Testing of Password Policy

Anton Dedov

-

Who Am I

- Software Developer and Security Engineer
 @ Parallels Automation
- Open source developer
- Mail: <u>adedov@gmail.com</u>
- Twitter: @brutemorse

Motivation

- It is hard for application developers to choose between existing password meters reasonably.
- Worse, some implement their own [or customize existing] without understanding of security and psychological implications.
- Need some framework/criteria that would help reasonable choice.

NAÏVE SECURITY MODEL

Untargeted Online Attacks

- 1 guess per user / day
- 2 days to find first password
- 100 days to find 50 passwords

- 1 guess per user / day
- 10 days to find first password
- 1.5yr to find 50 passwords

Targeted Online Attacks

- 10 failed attempts \rightarrow 1 hour block
- 240 attempts per user / day
- 7200 attempts per user / month
- 86400 attempts per user / year
- More IP-s scale linearly

Offline Attacks

- Huge dictionaries
- Specialized hardware and clusters
- No time/complexity limitations except
 - Enforced password quality
 - Hash speed
 - Salt uniqueness

TESTING PASSWORD METERS

Candidates

- <u>Plesk</u>
- jquery.complexify
- <u>zxcvbn</u>
- <u>libpwquality</u>
- passwdqc

Method

- Apply meters to password bases
- Dictionary attacks with JtR
- Rule-based attacks with JtR
- Collect essential parameters

Apply Meters

- **Requirement**: meter should provide unambiguous signal about if password is accepted or not.
- Passwdqc tells straight "OK" or "Bad".
- Others return score. Minimal accepted score documented.

Password Bases

- Real customers
- RockYou all
- CMIYC-2010 not cracked
- Random passphrases
- Random 10-char passwords

Red for attacks; blue for psychological acceptance.

Dictionaries

Dictionary	Size, words
Tiny English	817
RockYou top	1438
Common-passwords	3546
English	54316
Tiny English crossed / 8 chars	72100

Rules

Rule	Factor
JtR defaults	~ 40
JtR jumbo	~ 5500
m3g9tr0n-2048512	= 3510
m3g9tr0n-2048517	~ 860

Cracking Sessions

Cracking Sessions

- 25 attacks per password base per meter
- Min dictionary size 817
- Max dictionary size 396M

RockYou dictionary was not used against RockYou password base.

Parameters

- M passwords approved by meter
- D attack dictionary size
- C # of guessed passwords during attack

 $\frac{C}{D}$

- Attack effectiveness $\frac{C}{M}$
- Attack economy

Online Attacks Effectiveness

For dictionaries < 100K Max guess rate 0.007%

Max Attack Effectiveness

Max Attack Economy

Average Attack Economy

Guesses Totals

Meter	RockYou	Customer 1	Customer 2
plesk	0.08%	0.28%	0.28%
passwdqc	0.18%	0.23%	0.12%
zxcvbn	0.54%	0.26%	0.06%
complexify	0.54%	1.06%	0.40%
libpwquality	1.16%	0.50%	0.45%

Guesses Totals

Psy. Acceptance: User Passwords

Meter	RockYou	Customer 1	Customer 2
plesk	0.21%	3.45%	5.53%
passwdqc	1.60%	14.90%	40.62%
zxcvbn	5.43%	16.29%	43.16%
complexify	2.03%	7.05%	27.18%
libpwquality	4.32%	11.88%	34.27%

Psy. Acceptance: User Passwords

Psy. Acceptance: Hard Passwords

Meter	CMYIC-2010	Pass-Phrases	Random 10 chars
plesk	24%	0%	42%
passwdqc	59%	99.98%	100%
zxcvbn	42%	99.76%	99.99%
complexify	3%	99.94%	0%
libpwquality	10%	99.82%	81%

Psy. Acceptance: Hard Passwords

The "editors" choice

Security	Psychology
passwdqc	zxcvbn
plesk	passwdqc
zxcvbn	libpwquality
jquery.complexify	jquery.complexify
libpwquality	plesk

Conclusions

- Test your security tools for security
- Avoid write your own security tools
- All tested meters protect from online attacks
- Also seem protect from offline attacks (for slow hashes and unique salts)
- But *most* tend to deny more passwords than it is necessary, including known to be hard ones
- Passwdqc and zxcvbn look best

Where to go?

- Bigger dictionaries and brute force
- Testing on real people to
 - Learn evolution of "common passwords" lists
 - Test psychological acceptance empirically
- More meters?

Special thanks

Alexander Peslyak Solar Designer

Bonus: time to process RockYou... (MBP 2011)

0:00 1:12 2:24 3:36 4:48 6:00 7:12