,
close them

Chroot to /var/empty

Drop to user klogd

m Normal operation as user klogd, in the chrooted
environment

Read from the /proc/kmsg fd, format the message, and
write it to the /dev/log fd

Owl: popa3d architecture

4 Startup as root, fork

Chroot to /var/fempty,
drop to user popa3d nill

*

Handle the AUTHORIZATION state,
pass the username/password, -
exit

getspnam|(3), crypt(3), !
. pass the authentication result, -
m exit '

> Execution flow

> [Interprocess communication

.................... Process boundary

'

Wait for, then read
the authentication data.
Fork {possibly in pam_1lcb.so)

I

Wait for, then read
V| the authentication result

!

Drop to the authenticated user,
proceed in a single process

L L ERNE L. LLNNENLJLLELRDJ.

llllll‘ll‘ll..llll‘ll‘ll..t EEEEE

Operation done having dropped
to non-root user

Owl: telnetd architecture

Startup as root ;

Get a pty, create a pipe for communication

Chroot to /var/empty,
with the other process, fork

drop to user telnetd

v

Negotiate telnet options and
the environment with the client

mmnm_ﬂ.wmﬁ%:ﬂ“wﬁﬁ::._m:r k— Send the environment

" via pty m Communicate with login via pty, :
" Spawn login _A.._| — — — {3 communicate with the client via net, :
m P process telnet options m
p» Execution flow m. ..

— — — — — > Interprocess communication Operation done having dropped

to non-root user

............................ Process boundary

Owl: vsftpd architecture

'— Chroot to /var/fempty, drop to user vsftpd

Startup as root, fork HV

a—

Receive username/password, 1
authenticate the user

v

Get username/password (from the client),
pass them to the parent, exit

Chroot to Emﬁm?nﬂ_m_
retain CAP_NET_ BIND SERVICE,
drop to user vsftpd

I

Chroot appropriately if required,
drop to the authenticated user

v

. ﬂ._ Ask for, then receive a TCP socket .

—
Bind port 20 to a TCP socket, A ¥ +
pass it to the child ;
, Serve a file via the obtained socket
p Execution flow
—_ o — — .ﬁu— _-..__._m;._u_—..u__nm_mm communication D—umﬂm..—._ﬂﬂ done _._mu.___,_jﬂ ﬂ_-n__u__..u_m_ﬂ

....................... Process boundary to non-root user

Traditional password shadowing

m Password hashes and aging information of all
users are stored in a single file

passwd(1) possesses the privilege to alter all entries in
the shadow file

» The traditional filesystem layout forces passwd{1l) to be SUID root

chage(1l) possesses the privilege to read all entries in
the shadow file

m A passwd process compromise is fatal

m The problem cannot be fixed by assigning a
dedicated user for /etc/shadow accesses

Owl: tcb - the alternative to shadow

m Each user is assigned a separate shadow file
®m Each user is the owner of their shadow file

m Access to shadow files is group-restricted to
allow for password policy enforcement

m The move to tcb is transparent for existing
applications which rely on interfaces such as
getspnam(3) (and thus on NSS) or PAM; no
modifications to application sources are needed

Owl: tcb: Filesystem layout

owllroot:~# 1ls -1d /etc/tcb/
drwx——x——— root shadow 1024 Nov 27 12:14 /etc/tch/

owl!root:~# 1ls -1 /etc/tcbh/
drwx——s——— root auth 1024 Nov 27 12:14 root
drwx——s——— joe auth 1024 Nov 27 12:14 joe

owllroot:~# 1s -1 /etc/tcb/joe/
—rw-r————— joe auth 84 Nov 27 12:14 shadow

owllroot:~# cat /etc/tcb/joe/shadow

joe:52a$5085ghnh105K6KE24bY9xgQa5uSXwG2Y04051b.yfLKp8BVFBusqLwxi:

11320:0:99999:7:::

The per-user directories are also used as scratch space
for temporary and lock files which are needed during

password change

Owl: tcb: Required privileges

m passwd(1) is made SGID shadow
m chage(1) is SGID shadow

A possible compromise would only let one bypass
password policy enforcement for their own account

m Group auth may be used to grant a process
read access to all password hashes should the
need arise

m No real need for any SUID binaries on the
entire system

Owl: tcb: Components

mlibteb, the auxiliary library used by almost all
of the tcb suite

Provides functions for locking and accessing tcb
shadow files safely

m libnss tcb, the NSS module

Provides getspnam(3) and related functions

When running as root, the /etc/tcb/*/shadow files are
accessed with the proper effective credentials and
treated as untrusted input

Owl: tcb: Components (cont.)

m pam_tcb, the PAM module

Provides functionality for all four PAM management
groups

Supports /ete/passwd, /etc/shadow, /etc/teb/ directory
structure, NIS, and NIS+ for password changes

Supports arbitrary password hashing methods
Optional forking to keep address space clean

Backwards compatible with Linux-PAM pam_unix and
pam_pwdb but offers additional functionality and
better code quality

Owl: tcb: Components (cont.)

mtcb convert and tcb unconvert

Easy conversion between /etc/tecb/* and traditional
/ete/shadow databases

®m The shadow suite utilities

Non-trivial patching has been applied to the sources of
most shadow suite utilities

The invocation syntax remained unchanged

A setting in /etc/login.defs specifies whether the
utilities should adhere to the tcb scheme

Owl: Further information

m The Openwall GNU/*/Linux homepage is
http://www.openwall.com/Owl/

m Any questions?

